
ar
X

iv
:2

50
6.

00
31

7v
1

 [
cs

.C
R

]
 3

1
M

ay
 2

02
5

Local Frames: Exploiting Inherited Origins
to Bypass Content Blockers

Alisha Ukani
UC San Diego
San Diego, USA
aukani@ucsd.edu

Hamed Haddadi
Imperial College London & Brave Software Inc

London, UK
h.haddadi@imperial.ac.uk

Alex C. Snoeren
UC San Diego
San Diego, USA

snoeren@cs.ucsd.edu

Pete Snyder
Brave Software Inc
San Francisco, USA
psnyder@brave.com

ABSTRACT

We present a study of how local frames (i.e., iframes with non-URL

sources like “about:blank”) are mishandled by a wide range of pop-

ular Web security and privacy tools. As a result, users of these

tools remain vulnerable to the very attack techniques they seek

to protect against, including browser fingerprinting, cookie-based

tracking, and data exfiltration. The tools we study are vulnerable

in slightly different ways, but all share a root cause: Legacy Web

functionality interacts with browser privacy boundaries in unex-

pectedways, leading to systemic vulnerabilities in tools developed,

maintained, and recommended by privacy experts and activists.

We consider four core capabilities supported by most privacy

tools and develop tests to determine whether each can be evaded

through the use of local frames. We apply our tests to six popular

Web privacy and security tools—identifying at least one vulnerabil-

ity in each for a total of 19—and extract common patterns regard-

ing their mishandling of local frames. Our measurement of popular

websites finds that 56% employ local frames and that 73.7% of the

requests made by these local frames should be blocked by popular

filter lists but instead trigger the vulnerabilities we identify; from

another perspective, 14.3% of all sites that we crawl make requests

that should be blocked inside of local frames. We disclosed the vul-

nerabilities to the tool authors and discuss both our experiences

working with them to patch their products and the implications of

our findings for other privacy and security research.

CCS CONCEPTS

• Security and privacy → Privacy protections; Web applica-

tion security.

ACM Reference Format:

Alisha Ukani, Hamed Haddadi, Alex C. Snoeren, and Pete Snyder. 2025.

Local Frames: Exploiting Inherited Origins to Bypass Content Blockers. In

Proceedings of the 2025 ACM Conference on Computer and Communications

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

CCS ’25, October 13–17, 2025, Tapei, Taiwan.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Security (CCS ’25), October 13–17, 2025, Tapei, Taiwan. ACM, New York, NY,

USA, 16 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Content-blocking tools are used by millions of people in order to

protect their privacy by blocking tracking scripts, stay safe from

scammers by blocking malware, save money by using less data,

and enjoy a more pleasant browser experience by hiding ads. In

order to provide these benefits, most content blockers maintain fil-

ter lists, which are lists of URLs that determine which network re-

quests should be blocked or allowed. Modern tools also implement

more sophisticated defenses such as resource replacement (e.g.,

loading benign scripts instead of privacy-invasive ones), scriptlet

injection (i.e., injecting custom JavaScript code to remove cookies

or block trackers), and cosmetic filtering to hide undesirable page

elements.

Yet, we find that several popular content blockers are vulnerable

to evasion of one or more of these capabilities—and the majority

of popular websites are currently doing such evasion. Specifically,

our work shows that content blockers frequently mishandle a class

of iframes we call local frames (an iframe with a non-URL source

like “about:blank”), allowing content loaded within local frames

to bypass blocker protections. Local frames initially load an empty

HTMLdocument, but content can be added to these frames dynam-

ically. Local frames are popular with Web developers for a number

of reasons, chief among them the fact that a local frame creates a

clean JavaScript environment that does not affect the main page

and vice versa. We find that content blockers fail to properly im-

plement protections in local frames, allowing websites to include

tracking scripts that should be blocked and show ads that should

be hidden—all by wrapping their existing code in a local frame.

Content blockers use a frame’s origin—the combination of a

URL’s protocol (e.g. “https”), hostname, and port—to determine

how to handle its content. For example, many content blockers pro-

vide the option to block network requests made in third-party con-

texts; in order to determine if a request is made in a first- or third-

party context, the content blocker must know the origin of the re-

quest’s originator and destination.While some tools (e.g., Brave on

iOS) simply fail to provide any protection in local frames, we find

the most common reason why local frames evade content block-

ers is that content blockers mis-attribute their origin and, thus, do

http://arxiv.org/abs/2506.00317v1
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CCS ’25, October 13–17, 2025, Tapei, Taiwan. Alisha Ukani, Hamed Haddadi, Alex C. Snoeren, and Pete Snyder

1 <body>

2 <iframe src ="about:blank">

3 <!-- Local frame for firstparty .com. Origin should be

https :// firstparty .com -->

4 </iframe >

5

6 <iframe src ="https :// thirdparty .com">

7 <iframe src="about:blank">

8 <!-- Local frame for thirdparty .com . Origin

should be https:// thirdparty .com -->

9 </iframe >

10 </iframe >

11 </body>

Listing 1: HTML code at https://firstparty.com which

creates two iFrames: a local frame and a third-party iFrame

that embeds its own local frame.

not associate local frames with the site that creates them. The ori-

gin of an iFrame is usually extracted from the iFrame’s source, but

according to the HTML specification, local frames are supposed

to inherit the origin of the document that creates them [40]. For

example, in Listing 1, the local frame on line 2 should inherit the

origin of the main page (https://firstparty.com in this exam-

ple), whereas the local frame on line 7 should inherit the origin

https://thirdparty.com. However, some content blockers do

not correctly determine the origin of local frames; some compute

the origin of the third-party local frame as “about:blank”while oth-

ers may even use https://firstparty.com.

Local frames are highly prevalent on the Web, and evasion is

currently taking place (although we cannot determine if this eva-

sion is intentional). We conduct a measurement study of websites

with varying degrees of popularity according to Tranco and find

local frames on 56% of websites (12,234 of the 21,965 successfully

crawled websites). 73.7% of the URLs requested by these local

frames should be blocked by popular content blockers, according

to a combination of filter lists from EasyList [9], EasyPrivacy [10],

and uBlock Origin [49]. Users browsing these sites with vulnera-

ble tools, however, will be exposed to the content anyway. Said

another way, 14.3% of the websites we study are evading content

blockers by making requests that would otherwise be blocked, but

succeed because they are made inside of local frames. We empha-

size, however, that we do not know if publishers create the local

frames with the explicit intent of evading content blockers.

We consider four distinct capabilities of popular blockers—

request blocking, resource replacement, scriptlet injection, and cos-

metic filtering—and find vulnerabilities in AdBlock Plus, AdGuard,

uBlock Origin Lite, the Brave Browser, DuckDuckGo, and Safari

Content Blocking (which is used by many iOS apps):

• Wefind that websites can employ local frames to completely

bypass filter list-based protections in Brave’s iOS browser.

• For AdGuard, we find that local frames within third-party

iFrames inherit the origin of the first-party website. This

means that AdGuard users can not only be tracked by third

parties, but they may also experience site breakage because

rules are applied improperly in local frames.

• Scriptlet injection and cosmetic filtering implemented in

Brave’s browser, as well as AdGuard’s browser extensions

and iOS app, can be evaded, allowing websites to perform

sophisticated tracking and show ads that should be hidden.

• We find that the cosmetic filtering in uBlock Origin Lite, the

AdBlock Plus iOS app, and Safari Content Blocking can be

evaded, allowing websites to show ads that should be hid-

den.

• We find that while DuckDuckGo properly blocks tracking

requests made inside local frames, they do not report these

actions to the user like they do for regular frames.

We disclosed each of the 19 vulnerabilities we found to the rele-

vant organization. Brave, Safari, AdGuard, and DuckDuckGo have

patched their tools, and our disclosure has been acknowledged by

uBlock Origin Lite and AdBlock Plus.

2 BACKGROUND AND RELATED WORK

In this section we provide a brief overview of local frames, their

intended use cases, and relevance to content blocking. We then

introduce the four common content-blocking capabilities we study

before summarizing related work.

2.1 Local Frames

We use the term local frame to refer to an iframe with a non-URL

source, the most common of which is “about:blank”. This specific

URI is often the default URI for new iframes [40] and is intended to

be used by browsers for blank pages [41]; the resulting local frames

are uninitialized iframes. Local frames (like all iframes) have their

own page document [63], which creates a new environment that is

unaffected by the JavaScript or CSS rules scoped to the document

of the main page. However, as we see in the next section, local

frames are distinct from other iframes because they can still access

the parent document (i.e., they are not fully isolated).

2.1.1 Inherited Origins. An origin for a URL is defined as the

URL’s protocol, port, and hostname (excluding subdomains) [40].

Origins are used to isolate websites from potentially malicious em-

bedded content through the same-origin policy feature. This fea-

ture prevents a website from accessing the content of other tabs

in the user’s browser, or reading the cookies set for other websites

(which could then be used for a cookie hijacking attack).

However, the URL-based definition of origins cannot be applied

to other URI schemes because they lack a hostname and port. In-

stead, URIs like “about:blank” should inherit the origin of the doc-

ument they are contained in [40]; and since this URI inherits the

same origin as its parent document, the same-origin policy dic-

tates that a local frame will have access to the parent document.

There are other non-standard URIs in addition to “about:blank”

for which content blockers may confuse the origin. The “about”

prefix is intended to reference an application’s internal resources,

so other URIs starting with “about” besides “about:blank” (such as

“about:srcdoc”) could be misinterpreted [41]. There are also sev-

eral other prefixes, such as “blob”, “file”, and “data” [63]; in par-

ticular, the “data” prefix is supposed to receive an empty security

context [40]. However, we find (Section 3.2) that these other URI

prefixes make up only 0.5% of the local frames created by websites

we study.

2.1.2 Common Usage. This lack of isolation between local frames

and the main page has made them attractive for serving ads for

over 15 years. In particular, local frames have been used to serve

Local Frames: Exploiting Inherited Origins to Bypass Content Blockers CCS ’25, October 13–17, 2025, Tapei, Taiwan.

“RichMedia” ads, which interact with themain website for features

such as displaying videos, expanding their size, andmoving around

the page [28, 30]. These features require the ad to have access to the

main page, so in 2008 the Interactive Advertising Bureau (IAB) pub-

lished a set of best practices recommending websites to load ads in

“friendly iframes”—a local framewith source “about:self” [31]. Doc-

umentation for Google Ad Manager also notes that these friendly

iframes are better able to collect metrics like viewability compared

to cross-domain iframes [27]. Given the power that these iframes

have to access the main page, online resources note that websites

loading ads in these frames should have a trusted relationship with

advertisers [17, 50].

Beyond ads, local frames are also used for tracking purposes.

FingerprintJS [24], a popular open-source library for browser fin-

gerprinting, creates a local frame when identifying the fonts in-

stalled on a given machine. The FingerprintJS documentation in-

dicates that a local frame is used so that the fingerprinting script

does not affect the main page, and vice versa.

2.2 Capabilities of Content Blockers

We consider four distinct capabilities of popular content blockers:

request blocking, resource replacement, scriptlet injection, and cos-

metic filtering.

2.2.1 Request Blocking. The basic function of content blockers is

to block network requests to undesirable targets such as ads and

privacy-invasive tracking scripts. Network requests can either be

created in the standard way (i.e., creating anHTML script or image

element with the source set to the desired resource), or through

asynchronous JavaScript APIs (e.g., fetch and XMLHTTPRequest

calls). Sometimes outright blocking these requests can lead to site

breakage. So, many content blockers have the option to block these

requests only if they originate from a third-party context. Another

way to prevent breakage is to create fine-grained entries in the fil-

ter list that target specific scripts or paths; in this scenario content

blockers may allow a third-party iframe created by a third-party

tracker to load, but block specific content within that iframe. As

of August 17, 2024 EasyList contains 2,294 rules that use this third-

partymodifier to define the context in which these rules apply, and

EasyPrivacy contains 4,151 rules with the modifier [9, 10].

2.2.2 Resource Replacement. Even if content blockers attempt to

block only requests occurring in a third-party context, they can

still trigger site breakage. In particular, some websites will expect

to see the side effects of their scripts, such as defining certain func-

tions and variables. If a content blocker prevents that script from

executing, the website will not see the expected side effects and

may throw errors. Alternatively, the website could detect a “bait”

resource being blocked (without having to check for side effects)

and thus determine that the user is using a content blocker [47].

So, many popular content blockers support redirecting scripts to

benign versions that define the expected side effects while avoid-

ing privacy-invasive behavior. For example, uBlock Origin and

AdGuard create benign versions of specific scripts that define ex-

pected objects (e.g. window.google.ima in the case of Google Ad

Manager scripts).

2.2.3 Scriptlet Injection. Beyond blocking and redirecting re-

quests, some content blockers inject their own JavaScript into

loaded webpages to provide more extensive protection from

tracking. For example, content blockers cannot modify cookies

through blocking network requests. Scriptlets, however, can be

used to modify cookies, and perform other tasks like disabling

access to certain JavaScript APIs. For example, uBlock Origin

uses scriptlets to remove telemetry cookies from Bing, prevent

some websites from saving browser fingerprints, and disguise the

use of the content blocker on streaming sites like cbs.com and

paramountplus.com.

2.2.4 Cosmetic Filters. Finally, sometimes ads cannot be blocked

using network requests. Websites may display ads through inline

HTML, meaning no network requests are used to render the ads.

Alternatively, websites may use network requests to display ads,

but include benign, functional code in the same script [6]; if con-

tent blockers were to block these scripts, they could break website

functionality. Instead, they can hide ads through cosmetic filters

(also known as “element hiding”) that identify unwanted content

through HTML and/or CSS selectors.

2.3 Content Blocker Limitations

There is a long-running arms race between website publishers

who display ads to generate revenue, and content blockers that

attempt to hide these ads and block tracking scripts to improve

user privacy and user experience. Many publishers try to detect

the use of content blockers and change their websites to discour-

age the use of these tools, a well-studied practice known as anti-

adblocking [34, 44, 68]. Studies disagree on the prevalence of anti-

adblocking, reporting rates ranging from 0.7% [44] to 30.5% [68].

Websites also try to evade content blockers by exploiting a

widely-acknowledged limitation of popular content blockers: the

reliance onmatching URLs to handcrafted filter lists. In 2016Wang

et al. proposed a system to allow Web publishers to evade con-

tent blockers by automatically randomizing URLs and HTML at-

tributes [62]. While it is unclear if this particular system is used in

practice, websites do change the way they host tracking content

for evasion. A 2020 analysis of 10K websites found 1,612 instances

of a blocked script being hosted on a new domain, as well as other

techniques to change where tracking scripts are hosted [54]. Our

work similarly investigates the fragility of content blockers match-

ing URLs against filter lists; however, we find evasion can take

place without changing how tracking resources are hosted, by in-

steadwrapping the request (or the requested content) inside a local

frame.

Given the brittle nature of filter lists, systems have been pro-

posed to identify tracking resources. The AdGraph system gener-

ates a model of websites as graphs, and feeds the graph context

into an ML model to determine if resources are tracking or non-

tracking [35]. In 2021, Chen et al. proposed using JavaScript event

loop signatures to identify tracking code [15]. They found 12.5%

of websites were able to evade filter lists by including scripts that

contain tracking behavior but were not previously included in fil-

ter lists. However, a system like the one Chen et al. propose would

not solve the issues we identify with local frames, as we find tools

CCS ’25, October 13–17, 2025, Tapei, Taiwan. Alisha Ukani, Hamed Haddadi, Alex C. Snoeren, and Pete Snyder

Rank Interval Sites Crawled
% Sites with Local Frames

1p 3p Either

[1-5K) 3,815 52.92 20.00 56.28

[5K-10K) 4,239 54.80 25.15 59.83

[10K-15K) 3,911 47.62 19.85 51.02

[15K-100K) 5,000 58.30 23.60 60.78

[100K-1M) 5,000 46.78 19.82 50.34

Overall 21,965 52.16 21.74 55.70

Table 1: Prevalence of local frames at various Tranco ranks.

fail to apply filter list rules to local frames, thus creating a vector

for evasion.

Finally, content blockers implemented as browser extensions in-

herit the limitations of the browsers they rely on. In 2016, Bashir

et al. measured the impact of a known bug in the Chrome Web-

Socket API that allowed websites to evade content blockers [11].

They found 2% of websites used the WebSocket API, and 60% of

those sites were opening WebSockets to advertising and analytics

companies.

3 LOCAL FRAME USAGE

We motivate our study of vulnerable tools with a measurement of

how frequently local frames are used on theWeb currently.We also

measure how oftenwebsites use local frames to carry out the kinds

of behaviors that content blocking tools target. We note, however,

that our measurement is not able to infer the intent of website au-

thors. Our results only show how often websites use local frames

in ways that may circumvent existing privacy tools;we are not sug-

gesting that website authors are using local frames with the sole

intent of circumventing privacy tools.

We find that local frames are widely used on the Web, appear-

ing on more than half (56%) of all websites we study. Furthermore,

websites frequently use local frames to fingerprint users and make

requests to URLs defined to be privacy harming (or otherwise un-

wanted) by popular blocklists—behaviors that privacy and content-

filtering Web tools target and modify.

3.1 Measurement Methodology

We measure how, and how often, local frames are used on popular

websites in multiple steps.

3.1.1 Website Selection. We use the Tranco top-sites list to select

websites with varying degrees of popularity at time of measure-

ment. We collect data for 21,965 sites in total, including 11,965 of

the Tranco top 15K, 5,000 websites uniformly sampled between the

ranks of 15K to 100K, and 5,000 websites between ranks 100K and

1M. Our crawl attempts fail on 23% of websites, either because the

domains are not used to serve websites (e.g., CDN domains used

to serve page assets), the domains are geo-restricted, or, in a small

number of cases because of compatibility issues with our crawling

tools. Hence, successfully crawling 5K sites required trying 6,362

sites between 15K–100K and 7,100 among the ranks 100K–1M.

3.1.2 Tools and Vantage Point. We visit each of the selected sites

using the PageGraph crawler [12], a Web measurement tool based

on a current fork of Chromium. The crawler records i) salient

events that occur during the loading, rendering, and executing of

a website (e.g., network requests issued; HTML elements created,

modified, or inserted in the page; WebAPIs executed by JavaScript,

etc.), and ii) attribution information for each of these events (e.g.,

the HTML element or JavaScript code unit responsible for a net-

work request, whether an HTML element was created as a result

of parsing an HTML text or by a script, which script called which

WebAPI, etc.). The crawler outputs this log of events and actors

into a graph, yielding one graph per measured website.

We conduct our crawl from AWS EC2 servers in Amazon’s

us-west-2 region. We configure the crawler to appear identical

to a typical Chromium-based browser by running the browser in

“head-full” mode, removing JavaScript properties that indicate to a

website that a browser is a crawler (e.g., window.webdriver), and

taking additional, similar steps to avoid signals that prior research

has identified can influence Web measurement results [36]. For

each website, the crawler visits the root page for each domain (i.e.,

either https://domain.example or http://domain.example),

waits 30 seconds, and then records the resulting event graph.

3.2 Results

We post-process our crawl data to extract the first-party and third-

party local frames from each website and analyze their behaviors.

3.2.1 Local Frame Prevalence. In each website graph, we iden-

tify frames that are local during the entire page execution. This

is an important filter because internally Chromium initializes all

child frames (e.g., <iframe>, <frame>, <object>) as a local frame,

even if that frame is then navigated to another URL. We find that

“about:blank” is by far the most common local-frame URI, account-

ing for 95.8% of all local frames in our dataset; “about:srcdoc” (the

only other URI with the “about” prefix we see) accounts for 3.7%

of local frames, followed by “blob” at 0.4% and “data” at 0.1%. The

prevalence of each prefix is consistent across website ranks. Re-

sults reported in the remainder of this section pertain only to

“about:blank” and “about:srcdoc” local frames.

We find 74,263 local frames on 12,234 distinct sites, and, as

shown in Table 1, there is no obvious trend in local-frame preva-

lence across website popularity. The vast majority of websites us-

ing local frames contain at least one first-party local frame; third-

party local frames are significantly less common at all popularity

ranks.

3.2.2 Privacy-Relevant Events. From the local frames we discover,

we extract instances of the following behaviors to understand how

often local frames are used for the kinds of activities that are tar-

geted by privacy tools:

(1) Fingerprinting-related API calls including canvas, naviga-

tor, screen, and WebGL (the full list is in Appendix B)

(2) Requests made within a local frame (e.g., images requested,

fetch and XMLHTTPRequest calls, etc.)

(3) Calls to privacy-relevant WebAPIs and JavaScript built-ins

(e.g., calls to performance.now(), Canvas APIs, etc.)

(4) Non-default HTML elements included (i.e., all HTML ele-

ments inserted into the frame except those created automat-

ically such as <html>, <head>, <body>, etc.).

Local Frames: Exploiting Inherited Origins to Bypass Content Blockers CCS ’25, October 13–17, 2025, Tapei, Taiwan.

1p 3p
Fingerprinting

API Calls
Requests JS/API Calls HTML

sites 7,942 4,776 4,280 5,168 6,596 4,629

Mean 2.07 1.31 1,900.97 4.38 5,257.19 32.52

Median 1 0 0 0 0 0

Max 98 76 327,600 431 636,724 7,432

Total 45,451 28,812 40,220,690 96,262 111,231,650 733,813

Table 2: Privacy-relevant behaviors occurring in local frames created by the 21,965 crawled websites.

Rank [1,15K) Rank [15K,100K) Rank [100K,1M) Total

% # % # % # %

Requests in dataset 1,377,219 100.0% 579,966 100.0% 461,240 100.0% 2,418,425 100.0%

x in a local frame 56,280 4.1% 26,884 4.6% 13,098 2.8% 96,262 4.0%

x that should be blocked 42,111 74.8% 19,679 73.2% 9,148 69.8% 70,938 73.7%

Sites crawled 11,965 100.0% 5,000 100.0% 5,000 100.0% 21,965 100.0%

x making >= 1 request 10,863 90.8% 4,962 99.2% 4,971 99.4% 20,796 94.7%

x in a local frame 2,833 26.1% 1,306 26.3% 939 18.9% 5,168 24.4%

x that should be blocked 1,887 66.6% 778 59.6% 477 50.8% 3,142 61.9%

Table 3: Requests sites make in local frames, including requests that popular Web security and privacy tools intend to block,

but which are not blocked in some tools because of mishandling of frame origins.

Table 2 shows thatmany sites use local frames to performfinger-

printing, make network requests, execute JavaScript, and present

HTML elements to users. Approximately a third (4,280) of all web-

sites containing local frames use them to perform fingerprinting,

a clear privacy concern. Users may wish to manage the remaining

behaviors with privacy tools as well, and these toolsmay be failing

users by mishandling local frames.

3.2.3 Privacy-Suspect Events. One particularly suspicious class of

events are requests made by local frames that would be blocked

by popular filter lists. We extract the requests made from local

frames and use the adblock-rs [7] library to check them against

EasyList [9], EasyPrivacy [10], and the additional lists maintained

by the uBlock Origin project [49]. Table 3 presents the results of

this analysis. We find that in a significant number of cases, sites

use local frames to conduct specific behaviors that are very likely

to be targeted for blocking or modification by privacy tools. We

observe, for example, that 61.9% of sites making requests inside

of local frames attempt to request content that should be blocked

by popular filter lists. We find that the rate of privacy-suspect re-

quests seems to increase slightly with popularity, which is consis-

tent with prior work that reports popular websites perform more

tracking [23, 33].

3.2.4 Third-Party Local Frames. Third-party local frames are par-

ticularly intriguing, as they likely are not under direct control of

the website publisher—whomay not even be aware of their use.We

find 28,812 third-party local frames hosted on 4,776 unique web-

sites. Wemap the security origin of the third-party local frame (i.e.,

the origin of the content loaded into the local frame) to its owning

organization using the Disconnect entity list [32]; if there is no

entity for a given URL, we use the URL as the entity. For each pop-

ularity rank we report the top-10 entities that create third-party

local frames by the number of sites in Table 4 (see Appendix A for

the corresponding eTLD+1’s). Almost all entities are advertising

and analytics companies. Unsurprisingly, large analytic companies

like Google, PubMatic, and Cloudflare appear in the top four enti-

ties for each popularity rank. After that the entities become more

varied, though the medium and unpopular ranks have high over-

lap.

4 VULNERABLE CONTENT BLOCKERS

In this section, we show that websites can exploit local frames

to bypass the intended behavior of popular content blockers. We

start by designing tests to determine whether each capability is ex-

ecuted correctly; we say a capability can be bypassed if a rule that

is intended to be applied to a local frame is not applied. We also

check if a capability is misapplied by checking if a rule that is not

intended to be applied to a local frame is applied. We then discuss

the tools we choose to study, and finally present our results. We

find five major products (the Brave Browser, Safari Content Block-

ing, uBlock Origin Lite, AdBlock Plus, and AdGuard) have vulner-

abilities that expose users to privacy-invasive tracking and visible

ads, both of which are intended to be blocked. One additional tool—

DuckDuckGo—does not expose users but contains a vulnerability

in its accounting functionality.

4.1 Designing Tests for Capabilities

For each capability we design test pages to determine if lo-

cal frames can evade it. Each test uses two websites, one first-

party and one third-party (referred to as firstparty.com and

thirdparty.com), and we check whether the capability can be

evaded in a first-party local frame and/or a third-party local frame.

For ease of implementation, our tests employ “about:blank” local

frames; it is possible that more extensive testing with other local-

frame URIs might uncover additional vulnerabilities. We plan to

CCS ’25, October 13–17, 2025, Tapei, Taiwan. Alisha Ukani, Hamed Haddadi, Alex C. Snoeren, and Pete Snyder

Rank [0,15K) Rank [15K,100K) Rank [100K,1M)

Entity # Sites # Frames Entity # Sites # Frames Entity # Sites # Frames

Google 1903 6369 Google 720 2531 Google 679 2541

PubMatic 673 4314 adtrafficquality.google 556 691 adtrafficquality.google 374 398

Unity 232 351 PubMatic 199 1049 Cloudflare 85 2124

Cloudflare 213 1058 Cloudflare 108 2453 PubMatic 78 413

Amazon 172 303 SeedTag 42 219 Amadeus 19 20

Vidoomy 52 113 AdYouLike 32 37 SeedTag 12 79

Datadome 42 51 admatic.de 20 47 Jivox 8 16

NextMillennium 36 89 Amadeus 16 19 Yandex 8 74

ConnectAdRealtime 35 83 Amazon 15 21 Chaturbate 8 26

Piano 33 136 ConnectAdRealtime 12 43 AdYouLike 6 6

Table 4: The top-10 entities of content loaded into third-party local frames sorted by the number of sites on which they appear.

First-Party Body Third-Party iframe

firstparty.com script executed firstparty.com script executed
thirdparty.com script executed thirdparty.com script executed

First-Party LF Third-Party LF

firstparty.com script executed firstparty.com script executed
thirdparty.com script executed thirdparty.com script executed

First-Party Nested LF Third-Party Nested LF

firstparty.com script executed firstparty.com script executed
thirdparty.com script executed thirdparty.com script executed

(a) Structure of the test website when no filter list rules are executed, so all requests

succeed.

First-Party Body Third-Party iframe

[no text] [no text]
[no text] [no text]

First-Party LF Third-Party LF

[no text] [no text]
[no text] [no text]

First-Party Nested LF Third-Party Nested LF

[no text] [no text]
[no text] [no text]

(b) Expected behavior with filter list rules to block all re-

quests to the resources.

Figure 1: Structure of the test website for blocking requests and the expected behavior for RQ1.Cells highlighted in yellow indicate

successful script requests from firstparty.com, and cells highlighted in red indicate successful script requests from thirdparty.com.

First-Party Body Third-Party iframe

Text to be
replaced

Text to be
replaced

Text to be
replaced

Text to be
replaced

First-Party LF Third-Party LF

Text to be
replaced

Text to be
replaced

Text to be
replaced

Text to be
replaced

First-Party
Nested LF

Third-Party
Nested LF

Text to be
replaced

Text to be
replaced

Text to be
replaced

Text to be
replaced

(a) Timestamp 0: Structure of the test web-

site without filter list rules when no AJAX re-

quests have been executed.

First-Party Body Third-Party iframe

firstparty.com

AJAX executed
firstparty.com

AJAX executed

thirdparty.com

AJAX executed
thirdparty.com

AJAX executed

First-Party LF Third-Party LF

firstparty.com

AJAX executed
firstparty.com

AJAX executed

thirdparty.com

AJAX executed
thirdparty.com

AJAX executed

First-Party
Nested LF

Third-Party
Nested LF

firstparty.com

AJAX executed
firstparty.com

AJAX executed

thirdparty.com

AJAX executed
thirdparty.com

AJAX executed

(b) Timestamp 1: Structure of the test web-

site without filter list rules when all AJAX re-

quests have been executed.

First-Party Body Third-Party iframe

firstparty.com

AJAX executed
firstparty.com

AJAX executed

[noop text] [noop text]

First-Party LF Third-Party LF

firstparty.com

AJAX executed
firstparty.com

AJAX executed

[noop text] [noop text]

First-Party
Nested LF

Third-Party
Nested LF

firstparty.com

AJAX executed
firstparty.com

AJAX executed

[noop text] [noop text]

(c) Timestamp 1a: Structure of the test web-

site with filter list rules redirecting AJAX re-

quests for thirdparty.com.

Figure 2: Structure of the test website for resource replacement before and after AJAX request execution ((a) and (b)), and the

expected behavior of our test for RQ2 (c). Cells highlighted in yellow indicate successful AJAX requests from firstparty.com, and

cells highlighted in red indicate successful AJAX requests from thirdparty.com.

make our code for these test pages publicly available upon publi-

cation. Our tests are not meant to be comprehensive for all func-

tionality provided by content blockers, nor comprehensive of all

possible code paths that implement each capability. However, even

Local Frames: Exploiting Inherited Origins to Bypass Content Blockers CCS ’25, October 13–17, 2025, Tapei, Taiwan.

1 <body>

2 <!-- Main frame for firstparty .com -->

3 <iframe src="about:blank">

4 <!-- Local frame for firstparty .com -->

5 <iframe src="about:blank">

6 <!-- Nested local frame for firstparty .com -->

7 </iframe >

8 </iframe >

9

10 <iframe src="https :// thirdparty .com">

11 <!-- Main frame for thirdparty .com -->

12 <iframe src="about:blank">

13 <!-- Local frame for thirdparty .com -->

14 <iframe src ="about:blank">

15 <!-- Nested local frame for thirdparty .com -->

16 </iframe >

17 </iframe >

18 </iframe >

19 </body>

Listing 2: Structure of a website firstparty.com with a first-

party local frame, a nested first-party local frame, a third-

party local frame, and a nested third-party local frame.

our limited set of tests reveal mishandling of local frames in every

tool we study.

4.1.1 Request Blocking. For this test, we create a test website

firstparty.com following the structure in Listing 2, where all six

(local and non-local) frames request two JavaScript files: one from

firstparty.com and one from thirdparty.com. Both scripts cre-

ate a text element inside the frames they are requested in; the

script from firstparty.com adds the text “firstparty.comscript ex-

ecuted”while the script from thirdparty.com adds the text “third-

party.com script executed”. A representation of the resulting page

(without any filter list rules applied) is shown in Figure 1a.

Concretely, we testRQ1: If a resource is supposed to be blocked,

can it be loaded inside a local frame? If a content blocking tool

blocks both scripts from being requested by any domain, then nei-

ther script should get executed in any frame, and thus no text

should be added to the website; this expected behavior is shown

in Figure 1b. We consider more nuanced variants (i.e., if the script

executes in only first- or third-party contexts) in Appendix C, but

our tests reveal that tools either handle all cases correctly or none.

4.1.2 Resource Replacement. There are many resources that pop-

ular content blockers can redirect; we focus our testing on AJAX

requests as a representative example. (We suspect the content-

blocker code paths that compute request origins are likely the same

no matter which type of resource is redirected.) AJAX requests

are asynchronous XMLHTTPRequests made to another webserver.

On our webpage, we include two h1 (header) elements in every

frame. Every frame also includes JavaScript code that replaces the

first h1 element with the contents of a text file retrieved from

firstparty.com (which reads “firstparty.com AJAX executed”),

and replaces the second h1 element with the contents of a text file

from thirdparty.com (“thirdparty.com AJAX executed”).

We show a representation of our test website without any AJAX

requests made in Figure 2a, and with all AJAX requests completed

in Figure 2b. In our test, we consider RQ2: If we define a filter list

rule to redirect one of the text files fetched in the AJAX request to

an empty file, does the original AJAX request still occur? In Fig-

ure 2c, we show an example of the expected behavior for redirect-

ing requests to the text file hosted on thirdparty.com. We also

test redirecting requests for firstparty.com (not shown).

4.1.3 Scriptlet Injection. To test if scriptlet injection can be evaded

by local frames, we create two filter list rules, each employing a dis-

tinct “set-constant” scriptlet. The “set-constant” scriptlets define

a new property of the window object for a given domain. Both of

the scriplets set values for the window.scriptletvalue object, but

to different constants: 1 for first-party and 42 for third-party web-

sites. By using different values, we can check if a third-party local

frame is confused for a first-party frame or vice versa. Concretely,

we evaluate RQ3: For each local frame, is the correct scriptlet in-

jected? In our test website, each frame creates a text element on

the page reporting the value of window.scriptletvalue.

4.1.4 Cosmetic Filters. Our test for comsetic filtering checks if el-

ements can be selected and hidden properly. In our test website

we create an h1 element with the class cosmetic-filter in every

frame, as shown in Figure 3a. We then test RQ4: If we define a

rule to hide h1 elements with the cosmetic-filter class, are they

hidden? Figure 3b shows the expected behavior for hiding these

elements on thirdparty.com; we also test the first-party website.

4.2 Tools Studied

Users seeking to protect their privacy typically install browser

extensions that can intercept requests to and from trackers, or

use browsers with strong privacy protections. We test popular

browsers and browser extensions from six different companies. We

focus on tools that employ filter lists because their behavior is easy

to manipulate—i.e., by modifying the contents of the filter list—but

we expect the unintuitive nature of local frames is equally likely to

confound developers of any tool that needs to determine the party

responsible for the content and behavior of a frame, regardless of

the tool’s blocking strategy.

4.2.1 Extensions. For browser extensions, we consider the most

popular Chrome and Firefox extensions. Firefox recommends cer-

tain add-ons in the “Privacy & Security” category [42]. We select

the top three (by download count) that rely on URL-based filter

list rules: uBlock Origin, AdGuard, and DuckDuckGo. We do not

test the two other tools in the top five; we exclude Ghostery be-

cause it blocks at the granularity of URL parameters and Privacy-

Badger because it uses heuristics to determine what to block in-

stead of a fixed set of filter list rules. The same three extensions

appear in the top five in the “Privacy and Security” category of

the Chrome Web Store [59] using the default sorting method of

“Most relevant”. The other two tools in the top five are OnlineSe-

curity, a malware-defense system and Authenticator, a multifactor-

authentication app. We also test AdBlockPlus, which, while not

recommended by Firefox, has over 3 million users—second only to

uBlock Origin. (The Chrome Web Store categorized AdBlock Plus

as a “Workflow & Planning” extension; it does not appear in “Pri-

vacy and Security”.) We test these four extensions on both Firefox

and Chome, as well as their iOS, Android, and Desktop apps where

available.

CCS ’25, October 13–17, 2025, Tapei, Taiwan. Alisha Ukani, Hamed Haddadi, Alex C. Snoeren, and Pete Snyder

First-Party Body Third-Party iframe

Visible text Visible text

First-Party LF Third-Party LF

Visible text Visible text

First-Party Nested LF Third-Party Nested LF

Visible text Visible text

(a) No filter list rules applied.

First-Party Body Third-Party iframe

Visible text [Hidden text]

First-Party LF Third-Party LF

Visible text [Hidden text]

First-Party Nested LF Third-Party Nested LF

Visible text [Hidden text]

(b) Expected behavior for hiding elements on thirdparty.com.

Figure 3: Representation of our test website for cosmetic filtering and the expected behavior for RQ4.

We also checked the list of most popular extensions in the Fire-

fox Public Data Report, which reports metrics from Firefox desk-

top users each week [43]. As of December 30, 2024, this report had

three of the content blockers we study in the top-10 most popular

Add-ons, as well as one content blockerwe do not study. The report

lists uBlock Origin as the most popular extension, with a usage of

8.49%. The next most popular content blocker (and the 4th-most

popular Add-on) was AdBlocker Ultimate, which primarily uses

filter lists based on EasyList/Easyprivacy and AdGuard. The next

most popular content blockers (ranked 7th and 8th respectively)

are AdBlockPlus and DuckDuckGo. (PrivacyBadger is ranked 9th

overall, but as noted, uses heuristics instead of a filter list.)

We run browser extensions on Firefox version 129.0.1 or

Chromium version 126.0.6478.182. We test Android apps on an

emulated Pixel 8 Pro phone running API 35, and iOS apps on an

iPhone 15 Pro running iOS version 17.5.1.

uBlockOrigin is a widely used browser extension, with over 35

million downloads from the ChromeWeb Store [60]. uBlockOrigin

supports all four capabilities and offers both a Firefox and Chrome

extension (we test version 1.59.0 of both).

Despite uBlock Origin’s popularity, its Chrome extension is

built with the Chrome Manifest V2 (MV2) framework, which

Chrome is planning to deprecate [39]; the details of MV2 or its

successor, Manifest V3 (MV3), are not important for understand-

ing this work, so we omit them. uBlock Origin will no longer

work once MV2 is deprecated. However, the maintainers now

offer the uBlock Origin Lite extension, which is built with the

new MV3 framework; we test version 2024.8.12.902. As of January

2025, uBlock Origin Lite has 1 million users on the Chrome Web

Store [61].

AdGuard is another popular browser extension with over 14

million downloads from the Chrome Web Store as of January

2025 [58]. We test the AdGuard Chrome extension (version 4.3.53)

and Firefox extension (version 4.3.64), both of which offer all four

capabilities. AdGuard also offers an iOS app that changes the user’s

browsing experience in the Safari mobile browser. At the time of

writing, AdGuard claims to offer all capabilities except resource

replacement for their iOS app [3]. However, we are unable to get

scriptlet injection rules working in the iOS app, so we only test

request blocking and cosmetic filters.

DuckDuckGo is primarily known as a privacy-protecting

search engine, but also offers browser extensions that block re-

quests to trackers, as well as a standalone browser. All of the exten-

sions and browser versions offer two of the capabilities outlined in

Section 2.2: request blocking and resource replacement. In partic-

ular, the latter is implemented through “surrogate” rules, which

1 <body>

2 <iframe src ="about:blank">

3 <!-- Local frame for firstparty .com . Origin should be

firstparty .com -->

4 <script src ="http:// firstparty .com /should_be_allowed .

js"></script >

5 <script src ="http:// thirdparty .com /should_be_blocked .

js"></script >

6 </iframe >

7

8 <iframe src ="https:// intermediate .com ">

9 <iframe src ="about:blank">

10 <!-- Local frame for intermediate .com . Origin

should be intermediate .com -->

11 <script src="http:// firstparty .com/

should_be_allowed .js"></script >

12 <script src="http:// thirdparty .com/

should_be_blocked .js"></script >

13 </iframe >

14 </iframe >

15 </body>

Listing 3: Structure of a website firstparty.com that

embeds intermediate.com instead of directly embedding

thirdparty.com. For clarity, we do not show nested local

frames or requests made outside of local frames.

redirect specific JavaScript files into benign or no-op versions.

We test the Chrome and Firefox extensions (versions 2024.7.10

and 2024.7.24 respectively) as well as the MacOS browser (version

1.101.0), iOS browser (version 7.134.0.0), and Android browser (ver-

sion 5.210.2).

One challenge we encounter is that we cannot properly test RQ1

using the setup in Listing 2. DuckDuckGo does not allow users to

define custom filter list rules, so (as we explain later in Section 4.3)

we spoof the DNS response for thirdparty.com to match a com-

mon tracker. However, DuckDuckGo then blocks the entire third-

party iframe for matching a known tracker, and so we cannot test

the behavior of requests made inside the third-party iframe. As a

workaround, we create another website, intermediate.com, that

makes requests to thirdparty.com and change the source of the

third-party iframe on firstparty.com from thirdparty.com to

intermediate.com; a simplified version of the resulting page is

shown in Listing 3. This approach enables us to make third-party

requests to a resource that should be blocked or redirected.

AdBlock Plus is one of the most popular privacy-focused

browser extensions, with over 41 million downloads from the

ChromeWeb Store as of January 2025 [57]. AdBlock Plus supports

all four of the capabilities outlined in Section 2.2. We test the Ad-

Block Plus Chrome extension (version 4.10.1), Firefox extension

(version 4.5), and iOS app (version 2.2.16).

Local Frames: Exploiting Inherited Origins to Bypass Content Blockers CCS ’25, October 13–17, 2025, Tapei, Taiwan.

Tool Platform
Request Blocking

(RQ1)

Resource Replacement

(RQ2)

Scriptlet Injection

(RQ3)

Cosmetic Filters

(RQ4)

Safari Content Blocker MacOS N/A N/A

AdBlock Plus

Chrome Extension

Firefox Extension

iOS N/A N/A

uBlock Origin

Chrome Extension

Firefox Extension

Chrome MV3

(uBlock Origin Lite)
∗

AdGuard

Chrome Extension

Firefox Extension

iOS N/A N/A

Brave Browser

Desktop

iOS

Android

DuckDuckGo

Chrome Extension N/A N/A

Firefox Extension N/A N/A

Desktop † N/A N/A

iOS N/A N/A

Android N/A N/A

Table 5: Results showing which tools can be evaded for each capability. indicates the tool is vulnerable for that category,

indicates the tool is not vulnerable for that category, and indicates that the capability is inconsistently applied. ∗uBlock Origin Lite

was vulnerable before commit 520f81f; the issue was patched during the disclosure process for other uBlock Origin issues. †We find Duck-

DuckGo’s request blocking cannot be evaded, but websites can evade the privacy harms of their website being reported to users.

4.2.2 Browsers and APIs. Among privacy-focused browsers, we

test the Brave Browser as it has 75.9 million monthly active users

as of November 2024 [55], and the Safari Content Blocker API be-

cause it powers the iOS filtering system for at least two of the tools

we study (AdGuard and Brave), and its API may be relied upon by

the billions of people who use Safari [26].

Safari Content Blocker. Apple allows developers to create

content-blocking extensions that modify Safari on macOS and

iOS [8]. Safari Content Blockers support only two of the capabil-

ities in Section 2.2: request blocking (with third-party modifiers)

and cosmetic filtering. To test this native content blocking func-

tionality, we implement our own content blocking extension and

test it on Safari (version 17.5) on MacOS 14.5.

A Safari Content Blocker extension can only support 150,000

rules [48]; while this number may seem large, the combined Ea-

syList and EasyPrivacy lists (as of August 17, 2024) have 123,931

rules [9, 10], and so any iOS appswishing to include their own rules

in addition to these standard lists are running out of space. This

limitation impacts any iOS apps that implement request blocking

and cosmetic filtering through the Safari content blocking system,

including the AdGuard and Brave iOS apps (see Section 6).

Brave Browser. Brave is a browser with many privacy-

enhancing features and supports all of the four capabilities pre-

viously outlined in Section 2.2. We test the Brave MacOS app (ver-

sion 1.68.141), iOS app (version 1.68), and Android app (version

1.68.137).

Through source code analysis, we discover that there are two

separate code paths for request blocking. Based on this discovery,

we create two versions of our request blocking test setup. The

first version is exactly as described in Section 4.1.1. The second

version makes AJAX requests instead of directly including the re-

sources. While similar to our resource replacement test, it seeks

to test whether filter list rules can block these requests, not (just)

redirect them. In this modified version of the test we rename the

requested resource to match one of Brave’s existing filter list rules:

we request thirdparty.com/ads/index.js to match the existing

rule for /ads/index.

4.3 Invoking Tests

Our tests, as described in Section 4.1, rely on custom filter list rules

to be added to content blockers. However, not all content blockers

allow users to add these custom rules. Concretely, we cannot add

customfilter list rules to the AdBlock Plus iOS app (which loads Ea-

syList rules [1]) and all DuckDuckGo browsers and browser exten-

sions (which load a custom, publicly available set of blocklists [18–

21]). For these tools, we instead modify our tests tomatch the tools’

existing filter list rules. In order to match existing rules, we spoof

DNS responses to map the hosts in those rules to our test websites.

For browsers and browser extensions (i.e. DuckDuckGo), we mod-

ify our local /etc/hosts file. For iOS apps (i.e. AdBlock Plus and

DuckDuckGo), we set up an HTTP proxy with the Charles web

proxy tool [14].

Specifically, for request blocking tests, we map our third-party

server to doubleclick.net, since this domain is blocked by all

of the aforementioned filter lists. To test resource redirection for

CCS ’25, October 13–17, 2025, Tapei, Taiwan. Alisha Ukani, Hamed Haddadi, Alex C. Snoeren, and Pete Snyder

DuckDuckGo, we replace ourAJAX requests with standardWeb re-

quests to a particular script (npttech.com/advertising.js) that

DuckDuckGo redirects to an empty script on all domains. Finally,

to test cosmetic filters in the AdBlock Plus iOS tool, we change the

HTML class of the h1 elements from cosmetic-filter to ADBAR.

In total, we create seven unique tests; one for each research ques-

tion, as well as two variants of RQ1 (described in Appendix C) and

the tool-specific tests for Brave’s alternative request-blocking code

path and DuckDuckGo.

4.4 Results

In this sectionwe discuss the results of our testing; Table 5 presents

a summary of the vulnerabilities we discover. In some instances

our initial findings led us to analyze the tools’ source code.

4.4.1 Safari Content Blocker. Wefind that Safari Content Blockers

do not inject cosmetic filters into any local frames, meaning Safari

users may see ads that should be blocked.We emphasize that this is

not just an issue for Safari users, but also for users of iOS apps that

rely on Safari’s content blocking functionality, including Brave iOS

and AdGuard iOS users.

In addition, we find a larger discrepancy (though not a vulner-

ability) between how request blocking works on Safari and how

request blocking is implemented by all the other content blocking

tools we study. In particular, the discrepancy is in computing if a

request is made in a third-party context. Most tools have the be-

havior shown in Figure 4a; in particular, these tools allow requests

to thirdparty.com from the third-party iFrame. These tools con-

sider these requests to be executing in a first-party context, be-

cause the origin of the request is the same as the origin of the

document in which the request is made. Safari, on the other hand,

has the behavior shown in Figure 4b. Safari blocks the requests to

thirdparty.com from the third-party iFrame, meaning they com-

pare all requests to the origin of the base webpage.

This mismatch in computing “partyness” does not result in a

vulnerability in this instance, but can lead to unexpected behav-

ior. In particular, if the iOS apps that use Safari’s content blocking

functionality use the same filter lists used on other platforms, they

will see different behavior. We disclosed this finding to Apple.

4.4.2 AdBlock Plus. We find that the Chrome and Firefox exten-

sions of AdBlock Plus are not deterministically vulnerable to any

of our tests. However, we discover that there is a race condition

in the Chrome extension where local frames can load before the

extension has an opportunity to inject scriptlets into them. (For-

tunately, when a scriptlet wins the race and is injected, we find

that the correct scriptlet is used and the local frames display the

expected behavior.)

We also find that the AdBlock Plus iOS app does not inject cos-

metic filters into local frames, which allows websites to show ads

and unwanted content despite AdBlock Plus intending to block

this content. It is possible that this is because AdBlock Plus imple-

ments cosmetic filtering through the Safari content blocking tool,

but we are unable to verify this as the source code to AdBlock Plus

is not publicly accessible.

4.4.3 uBlock Origin. Like AdBlock Plus, the uBlock Origin

Chrome extension inconsistently applies scriptlets. When

scriptlets are injected, we find that local frames display the

expected behavior.

uBlock Origin Lite, on the other hand, does not inject any cos-

metic filters into local frames. This allows websites to display ads

that should otherwise be hidden, simply by putting them into a lo-

cal frame. The maintainers do not plan to fix this issue for now, as

they believe that patching the issue could incur high performance

overhead [29]. However, during our disclosure process, the main-

tainers of uBlock Origin Lite discovered that scriptlets were also

not being injected into local frames and patched the issue.

4.4.4 AdGuard. Across all tested platforms, we find that AdGuard

incorrectly computes the origin of third-party local frames for

scriptlet injection and cosmetic filters. Specifically, AdGuard deter-

mines the origin of these frames to be the origin of the first-party

website. In our tests, we find that scriptlet and cosmetic rules in-

tended for the first-party website are applied to third-party local

frames. Conversely, the scriptlet and cosmetic rules intended for

the third-party website are not applied to third-party local frames.

Because of this issue, third-party content can easily evade script-

let injection and cosmetic filtering. As described in Section 2.2,

scriptlets and cosmetic filters are used to block tracking scripts,

disguise the use of content blocking tools, and hide ads. AdGuard

users are subject to all of these consequences for third-party con-

tent.

Another consequence of mis-attributing the origin of local

frames is that AdGuard can introduce site breakage by applying

the rules for the first-party website to the third-party local frames.

Scriptlets thatmodify the JavaScript API may have unintended con-

sequences. For example, AdGuard’s scriptlets can prevent websites

frommaking network requests via the fetch API, or prevent event

listeners from being added to elements, both of which are stan-

dard tools forWeb development [2]. Disabling these features could

break the behavior of third-party content.

4.4.5 Brave. We find some of Brave’s tools to be vulnerable to eva-

sion of all four capabilities outlined in Section 2.2.

Across all tested platforms, scriptlets and cosmetic filters are

not injected into local frames. The Brave iOS app can be evaded

in another way, as resource replacement rules are not injected in-

side local frames. We find that AJAX requests made inside local

frames are not redirected to empty text responses. While we only

test AJAX requests, resource replacement is often used to redirect

privacy-invasive scripts to benign versions. Users of Brave’s iOS

app can be subject to these invasive tracking scripts if websites

simply make these requests from inside local frames.

More critically, we find that Brave’s iOS app is vulnerable to eva-

sion in request blocking. As described above, Brave implements

two different code paths for request blocking, and we design a ver-

sion of the request blocking test that makes AJAX requests and

matches Brave’s default filter list rules (i.e. not added by the user).

This version of our test shows that local frames are able to make

requests that should otherwise be blocked. The reason that Brave

has two different code paths is because of the aforementioned lim-

itations on the number of rules that can be loaded in a Safari Con-

tent Blocking extension. Brave compiles a subset of EasyList and

EasyPrivacy, called the “slim list”, that are loaded into the Safari

Content Blocking extension [56]. However, Brave still attempts to

Local Frames: Exploiting Inherited Origins to Bypass Content Blockers CCS ’25, October 13–17, 2025, Tapei, Taiwan.

First-Party Body Third-Party iframe

firstparty.com script executed [no text]
[no text] thirdparty.com script executed

First-Party LF Third-Party LF

firstparty.com script executed [no text]
[no text] thirdparty.com script executed

First-Party Nested LF Third-Party Nested LF

firstparty.com script

executed
[no text]

[no text]
thirdparty.com script

executed

(a) Expected behavior for blocking third-party requests.

First-Party Body Third-Party iframe

firstparty.com script executed firstparty.com script executed
[no text] [no text]

First-Party LF Third-Party LF

firstparty.com script executed firstparty.com script executed
[no text] [no text]

First-Party Nested LF Third-Party Nested LF

firstparty.com script

executed

firstparty.com script

executed
[no text] [no text]

(b) Third-party request blocking using Safari Content Blocker.

Figure 4: Structure of our test website for blocking requests. We find Safari Content Blocker’s interpretation of third-party

requests differs from all other non-vulnerable tools, which match the expected behavior.

block a larger set of requests than this subset. They cannot block

any more standard Web requests because iOS restricts access to

these requests [8]. But apps still have access to asynchronous re-

quests made through JavaScript APIs, such as AJAX requests and

the fetch API. Brave attempts to block these asynchronous re-

quests, but incorrectly computes the origin of the request origina-

tor.1 This mistake allows local frames to make requests to trackers

(that are not in the aforementioned slim list).

4.4.6 DuckDuckGo. We find that DuckDuckGo correctly blocks

requests and redirects resources due to its block-by-default be-

havior; requests to trackers are blocked unless an exception is de-

fined in an allowlist. However, source code analysis reveals a mi-

nor bug that demonstrates how common it is for security/privacy

tools to mishandle local frames: The bug causes DuckDuckGo to

mis-report how many trackers have been blocked from a given

website. This error may mislead DuckDuckGo users attempting

to understand the privacy-harming behaviors of the websites they

visit. Specifically, we find that requests blocked inside nested local

frames are not properly accounted (see Appendix C).

5 ETHICS AND DISCLOSURE

We disclosed all 19 vulnerabilities found to the six affected parties

through their preferred channels, and the standard 90-day disclo-

sure period has passed. At the time ofwriting, our findings were ac-

knowledged by all organizations (AdBlock Plus, AdGuard, Apple,

Brave, DuckDuckGo and uBlock Origin). Brave, Apple, AdGuard,

and DuckDuckGo finished patching their systems based on our

findings.

For AdGuard, we determined that introducing a flag in the ex-

tension’s manifest file solved some—but not all—of their issues.

The match_origin_as_fallback flag sets the origin of a local

frame to the frame that created it [25]. Adding this flag to Ad-

Guard’s manifest addresses the scriptlet injection bypass, but Ad-

Guard is still vulnerable to the cosmetic filtering bypass because

they still attribute the local frame’s origin incorrectly. This also

highlights how content blockers may have multiple code paths for

handling inherited origins, which can further increase the com-

plexity of their codebases and make it harder to fix these errors.

1https://github.com/brave/brave-core/blob/094608dbd95704ae314acbb9e05080c566afa5ad/ios/brave-ios/Sources/Brave/Frontend/UserContent/UserScripts/Scripts_Dynamic/Scripts/Paged/RequestBlockingSc

For uBlock Origin, our disclosure process led the maintainers to

discover local-frame bypasseswith another product.We first found

that scriptlets are inconsistently injected into local frames for the

uBlockOrigin Chrome extension. Upon disclosing this to themain-

tainer of uBlock Origin, he then tested uBlock Origin Lite (which

we had not yet tested). The maintainer found that scriptlets are

not injected in local frames and patched this immediately.2 The

patch for scriptlets involved checking if the current document’s

(non-inherited) origin is null, and if so, finding the first non-null

origin of a parent frame. The maintainer subsequently helped us

set up an environment to subject uBlock Origin Lite to our suite

of tests. We confirmed that scriptlets could be evaded before the

patch, and that the issue was fixed after the patch. We also found

that cosmetic filters are not injected into local frames; we then dis-

closed this to the maintainer, who does not plan to fix this until

receiving user complaints, as he believes the patch will incur high

performance overhead [29].

6 DISCUSSION

We present the implications of our work for existing research and

other tools that may present similar vulnerabilities.

6.1 Web Complexity

As theWeb has evolved to provide more capabilities and rich func-

tionality, its subtleties have also increased. Local frames and their

inherited origins are just one example of the unexpected behav-

iors that Web developers must anticipate. It is difficult for any sin-

gle person (or organization) to correctly parse every nuance of the

standards governing the Web.

Furthermore, Web toolkits that are supposed to aid developers

in reducing complexity can actually increase code complexity—and

introduce avenues for evasion—as developers try to work around

the API to achieve their desired functionality. Concretely, Safari

Content Blocking is limited to 150,000 rules per extension [48]. De-

velopers at both AdGuard and Brave found ways to apply larger

sets of rules, but their approaches each have downsides. AdGuard

instantiates several Safari Content Blocker extensions (each of

which has an separate 150,000-rule limit), leading to a tedious setup

process where users must enable each extension individually [4].

2https://github.com/gorhill/uBlock/commit/520f81f

https://github.com/brave/brave-core/blob/094608dbd95704ae314acbb9e05080c566afa5ad/ios/brave-ios/Sources/Brave/Frontend/UserContent/UserScripts/Scripts_Dynamic/Scripts/Paged/RequestBlockingScript.js#L25
https://github.com/gorhill/uBlock/commit/520f81f

CCS ’25, October 13–17, 2025, Tapei, Taiwan. Alisha Ukani, Hamed Haddadi, Alex C. Snoeren, and Pete Snyder

Browser/Tool Issue Report Date Fix Date Report URL

Brave Scriptlets not injected 8/24/24 12/3/24 [13]

Brave Cosmetic filters not applied 8/24/24 12/3/24 [13]

Brave Incorrect request blocking on iOS 8/24/24 12/3/24 [13]

DuckDuckGo Accounting of blocked requests 9/20/24 10/16/24 [22]

AdGuard Origin miscomputation for scriptlets 8/17/24 10/4/24 [5]

AdGuard Origin miscomputation for cosmetic filters 8/17/24 10/4/24 [5]

Apple Cosmetic filters not applied 8/17/24 3/31/25 N/A

Apple Third-party definition does not match others 8/17/24 N/A N/A

AdBlock Plus Scriptlet and cosmetic filters not applied 8/17/24 N/A N/A

uBlock Origin Lite Cosmetic filters not applied 8/20/24 N/A N/A

uBlock Origin Scriptlets applied inconsistently 8/17/24 N/A N/A

Table 6: Summary of our responsible disclosure.

More critically, Brave implements an alternative code path in or-

der to block additional requests, and this code path is vulnerable to

evasion by local frames. Hence, while Safari Content Blocking pro-

vides a handy primitive, its inability to scale to the requirements

of modern content blockers creates some of the same issues it tries

to address.

6.2 Impact on Research

Many areas of Web research (both general measurement studies

and those focused on security and privacy topics) often need to

accurately distinguish between first-and-third parties on the Web.

For example, any research that involves filter lists, either directly

(e.g., the maintenance and exception policies of filter lists [54]),

or indirectly (e.g., as a set of ground-truth labels for broken web-

sites [38, 46, 52]) requires correctly replicating how browsers deter-

mine the “party-ness” of local frames. Even more broadly, correctly

determining “party-ness” is important for topics like: emulating

the security and privacy policies of Web browsers; correctly mea-

suring and attributing behaviors on Web pages (e.g., for browser

fingerprinting measurement [23, 33]); and understanding what par-

ties are reading and writing cookies (e.g., [37]).

To understand the implications for our findings on existing re-

search, we sampled a small number of Web papers from top se-

curity and privacy conferences focusing on filter list rules or ad

measurement [6, 16, 38, 51, 64–66]. Of the seven papers, only

five [6, 16, 38, 64, 66] provided code or pointers to the tools they

used. Of these five, we did not find any that correctly computed

“party-ness” or correctly handled local frames, either because 1) the

provided code determines a frame’s party (or security origin) incor-

rectly, or 2) the provided code logs information for future analysis,

and the logging code does not capture the needed information to

correctly determine “party-ness” (i.e., the frame’s security origin).

As one example, we find that the Adscraper tool [67] (and its use in

one recent paper [64]) incorrectly checks for “party-ness” against

the top-level document, instead of the containing frame.

We do not claim that our analysis of a small sample of papers is

comprehensive or representative, and conducting a comprehensive

study would both be far beyond the scope of this work and require

resources not available to us (e.g., source code, data sets, measure-

ment raw data). Nevertheless, our sampling of existing research

suggests that tools used to conduct many prior Web security and

privacy research studiesmay contain non-trivial bugs leading to in-

correct results, stemming from understandable-though-important

misunderstandings in subtle aspects of browser security and pri-

vacy policies.

6.3 Other Possible Vulnerabilities

Beyond content blockers, there are many other classes of privacy-

focusedWeb tools that could similarly mishandle local frames. We

discuss two particularly sensitive ones below.

6.3.1 Password Managers. We investigate the possibility that lo-

cal frames could be exploited to exfiltrate user credentials by trick-

ing password autofill tools into submitting credentials for a differ-

ent website into a login form in a local frame. In particular, we con-

sider a third-party local frame containing a login form, and check if

autofill tools fill in the user’s credentials for the first-party website.

Fortunately, in our tests of five browsers’ native autofill fea-

tures and two Chrome extensions, none are vulnerable. Several

browsers (Chrome, Brave, Firefox, and Safari) and both Chrome

extensions (1Password and LastPass) do not support autofilling cre-

dentials into any iframes—obviating concerns about local frames

or any other type of iframe. The DuckDuckGo browser, on the

other hand, supports autofilling credentials in iframes and cor-

rectly determines the origin of the local frame. (We note that 1Pass-

word’s debugger correctly identifies the origin of the local frame

as a third-party origin, suggesting that even if it were to autofill

in iframes, it would not be vulnerable to evasion. We are unable to

access similar debugging information for the other password man-

agers.)

6.3.2 Anti-fingerprinting tools. We also test whether browser ex-

tensions that spoof canvas fingerprints can be evaded by local

frames. Our tests of three extensions considered in a recent study

by Nguyen and Vadrevu [45] find that, while all successfully

spoof fingerprints in local frames, one extension fails to achieve

the stronger goal of creating consistent per-domain fingerprints.

We test Canvas Fingerprint Defender (Chrome extension version

0.2.2), CanvasBlocker (Firefox extension version 1.11), and Can-

vas Blocker - Fingerprint Protect (Chrome and Firefox extensions

Local Frames: Exploiting Inherited Origins to Bypass Content Blockers CCS ’25, October 13–17, 2025, Tapei, Taiwan.

version 0.2.1). The latter extension fails to create consistent per-

domain fingerprints on Firefox because their method for copying

fingerprints from parent frames fails to account for Firefox’s ex-

tension sandboxing model; we reported this bug to the developer

along with a patch. (The Chrome extension successfully creates

consistent fingerprints.)

6.4 Potential Breakage

When acknowledging our findings, every content blocker organi-

zation indicated that these were unintentional vulnerabilities, and

not choices meant to avoid breaking websites. But there is always

the potential that modifying website behavior—either within or

outside of local frames—can cause undesirable user-visible impacts,

referred to as “breakage”. In general, when privacy tools causeweb-

site breakage, authors add custom-tailored exceptions to their filter

lists to restore website functionality—which tools must properly

handle within local frames as well. Hence, we consider whether

proper local frame handling may induce additional breakage.

We sample 50 of the 3,142 websites that make requests inside

of local frames that should be blocked (i.e., the set of websites

that may suffer additional breakage when implementing privacy

protections within local frames). We employ a methodology to

identify breakage proposed by prior work [6, 33, 53], asking two

non-authors to interact with two Chrome browsers, one with the

uBlock Origin Lite extension (which correctly implements request

blocking, resource replacement, and scriptlet injection in local

frames) and one without. The testers interact with each of the 50

websites in both browsers looking for obvious visual differences

and the following types of breakage: non-functional search bar,

menu, page navigation, comment sections, reviews, social media

widgets, or icons. (Suppressed ads are not considered to be break-

age.) Neither tester found any instances of breakage involving local

frames.

Each tester found exactly one website that exhibited breakage,

but the breakage was inconsistent, i.e., the website worked fine for

the other tester—and was not related to local frames. One tester ob-

served that huffpost.com failed to load videos embedded within

articles when uBlock Origin Lite is installed, while the other re-

viewer found that the login page of modbee.com occasionally (but

not always) caused the browser with uBlock Origin Lite installed

to crash. The video requests on huffpost.com aremade within the

top-level frame, so any breakage is not related to local frame han-

dling. Similarly, while we cannot replicate the modbee.com crash,

we confirm that the login page does not create any local frames.

7 CONCLUSION

Content blocking tools aim to improve users’ browsing experience

and protect user privacy by blocking trackers and hiding ads, but

we find they can be easily evaded. Our work shows that many

popular content blockers confuse the origin of local frames, and

therefore do not correctly apply their filter list rules to local frames.

We find 19 vulnerabilities in the Brave Browser, AdBlock Plus, Ad-

Guard, uBlockOrigin Lite, DuckDuckGo, and Safari Content Block-

ing (a primitive used by many privacy-enhancing iOS apps). We

also find that these vulnerabilities are being exploited by website

publishers to evade the content blockers (though we do not know

if this evasion is intentional). Local frames are prevalent on more

than half of popular websites, and that 14.3% of these popular web-

sites make requests to resources that should be blocked accord-

ing to popular filter lists. Based on our work, Brave, Safari, Duck-

DuckGo, and AdGuard have patched their systems.

ACKNOWLEDGMENTS

We thank Stefan Savage, Miro Haller, Ali Ukani, Paul Chung, and

Anirudh Canumalla, and our anonymous reviewers. This material

is based upon work supported by the National Science Founda-

tion Graduate Research Fellowship Program under Grant No. DGE-

2038238. Any opinions, findings, and conclusions or recommenda-

tions expressed in this material are those of the author(s) and do

not necessarily reflect the views of the National Science Founda-

tion.

REFERENCES
[1] AdBlock. Introduction to Filter Lists. https://helpcenter.getadblock.com/hc/en-us/articles/9738523403027-

Accessed 2024-09-03.
[2] Available Scriptlets. https://github.com/AdguardTeam/Scriptlets/blob/master/wiki/about-scriptlets.md

Accessed 2024-08-21.
[3] How to create your own ad filters. https://adguard.com/kb/general/ad-filtering/create-own-filters.

Accessed 2024-08-30.
[4] AdGuard. SafariWeb extension. https://adguard.com/kb/adguard-for-ios/web-extension/.

Setup instructions for the AdGuard iOS app. Accessed 2024-09-04.
[5] Commit 277790f. https://github.com/AdguardTeam/tsurlfilter/commit/277790f4786f017c0f4f552795c13627db
[6] Abdul Haddi Amjad, Danial Saleem, Muhammad Ali Gulzar, Zubair Shafiq, and

Fareed Zaffar. TrackerSift: Untangling Mixed Tracking and Functional Web Re-
sources. In Proceedings of the 21st ACM Internet Measurement Conference, 2021.

[7] Anton Lazarev, Brave Software. adblock-rs.
https://github.com/brave/adblock-rust. Rust library for parsing and applying
filter list rules. Accessed 2024-09-03.

[8] Apple. Creatinga content blocker. https://developer.apple.com/documentation/safariservices/creating-
Accessed 2024-08-20.

[9] EasyList Authors. EasyList. https://easylist.to/easylist/easylist.txt.
[10] EasyList Authors. EasyPrivacy. https://easylist.to/easylist/easyprivacy.txt.
[11] Muhammad Ahmad Bashir, Sajjad Arshad, Engin Kirda,William Robertson, and

Christo Wilson. How Tracking Companies Circumvented Ad Blockers Using
WebSockets. In Proceedings of the 18th ACM Internet Measurement Conference,
2018.

[12] Brave. pagegraph-crawl. https://github.com/brave/pagegraph-crawl.
[13] fix(privacy): Issues with content filtering in local frames on iOS.

https://github.com/brave/brave-core/pull/26622.
[14] Charles Web Debugging Proxy. https://www.charlesproxy.com/.
[15] Quan Chen, Peter Snyder, Ben Livshits, and Alexandros Kapravelos. Detecting

Filter List Evasion With Event-Loop-Turn Granularity JavaScript Signatures. In
Proceedings of the 42nd IEEE Symposium on Security and Privacy, 2021.

[16] Ha Dao and Kensuke Fukuda. Alternative to third-party cookies: Investigating
persistent PII leakage-basedweb tracking. In Proceedings of the 17th International
Conference on emerging Networking EXperiments and Technologies, 2021.

[17] Mike Diaz. What I Learned at Work this Week: Friendly IFrames and Debounce.
2020. Accessed 2024-12-27.

[18] DuckDuckGo. android-tds.json. https://github.com/duckduckgo/tracker-blocklists/blob/3ea4fbb7821f
DuckDuckGo blocklist for the Android platform. Accessed 2024-09-03.

[19] DuckDuckGo. extension-tds.json. https://github.com/duckduckgo/tracker-blocklists/blob/3ea4fbb7821f
DuckDuckGo blocklist for browser extensions. Accessed 2024-09-03.

[20] DuckDuckGo. ios-tds.json. https://github.com/duckduckgo/tracker-blocklists/blob/3ea4fbb7821f4bb0065722df
DuckDuckGo blocklist for the iOS platform. Accessed 2024-09-03.

[21] DuckDuckGo. macos-tds.json. https://github.com/duckduckgo/tracker-blocklists/blob/3ea4fbb7821f4bb0065722df
DuckDuckGo blocklist for the macOS platform. Accessed 2024-09-03.

[22] Change tab URL calculation for contentblockerrules.js and surrogates.js.
https://github.com/duckduckgo/BrowserServicesKit/pull/1021.

[23] Steven Englehardt and Arvind Narayanan. Online Tracking: A 1-million-site
Measurement and Analysis. In Proceedings of the 23rd ACM Conference on Com-
puter and Communications Security, 2016.

[24] FingerprintJS. https://github.com/fingerprintjs/fingerprintjs.
[25] Chrome for Developers. Content scripts.

https://developer.chrome.com/docs/extensions/develop/concepts/content-scripts.
Accessed 2024-08-30.

[26] Lauren Forristal. Report shows that Safari reaches one billion worldwide users,
still behind Google Chrome. TechCrunch, 2022. Accessed 2025-01-06.

https://helpcenter.getadblock.com/hc/en-us/articles/9738523403027-Introduction-to-Filter-Lists
https://github.com/AdguardTeam/Scriptlets/blob/master/wiki/about-scriptlets.md
https://adguard.com/kb/general/ad-filtering/create-own-filters
https://adguard.com/kb/adguard-for-ios/web-extension/
https://github.com/AdguardTeam/tsurlfilter/commit/277790f4786f017c0f4f552795c13627dbee1f66
https://github.com/brave/adblock-rust
https://developer.apple.com/documentation/safariservices/creating-a-content-blocker
https://easylist.to/easylist/easylist.txt
https://easylist.to/easylist/easyprivacy.txt
https://github.com/brave/pagegraph-crawl
https://github.com/brave/brave-core/pull/26622
https://www.charlesproxy.com/
https://github.com/duckduckgo/tracker-blocklists/blob/3ea4fbb7821f4bb0065722dfae4f4c9d63a1266d/web/v5/android-tds.json
https://github.com/duckduckgo/tracker-blocklists/blob/3ea4fbb7821f4bb0065722dfae4f4c9d63a1266d/web/v6/extension-tds.json
https://github.com/duckduckgo/tracker-blocklists/blob/3ea4fbb7821f4bb0065722dfae4f4c9d63a1266d/web/v5/ios-tds.json
https://github.com/duckduckgo/tracker-blocklists/blob/3ea4fbb7821f4bb0065722dfae4f4c9d63a1266d/web/v6/macos-tds.json
https://github.com/duckduckgo/BrowserServicesKit/pull/1021
https://github.com/fingerprintjs/fingerprintjs
https://developer.chrome.com/docs/extensions/develop/concepts/content-scripts

CCS ’25, October 13–17, 2025, Tapei, Taiwan. Alisha Ukani, Hamed Haddadi, Alex C. Snoeren, and Pete Snyder

[27] Google. Viewability best practices. https://support.google.com/admanager/answer/6199883?hl=en.
Accessed 2024-12-27.

[28] Google. What is richmedia? https://support.google.com/richmedia/answer/2417545?hl=en.
Accessed 2024-12-27.

[29] Raymond Hill. Private communication.
[30] Interactive Advertising Bureau (IAB). Rich Media Measurement Guidelines.

https://www.iab.com/wp-content/uploads/2015/06/Rich_Media_Measurement_Guidelines_v2.pdf ,
2007. Accessed 2024-08-29.

[31] Interactive Advertising Bureau (IAB). Best Practices
for Rich Media Ads in Asynchronous Ad Environments.
https://www.iab.com/wp-content/uploads/2015/09/rich_media_ajax_best_practices.pdf,
oct 2008. Accessed 2024-08-29.

[32] Disconnect Inc. Entity List. https://github.com/mozilla-services/shavar-prod-lists/blob/02f6a2835a851fd92d3f996409cfd18c2d4b0a2b/disconnect-entitylist.json,
2024. Accessed 2025-05-03; last updated 2025-04-25.

[33] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. Fingerprinting the Finger-
printers: Learning to Detect Browser Fingerprinting Behaviors. In Proceedings
of the 42nd IEEE Symposium on Security and Privacy, 2021.

[34] Umar Iqbal, Zubair Shafiq, and Zhiyun Qian. The Ad Wars: Retrospective Mea-
surement and Analysis of Anti-Adblock Filter Lists. In Proceedings of the 17th
ACM Internet Measurement Conference, 2017.

[35] Umar Iqbal, Peter Snyder, Shitong Zhu, Benjamin Livshits, Zhiyun Qian, and
Zubair Shafiq. AdGraph: A Graph-Based Approach to Ad and Tracker Blocking.
In Proceedings of the 41st IEEE Symposium on Security and Privacy, 2020.

[36] Jordan Jueckstock, Shaown Sarker, Peter Snyder, Aidan Beggs, Panagiotis Pa-
padopoulos, Matteo Varvello, Benjamin Livshits, and Alexandros Kapravelos.
Towards Realistic and Reproducible Web Crawl Measurements. In Proceedings
of the 30th ACM Web Conference, 2021.

[37] Jordan Jueckstock, Peter Snyder, Shaown Sarker, Alexandros Kapravelos, and
Benjamin Livshits. Measuring the Privacy vs. Compatibility Trade-off in Pre-
venting Third-Party Stateful Tracking. In Proceedings of the 31st ACMWeb Con-
ference, 2022.

[38] Hieu Le, Salma Elmalaki, Athina Markopoulou, and Zubair Shafiq. AutoFR: Auto-
mated Filter Rule Generation for Adblocking. In Proceedings of the 32nd USENIX
Security Symposium, 2023.

[39] David Li. Manifest V2 phase-out begins. Chromium Blog, May 2024. Accessed
2024-08-20.

[40] Same-origin policy. https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy.
Accessed 2024-08-25.

[41] S Moonesamy. The "about" URI Scheme. RFC 6694, August 2012.
[42] Mozilla. Extensions in Privacy & Security.

https://addons.mozilla.org/en-US/firefox/extensions/category/privacy-security/?page=1&sort=recommended%2Cusers.
Accessed 2025-01-08.

[43] Mozilla. Firefox PublicData Report. https://data.firefox.com/dashboard/usage-behavior.
Accessed 2025-01-08.

[44] Muhammad Haris Mughees and Zhiyun Qian. Detecting Anti Ad-blockers in
the Wild. In Proceedings on Privacy Enhancing Technologies, volume 3, 2017.

[45] Hoang Dai Nguyen and Phani Vadrevu. Breaking the Shield: Analyzing and
Attacking Canvas Fingerprinting Defenses in the Wild. In Proceedings of the
34th ACM Web Conference, 2025.

[46] Alexandra Nisenoff, Arthur Borem, Madison Pickering, Grant Nakanishi, Maya
Thumpasery, and Blase Ur. Defining "Broken": User Experiences and Remedia-
tion Tactics When Ad-Blocking or Tracking-Protection Tools Break a Website’s
User Experience. In Proceedings of the 32nd USENIX Security Symposium, 2023.

[47] Rishab Nithyanand, Sheharbano Khattak, Mobin Javed, Narseo Vallina-
Rodriguez, Marjan Falahrastegar, Julia E Powles, Emiliano De Cristofaro,Hamed
Haddadi, and Steven J Murdoch. Adblocking and Counter-Blocking: A Slice of
the Arms Race. In Proceedings of the 6th USENIX Workshop on Free and Open
Communications on the Internet, 2016.

[48] Sofia Orlova. AdGuard v1.11 for Safari: Fight for filtering rule limits. AdGuard
Blog, March 2022. Accessed 2024-09-03.

[49] Raymond Hill. uBlock Origin. https://github.com/gorhill/uBlock. An efficient
blocker for Chromium and Firefox. Accessed 2024-09-03.

[50] Human Security. Types of iFrames and When to Use Them.
https://www.humansecurity.com/learn/topics/types-of-iframes-and-when-to-use-them.
Accessed 2024-12-27.

[51] Sandra Siby, Umar Iqbal, Steven Englehardt, Zubair Shafiq, and Carmela Tron-
coso. WebGraph: Capturing Advertising and Tracking Information Flows for
Robust Blocking. In Proceedings of the 31st USENIX Security Symposium, 2022.

[52] Michael Smith, Peter Snyder, Moritz Haller, Benjamin Livshits, Deian Stefan, and
Hamed Haddadi. Blocked or Broken? Automatically Detecting When Privacy
Interventions BreakWebsites. In Proceedings on Privacy Enhancing Technologies,
volume 4, 2022.

[53] Peter Snyder, Cynthia Taylor, andChris Kanich. MostWebsites Don’t Need to Vi-
brate: A Cost–Benefit Approach to Improving Browser Security. In Proceedings
of the 24th ACM Conference on Computer and Communications Security, 2017.

[54] Peter Snyder, Antoine Vastel, and Ben Livshits. Who Filters the Filters: Under-
standing the Growth, Usefulness and Efficiency of Crowdsourced Ad Blocking.
Proceedings of the ACM on Measurement and Analysis of Computing Systems, 4(2),

2020.
[55] Brave Software. Platform Stats & Token Activity.

https://brave.com/transparency/. Accessed 2025-01-06.
[56] Brave Software. Slim List System. https://github.com/brave/slim-list-lambda.
[57] Chrome Web Store. Adblock Plus - Chrome Web Store.

https://chromewebstore.google.com/detail/adblock-plus-free-ad-bloc/cfhdojbkjhnklbpkdaibdccddilif
Accessed 2024-08-19.

[58] Chrome Web Store. AdGuard AdBlocker - Chrome Web Store.
https://chromewebstore.google.com/detail/adguard-adblocker/bgnkhhnnamicmpeenaelnjfhikgbkllg.
Accessed 2024-08-19.

[59] Chrome Web Store. Privacy & Security.
https://chromewebstore.google.com/category/extensions/make_chrome_yours/privacy.
Accessed 2025-01-08.

[60] Chrome Web Store. uBlock Origin - Chrome Web Store.
https://chromewebstore.google.com/detail/ublock-origin/cjpalhdlnbpafiamejdnhcphjbkeiagm.
Accessed 2024-08-19.

[61] Chrome Web Store. uBlock Origin Lite - Chrome Web Store.
https://chromewebstore.google.com/detail/ublock-origin-lite/ddkjiahejlhfcafbddmgiahcphecmpfh.
Accessed 2024-08-20.

[62] Weihang Wang, Yunhui Zheng, Xinyu Xing, Yonghwi Kwon, Xiangyu Zhang,
and Patrick Eugster. WebRanz: Web Page Randomization for Better Advertise-
ment Delivery andWeb-Bot Prevention. In Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2016.

[63] WHATWG. HTML Standard. https://html.spec.whatwg.org/commit-snapshots/c974c42b8bbc3b04cba372f0088f
Accessed 2024-08-29.

[64] Christina Yeung, Tadayoshi Kohno, and Franziska Roesner. Analyzing the
(In)Accessibility of Online Advertisements. In Proceedings of the 24th ACM In-
ternet Measurement Conference, 2024.

[65] Ahsan Zafar and Anupam Das. Comparative Privacy Analysis of Mobile
Browsers. In Proceedings of the 13th ACM Conference on Data and Application
Security and Privacy, 2023.

[66] Ahsan Zafar, Aafaq Sabir, Dilawer Ahmed, and Anupam Das. Understanding
the Privacy Implications of Adblock Plus’s Acceptable Ads. In Proceedings of the
ACM Asia Conference on Computer and Communications Security, 2021.

[67] Eric Zeng. Adscraper: A Web Crawler for Measuring Online Ad Content.
[68] Shitong Zhu, Xunchao Hu, Zhiyun Qian, Zubair Shafiq, and Heng Yin. Mea-

suring and Disrupting Anti-Adblockers Using Differential Execution Analysis.
In Proceedings of the 25th Network and Distributed System Security Symposium,
2018.

A ADDITIONAL MEASUREMENT RESULTS

Table 7 details the corresponding eTLD+1’s for the third-party en-

tities presented in Table 4. We report the top-10 entities (URLs

are mapped to owning organization using the Disconnect entity

list [32]) that are targeted by these privacy-suspect requests in Ta-

ble 8, all of which are advertising and analytics companies. We

find that Google is the most common entity, contacted by almost

5× more sites than the next most-popular entity.

B FINGERPRINTING APIS
We classify a fingerprinting-related API call as any access to one
of the following APIs:

• CanvasRenderingContext2D.measureText

• HTMLCanvasElement.toDataURL

• MediaDevices.enumerateDevices

• Navigator: appCodeName.get, appName.get, appVersion.get,

bluetooth.get, brave.get, deviceMemory.get, doNotTrack.get,

getBattery, globalPrivacyControl.get, hardwareConcurrency.get,

language.get, languages.get, maxTouchPoints.get, mediaCapabil-

ities.get, mediaDevices.get, plugins.get, productSub.get, usb.get,

userAgent.get, userAgentData.get, vendor.get, vendorSub.get

• Screen: availHeight.get, availLeft.get, availTop.get, availWidth.get,

colorDepth.get, height.get, isExtended.get, pixelDepth.get,

width.get

• WebGL2RenderingContext: getExtension, getParameter

• WebGLRenderingContext: getExtension, getParameter, getShader-

PrecisionFormat

https://support.google.com/admanager/answer/6199883?hl=en
https://support.google.com/richmedia/answer/2417545?hl=en
https://www.iab.com/wp-content/uploads/2015/06/Rich_Media_Measurement_Guidelines_v2.pdf
https://www.iab.com/wp-content/uploads/2015/09/rich_media_ajax_best_practices.pdf
https://github.com/mozilla-services/shavar-prod-lists/blob/02f6a2835a851fd92d3f996409cfd18c2d4b0a2b/disconnect-entitylist.json
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://addons.mozilla.org/en-US/firefox/extensions/category/privacy-security/?page=1&sort=recommended%2Cusers
https://data.firefox.com/dashboard/usage-behavior
https://github.com/gorhill/uBlock
https://www.humansecurity.com/learn/topics/types-of-iframes-and-when-to-use-them
https://brave.com/transparency/
https://github.com/brave/slim-list-lambda
https://chromewebstore.google.com/detail/adblock-plus-free-ad-bloc/cfhdojbkjhnklbpkdaibdccddilifddb
https://chromewebstore.google.com/detail/adguard-adblocker/bgnkhhnnamicmpeenaelnjfhikgbkllg
https://chromewebstore.google.com/category/extensions/make_chrome_yours/privacy
https://chromewebstore.google.com/detail/ublock-origin/cjpalhdlnbpafiamejdnhcphjbkeiagm
https://chromewebstore.google.com/detail/ublock-origin-lite/ddkjiahejlhfcafbddmgiahcphecmpfh
https://html.spec.whatwg.org/commit-snapshots/c974c42b8bbc3b04cba372f0088fad503be3cc04/

Local Frames: Exploiting Inherited Origins to Bypass Content Blockers CCS ’25, October 13–17, 2025, Tapei, Taiwan.

Ranks [1,15K)

Entity eTLD+1’s

Google

[2mdn.net, doubleclick.net, google.com,

googlesyndication.com, recaptcha.net,

youtube-nocookie.com, youtube.com]

PubMatic [pubmatic.com]

Unity [yellowblue.io]

Cloudflare [cloudflare.com, cloudflarestream.com]

Amazon [amazon-adsystem.com, twitch.tv]

Vidoomy [vidoomy.com]

Datadome [captcha-delivery.com]

NextMillennium [nextmillmedia.com]

ConnectAdRealtime [connectad.io]

Piano [piano.io, tinypass.com]

Ranks [15K,100K)

Entity eTLD+1’s

Google

[2mdn.net, doubleclick.net, google.com,

googlesyndication.com, recaptcha.net,

youtube-nocookie.com, youtube.com]

adtrafficquality.google [adtrafficquality.google]

PubMatic [pubmatic.com]

Cloudflare [cloudflare.com]

SeedTag [seedtag.com]

AdYouLike [omnitagjs.com]

admatic.de [admatic.de]

Amadeus [travelaudience.com]

Amazon [amazon-adsystem.com]

ConnectAdRealtime [connectad.io]

Ranks [100K,1M)

Entity eTLD+1’s

Google

[2mdn.net, doubleclick.net, google.com,

googlesyndication.com, recaptcha.net,

youtube-nocookie.com, youtube.com]

adtrafficquality.google [adtrafficquality.google]

Cloudflare [cloudflare.com]

PubMatic [pubmatic.com]

Amadeus [travelaudience.com]

SeedTag [seedtag.com]

Jivox [jivox.com]

Yandex [yandex.ru]

Chaturbate [chaturbate.com]

AdYouLike [omnitagjs.com]

Table 7: The eTLD+1’s for the content loaded into third-party

local frames by the top-10 entities as reported in Table 4.

C ADDITIONAL TESTING DETAILS

This section provides additional details that we consider in testing,

but that do not affect the results of vulnerable tools. The nested lo-

cal frames shown in Listing 2 test for the casewherein a tool checks

for local frames by only considering the local frame’s direct parent

(not the local frame’s non-local ancestor). If this were true, then

a tool could be evaded by nested local frames, but not by regular

local frames. We do not find that nested local frames can evade the

capabilities outlined in Section 2.2. However, we find that nested

local frames can trick DuckDuckGo into misreporting the privacy

harms of a website; we discuss this result in Section 4.4.6.

Entity # Sites # Requests

Google 1514 23644

Microsoft 350 1283

PubMatic 332 718

Integral Ad Science 332 1497

Criteo 329 1284

Magnite 292 602

Taboola 250 498

IndexExchange 233 349

LiveIntent 233 373

Nexxen 229 539

Table 8: The top-10 entities that receive privacy-suspect

requests, i.e. requests from local frames that should be

blocked.

First-Party Body Third-Party iframe

[no text]
firstparty.com

script executed
thirdparty.com

script executed
[no text]

First-Party LF Third-Party LF

[no text]
firstparty.com

script executed
thirdparty.com

script executed
[no text]

First-Party Nested LF Third-Party Nested LF

[no text]
firstparty.com

script executed
thirdparty.com

script executed
[no text]

Figure 5: Expected behavior for blocking first-party re-

quests.

Concretely, in the main body of this work, we only present re-

sults for universally blocking requests. However, as noted in Sec-

tion 2.2.1, content blockers sometimes block requests only when

they are loaded in a third-party context. We test two variants of

RQ1 that check the context in which request are made. First, we

consider RQ1a: If you block third-party requests to a resource,

does the resource only load in a first-party context? This means the

first-party frames should allow the script from firstparty.com

and block the script from thirdparty.com. The third-party frames

should allow the script from thirdparty.com—since the script is

local with respect to the origin of the iFrame—and block the script

from firstparty.com. Expected behavior is shown in Figure 4a.

Second, we consider RQ1b: If you block first-party requests to a

resource, does the resource only load in a third-party context? As

shown in Figure 5, the first-party frames will only allow the scripts

from thirdparty.com, and the third-party frames will only allow

the scripts from firstparty.com.

We do not find any tools that are vulnerable to RQ1a or RQ1b,

but not RQ1. However, we find that Safari computes the “party-

ness” of requests differently than all other tools we study (Sec-

tion 4.4.1).

CCS ’25, October 13–17, 2025, Tapei, Taiwan. Alisha Ukani, Hamed Haddadi, Alex C. Snoeren, and Pete Snyder

D FILTER LIST RULES

In this section, we provide the filter list rules used to test each

capability for each content blocker, as described in Section 4.

Request Blocking. These filter list rules allow images from

firstparty.com and block images from thirdparty.com. The

$third-party specifier can also be appended to these rules to al-

low images from firstparty.com in a third-party context, etc.

• AdBlock Plus: .*/local_script.js$third-party

• uBlock Origin: .*/local_script.js$third-party

• AdGuard: .*/local_script.js$third-party

• Brave Shields: .*/local_script.js$third-party

• Safari Content Blocker:

1 {

2 "action": { "type ": "block" },

3 "trigger ": {

4 "url -filter": ".*/ local_script .js.*",

5 "resource -type ": [" script"],

6 "load -type ": ["third -party"]

7 }

8 },

Scriptlet Injection. The following rules set values for

window.scriptletvalue on firstparty.com.

• AdBlock Plus: firstparty.com#$#override-property-

read scriptletvalue 1

• uBlock Origin: firstparty.com##+js(set, scriptlet-

value, 1)

• AdGuard: firstparty.com#%#//scriptlet(’set-constant’,

’scriptletvalue’, ’1’)

• Brave Shields: firstparty.com##+js(set, scriptlet-

value, 1)

Resource Replacement. These filter list rules replace the re-

sponses for AJAX requests initiated from firstparty.com with

blank text.

• AdBlock Plus: ||firstparty.com$xmlhttprequest,

rewrite=abp-resource:blank-text,

domain=firstparty.com

• uBlockOrigin: firstparty.com$xhr,redirect=nooptext

• AdGuard: firstparty.com$xhr,redirect=nooptext

• Brave Shields: firstparty.com$xhr,redirect=nooptext

Cosmetic Filters. These rules hide all h1 elements with the

cosmetic-filter class on thirdparty.com.

• AdBlock Plus: thirdparty.com#?#h1.cosmetic-filter

• uBlock Origin: thirdparty.com##h1:matches-attr(

class="/.*cosmetic-filter.*/")

• AdGuard: thirdparty.com##.cosmetic-filter

• Brave Shields: thirdparty.com##.cosmetic-filter

• Safari Content Blocker:

1 {

2 "action": {

3 "type ": "css -display -none ",

4 "selector ": ".cosmetic -filter"

5 },

6 "trigger ": { "url -filter": ".* thirdparty .

com.*" }

7 },

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Local Frames
	2.2 Capabilities of Content Blockers
	2.3 Content Blocker Limitations

	3 Local Frame Usage
	3.1 Measurement Methodology
	3.2 Results

	4 Vulnerable Content Blockers
	4.1 Designing Tests for Capabilities
	4.2 Tools Studied
	4.3 Invoking Tests
	4.4 Results

	5 Ethics and Disclosure
	6 Discussion
	6.1 Web Complexity
	6.2 Impact on Research
	6.3 Other Possible Vulnerabilities
	6.4 Potential Breakage

	7 Conclusion
	References
	A Additional Measurement Results
	B Fingerprinting APIs
	C Additional Testing Details
	D Filter List Rules

