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Abstract

Passwords remain one of the most common methods for securing sensitive data
in the digital age. However, weak password choices continue to pose significant
risks to data security and privacy. This study aims to solve the problem by focus-
ing on developing robust password strength estimation models using adversarial
machine learning, a technique that trains models on intentionally crafted decep-
tive passwords to expose and address vulnerabilities posed by such passwords.
We apply five classification algorithms and use a dataset with more than 670,000
samples of adversarial passwords to train the models. Results demonstrate that
adversarial training improves password strength classification accuracy by up to
20% compared to traditional machine learning models. It highlights the impor-
tance of integrating adversarial machine learning into security systems to enhance
their robustness against modern adaptive threats.

Keywords: adversarial attack, password strength, classification, machine learning

1 Introduction

Data security is an important endeavor in the current era of digitization. As internet-
based technologies become increasingly accessible to the public, people must find a
source for securing their information on the internet to protect privacy, security, and
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confidentiality. Some data, like bank accounts, credit card details, social security num-
bers, etc., are so sensitive that if exposed to unauthorized parties, they can lead a
person to extreme vulnerabilities, financial loss, and a decline in credibility. There are
a number of methods of maintaining data security on Internet platforms. They include
biometrics, passkeys, facial recognition, etc. However, they are all complex in nature,
so not every commoner feels comfortable using them. Hence, the role of one of the
most popular means of security, which is widely used due to its simplicity, becomes
significant. This measure is none other than passwords.

Passwords refer to the combination of alphabetical letters (upper/lower cases),
numbers, and special characters that are used to verify the authenticity of users before
they are granted access to the system on the internet. As people usually have accounts
on several websites, they keep one or a few passwords for all of them. Similarly, people
tend to use memorable words as their passwords for ease, such as birth dates, names
of family members, places, and commonly used phrases. Although these practices are
convenient for users, they make passwords susceptible to detection by intruders, allow-
ing unauthorized individuals to access users’ accounts. Having so is a gross violation
of individuals’ digital privacy. It is therefore essential that strong and varying pass-
words are used by users on different websites. Given that not all users have expertise
in technology, it is the responsibility of the website owner to make them aware of the
strength while passwords are being set up.

There are many ways to understand the strength of passwords used in the system.
Traditionally, it was possible to determine the strength of passwords by analyzing
their length and the nature of their characters. For instance, if a password has many
characters, a combination of upper and lower cases, and special characters, then it can
be considered strong. However, such visual categorization is not always correct and
cannot be considered completely reliable.

Currently, there are several online tools that can check the strength of passwords
using lexical rules. Some examples are Password Meter, Microsoft Password Checker,
and Google Password Meter [3]. Although they are easy to use and access, they are
based on a static approach. That is, they cannot evolve to meet the changing patterns
of cyberattacks. Additionally, there has been an increasing surge of adversarial pass-
words that are susceptible to attacks. In simple terms, an adversarial attack refers to a
technique of manipulating a model with specially crafted input data for deceptive pur-
poses. Likewise, adversarial passwords are deliberately designed to trick algorithms,
causing a discrepancy between their actual strength and the strength assessed by a
model. For example, if ’password’ is determined as weak, ’p@ssword’ will be classified
as strong due to the presence of a special character ‘@’. It is, therefore, important
to have password-strength checking tools that can accurately predict the strength of
passwords without falling into the trap of adversarial password attacks.

To address the aforementioned limitations of password-strength checkers, machine
learning-based methods come into play. Using machine learning, it is possible to
develop classification models that categorize passwords based on their strengths into
the required number of classes with high accuracy. Numerous algorithms can be used
for this purpose.

In this study, we contribute to the research topic in the following ways:
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• We independently collected datasets containing a mixture of adversarial and normal
passwords from Kaggle — an online source.

• We applied machine learning algorithms, including Random Forest, Logistic
Regression, Naive Bayes, Decision Tree, and XGBoost, to develop state-of-the-art
classification models that can accurately classify deceptive inputs without being
manipulated.

• We tested the developed models with custom adversarial passwords, which were
predicted correctly with high accuracy.

This paper is structured as follows: Section II provides a comprehensive overview
of existing papers on password strength estimation and adversarial attacks. Section III
explains the methodology, including data collection, preprocessing, feature extraction,
machine learning models employed, and evaluation of models. Section IV presents the
results and discusses the performance of the models. Finally, Section V concludes the
study with key findings and suggestions for future research directions.

2 Literature Review

Password strength classification has been widely researched using machine learning
techniques. However, while many studies achieve high accuracy, few critically exam-
ine their own methodological limitations or address vulnerabilities from deceptive
password inputs. This review organizes the literature by methodological approach,
evaluates each paper’s strengths and limitations, and identifies gaps in these papers
that this study addresses.

2.1 Traditional Classifiers and Feature-Based Approaches

Suganya et al. (2010) proposed an early solution, where Support Vector Machines
(SVM) were used to classify passwords, and standard filters removed passwords that
were too similar to the user’s username or commonly found in dictionaries. The model
required a training time of only 10.24 seconds and achieved an accuracy of 98.3%.
However, its approach depended heavily on pre-filtering and fixed rules, which limited
its ability to generalize to more nuanced or obfuscated password patterns [1].

Asaduzzaman et al. (2024) proposed a lightweight method using Term Frequency-
Inverse Document Frequency (TF-IDF) and logistic regression. Their model reached
81% accuracy when applied to real-world leaked passwords. The method was efficient,
but it failed to make use of deeper password features (e.g., entropy, substitutions),
which are vital for recognizing deceptive patterns that imitate stronger passwords [2].

2.2 Multi-Model Comparisons with Large Datasets

Sarkar et al. (2022) applied a number of simple and complex algorithms, including
Logistic Regression, Decision Tree, Random Forest, Naive Bayes, XGBoost, Support
Vector Machine, and Multilayer Perceptron. They have a dataset sample of 80,000
generic passwords, which is a noteworthy value but not significant enough to claim
their models as novel. Also, their dataset is composed of 12.35% of strong passwords,
74.29% medium, and 13.36% weak. As the dataset is neither fairly distributed, nor
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balanced by applying techniques like SMOTE, there is a high probability of biases in
their models. Lastly, one of their approaches has achieved an exceptional accuracy of
99%. They have not proved that it is not an outcome of model overfitting by performing
k-fold cross-validation [3].

On the other hand, Rehman et al. (2024) used a dataset of around 700,000 pass-
words from 000WebHost leak, which makes their models trustworthy at first glance.
Likewise, they have applied the TF-IDF method to assign weights to different terms
based on their frequency, in order to ensure a balanced dataset across all strength
categories. Like Sarkar et al., they have also utilized different algorithms of varied
complexities, such as Decision Tree, Logistic Regression, Naive Bayes, Random Forest,
XGBoost, Support Vector Machine, and Artificial Neural Network to train their mod-
els. In addition, they have optimized hyperparameters to enhance the performance of
models. Lastly, they have clearly explained the trade-off between complex algorithms
with higher accuracy but longer training times, and simpler ones with lower accuracy
but faster training. While their work in password classification appears to be signifi-
cant, it should be remembered that they have used generic passwords for training, not
adversarial, which is a growing concern in password security [4].

2.3 Expanded Classification and Real-World Evaluation

Vijaya et al. (2024) categorized passwords into five levels (Very Weak to Very Strong)
using four classifiers: Decision Tree, MLP, Naive Bayes, and SVM. The best perfor-
mance was recorded by SVM at 98.3%. Their use of structured features and a custom
taxonomy made it possible to observe strengths in more detail. However, their syn-
thetic dataset did not reflect real-world user behavior, so its usefulness was limited
beyond their own scenario [5].

Comparatively, Asaduzzaman et al. used real-world data to make the information
more relevant, but they built simpler forms of the models. This contrast illustrates the
trade-off between the depth of features and the practicality of deployment. Neither
study explored the effects of intentionally deceptive inputs - a gap this paper addresses
[2].

Table 1: Analysis of Previous Research Work

Study RF LOR NB DT XGB SVM MLP LIR GB ANN
[1] ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

[2] ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

[3] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗

[4] ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓
[5] ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗

Abbreviations: RF: Random Forest, LOR: Logistic Regression, NB: Naive
Bayes, DT: Decision Tree, XGB: Extreme Gradient Boosting, SVM: Support
Vector Machine, MLP: Multilayer Perceptron, LIR: Linear Regression, GB:
Gradient Boost, ANN: Artificial Neural Network
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2.4 Summary of Gaps and Study Motivation

Across these studies, accuracy is often prioritized over resilience. Models perform
well on clean or synthetic datasets, but are not tested against realistic adversar-
ial conditions like character substitutions (e.g., “p@ssword” instead of “password”)
or structural tricks that mislead strength meters. Additionally, few models undergo
in-depth evaluation with learning curves or cross-validation, which are essential for
ensuring robustness.

This study addresses these gaps by:

• Utilizing large, mixed-source datasets containing natural adversarial characteristics.
• Preprocessing data to simulate real-world password complexity.
• Applying class balancing and 5-fold cross-validation to validate generalizability.
• Evaluating models with precision, recall, and F1-score across varied inputs.

Through these methods, the study not only builds on past work but extends it to
a more security-aware and realistic framework.

3 Methods

Our methodology uses supervised machine learning algorithms to develop models
that classify passwords based on their strengths. It incorporates four major steps.
They include data collection and preprocessing, feature extraction, model training and
testing, and evaluation.

3.1 Data collection and preprocessing

We collected two datasets from Kaggle that have passwords and their corresponding
strengths. The first one is titled “Password Strength Classifier Dataset” by Bhavik
Bansal, having more than 669,000 passwords, in which passwords’ strengths are
categorized into 0 (weak), 1 (medium), and 2 (strong) classes.

Likewise, the second one is under the title of “Password Strength and Vulnerability
Dataset” by Utkarsh Singh, having about 500 passwords, in which there are numer-
ous columns, including rank, password, category, time unit, strength, font size, etc.
Because we required only password and strength columns, others were dropped from
the datasets. Likewise, the strength is rated from 0 to almost 50. Since we needed
to group the strengths into three classes only, they were rearranged in a way that
strengths from 1 to 4 were labeled as 0, 5 to 8 as 1, and 9 and above as 2.

We cleaned the above two datasets and combined them into one to create a larger
and more diverse dataset. We then performed the remaining actions on the combined
data. In this dataset, there was a common presence of password properties related to
adversarial attacks, namely character substitutions and deceptive complexity. They
serve as effective adversarial inputs that can manipulate the ability of classification
models to predict correctly. Additionally, there were also borderline instances that
simulated real-world adversarial attacks.

Upon collecting data, several preprocessing steps were applied to ensure data con-
sistency and reliability. Firstly, data was cleaned by correcting inconsistencies in class
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Data collection Data pre-processing

No. of unique, null, and duplicate values

No. of passwords in each strength category

Sorted passwords by strength and content in
ascending and descending order.

Training of Classification Models

Random Forrest (RF)
Logistic Regression (LR)

Naive Bayes (NB)
Decision Tree (DT)

XGBoost (XGB)

Training Data (80%)

Testing Data (20%)

Evaluation Metrics

Dataset 1:
Password
Strength
Classifier
Dataset

Dataset 2:
Password

Strength and
Vulnerability

Dataset

Drop unwanted columns

Drop rows with invalid, duplicate &
null values

Re-assign strength values to 0
(weak), 1 (medium), and 2 (strong)

Fig. 1: Workflow of Password Strength Classification Process

labels (e.g., replacing ”week” with ”weak”). Secondly, any entries with missing or
duplicate values were removed. Likewise, passwords consisting entirely of special char-
acters or non-alphanumeric content were also excluded. Lastly, the values of numerical
strengths were divided into three categories—“Weak,” “Medium,” and “Strong”—to
simplify classification.

3.2 Feature Extraction

To extract important features, we examined the datasets focusing on unique values,
missing data, and the distribution of passwords across the three strength categories.
We also created visualization diagrams, such as heatmaps, to better understand the
features in the dataset. Thereafter, we chose the most relevant features—including
password length, the number of unique, null, and duplicate values, estimated crack
time, and class strength—for model training.

3.3 Training and Testing the Model

To develop an effective classification model, several machine-learning algorithms were
trained with Python 3.12 using scikit-learn, XGBoost, pandas, matplotlib, joblib, and
imbalanced-learn libraries.

First of all, the dataset was split into 80% training data and 20% testing data.
To ensure that the splitting of the dataset occurs consistently, a constant value of the
random state (e.g., 42) was used. In the same manner, Standard Scaler was applied
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to normalize numerical features, ensuring consistent input values for the models. It
transforms the data so that the mean is equal to 0 and the standard deviation is 1.

z =
x− µ

σ
(1)

where z is the standardized value (z-score); x is the original value; µ is the mean
of the feature; and σ is the standard deviation of the feature.

Furthermore, Weights were assigned to classes in a way that minority classes receive
higher values compared to the majority. It prevents the minority classes from being
underrepresented. For the same purpose, another feature called SMOTE is also applied
in some models. It stands for Synthetic Minority Over-sampling Technique. It handles
the data imbalance issue by generating synthetic data points for minority classes,
which increases their frequency and makes them comparable to the majority.

Moreover, K-Fold Cross Validation was performed to ensure that the overfitting
of the data does not occur. It divides the dataset into K folds. Thereafter, a random
subset of (K-1) folds is trained and tested against the remaining one fold, and a
classification report is generated. The process repeats for K times, and a new test
fold is chosen each time. The final classification report is generated by averaging the
individual values.

In addition, Learning Curves were generated to understand how our models per-
form with an increase in training size. The graph contains two curves (training and
validation), which represent how the models perform on the respective sets of data.
They assist in predicting if the model is underfitting or overfitting.

3.3.1 Model Selection

We trained and tested several models using algorithms like Random Forest (RF),
Logistic Regression (LR), Naive Bayes (NB), Decision Tree Classifier (DT), and
XGBoost Classifier (XGB),

• Random Forest: It uses multiple decision trees to train a random subset of data
separately, make decisions in each tree, and produce the final prediction based on
majority voting for classification purposes.

• Logistic Regression: It is a supervised machine learning algorithm specifically
designed for binary classification. However, it can be used for multinomial clas-
sification as well. It uses the logistic function to transform the continuous value
into a categorical one with the help of a sigmoid function. In simple terms, the
sigmoid function is used to map the input variables to a value between 0 and 1.
Mathematically,

σ(z) =
1

1 + e−z
(2)

where z is an input to the sigmoid function; e is Euler’s number (the base of the
natural logarithm); σ(z) is an output probability ranging between 0 and 1; σ(z) → 1
as z → ∞; and σ(z) → 0 as z → −∞.

• Naive Bayes: It is also a supervised machine learning algorithm that performs clas-
sification based on the probabilities of classes given the features of the data. It is
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based on Bayes’ Theorem, which is used to determine the conditional probability of
an event based on a prior incident. Mathematically, it can be summarized as

P (M |N) =
P (N |M)P (M)

P (N)
(3)

where P (M) is the probability of event M; P (N) is the probability of event N;
P (N | M) is the probability of N given M; and P (M | N) is the probability of M
given N.

• Decision Tree Classifier: A simple yet powerful model that splits data into decision
nodes based on feature importance. It is computationally efficient and interpretable,
but it can overfit if not implemented effectively. Decision trees work by identifying
the feature that provides the highest information gain and then partitioning the
dataset accordingly.

• XGBoost Classifier with Hyperparameter Tuning: A more advanced gradient
boosting algorithm that builds multiple weak learners sequentially to enhance clas-
sification accuracy. XGBoost is known for its speed and scalability, incorporating
regularization techniques like L1 and L2 penalties to reduce overfitting. The model
was fine-tuned using GridSearchCV to optimize hyperparameters such as learning
rate, tree depth, and the number of estimators, ensuring better performance.

Once each model was trained, it was tested with user-assigned inputs. The gen-
erated outputs were then compared with the actual ones to evaluate the model’s
performance. After testing, all models were saved using Joblib, allowing for future use
in password security analysis.

3.4 Evaluation

To evaluate the performance of our models, several metrics were used, including
Confusion Matrix, Accuracy, Precision, Recall, F1-Score, and Support.

Notably, the Confusion Matrix is an N×N matrix used in classification to evaluate
the performance of a machine learning model. Its components are True Positive (TP),
False Positive (FP), True Negative (TN), and False Negative (FN).

Likewise, Accuracy refers to the proportion of all classifications that are correct,
both positive and negative. Mathematically, Accuracy = (TP + TN)/(TP + TN +
FP + FN).

Precision is the proportion of all the model’s positive classifications that are
actually positive. Mathematically, Precision = (TP)/(TP + FP).

Further, Recall is the proportion of all actual positives that are correctly classified
as positives. Mathematically, it is equal to (TP)/(TP + FN)

F1-score is the harmonic mean of precision and recall. Mathematically, F1 score =
(2TP)/(2TP + FP + FN)

Support is equal to the number of actual instances (samples) of a given class present
in the dataset used to evaluate the model.
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4 Results and Discussion

In the study, we worked with a total of five machine learning algorithms meant for clas-
sification tasks, including Random Forest, Logistic Regression, Naive Bayes, Decision
Tree, and XGBoost. The dataset contained 80% training data and 20% testing data.
The classification performance was evaluated with Accuracy, together with Precision
(Macro), Recall (Macro), and F1-score metrics. The confusion matrix, together with
the classification report, generated valuable information about how the classification
method reacted to various categories.

Fig. 2: 5-Fold Cross-Validation in Naive Bayes

Fig. 3: Confusion Matrix of Logistic Regression
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Fig. 4: Precision

Fig. 5: Accuracy

Fig. 6: F1-Score
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Table 2: Results of Our Machine Learning Models

Models Precision Recall F1-Score Support Accuracy

Random Forest (RF) 0.99 0.99 0.99 298,295 99%
Logistic Regression (LR) 0.99 0.99 0.99 134,021 99%
Naive Bayes (NB) 0.88 0.96 0.91 201,031 94%
XGBoost (XGB) 0.99 0.99 0.99 134,021 99%
Decision Tree (DT) 0.99 0.99 0.99 134,021 99%

Abbreviations: LR = Logistic Regression, RF = Random Forest, NB = Naive Bayes, XGB = XGBoost, DT
= Decision Tree

To ensure that the high accuracy rates of the models are not due to overfitting,
we conducted 5-fold cross-validation on all of them. For instance, the results for Naive
Bayes are illustrated in Fig. 2. It can be observed that the model consistently performs
well across all metrics in each fold of model training and testing, with all values
exceeding 0.95.

To understand the TP , FP , TN , and FN values, we generated Confusion Matrices
for all models, and the one of Logistic Regression is shown in Fig. 3, as an example.
For class 0 (weak), 17911 passwords are accurately predicted, and only 297 are false.
Likewise, the model is able to successfully classify 99023 and 16135 passwords for
class 1 (medium) and class 2 (strong), respectively. The number of falsely predicted
passwords for these two classes is negligible compared to the overall size of the dataset.

Furthermore, figures 4, 5, and 6 demonstrate how precision, accuracy, and F1-
score perform as the sizes of training data increase from 10% to 90%. Across all
figures, there is a consistent pattern among models. Random Forest, Decision Tree, and
XGBoost achieve the highest performance scores from the beginning, even with the
smallest training data, which reflects their robustness. Similarly, Logistic Regression
is close to the maximum value and almost reaches it as the training data increases.
Lastly, Naive Bayes achieves a low result for all metrics with small training data and
grows exponentially when input data crosses 50%. It tells us that Naive Bayes requires
a large amount of data to generalize well.

5 Conclusion

In this study, we attempted to develop machine learning models that can detect adver-
sarial passwords and classify them accurately. By reviewing existing research papers on
password classification, we identified a lack of studies focused on developing adversar-
ial models for this purpose. Using Kaggle, we found datasets with more than 670,000
samples, which contained several instances of adversarial passwords. Using them to
train models, we applied five classification algorithms, including Random Forest, Logis-
tic Regression, Naive Bayes, Decision Tree, and XGBoost, to generate classification
models.

Our experiments proved that models developed with adversarial passwords
detected adversarial attacks significantly better than traditional models. Notably, our
models outperformed existing models by up to 20% demonstrating the significance

11



of integrating adversarial models in the user authentication system. Remarkably, it
will help detect adversarial inputs, protect the data security of users, and avoid
cybersecurity breaches on a large scale.

However, a noticeable factor is that the samples of adversarial passwords were
naturally present in the datasets, which may not fully capture the essence of the
adversarial inputs while training the models. Hence, there is a probability of biases in
the models. As part of future work, we will utilize deep learning approaches, including
Generative Adversarial Networks (GANs), to generate a more controlled adversarial
dataset. After that, we will apply deep learning algorithms like Recurrent Neural
Networks (RNNs) and Long Short-Term Memory Networks (LSTMs) to train models
and evaluate them with their respective classification reports.

In conclusion, this study demonstrates the significance of adversarial models for
successful password classification. As cyberattacks continue to surge and become
sophisticated, the need for robust models increases to advance the user authentication
system.
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