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Abstract—Federated learning (FL) has attracted in-
creasing attention to mitigate security and privacy
challenges in traditional cloud-centric machine learn-
ing models specifically in healthcare ecosystems. FL
methodologies enable the training of global models
through localized policies, allowing independent opera-
tions at the edge clients’ level. Conventional first-order
FL approaches face several challenges in personalized
model training due to heterogeneous non-independent
and identically distributed (non-iid) data of each edge
client. Recently, second-order FL approaches maintain
the stability and consistency of non-iid datasets while
improving personalized model training. This study pro-
poses and develops a verifiable and auditable optimized
second-order FL framework BFEL (blockchain enhanced
federated edge learning) based on optimized FedCurv for
personalized healthcare systems. FedCurv incorporates
information about the importance of each parameter to
each client’s task (through Fisher Information Matrix)
which helps to preserve client-specific knowledge and
reduce model drift during aggregation. Moreover, it
minimizes communication rounds required to achieve
a target precision convergence for each edge client
while effectively managing personalized training on
non-iid and heterogeneous data. The incorporation of
Ethereum-based model aggregation ensures trust, ver-
ifiability, and auditability while public key encryption
enhances privacy and security. Experimental results of
federated CNNs and MLPs utilizing Mnist, Cifar-10,
and PathMnist demonstrate the high efficiency and
scalability of the proposed framework.

Index Terms—Federated Learning, FedCurv, Data
Privacy, Blockchain, Personalized Healthcare, Feder-
ated Edge Learning, Second-Order Federated Learning

I. Introduction
Traditional machine learning (ML) methodologies ne-

cessitate training on data consolidated within a single
data repository, which may be either centralized or dis-
tributed [1]. It requires raw data from multiple partic-
ipants to be transmitted to a centralized server (where
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the data are aggregated). However, aggregating data from
multiple stakeholders in healthcare systems poses signif-
icant challenges, particularly concerning security, com-
promising data owners’ privacy, and possibly exposing
sensitive health data [2].

Within the distributed ML paradigm, two primary
frameworks exist: data centre-based distributed ML and
cross-device FL. The former utilizes optimized computing
nodes, data shuffling, and high-bandwidth communication
networks, whereas the latter operates on a large number of
resource-constrained devices with limited computational,
storage, and communication capabilities [3].

Federated edge learning (FEL) has emerged as a dis-
tributed machine learning paradigm that mitigates privacy
concerns by facilitating collaborative model training while
ensuring that data remains decentralized. FEL bridges
these two paradigms, possessing computational and stor-
age capacities comparable to data centre-based ML while
sharing communication constraints with cross-device FL
due to physical distance between edge nodes, multi-hop
transmissions, and diverse communication mediums. It
offers a decentralized alternative, enabling multiple devices
to collaboratively train a model without sharing raw data,
where each participant trains a model locally, and shares
only the model parameters. Some of the widely used
gradient-based first-order federated learning approaches
are FedAvg, FedSgd, FedAdam, and FedYogi. While these
methodologies preserve the confidentiality of the sensitive
data, the resulting shared model parameters remain vul-
nerable to confidentiality breaches during aggregation and
dissemination. Despite its several advantages, FL faces
two fundamental challenges: (i) managing heterogeneous
systems within the federated network and (ii) handling
real-world data that are often non-independently and iden-
tically distributed (non-iid) among clients [4]. Specifically,
the delivery of personalized FL services stands crucial
in healthcare advancement because patients manifest in-
dividual health profiles with specific requirements. The
implementation of first-order FL algorithms encounters
substantial hurdles when it comes to personalizing deep
learning and machine learning models [5]. Such training
datasets have limited representation of particular classes
or behaviors because specific data points are spread
sparsely throughout the dataset.

However, second-order FL methods provide better suit-
ability for varied heterogeneous healthcare data present in
different edge client devices. It allows better customiza-
tion of local models thus enhancing their value for per-
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sonalized healthcare systems. Such adaptations provide
potential benefits of privacy and security in heterogeneous
environments while preserving personalization (i.e. higher
model adaption variability) such as Natural Gradient De-
scent [6] and Quasi-Newton method [7]. Nevertheless, the
distributed implementation of second-order methodologies
in a traditional manner remains challenging due to their
reliance on inverse matrix-vector product computations,
which introduce complexity in determining the descent
direction. Addressing these challenges, it is crucial to
develop efficient and scalable second-order optimization
techniques tailored to heterogeneous FL environments.
Second-order optimization methods offer a key advantage
by incorporating curvature information of the loss func-
tion, thus improving personalized training processes.

Recently, some adaptations incorporate second-order
curvature information using the Fisher Information Matrix
(FIM) for better convergence [8]. Moreover, integration
of distributed ledger technologies in FL approaches sig-
nificantly improves systems auditability and transparency
in data-sensitive health ecosystems to build reliable and
unbiased intelligent systems [9].

This study aims to optimize a distributed optimization
algorithm FedCurv (Federated Curvature) that minimizes
communication rounds required to achieve a target pre-
cision for convergence while effectively managing person-
alized training on non-iid and heterogeneous data across
edge client devices. The main contributions of this article:
i). A novel privacy-preserving blockchain enhanced

federated edge learning (BFEL) framework, which
maintains auditability, verifiability, availability and
ensures privacy protection in edge-FL environments.

ii). We proposed optimized implementation of FedCurv
for heterogeneous medical data to improve personal-
ized health monitoring and prediction.

iii). Blockchain-based secure aggregation mechanisms to
ensure trust, tamper-proof model updates, decentral-
ized auditability, and accountability.

iv). Security, scalability, and correctness analysis of our
proposed scheme, BFEL demonstrate high perfor-
mance and model utility while maintaining privacy.

The remainder of this article is organized as follows. Sec-
tion II presents the background and motivation, Section
III details the proposed BFEL framework, and Section IV
describes the experimental setup. Section V discusses the
results, and Section VI concludes the paper with future
research directions.

II. Related Work
In recent years, advancements in AI, particularly in the

domain of DL within ML, have significantly contributed
to the enhancement of smart and personalized healthcare
ecosystems [10]. This progress has been largely driven
by the expansion of training datasets. However, as the
volume of training data increases, so too does the asso-
ciated risk of privacy breaches [11]. Studies indicate that
privacy attacks targeting DL models can result in the

Fig. 1. Left: Weight divergence in FedAvg due to data heterogeneity.
Right: FedCurv induces a regularization parameter to minimize
divergence to update weights according to less critical parameters

inadvertent leakage of sensitive training data. Such privacy
concerns present a substantial barrier to the continued
advancement and deployment of DL technologies [12].
Centralized aggregation of private data for ML mod-
els poses significant challenges, particularly in terms of
security, privacy, and confidentiality [13]. Consequently,
retaining control over data without external dissemination
to prioritize the security and privacy of data owners is
an essential requirement for healthcare applications. This
requirement has led to the development of FL method-
ologies. Auditability and verifiability are essential com-
ponents for establishing trustworthiness in FL. Several
studies proposed blockchain-empowered FL approaches to
enhance transparency, accountability, verifiability and the
independent validation of FL processes [9]. Authors in [14]
proposed a blockchain based trusted execution platform
to secure each client’s local model training data and
provide multi-signature-based global model verification to
enhance model auditability. In [15] authors develop smart
contract empowered local data training policy control and
verification of the integrity of trained models.

In the literature, first-order federated edge learning
techniques, which rely solely on gradient information,
are frequently utilized due to their robustness in dis-
tributed settings and minimal local computational re-
quirements [16]. Conversely, second-order methods, utilize
both gradient and curvature information, thereby facil-
itating improved descent direction selection and signifi-
cantly accelerating convergence. This acceleration reduces
the number of communication rounds required to achieve
convergence, making second-order methods particularly
advantageous in heterogeneous FL environments.

Continual learning and FL approaches employ diverse
strategies to address challenges like catastrophic forget-
ting, task interference, and communication efficiency [17].
Elastic Weight Consolidation (EWC) [18] mitigates catas-
trophic forgetting by restricting parameter updates critical
to previous tasks using FIM, ensuring solutions compatible
with both old and new tasks. In contrast, Incremental
Moment Matching (IMM) [19] models the posterior dis-
tribution of parameters for multiple tasks as a mixture
of gaussians to harmonize task-specific knowledge. Stable
SGD [20] enhances performance by dynamically adjusting
hyperparameters and incrementally reducing the learning
rate upon encountering new tasks. For FL, FedCurv [21]
adapts a modified EWC framework to minimize dispar-
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Fig. 2. Hierarchical diagram depicting a sequential picture of complete network

ities between client models during collaborative training.
Recent advancements [22] further refine aggregation mech-
anisms using Bayesian non-parametric methods to im-
prove model alignment across heterogeneous data sources.
Communication overhead, a persistent hurdle in federated
systems, is addressed [23], which employs layer-wise aggre-
gation where shallow layers are updated frequently, while
deeper layers are consolidated only in the final stages of
training loops, significantly reducing bandwidth demands.
These methods collectively advance the robustness and
scalability of learning systems in dynamic, distributed
environments.

III. Privacy preserving BFEL Service
Framework

This section provides an architectural flow of a proposed
privacy-preserving blockchain enhanced federated edge
learning (BFEL) framework, which maintains auditability,
verifiability, availability and ensures privacy protection in
edge-FL environments. Second-order federated edge learn-
ing based optimized Federated Curvature (FedCurv) al-
gorithm is proposed for heterogeneous smart personalized
healthcare ecosystems. FedCurv algorithm is built on Elas-
tic Weight Consolidation (EWC) to prevent catastrophic
forgetting across edge clients and incorporates second-
order information from the Fisher Information Matrix
(FIM) to preserve critical model parameters during the
training process. Figure 2 depicts the system level flow of
the proposed BFEL system.

A. Edge Client Layer

The proposed architecture shown in Figure 3 contains
the first tier, namely, the edge clients layer. This layer op-
erates through edge devices, including wearable technolo-
gies and Internet of Things (IoT) sensors, which acquire
real-time health metrics. Data sources encompass three
primary categories: patients utilizing personal health mon-
itoring devices, hospital electronic health record (EHR)
systems, and diagnostic datasets from clinical or labo-
ratory settings. In a network of n clients denoted by
k = {k1, k2, . . . , kn} each hosting m IoT devices for data
acquisition, D = {d1, d2, . . . , dm}, we consider. The service
run by each IoT device dj ∈ D, referred to as the collection
service (Scol ) is responsible for gathering data (e.g. EEG
signals).

Each client k receives the global model parameters,
denoted by θglobal, from the server. Afterwards, each client
computes the local FIM using the received global model
parameters. Specifically, a diagonal approximation of the
local FIM, Fk, is computed based on the client’s local
dataset Dk. Each diagonal element Fk[i] is calculated as
the average squared gradient of the log-likelihood of the
data with respect to the global model parameters.

Fk[i] = 1
|Dk|

∑
(x,y)∈Dk

(∇θi
log p(y|x; θglobal))2 (1)

Following this, local training is performed with curva-
ture regularization. The goal is to minimize a regularized
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loss function Lk(θ), which combines the standard local
loss with a curvature penalty term. The penalty term
involves the squared difference between local and global
parameters weighted by the diagonal FIM. The gradient
of the regularized loss is then computed as the sum of the
gradient of the local loss and a regularization term scaled
by a factor λ. The model parameters are updated using
stochastic gradient descent (SGD) for E local epochs based
on the gradient of this regularized loss. Fk[i] corresponds
to diagonal entry of Fk for parameter i.

∇ log p(y|x; θ) (2)

above equation shows the gradient of the log-likelihood
with respect to parameters.

Compute local training with curvature regularization to
minimize the regularized loss:

Lk(θ) = Local Loss︸ ︷︷ ︸
LLocalLoss

+ 2(θ − θglobal)T · diag(Fk) · (θ − θglobal)︸ ︷︷ ︸
Curvature Penalty

(3)
where λ corresponds to regularization strength. Gradi-

ent calculation is computed as:

∇Lk = ∇LLocalLoss + λ · diag(Fk)(θ − θglobal) (4)

Subsequently, update θ via SGD for E epochs:

θlocal = θglobal − ηlocal · ∇Lk (5)

After local training, compute the gradient for server
by computing the gradient of the original loss (without
regularization) at θlocal:

gk = ∇LLocalLoss(θlocal) (6)

In Post-training, clients transmit θlocal curvature and
gk gradients to the aggregation server through blockchain.
This approach inherently safeguards data privacy by en-
suring sensitive information remains within its original
jurisdiction, serving as the primary defence against privacy
breaches in sensitive healthcare applications. These up-
dates are systematically broadcast to a private blockchain
network ensuring auditability and transparency.

B. Blockchain Layer
The blockchain layer serves as a foundational compo-

nent of the proposed system, providing an immutable
and transparent ledger to enhance security, accountabil-
ity, and compliance in healthcare ecosystems. By design,
the blockchain records all transactions including consent
management, data access requests, and model updates in
a tamper-evident manner, ensuring traceability across the
ecosystem.

For instance, patient consent parameters, such as per-
missible data usage and authorized entities, are codified
within smart contracts. These self executing agreements
autonomously verify compliance with predefined policies,

Fig. 3. Edge Client Layer

thereby eliminating manual oversight and reducing the
risk of unauthorized access. Each step of the aggrega-
tion workflow such as server update requests, participant
submissions, and the generation of the global model is
cryptographically hashed and immutably logged on the
blockchain, enabling independent verification of procedu-
ral integrity.

Bloackchain broadcasts stored the finalized global model
parameters in encrypted form using public-key infrastruc-
ture pki, ensuring only authorized entities with corre-
sponding decryption keys can access sensitive insights.
Subsequent training rounds are initiated by broadcast-
ing these encrypted parameters via the blockchain to
aggregation servers, thereby maintaining synchronization
while preserving security. Access control is further rein-
forced through blockchain mediated authentication; for
example, researchers requesting model access trigger smart
contracts that validate their permissions against patient
defined policies prior to granting approval. All such inter-
actions, including consent modifications and data retrieval
attempts, are permanently recorded on the ledger, creating
auditable trails for regulatory review. This architecture
not only ensures adherence to standards such as HIPAA
and GDPR but also empowers patients with visibility into
data usage through transparent audit logs. By integrat-
ing decentralized consensus mechanisms, cryptographic
encryption, and automated policy enforcement, the system
establishes a robust framework for privacy preserving
collaboration, balancing operational transparency with
uncompromising data security.

C. Cloud Server Layer

Cloud servers are deployed virtually over the network
and working as aggregation servers, collecting locally com-
puted θlocal and gradients gk from each edge client k.
Compute aggregated curvature Fglobal to get important
scores (FIMs) from all clients and average gradients gglobal.

Fglobal = 1
K

K∑
k=1

Fk (7)
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gglobal = 1
K

K∑
k=1

gk (8)

Secondly, compute inverse FIM for diagonal Fglobal

F −1
global[i] = 1

Fglobal[i] + ϵ
(9)

Inverse FIM scores invert the average importance scores,
which ensures priority of important parameters (with
large curvature values) gets smaller updates. It helps the
model learn from new data without forgetting important
knowledge from previous clients.

Following this, server clouds update the global model by
applying curvature-scaled update:

θnew
global = θglobal − ηglobal ·

(
F −1

global ⊙ gglobal

)
(10)

Finally, calculated θnew
global global updates are broadcast

to the clients through blockchain broadcasts using smart
contracts.

D. Communication Model
The system employs a layered communication model

and protocol architecture designed to ensure privacy-
preserving, secure, and auditable operations across asyn-
chronous phases. Data collection is initiated by sensors
and edge client devices, which acquire raw physiological
metrics such as blood glucose levels and electrocardio-
gram signals. HTTPS/gRPC encrypts federated learn-
ing client-server communications, while MQTT optimizes
lightweight data transfer from IoT/wearables to the edge
client servers.

Our proposed access scheme is used along with the
widely used Elliptic Curve Integrated Encryption Scheme
(ECIES), Child Key Derivation function (CKD), and the
Elliptic Curve Digital Signature Algorithm (ECDSA) are
cryptographic techniques to ensure secure data storage
and communication. ECIES works by independently deriv-
ing a bulk encryption key and a MAC key from a common
secret. The data is first encrypted under a symmetric
cipher, and then the ciphertext is authenticated under
an authentication scheme. Finally, the common secret
is encrypted under the public part of a public/private
key pair. The CKD function is used for managing data
in batches; child key derivation functions are used in
hierarchical deterministic wallets (HD wallets). It helps
in generating a tree of keys from a single master key,
which can be very useful for managing multiple keys
securely and systematically. ECDSA is a digital signature
algorithm that is used for secure key sharing for both data
and communication. The ECDSA ensures that the data
and communication are coming from the stated sender
(authenticity), have not been altered in transit (integrity),
and repudiation by the sender can be disputed (non-
repudiation). Implementing ECIES, CKD, and ECDSA in
this proposed system provides a robust framework that en-
sures secure data storage and communication. The ECIES

offers a strong encryption scheme for data protection, the
CKD provides an efficient way to manage data in batches,
and the ECDSA guarantees secure key sharing and data
authenticity.

Following this, local model training at edge client level
is completed using FedCurv, model local weights Fk, gk are
transmitted through private ethereum network, ensuring
the confidentiality of individual client k data weights,
preventing re-identification. Subsequently, processed data
is transmitted to the model aggregation servers via a
blockchain network, where aggregated global models are
cryptographically hashed and immutably logged on the
blockchain ledger. Transaction validation occurs through a
distributed consensus protocol, ensuring integrity. Central
to access governance is a patient-centric framework: pa-
tients configure data sharing permissions via a portal, trig-
gering Ethereum based smart contracts, while researchers
and clinicians submit queries via blockchain transactions,
which undergo automated authorization checks. Approved
requests retrieve models or insights from secure decentral-
ized storage systems such as IPFS, with all access events
(identity, timestamp, purpose) permanently recorded on-
chain for auditability. Role-Based Access Control (RBAC)
policies are programmatically enforced through smart con-
tracts.

IV. Experimental setup
To evaluate the performance of our proposed BFEL

framework through experimental testbeds, optimized Fed-
Curv is employed as federated learning algorithm to ad-
dress data heterogeneity across clients. FedCurv is com-
pared with baseline federated algorithm FedAvg. The
federated learning framework involves 10 local training
rounds per participant and 20 global aggregation rounds.
We utilise three benchmark datasets: MNIST, CIFAR10,
and MedMNIST. MNIST and CIFAR10 were selected as
standard benchmarks in neural network research, while
MedMNIST specifically its PathMNIST subset, derived
from 2D image classification. On the client side, each
edge device performs local training while incorporating a
curvature-aware regularization term. This regularization
penalizes deviations from the global model based on the
estimated importance of each parameter, thereby preserv-
ing critical knowledge and improving model stability. On
the server side 2, the curvature matrices and gradients
collected from the clients are aggregated. The server 1 then
applies a curvature-scaled update to the global model, en-
suring that parameter updates are inversely proportional
to their estimated importance. This approach enables
more efficient and robust federated optimization in non-
iid settings. The private ethereum blockchain network is
utilised as a service layer demonstrating its capability
to uphold auditability, verifiability, and availability while
ensuring privacy preservation in edge-FL settings.

A. Parameter Settings
MNIST, a standard benchmark for image classification,

includes 60,000 images (28×28 pixels), split into 50,000
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training and 10,000 test samples, providing a baseline for
foundational algorithm validation. MedMNIST subclass
PathMNIST (28×28 pixels), a more challenging alterna-
tive, comprises 35,000 training images and 8000 testing
images in non-iid, enabling evaluation of model general-
izability in scenarios with higher intra-class variability.
CIFAR-10, a widely used dataset for object recognition,
offers 60,000 color images (32×32 pixels). Together, these
datasets simulate real-world edge-FL challenges, such as
decentralized computation and heterogeneous data privacy
requirements, while validating the framework’s ability to
balance transparency, security, and efficiency in privacy-
sensitive environments.

B. Network Configuration:
This study utilizes two widely recognized neural archi-

tectures: a multi-layer perceptron (MLP) and a convolu-
tional neural network (CNN). These models served as the
foundational deep learning frameworks for training clas-
sification systems within a federated learning setup, sim-
ulating server client training scenarios. The experiments
aimed to assess how effectively each algorithm handles
non-iid data and preserves knowledge across distributed
medical and non-medical imaging tasks. For MNIST and
PathMNIST (image datasets), the CNN consists of two
convolutional layers, each followed by a max-pooling layer,
and concludes with two fully connected layers. To accom-
modate the RGB input channels of the CIFAR-10 dataset,
the architecture is modified while retaining the core struc-
ture. Both configurations employ the SGD optimizer with
a learning rate of 0.001.

C. Hardware and Software Configuration
We utilise raspberry Pi3 model B+ minicomputers

as edge servers (manager nodes of side chains) and
lightweight nodes are implemented using STM32F427 de-
velopment boards (low-power ARM Cortex M3,M4 and
M7 processors), which are used for high-speed imple-
mentation of asymmetric cryptographic algorithms. The
elliptic curve digital signature algorithm (ECDSA) is used
to generate public and private keys, and device authen-
tication mechanisms. The STMicroelectronics X-CUBE-
CRYPTOLIB library is utilized to implement several stan-
dard cryptographic algorithms with the ARM Cortex-
M series processors. System components are developed
using Go (Golang), solidity to write smart contracts
and deployed using remix IDE, and MetaMask handles
concurrent transactions and interactions with third-party
cloud services. A PoS consensus ensures block validation,
while the gossip protocol enables fast, resilient message
propagation and node synchronization. Figure 8 depicts
the system’s initialized nodes.

V. Performance Evaluations
To validate the effectiveness of BFEL, we conducted

experiments across varying task sequence configurations

Algorithm 1 FedCurv Server Side Computation
Require: Initial model θ0

global, total rounds T , number
of clients K, server learning rate ηglobal, numerical
stability ϵ

Ensure: Trained global model θT
global

1: Initialize global model
2: for round t = 1 to T do
3: Broadcast θglobal to all participating clients
4: Collect client updates
5: Aggregate Fisher Information Matrices
6: Aggregate gradients
7: Compute inverse Fisher information
8: Update global model
9: return θglobal

Algorithm 2 FedCurv Client Side Computation
Require: Global model parameters θglobal, local dataset

Dk, regularization strength λ, local epochs E, learning
rate ηlocal

Ensure: Updated Fisher Information Matrix Fk,
gradient gk

2: Client Update
Compute Fisher Information Matrix (FIM)

4: Initialize local model
for epoch = 1 to E do

6: for each batch (xb, yb) ∈ Dk do
Compute regularized loss

8: Compute gradient
Update local model

10: Compute Server Gradient
return {Fk, gk}

using FedCurv and compared its performance against es-
tablished baselines using FedAvg. The results are analyzed
through multiple perspectives, offering distinct insights.
Code is available publically at our github account1.

A. Federated Simulation Results
From the epochs per round standpoint, accuracy con-

sistently improves as the number of local training epochs
increases across all settings and algorithms. It depicts the
close alignment of local optima with global optima, mak-
ing extended local training within each round advanta-
geous when maintaining a fixed number of communication
rounds. Accuracy of FedAvg increases sharply after each
epoch as compared to FedCurv at the base level depicted
in figure 7 and 6 as well as edge client level, which shows
the minimum divergence of results after each round in
FedCurv, makes it more consistent and according to the
previous weights of edge client device.

Overall comparison of performance, FedCurv designed
primarily to address non-iid data challenges in federated
learning, surprisingly outperforms FedAvg even in uniform
data settings. Notably, FedCurv often achieves superior

1https://github.com/AnumNawazKahloon/FedCurv
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accuracy after 100 rounds, indicating a potential need for
extended training phases to reach convergence compared
to FedAvg. Regarding communication efficiency, reducing
the frequency of communication rounds while keeping the
total number of training epochs constant yields better
model performance, implying that less frequent parameter
exchanges may enhance learning stability or optimization.
The experimental setup utilized an SGD optimizer with
adaptive learning rate decay (reduced by a factor of 3 every
5 epochs if validation loss stagnated), a mini-batch size of
20, 20 rounds per task, and 1 epoch per round. For the
MLP configuration, adjustments included a reduced mini-
batch size of 10 and an initial learning rate of 1e−4, while
client sampling fractions of 0.25 and 0.05 were applied
at each round. Hyperparameters λ1 and λ2 were fixed at
[1e−1, 4e−1] and 100, respectively, across all experiments.
These findings collectively highlight the interplay between
local training intensity, algorithmic robustness, and com-
munication strategies in federated learning frameworks.

1) Client side training: In the edge client side, federated
learning experiments, FedCurv demonstrated consistent
performance as shown in 4 over FedAvg 5, particularly
in non-iid settings with CNN models. On the PathMNIST
dataset using CNN, FedCurv achieved significantly better
accuracy of around 86% and exhibited stable convergence,
while FedAvg struggled with fluctuations and lower accu-
racy of 75%. Similarly, for CNN on MNIST, FedCurv
outperformed FedAvg with a final test accuracy around
95%, compared to FedAvg’s noisier convergence and lower
accuracy of 85%. The difference was significant on CIFAR-
10 with CNN, where FedCurv showed a gradual increase
to 50% accuracy, outperforming FedAvg, which displayed
highly unstable learning and plateaued around 40%. After
each epoch round, FedCurv maintains low divergence in
non-iid settings.

2) Server side training: However, during server side
base experiments across the MNIST, PathMNIST, and
CIFAR-10 datasets. FedAvg consistently outperformed
FedCurv in terms of final testing accuracy and con-
vergence behavior. For CNN based experiments, FedAvg
achieved slightly higher accuracies across all datasets. On
the PathMNIST dataset, FedAvg reached around 90%
accuracy, while FedCurv trailed slightly at approximately
88%. A similar trend was observed for MNIST, where
FedAvg achieved about 99% accuracy compared to Fed-
Curv’s 98%. On the more complex CIFAR-10 dataset,
FedAvg demonstrated better generalization, achieving ap-
proximately 72% accuracy, while FedCurv lagged behind
at around 68%.

B. Layer2 Ethereum Implementation
The second layer ethereum network is implemented

using a polygon sidechain structure which leverages proof-
of-stake (PoS) consensus. It consists of a main blockchain
layer running on cloud servers and a sub-blockchain
network comprised of sidechains. The main blockchain
layer implements a consortium blockchain, while the sub-
blockchain layer consists of multiple private sidechains,

each deployed on individual edge servers to facilitate local-
ized model training in BFEL. Within each sub-blockchain,
the corresponding edge server functions as a miner node,
responsible for performing local model training and up-
dating local model weights based on the global model
parameters after each training epoch. Subsequently, each
edge server transmits its locally trained results to the
main blockchain layer, where global model parameters are
aggregated.

The edge servers are also tasked with collecting and
packaging model training outputs (treated as transac-
tions) into candidate blocks, which are then published to
their respective private blockchains. The main blockchain
layer is operated by cloud servers configured as a consor-
tium blockchain. Each registered user organization such
as hospitals or governmental agencies within the consor-
tium is permitted to establish its own private sidechain.
Furthermore, to reduce potential latency caused by com-
plex task assignment mechanisms, transaction packaging
responsibilities in both private and consortium blockchains
are delegated to designated manager nodes.

C. Security Analysis
We have conducted a performance evaluation of three

different types of STM32F427 M series processors within
the framework of asymmetric cryptography. We uti-
lized the X-CUBE-CRYPTOLIB library to implement the
ECDSA. To ascertain the statistical error of the results
obtained over the number of executions, we calculated the
mean, standard deviation, and standard error using the
appropriate equations.

The execution time was determined, which encompasses
the total time required for key generation, encryption,
and decryption using ECDSA. To identify the optimal
execution time of ECDSA, we examined the records of
different numbers of executions for each processor. The
execution time for each processor for ECDSA is visually
represented in figure 9 subsection (a). For a comprehensive
analysis, the execution time was calculated in terms of
mean, standard deviation, and standard error for each
processor. The estimated execution time of ECDSA for
processor M3 is 26.352 s ± 0.002s, and the execution time
for M4 processor is 1.451s ± 0.007s and 1.167s ± 0.002s
for M7. Based on the results, the average execution times
of M3 processors are 17.253 seconds, while the execution
times for processors M4 and M7 are 1.462 seconds and
1.156 seconds, respectively. The data suggests that the
M4 and M7 processors exhibit superior performance in
executing ECDSA. These time measurements facilitate
easy planning and adjustments to determine the delay
tolerance in the network.

Power consumption is an important parameter of micro-
controllers, we determine power utilization during the ex-
ecution of cryptographic algorithms. The power consumed
was determined by measuring the voltage across a shunt
resistance R. The current consumption of the processors



8

Fig. 4. FedCurv for Federated Non-iid (a) CNN PathMnist (b) CNN Mnist (c) CNN Cifar (d) MLP PathMnist (e) MLP Mnist (f) MLP
Cifar

Fig. 5. FedAvg for Federated (a) Non-iid Fed CNN PathMnist (b) Non-iid Fed CNN Mnist (c) Non-iid Fed CNN Cifar, (d) IId Fed CNN
PathMnist (e) IId Fed CNN Mnist (f) IId Fed CNN Cifar

Fig. 6. FedCurv for Base (a) CNN PathMnist (b) CNN Mnist (c) CNN Cifar (d) MLP PathMnist (e) MLP Mnist (f) MLP Cifar

Fig. 7. FedAvg for Base (a) CNN PathMnist (b) CNN Mnist (c) CNN Cifar (d) MLP PathMnist (e) MLP Mnist (f) MLP Cifar

Fig. 8. Manager nodes and lightweight nodes after layer2 ehtereum
initialization

was calculated using ohm’s law. To determine the average
power consumption, ECDSA was executed for 15 runs
and a comparison of power consumption is presented in
figure 9(b). The average power consumption by M3 and
M4 was ± 200mW, whereas M7 used an average of ±
290mW. Results indicate the superior performance of M4
cortex microcontrollers are best fit while consuming fewer
resources.

Table II illustrates how different security measures have
been taken into account. A deterministic wallet is used
for CKD functions to determine a child’s key from a
parent’s key. Using this technique, each batch of data to be
encrypted in the device is given a unique secret key [24].
The 512-bit hash is calculated according to the parent’s
public key (public and private keys are 256 bits) and the
desired child index. It is impossible to deduce the original
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TABLE I
Average FedAvg versus FedCurv edge client-side accuracy and average server-side base learning accuracy results

Dataset Model client Acc
FedAvg

client Acc
FedCurv

Base Acc
FedAvg

Base Acc
FedCurv

PathMNIST CNN ˜75% ˜86% ˜90% ˜88%
MNIST CNN ˜85% ˜95% ˜99% ˜97%
CIFAR-10 CNN ˜40% ˜50% ˜72% ˜68%
PathMNIST MLP ˜95% ˜85% ˜91% ˜88%
MNIST MLP ˜94% ˜94% ˜97% ˜95%
CIFAR-10 MLP ˜45% ˜42% ˜70% ˜50%

Fig. 9. (a) Execution time and (b) Average power consumption, dur-
ing ECDSA implementation using STM32F427 M series processors

parent key from the nth-child key because of the one-
way hashing used in the process. This process appears to
generate random numbers due to the additions modulo n.

TABLE II
Security Measures

Parameter Implementation

Authorization Public key cryptography to encrypt CSK
Confidentiality Public key cryptography and proof of authority
Integrity Broadcast hash of each data batch
Availability Achieved by limiting number of requests
Anonymity Discard raw data and store only processed infor-

mation

D. Scalability Analysis
Edge clients based DLTs offer several benefits but also

face inherent limitations in terms of scalability, which limit
their application range. Nevertheless, BFEL handles this
challenge using the side chains concept, gossip protocol,
and PoS consensus. FoBSim simulation tool2 is utilized
to check the scalability of the proposed model. Manager
nodes ranging from 5 to 500 were used to check the
performance matrix of the proposed model and measure
the total time required to complete the request procedure
at edge clients versus at the cloud layer.

The edge client measures and divides the time needed
to complete a transaction into three sections: Time to
retrieve data (TRD), time for checking the transaction
(VTR), and time for confirming the transaction (TCT).

2https://github.com/sed-szeged/FobSim

Fig. 10. (a) Latencies to retrieve mata data (TRD), transaction val-
idation time (VTR) needed for single transaction request, and time
required to confirm one transaction (TCT), (b)Impact of concurrent
transactions on end-to-end transaction latency using gossip protocol
versus without gossip protocol

Figure 10(a) presents the results of the measurements.
Based on the available resources, it is impressive that
TRD requires only 34.6 milliseconds on average, VTR 36
milliseconds on average, and TCT 73.6 milliseconds on
average. Additionally, it is essential to note that TCT
also relies on the network, which in this experiment was
adversely affected by our shared Wi-Fi’s slow response
time, causing the time to be extended overall.

Gossip protocols are integrated to improve the scalabil-
ity of the proposed network model and public key infrasture
(PKI) is utilised for cryptographically signing model up-
dates and transactions. This architecture integrates end-
to-end privacy preservation, tamper evident logging, and
granular access controls, ensuring regulatory compliance
and transparency across all operational phases.

The impact of the gossip protocol on the total elapsed
time at edge clients was evaluated to demonstrate its
scalability enhancement. Figure 10(b) illustrates the im-
proved scalability of the proposed access scheme when
utilizing the gossip protocol, as compared to transactions
conducted without it.

Figure 11(a) shows that the cloud layer utilises around
double the time as compared to edge clients to complete
transaction requests during concurrent transactions start-
ing from 5 to 100 transactions at a time.

end-to-end delay = request initialization by interested
buyer + time to retrieve metadata
+ response time by manager nodes + time to confirm one
transaction

Figure 11(a) illustrates that increasing concurrent trans-
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action requests leads to increased end-to-end delays. This
study’s results demonstrate the proposed model’s effec-
tiveness for autonomously implementing data sharing in
information-critical systems. Using this trustless structure,
data trade becomes more reliable and transparent. We
have concluded that single-board computers can act as
data and transaction managers, with no need for third-
party cloud services, as the necessary computation makes
space for other edge services and data processing processes
to run simultaneously. However, a parallel number of
transactions will cause a significant delay.

Fig. 11. (a) Impact of concurrent transactions on end-to-end trans-
action latency on BFEL versus cloud services, (b) Average Block
Confirmation Time using PoS, PoW-10, and PoA

Block confirmation time was also measured using dif-
ferent numbers of manager nodes, and the average time
is illustrated in the figure for proof of stake versus two
famous consensus algorithms PoW and PoA 11(b). BFEL
does not present a scalability issue due to the fact that it
works in a private P2P network that can be segmented
into side chains. It does not require edge clients to process
many requests per minute. The manager nodes must check
whether new requests for data have been received after
every time T . If it has a queue of requests, the manager
nodes will respond to each request one at a time.

VI. Discussion and Analysis
In this study, we propose and develop a personalized

healthcare system BFEL based on second order FEL.
Second-order FL methods bring a substantial benefit of
personalized training through their capability to use loss
function curvature data to improve personalized training
procedures during local data training. BFEL leverages
blockchain as a service layer to ensure the privacy, trans-
parency and confidentiality of data owners while main-
taining auditability, verifiability, availability, and robust
privacy protection in FEL environments. Upon model
training completion, the global model and local parame-
ters are securely stored on the blockchain and subsequently
distributed to the federated learning edge clients and cloud
server and vice versa in accordance with the established
policy. Smart contracts are utilized to broadcast policies
while providing automated confirmation and distribution
operations.

Optimized FedCurv is used to minimize the number
of communication rounds needed for personalized non-iid
and heterogeneous distributed training across edge client

devices to enhance personalized health monitoring and
prediction. Performance evaluations demonstrate better
performance of FedCurv and resistance capabilities than
FedAvg using CNNs and MLPs in non-iid conditions.
Key evaluation metrics including throughput, accuracy,
privacy, and scalability analysis has been analyzed. Anal-
ysis of the experimental results demonstrates that the
proposed method preserves the accuracy of the machine
learning process while ensuring auditability and verifiabil-
ity throughout the training and aggregation procedures.
Privacy protection is achieved through second-order FEL
using FedCurv and public key encryption ECDSA and
ECIES, while latency and throughput were evaluated by
measuring communication transactions on a permissioned
blockchain and compared against a benchmark model
FedAvg. The results demonstrate that the proposed model
outperforms the benchmark by achieving enhanced pri-
vacy, accuracy and scalability. Results underscore better
stability and accuracy of the proposed framework BFEL
in heterogeneous settings and non-iid environments where
patient data varies widely.
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