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Abstract

We propose dpmm, an open-source library for synthetic data generation with Dif-
ferentially Private (DP) guarantees. It includes three popular marginal models –
PrivBayes, MST, and AIM – that achieve superior utility and offer richer func-
tionality compared to alternative implementations. Additionally, we adopt best
practices to provide end-to-end DP guarantees and address well-known DP-related
vulnerabilities. Our goal is to accommodate a wide audience with easy-to-install,
highly customizable, and robust model implementations.
Our codebase is available from: https://github.com/sassoftware/dpmm.

1 Introduction

Privacy-preserving synthetic data, leveraging rigorous privacy definitions like Differential Pri-
vacy (DP), offers a promising solution for sharing sensitive data within and across organizations
while safeguarding individual privacy. Interest in synthetic data has been growing not only in the
research community [8, 21, 23], but it has also been adopted by government agencies for sharing
census data [20, 36, 40], as well as in finance and healthcare sectors [15, 35, 45]. The underlying
idea is to train generative machine learning models on sensitive data while satisfying the definition of
DP through ingesting well-calibrated randomness and noise [12, 14].

While there are numerous proposed DP generative modeling approaches in the literature [1, 2, 4, 5, 7,
22, 24, 25, 27, 32, 33, 46–48, 50–52], marginal models, particularly MST [32] and AIM [33] (and to
an extent PrivBayes [50]), have consistently demonstrated strong privacy-utility tradeoffs [16, 44].
This is especially true for relatively small datasets with fewer than 32 features. These models broadly
rely on the select-measure-generate paradigm [30, 32], i.e., they select a collection of marginals of
interest, measure them while adding noise, and then generate synthetic data that preserves them.

As a result, these three marginal models – PrivBayes, MST, and AIM – have been reimplemented by
several popular open-source libraries for DP synthetic data generation [28, 29, 41–43]. However, most
libraries are cumbersome to install, have outdated dependencies, do not implement all models, and
the ones they do implement often have limited functionality. Moreover, many of the implementations
lack actual end-to-end DP pipelines, as the data domain might be directly extracted from the input
data, or data preprocessing might be done in a non-DP manner [3, 17]. Additionally, they may contain
DP-related bugs such as fixed random states and floating-point vulnerabilities [6, 19, 26].

To address these limitations, we propose Differentially Private marginal models, or dpmm, a
lightweight open-source library (pip installable; Apache-2.0 license) for synthetic data genera-
tion. We incorporate best practices from various scientific papers and DP libraries to provide robust
implementations of the three most widely used marginal models with end-to-end DP guarantees
and rich functionality (see Sec. 2). Additionally, we achieve higher utility compared to previous
implementations and conduct DP auditing experiments (see Sec. 3).
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Library Marginal Model DP Guarantee
PrivBayes [50] MST [32] AIM [33] Data Data Floating-Point

Domain Preprocessing Precision

dpmm (ours) ✓ ✓ ✓ ✓ ✓ ✓
private-pgm [29] ✘ ✓ ✓ ∼1 ✘ ✘
OpenDP [41] ✘ ✓ ✓ ∼2 ∼3 ✓
synthcity [43] ✓ ✘ ✓ ✘ ✘ ✘

Table 1: Comparison between dpmm and other libraries over marginal models and end-to-end DP support.
1accepts data domain only for discrete data; 2data domain cannot be passed as input, extracts data domain in a
DP way only for continuous data; 3only supports uniform discretization, which is incidentally DP.

Library Mixed Data Conditional Public Data Structural Max Serialization
Support Generation Pretraining Zeros Model Size

dpmm (ours) ✓ ✓ ✓ ✓ ✓ ✓
private-pgm [29] ✘ ✘ ✘ MST AIM ✘
OpenDP [41] ✓ ✘ ✘ MST AIM ✘
synthcity [43] ✓ ✘ ✘ ✘ AIM ✓

Table 2: Comparison between dpmm and other libraries over different functionality support.

Main Contributions:

• We implement and open source dpmm, a lightweight library for end-to-end DP synthetic
data generation, containing three popular marginal models with extended functionality –
PrivBayes, MST, and AIM (see left half of Table 1 as well as Table 2).

• dpmm achieves higher utility than previous implementations – on average 1.5% higher than
private-pgm and 147% than OpenDP/synthcity (see Fig. 1a) – due to improved preprocessing.

• dpmm contains state-of-the-art DP auditing procedures and effectively addresses known
DP-related vulnerabilities (see right half of Table 1).

2 Overview of dpmm

In this section, we provide an overview of dpmm in terms of the implemented models, the building
blocks we use to guarantee end-to-end DP pipeline, and the supported functionality across all models.

Marginal Models. As mentioned, we implement three marginal models in dpmm – PrivBayes [50],
MST [32], and AIM [33]. We do so because they: i) are known to perform well in the research
community [16, 44], ii) ranked among the best solutions in the NIST DP synthetic data challenge [39],
iii) have been used to release census data by government agencies [20, 40], and iv) have been
implemented in popular open-source libraries but have known DP-related vulnerabilities [3, 6, 19, 26].

The three models broadly rely on the select-measure-generate paradigm [30, 32]. They primarily
differ in the first step, i.e., selecting a collection of marginals of interest. In the following step they
measure these marginals noisily with the Gaussian mechanism [34] and then, one could generate
synthetic datasets that are consistent with these noisy marginals through Private-PGM [31]. Next, we
discuss how the three models select marginals:

• PrivBayes constructs an optimal Bayesian network of degree k by optimizing the mutual
information scores between the nodes in the network using the Exponential mechanism [13].
While the original PrivBayes uses the Laplace mechanism [14] for marginals measurement
and directly samples from them, we adjust our implementation to incorporate the Gaussian
mechanism and Private-PGM, similar to [31] to unify it with the MST/AIM implementations.
We refer to this model as PrivBayes+PGM (note: it satisfies (ϵ, δ)-DP instead of pure DP).

• MST first chooses all one-way marginals (corresponding to the columns in the dataset)
and then selects a collection of two-way marginals that form a maximum spanning tree (an
undirected graph) of the underlying correlation graph.

• AIM also starts by selecting all one-way marginals but then chooses higher-order ones
iteratively based on their overall importance and comparative error to already chosen ones.
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Figure 1: Comparison between dpmm and other libraries in terms of utility and runtime, all models are trained
with default hyperparameters, ϵ = 1, and δ = 10−5 on Wine.

DP Guarantees. Numerous popular DP libraries, including synthetic data generation ones, contain
well/long-known DP vulnerabilities such as direct data domain extraction from the input data and
floating-point (im)precision [3, 6, 19, 26] (see Table 1). To ensure end-to-end DP, we rely on scientific
papers and best practices addressing these issues.

• Data Domain. dpmm allows the data domain (for both numerical and categorical data) to be
provided as input. Alternatively, we follow Desfontaines [9]’s method to extract min/max for
numerical data using half the preprocessing budget 0.5ϵproc (also implemented in OpenDP).

• Data Preprocessing. Since all models operate on discrete data, dpmm has two discretization
strategies – PrivTree [49] and uniform. The former is a DP tree-based method using 0.5ϵproc
(Laplace mechanism) and is the default since it has shown superior performance [18, 44].

• Floating-Point Precision. To defend against floating-point vulnerabilities when sampling
from the Gaussian mechanism, dpmm follows Casacuberta et al. [6]’s method, whose
effectiveness has been verified by researchers [10, 26] (originally implemented in OpenDP).

Functionality. Next, we discuss a set of features, which are available to all three models in dpmm:

• Mixed Data Support: the training data can contain both numerical and categorical data.
• Conditional Generation: generated synthetic data can satisfy any conditions at generation

time, without the need to retrain the model or use negative sampling, due to Private-PGM.
• Public Pretraining: the model can be pretrained on public data, i.e., extract the data domain,

fit data preprocessing, and select the marginals of interest without spending privacy budget.
• Structural Zeros: categories or numerical intervals that always have zero counts in the

training data can be configured to be preserved in the generated synthetic data. Additionally,
the accurate modeling of very rare categories or numerical intervals can be suppressed.

• Max Model Size: the size of the trained model (in terms of MBs) can be controlled.
• Serialization: trained models can be saved and reloaded for later use.

3 Empirical Evaluation

In this section, we evaluate the three marginal models in dpmm (PrivBayes+PGM, MST, and AIM)
both in terms of utility and privacy, and compare them to the implementations in other libraries.

Utility. We train models with ϵ = 1 (and ϵproc = 0.1 for processing when applicable) using all
available implementations on the Wine dataset [11]. We use the default hyperparameters for all
implementations (with δ = 10−5), while the data domain is assumed to be known and provided
as input. Utility is measured as the average score between real and synthetic datasets across three
metrics: marginal (1-way) and pairwise (2-way) similarity, as well as the ability to distinguish real
from synthetic records. All reported scores are averaged across ten trained model instances and ten
generated synthetic datasets per trained model. We visualize the utility and runtime results in Fig. 1.

Compared to the original private-pgm, dpmm’s MST and AIM perform on par and even achieve
slightly better results, with 1.5% improvement. We attribute this to the improved preprocessing
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Figure 3: DP auditing of dpmm and other libraries.

strategy, PrivTree, consistent with [18]. Moreover, dpmm’s MST runtime is significantly faster due to
parallelization when measuring all 1-way marginals. Unfortunately, AIM takes longer, as smaller
marginal estimation errors allow the model to run for more iterations before the budget is spent. Also,
dpmm’s implementations dramatically outperform OpenDP and synthcity by 147% on average.

Additionally, in Fig. 2, we see that all models in dpmm exhibit desirable behaviors, i.e., their utility
increases with more available privacy budget. Consistent with previous research [16, 33, 44], MST
and AIM perform better than PrivBayes+PGM, while AIM edges out MST for ϵ > 0.5.

DP Auditing. We also include state-of-the-art DP auditing techniques in dpmm, alongside extensive
unit and integration tests, to ensure that our implementations are free from (known) privacy vulnera-
bilities. Specifically, we implement two powerful attacks, AuditSynth [3] and Delta-Siege [26], which
have been used to: i) detect general privacy violations in PrivBayes and MST [3], and ii) identify
floating-point precision violations in MST and AIM [26]. To achieve a tight audit (i.e., the empirical
privacy loss ϵemp approaches the theoretical guarantee ϵ) or detect a violation (i.e., ϵemp > ϵ), both
attacks assume white-box access to the model (the fitted model’s parameters and generated synthetic
data), a worst-case target record (lying outside the domain of the rest of the data), and worst-case
neighboring datasets (constructed from a couple low-dimensional records).

AuditSynth [3] uses membership inference attacks via a repeated distinguishing game [37, 38], in
which an adversary attempts to determine whether the target record was part of the model’s training
data. We train 1,000 models per implementation (ϵ = 1, δ = 10−3) and report the resulting ϵemps
in Fig. 3a. Both synthcity and OpenDP are vulnerable to this class of general attacks as ϵemp >> ϵ
(indicating detected privacy violations), primarily because the data domain cannot be passed as input.
In contrast, private-pgm and dpmm exhibit minimal privacy leakage that remains well within expected
bounds, assuming the data domain is specified, which is consistent with prior findings [3, 18].

Delta-Siege [26] relies on the insight that many (ϵ, δ) pairs can be grouped and efficiently audited
together, as they result in the same algorithm. First, we audit the underlying DP mechanisms
used by each library (see black bars in Fig. 3b): NumPy Laplace (synthcity), NumPy Gaussian
(private-pgm, synthcity), and OpenDP Gaussian [6] (dpmm, OpenDP). Mechanisms relying on
NumPy exhibit floating-point precision violations (ϵemp >> ϵ), while OpenDP Gaussian does not,
as verified by previous work [10, 26]. Then, we confirm that these trends hold when auditing the full
implementations of the three models (see colored bars in Fig. 3b). Specifically, we train numerous
models (ϵ = 1, δ = 10−3) and confirm that only dpmm and OpenDP avoid excessive privacy leakage.

Overall, to the best of our knowledge, dpmm is the only library containing state-of-the-art DP synthetic
data models and does not exhibit (known) privacy-related vulnerabilities. While these audits cannot
guarantee the absence of all bugs, they provide strong empirical evidence of dpmm’s robustness.

4 Conclusion

In this paper, we introduced dpmm, a library for DP synthetic data generation that includes robust
implementations of PrivBayes+PGM, MST, and AIM, offering rich functionality. We hope that dpmm
will serve both practitioners and researchers in their adoption and development of DP synthetic data.
We look forward to continuously improving the functionality, trustworthiness, and performance of
the library with the support of the community.
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