
ar
X

iv
:2

50
6.

00
31

3v
1

 [
cs

.C
R

]
 3

0
M

ay
 2

02
5

Data Flows in You: Benchmarking and Improving
Static Data-flow Analysis on Binary Executables

Nicolaas Weideman∗, Sima Arasteh†, Mukund Raghothaman†, Jelena Mirkovic‡, Christophe Hauser§
∗USC Information Sciences Institute, Los Angeles, CA, USA

nhweideman@gmail.com
†University of Southern California, Los Angeles, CA, USA

{arasteh, raghotha}@usc.edu
‡USC Information Sciences Institute, Los Angeles, CA, USA

mirkovic@isi.edu
§Dartmouth College, Hanover, NH, USA

christophe.hauser@dartmouth.edu

Abstract—Data-flow analysis is a critical component of security
research. Theoretically, accurate data-flow analysis in binary
executables is an undecidable problem, due to complexities of
binary code. Practically, many binary analysis engines offer
some data-flow analysis capability, but we lack understanding
of the accuracy of these analyses, and their limitations. We
address this problem by introducing a labeled benchmark data
set, including 215, 072 microbenchmark test cases, mapping to
277, 072 binary executables, created specifically to evaluate data-
flow analysis implementations. Additionally, we augment our
benchmark set with dynamically-discovered data flows from
6 real-world executables. Using our benchmark data set, we
evaluate three state of the art data-flow analysis implementations,
in angr, Ghidra and Miasm and discuss their very low accuracy
and reasons behind it. We further propose three model extensions
to static data-flow analysis that significantly improve accuracy,
achieving almost perfect recall (0.99) and increasing precision
from 0.13 to 0.32. Finally, we show that leveraging these model
extensions in a vulnerability-discovery context leads to a tangible
improvement in vulnerable instruction identification.

I. INTRODUCTION

With the ever-increasing reliance of the modern world on
software systems, the cat-and-mouse game of finding and
mitigating software vulnerabilities before they are exploited
has reached critical levels. This is exacerbated by the growing
complexity of software, which increases the burden of ensur-
ing its security. To assuage this burden, program analysis for
system security has gained more traction. Data-flow analysis
is a critical component in program analysis for security, as
understanding how information flows between the instructions
of a program is often necessary to evaluate the program’s
security. Unfortunately, static data-flow analysis is undecidable
in the general case. Moreover, when evaluating the security of
a program, analyzing the source code is often considered to be
insufficient due to the What You See is not What You Execute
phenomenon [1]. This creates the necessity for accurate data-
flow analysis designed to operate on the binary instructions of
programs.

Fortunately, while data-flow analysis may be undecidable
in a general case, there are many practical scenarios in which
it is possible to perform data-flow analysis on small code

segments (e.g., within a function), by implementing certain
approximations in binary analysis engines [2], [3], [4]. These
approximations manifest as assumptions made in the model
and heuristics incorporated into the implementation of the
binary analysis engine. The approximations may at times
sacrifice correctness in order to achieve guaranteed termination
(and indeed scalability). Incorrect data-flow analysis manifests
as false positives (non-existing data flows identified) and false
negatives (existing data flows missed). Unfortunately, there is
currently no systematic approach to evaluate the size and scope
of inaccuracies in binary engines’ implementations of data
flow analysis, and to identify opportunities for improvements.

This paper aims to benchmark data-flow approaches in bi-
nary analysis engines, to produce comprehensive, quantitative
and insightful findings about their strengths and limitations.
The benchmark dataset should not only measure accuracy of
a data-flow analysis approach, but it should also identify root
causes for inaccuracies (false positives and false negatives),
which can be tackled by future researchers. We demonstrate
how the insights from our evaluation led us to propose
three improvements to angr’s data-flow analysis model, which
improved recall from 40% to 99% and precision from 13% to
32%.

Improving data-flow analysis accuracy is an essential step
towards improving binary program analysis for system secu-
rity. This paper demonstrates such an improvement in the con-
text of vulnerability discovery, showing that our improvements
to angr lead to higher identification of vulnerable data flows
in three case studies.

In summary, this paper makes the following contributions.

• We introduce alias classes, a novel concept for catego-
rizing data flows.

• We define and implement an open source framework
for generating microbenchmark test cases, labeled with
ground truth, that can be used to evaluate static data flow
analysis models with respect to our alias classes.

• We define and implement a framework for extracting data
flows from real-world programs using dynamic analysis,

https://arxiv.org/abs/2506.00313v1

to generate ground-truth information about existing data
flows.

• With the provided frameworks, we generate a data-flow
evaluation benchmark data set, consisting of 215, 072
microbenchmark test cases mapping to 277, 072 unique
binary executables, as well as data flows from 6 real-
world executables.

• We show the twofold utility of this data set:
1) We evaluate three state of the art static data-flow

analysis implementations in angr [2], Ghidra [3] and
Miasm [4]. Our evaluation yields insights about how
accurate these analysis engines are with respect to
different categories of data flows, and enables us to
identify areas for improvement. To the best of our
knowledge, this is the first evaluation of its kind.

2) We propose three novel data-flow model exten-
sions, implement them on top of angr, and evaluate
them on real-world executables. These extensions
achieve nearly perfect recall, while simultaneously
improving precision of data-flow analysis on our
benchmarks.

3) We show that leveraging our model extensions in
a vulnerability-discovery context leads to an im-
proved recovery of vulnerability-related instructions
in three case studies.

II. BINARY-LEVEL DATA-FLOW ANALYSIS

To perform data-flow analysis on a program is to reason
about the flow of information between its instructions. Since
data flow between two instructions requires executing these
instructions in order, data-flow analysis is often built on
top of control-flow analysis. Consequently, data-flow analy-
sis inherits the complexities of control-flow analysis, such
as context sensitivity – the notion that the next instruction
in an execution path may be determined by the preceding
instructions. For example, the instruction following a return
instruction, is determined by the preceding, matching call
instruction. This complexity is part of a larger problem caused
by indirect branches, in which case the control-flow depends
on the data flow. Due to the intermixed nature of control-flow
and data-flow analysis, in the general case, both problems
are undecidable [5]. Moreover, performing these analyses
on binary code, as opposed to source code, adds an extra
layer of complexity due to the loss of high-level semantic
information, such as control-flow structures, data types and
data structures. However, binary code is the most faithful
program representation when it comes to reasoning about a
range of security properties, and it is therefore our target.

One of the root causes of the undecidability of data-flow
analysis lies in the aliasing problem, i.e., determining if two
instructions access the same data (i.e., if two different pointers
point to the same location). In binary program analysis,
this means determining if a memory write instruction and
a subsequent memory read instruction access memory at the
same address. A data flow exists between these instructions
if a control flow exists and if they must (or may) access the

same data, such that the data written by the first instruction
is read by the second instruction, and has not been changed
in the meantime. Stated differently, a data flow exists between
two instructions if they form a link in a def-use chain [6].

In spite of data-flow analysis being undecidable, a number
of theoretical algorithms [7], [8] and implementations of
binary-level data-flow analysis [2], [3], [4] have been created
to yield approximate solutions. While the theoretical data-flow
analysis algorithms make well-defined assumptions in order to
guarantee termination, in the implementations it is necessary
for developers to deviate from these theoretical models in
order to achieve scalability in addition to termination. This
deviation manifests as additional, often undocumented, ap-
proximations (assumptions and heuristics), which may lower
analysis accuracy. We discuss examples of such approxima-
tions in Section II-C. In this paper we use our benchmarks to
quantify the impact on accuracy from various approximations,
which enables us to pinpoint areas for improvement, and to
implement and demonstrate benefit of several improvements
(Section VI).

A. Definitions

In order to rigorously define our approach, we extend the
existing concept of data flow with the following definitions.

1) Degree of data flow: We define three different degrees
of data flow between any pair of instructions in a program:
unconditional data flow, possible data flow and impossible
data flow.

A pair of instructions have an unconditional data flow, if on
every execution of the program, in which these instructions are
executed in order, there is a data flow from the first instruction
to the second. We show an example of an unconditional data
flow in Listing 1.

1 mov [rdi], dl ; Write
2 mov al, [rdi] ; Read

Listing 1. The instruction pair on lines 1 and 2 have an unconditional
data flow.

A pair of instructions have a possible data flow, if on at
least one execution of the program there is a data flow from
the first instruction to the second. We show an example of a
possible data flow in Listing 2. In Listing 2, the data written to
memory by the instruction on line 1 will be read from memory
by the instruction on line 2 if and only if the value in register
rsi is 0. If this value is dependent on input to the program,
then in some executions there will be a data flow, while in
others not.

1 mov [rdi], dl ; Write
2 mov al, [rdi+rsi] ; Read

Listing 2. The instruction pair on lines 1 and 2 have a possible data
flow.

A pair of instructions have an impossible data flow, if on
every execution of the program, there is no data flow from the
first to the second. We show an example of an impossible data
flow in Listing 3. In Listing 3, the 1 byte written to memory
by the instruction on line 1 will never be read from memory

by the instruction on line 2. Regardless of the value in the
register rdi (used as the address in Line 1), this value can
never be equal to 8 less than itself (used as the address in
Line 2).

1 mov [rdi], dl ; Write
2 mov al, [rdi-8] ; Read

Listing 3. The instruction pair on lines 1 and 2 have an impossible
data flow.

2) Data flow scope: We define the scope of a data flow
as being either intra-procedural, inter-procedural or both.
A data flow is considered intra-procedural if it occurs in a
single execution of a function. Conversely, a data flow is
inter-procedural if its instructions span multiple functions, or
multiple executions of a single function.

3) Data flow channel: Given that a data flow is caused by a
pair of instructions writing and reading the same data location,
we define the channel of a data flow as the register or memory
that is accessed by both instructions. We indicate this channel
by using a token matching the name of the register or mem
for memory.

We show an example of data flow channels in Listings 4
and 5. In Listing 4, the instructions on lines 1 and 2 have
the data flow channel rbx as they both access this register.
In Listing 5, the instructions on lines 1 and 2 write and read
memory at the same address respectively, so they have the data
flow channel mem.

1 mov rbx, 0 ; Write
2 mov rax, rbx ; Read

Listing 4. The instruction pair on
lines 1 and 2 have a data flow
channel rbx.

1 mov [rbp-0x8], rdi ; Write
2 mov rax, [rbp-0x8] ; Read

Listing 5. The instruction pair on
lines 1 and 2 have a data flow
channel mem.

B. Our Scope

In this paper, we separate the intermixed nature of control
flow and data flow in order to focus exclusively on the
latter. We posit that the main challenge of data flow analysis,
independently of control flow, is approximating a solution
to the aliasing problem. Therefore, in all our test cases, we
focus on data flows between pairs of memory write and read
instructions, i.e., with mem in the data-flow channel. We do
not explicitly determine if a data-flow analysis is capable of
identifying data flows between instructions writing and reading
the same CPU register. We argue that solving the aliasing
problem in this particular case is trivial, since the location
where the data is accessed (the register), is identifiable from
the encoding of the instruction itself. We further focus on intra-
procedural data-flow analysis, and leave inter-procedural data
flows for future work. We do this, because most data-flow
analysis implementations limit their scope to intra-procedural
analyses (in large part because of scalability issues caused by
the limitations of existing pointer aliasing analysis models).

C. Data-flow analysis implementations

Due to the scale and complexity of modern software,
developers of data-flow analysis implementations are required
to introduce approximations in order to make the analysis

usable on real-world executables. This includes implementing
heuristics to determine if a pair of instructions access the same
memory, and if the data written by the first instruction is
overwritten prior to being read by the second instruction.

A heuristic to determine if two instructions access the
same memory must handle cases where at least one of the
addresses is undefined in the scope of analysis. We provide an
example of this with Listing 2. We illustrate the complexity of
determining whether or not a memory value is overwritten with
function calls. Refer to Listings 6 and 7. In both these listings
the f_target functions are identical, writing to stack mem-
ory (labeled as Write) and subsequently reading from stack
memory (labeled as Read). However, these Write and Read
instructions are interrupted by a function call to f_callee.
In Listing 7 the callee function on line 8 overwrites the same
memory written by the Write instruction. Therefore this
listing shows an impossible data flow. On the other hand,
in Listing 6 the callee function on line 8 only reads this
memory. Therefore this listing shows an unconditional data
flow. Since the effects of f_callee are out of scope for an
intra-procedural analysis of function f_target, a data-flow
analysis implementation must use a single heuristic to handle
both these cases. Note that any heuristic will therefore lead
to inaccuracies for some f_target implementations. While
in this case it would be trivial to include the instructions of
f_callee in the analysis (and perform inter-procedural data-
flow analysis), in real-world programs functions tend to form
large call graphs, with data-flows spanning multiple functions.
Any scalable data-flow analysis will necessarily need to limit
its scope of analysis and use heuristics to reason about out-
of-scope behavior.

In Sections V and VI we investigate how data-flow analysis
implementations approach these types of complexities and we
propose alternative approaches that improve analysis accuracy.
1 f_target:
2 mov [rsp+0x8], 0 ; Write
3 lea rdi, [rsp+0x8]
4 call f_callee
5 mov rax, [rsp+0x8] ; Read
6 ret
7 f_callee:
8 mov rax, [rdi]
9 ret

Listing 6. The instructions on line 2 and line 5 have an unconditional
data flow.

1 f_target:
2 mov [rsp+0x8], 0 ; Write
3 lea rdi, [rsp+0x8]
4 call f_callee
5 mov rax, [rsp+0x8] ; Read
6 ret
7 f_callee:
8 mov [rdi], 0
9 ret

Listing 7. The instructions on line 2 and line 5 have an impossible
data flow.

III. DESIGNING A DATA SET TO BENCHMARK STATIC
DATA-FLOW ANALYSIS

Since data flow is undecidable in general [9], [10] the utility
of any data-flow model can only be evaluated experimentally.
We propose a benchmark data set for evaluation of data-flow
models, discussed in Section III-A. We further implement an

automated framework for evaluating data-flow models against
our benchmarks, discussed in Section III-B.

A. Data Set

To gain a fine-grained insight into the efficacy of a data-
flow analysis model, we break down data flows into a number
of categories, which we refer to as alias classes, discussed in
Section III-A1.

Using these alias classes as a guide, we create a framework
for generating a data set of test cases. We divide these
test cases into two categories: microbenchmark test cases,
discussed in Section III-A2, and real-world test cases (Sec-
tion III-A3). The microbenchmark test cases are synthesized
at the source-code level and then compiled; the compilation
process enables us to label them with ground truth data
flows. The real-world test cases are extracted from real-world
programs. We use a dynamic analysis approach to label them
with ground truth about existing data flows (we mitigate side
effects of the incompleteness of dynamic analysis coverage in
Section V-B).

After generation, this data set is a collection of binaries,
each paired with information regarding its functions and data
flows. Each data flow is also assigned a degree of data flow
as ground truth and an alias class.

1) Alias classes: We categorize an intra-procedural data
flow between a pair of instructions by how the pointers –
dereferenced by these instructions – are introduced in the
function at the source code level. We refer to these categories
as alias classes and the introduction method of a pointer as
the pointer origin. We define four such pointer origins, stack,
heap, foreign and global. For the foreign pointer origin, the
pointer is defined outside the function and introduced via a
function argument. For the stack pointer origin, the pointer is
introduced as an offset of the stack pointer register. For the
heap pointer origin, the pointer is introduced via the return
value of a memory allocation function. Finally, global pointers
are allocated upon program initialization and are accessed
either as a constant address, or an address relative to the
instruction pointer. We show a source-code level illustration
of each of the pointer origins in Listing 8. Additionally, we
show examples of data flows with alias classes (Stack,
Stack) and (Global, Foreign) in Listings 9 and 10,
respectively.
1 char global_pointer;
2 void f(char *foreign_pointer) {
3 char stack_pointer;
4 char *heap_pointer = malloc(1);
5 }

Listing 8. Pointers with each of the pointer origins.

1 char f(char c) {
2 char stack_ptr;
3 stack_ptr = c;
4 return stack_ptr;
5 }

Listing 9. An unconditional
data flow (line 3 to 4) with alias
class (Stack, Stack).

1 char global_ptr;
2 char f(char *foreign_ptr) {
3 global_ptr = c;
4 return *foreign_ptr;
5 }

Listing 10. A possible data flow
(line 3 to 4) with alias class
(Global, Foreign).

2) Microbenchmark test cases: The purpose of our mi-
crobenchmark test cases is to span a wide variety of intra-

procedural data flows that can occur in programs, thus enabling
comprehensive evaluation of data-flow analysis. Each test case
is designed to be minimalistic, testing a single target data flow
in a target function, focused solely on executing this data flow.

At the heart of each test case lie a pair of instructions writing
and reading memory addresses, forming the target data flow.
The ground truth of each test case – whether there exists an
unconditional, possible or impossible data flow between these
instructions – depends on the parameters of its construction.
The source code of the test cases are generated by enumerating
these parameters. Finally, each instance of the source code is
compiled in multiple ways, enumerating compiler options, and
producing one binary per option set.

a) Pointer creation: The first phase of test case creation
is to create the pointers that will be used by the memory
access instructions. This phase involves pointer definition and
pointer expansion. In creating the data set, we enumerate a set
of properties that make up the pointer definition – a pointer
origin, data type, size and length – and expand the pointer
into a write and read pointer. The data type is a native data
type supported by the compiler and underlying architecture,
e.g. integer or floating point. The size attribute of a pointer
indicates the number of bits comprising the data type. Finally,
the length describes the number of adjacent data types in
memory the pointer points to. For a length greater than 1, the
pointer points to an array. These properties of a pointer are
used to define it in the source code of the test case, including
allocating the necessary amount of space on the stack or heap.

In the next phase, pointer expansion, we either use a single
pointer for both the write and read instruction, or two distinct
pointers for each instruction. We refer to the pointer used in
the write and read instruction as the write pointer and read
pointer, respectively, regardless of whether or not they are the
same. We use a single pointer for both the write and read
pointer in order to construct unconditional data flows.

b) Pointer transformation: To increase test case com-
plexity and variety, we introduce an optional pointer trans-
formation. This transformation adds an offset to the pointer,
which can either be a constant value, or a variable undefined
within the target function. The length attribute of the pointer is
used to select an offset within the bounds of the pointer array.
The transformed pointers are ultimately used in the target data
flow.

c) Callee interruption: As discussed in Section II-C, an
intra-procedural data-flow analysis must use approximations in
order to handle function calls in the target function. In order
to expose these approximations, we create a counterpart for
each test case where the target data flow is interrupted by a
function call. We show an example of such a pair of test cases
in Section VI in Listings 11 and 12.

d) Test case compilation: We increase test case diversity
by compiling the source code with a variety of compiler flags.
This is useful, because compiler flags such as optimization
options have a significant impact on how the source code is
converted into binary code. Additionally, options to include
or omit the frame pointer have an effect on how stack

variables are represented in binary code. Different binary code
representations can may impact accuracy of data flow analysis
in different binary analysis engines.

e) Ground truth: With respect to ground truth, we divide
the microbenchmark test cases into two subcategories, the
fully-specified test cases and the underspecified test cases.

In fully-specified test cases all information regarding the
existence of the target data flow is within the target function.
In every fully-specified test case, the target data flow either
occurs on every execution of the program (unconditional data
flow) or does not occurs on any execution of the program
(impossible data flow). Therefore, any result reported by a
data-flow analysis that contradicts the ground truth can be
confirmed as an error. The goal of fully-specified test cases
is to uncover the concrete strengths and weaknesses of a
particular approach. Listings 1 and 3 are examples of fully-
specified test cases.

Underspecified test cases include a target data flow that may
or may not occur, depending on data outside of the target
function. Listing 2 shows an example of an underspecified
test case. Underspecified test cases have possible data flows,
because by definition, the information missing from the scope
of analysis can be defined specifically to cause a data flow.
In the example shown in Listing 2, a data flow exists when
register rsi is equal to 0. Note, however, that in some
cases a possible data flow is unlikely. For example, between
an instruction writing to global memory and an instruction
reading from stack memory. For a data flow to exist, the stack
pointer would need to point to global memory. The purpose
of the underspecified test cases, is to evaluate how data-
flow analysis works in scenarios where perfect information
is unavailable. Many real-world binaries contain instances of
functions with underspecified data flows.

3) Real-world Test Cases: Our microbenchmark test cases
are intentionally simple and unambiguous in order to reflect
important program properties. However, these are not meant
to reflect the complexity of real-world programs. For this
reason, we also enrich our benchmarks with test cases built
from real-world binaries. To accomplish this we must address
three challenges. Firstly, we need to establish ground truth,
i.e. which data flows exist within a given real-world binary.
Secondly, we need to construct intra-procedural data-flow
graphs composed of these ground-truth data flows. Thirdly,
we need to determine the alias class of each of these data
flows.

a) Establishing ground truth: Unlike the microbench-
mark test cases, where we construct the ground truth in the
source code and compile, in real-world test cases the ground
truth must be inferred. Dynamic analysis allows us to establish
that a data flow exists in some executions of the binary.
Therefore, dynamic analysis is capable of uncovering possible
data flows in a binary, but it cannot identify unconditional
or impossible data flows. By definition, dynamic analysis
considers a target program one program path at a time.
Since real-world program are large, they potentially have
an unbounded number of program paths, making dynamic

analysis incomplete. Consequently, our ground truth includes
a number of possible data flows, which may be incomplete.
We address this in Section V-B by computing lower and upper
bound approximations for our real-world test cases.

In order to establish ground truth for a target binary,
we perform dynamic instrumentation and log all information
necessary to recover the data flows. This information includes
the instruction address, data access type (write or read), the
data location accessed (either a register identifier, or memory
address) and the context (the function call in which the instruc-
tion executes). Whenever a data write access is encountered, a
map is used to associate the data location with the instruction
that performed the access. Whenever a data read access occurs,
this map is consulted to identify the matching write access.
The result is a pair of instructions, for which the first writes
to the same data location that is read by the second, thus
forming a data flow.

b) Creating the data-flow graphs: The dynamically-
collected data flows are consolidated into an inter-procedural
data-flow graph, where instruction addresses are the nodes and
directed edges indicate a data flow. We annotate the edges in
this graph with information pertaining to the scope and channel
of the data flow.

In order to separate the inter-procedural data-flow graph
into an intra-procedural subgraph we extract a node-induced
subgraph, using the instructions of the target functions as the
node set. We also eliminate all edges in this subgraph that
correspond to a data flow with only an inter-procedural scope.

c) Handling special cases: We apply the following mod-
ifications to the dynamically-generated intra-procedural data-
flow graph to handle common special cases found in binary
programs. A common pattern in binary code is to preserve
registers across function calls, by writing the register to
memory at the start of the function and then reading it back
again into the register at the end. In our dynamically-generated
intra-procedural data-flow graphs, this appears as undefined
registers used after the function call. We identify these save-
restore patterns in the inter-procedural data-flow graph and
reconnect the instruction addresses in the target function with
an intra-procedural data-flow edge. We show an example of
this in Figure 1. The register rbx is saved across the function
call f_callee and therefore, we reconnect the definition and
use of this register in f_target.

The second modification we make, is to identify and remove
data flows leading into an instruction used to clear a register.
We show an example of this in Figure 2. The xor instruction
clears the value in the register rbx. Therefore, even though
this instruction writes and reads this register, no data flow
exists through this instruction. If such an instruction is used
to clear a register at the start of the function, in the intra-
procedural data-flow graph, any subsequent instruction that
reads this register will appear to use an undefined register.
Instead, the register-clearing instruction should be interpreted
as setting the register to 0, with no incoming data flows.

We make these modifications, because correctly identifying
registers undefined in the target function forms the basis

f_target:
1: mov rbx, rdi
2: mov [rbx], 1
3: call f_callee
4: mov rax, [rbx]
5: ret
f_callee:
6: push rbx
7: pop rbx
8: ret

1

2

4

rbx, intra

6

7

rbx, inter

mem, intra
rbx, inter

rdi, inter

mem, intra

f_target
Intra-procedural DFG

1

2

4

rbx, intra

rbx, intra

rdi, inter

mem, intra

f_target
Intra-procedural DFG

Modify

Fig. 1. We modify the intra-procedural data-flow graph to reconnect registers
across save-restore edges.

1

2

3

rbx

rbx

f_target:
1: mov rbx, 1
2: xor rbx, rbx
3: mov rax, rbx
4:ret

1

2

3

rbx

Modify

Fig. 2. We modify the intra-procedural data-flow graph to eliminate data
flows into register clearing instructions.

of how we identify alias classes in real-world binaries. We
explain this next.

d) Alias class identification: Recall that the alias class of
a data flow is defined by the origin of the pointers dereferenced
in data write and read instructions.

Identifying pointer origins in real-world program is chal-
lenging, because between its introduction and use, the pointer
may be assigned to a different register and also saved (re-
stored) to (from) memory. Therefore, a simple syntactic anal-
ysis of the pointer is insufficient to correctly determine its
origin. Indeed, it is necessary to trace the data flow of a pointer
back from its use to its introduction into the function. We
identify the introduction point of an address by following its
intra-procedural data flow backwards until an inter-procedural
data flow is encountered. The undefined registers upon which
this address depends is the union of the data-flow channels of
these inter-procedural edges.

For a stack pointer origin, the pointer is introduced via the
stack pointer register, which is undefined within a function (as
its value depends on the call stack). Foreign pointers are passed
to the target function as arguments. How this is implemented
in binary code, depends on the calling convention. In this

paper, we focus on the calling convention specified in the
System V AMD64 Binary Application Interface. In this calling
convention, pointer arguments are passed in the registers rdi,
rsi, rdx, rcs, r8, r9 (additional pointer arguments are
passed via the stack). Therefore, a foreign pointer is introduced
via one of these undefined registers. Heap pointers are most
often obtained as the return value of a memory allocation
function (e.g., malloc), which is passed via the rax register.
Therefore, heap pointers are introduced via an undefined rax
register. In the case of global pointers, the address does not
depend on any undefined registers, because the address is
constant or it is an offset of the instruction pointer.

B. Evaluation Framework

We evaluate a data-flow analysis approach by applying it on
the binaries, functions and data flows in our benchmark data
set. We refer to the binary and function under evaluation as
the target binary and target function, respectively. Similarly,
the data flow under test is is the target data flow. For each
target function, we generate a data-flow graph using the binary
analysis engine (e.g., angr) under evaluation. This data-flow
graph is examined to determine the presence (or absence) of
the edge between the two instructions constituting the target
data flow. We compare this information to the ground truth to
establish correctness.

IV. IMPLEMENTATION

A. Selected approaches

We evaluate the three state-of-the-art data-flow analysis
implementations found in the binary program analysis engines
angr [2] (version 9.2.39), Ghidra [3] (version 10.2.2) and
Miasm [4] (version 0.1.3.dev447). We refer to these as our
selected approaches. These binary analysis engines are popular
in both academia and the industry, and were selected for
being open source, and for providing an implementation of a
general-purpose, best-effort data-flow analysis. In Section V,
we conduct our evaluation using these selected approaches
to uncover the similarities and differences between these
approaches, as well as their strengths and weaknesses.

B. Microbenchmark test cases

We implement an open source framework1 to generate our
microbenchmark test cases automatically by following the ap-
proach in Section III-A2. For the pointer definition properties,
we use the native data types and sizes: 8-bit int, 16-bit int,
float and double. We also include a defined struct data
type comprising an integer and pointer value. For the length
property of pointers, we assign one of two constant values, 1
and 2, or one of two variable values. These variables are passed
to the target function via function parameter. We incorporate
these variable lengths to test undefined offset transformations.

After generating the source code, we generate the test
case binaries by compiling the source code with the GNU
Compiler Collection (GCC, version 11.3.0) using one of the

1Anonymized for review

6 optimization options (O0-O3, Os and Ofast) as well
varying the inclusion of the function stack frame pointer
with -fomit-frame-pointer. All pointers are tagged
as volatile in the source code to prevent the compiler
optimizing away the target data flow. Every target binary
is compiled with DWARF debug symbols, using the flag
-gdwarf-4. The debug symbols are used to identify the
memory access instructions of the target data flow in the
compiled binary, using the pyelftools Python library [11],
and to establish ground truth for data flows in our microbench-
marks. Finally, given the set of compiled binaries, a fingerprint
is calculated for each target function by computing the MD5-
hash of the bytes comprising its machine code instructions.
The MD5-hash is used to identify and eliminate duplicate
functions. The final set of microbenchmark test cases is a set
of binaries, each containing a unique target function. In total,
we have 215, 072 source code level test cases, mapping to
277, 072 unique target functions.

C. Real-world test cases

For the real-world test cases, we select binaries from
the following projects: chmod, cp, ls (from the Core-
utils package [12], version v9.1-98-g8613d35be) as well as
the Apatche-Httpd server [13] (version 2.5.1-dev), the
Mujs javascript interpreter [14] (version 1.3.3) and CJson
parser [15] (version v1.7.15-14-gb45f48e). We select these
binaries to cover a range of types of application domains and
complexities of software.

To dynamically collect execution traces for a target binary,
we instrument it using Intel’s PIN framework [16], while
executing test cases in the project repository. Since the purpose
of test cases is to cover a broad range of program functionality,
these will allow us to recover data flows across many execution
paths. We normalize instruction addresses, to compensate for
address space layout randomization (ASLR).

From each of the real-world binaries, we select a subset of
target functions, for which we will compute static data-flow
graphs in our evaluation. Specifically, we select the 5 functions
for which our dynamic analysis approach identified the highest
number of memory data flows. We show these functions for
each target binary in Table I, with the number of target data
flows per alias class. We denote the alias class as unknown
in the cases where our alias class identification for real-world
binaries fails (see Section III-A3). We use these memory data
flows as ground truth for the static data-flow analyses.

While we could perform our evaluation on all functions in
the target binary, this is often a computationally expensive
procedure. We wanted to allocate sufficient time for selected
static-analysis approaches to compute the data-flow graph,
while still keeping the overall run time manageable. To this
end, we select the above-mentioned 5 functions from each
target binary and allow a 5 hour time limit per target function.

TABLE I
THE SELECTED TARGET FUNCTIONS FOR EACH REAL-WORLD BINARY

WITH THE NUMBER OF IDENTIFIED DATA FLOWS PER ALIAS CLASS.

Target Function (F, F) (G, G) (H, H) (S, S) Unknown
chmod

main 0 16 1 29 0
quotearg_buffer_restyled 0 0 0 37 0
fts_build 0 0 0 23 3
rpl_fts_open 0 0 1 4 0
quotearg_n_options 0 0 0 4 0

cp
copy_internal 0 2 0 354 4
sparse_copy 1 0 0 44 5
main 0 1 0 47 0
backupfile_internal 0 0 0 39 0
make_dir_parents_private 3 0 2 27 2

ls
main 0 66 0 57 0
quotearg_buffer_restyled 0 0 0 52 0
mpsort_with_tmp.part.0 1 0 0 37 8
canonicalize_filename_mode 0 0 1 34 2
__strftime_internal.isra.0 0 0 0 28 0

Apache-Httpd
trie_node_link 9 0 0 53 0
ap_add_module 0 0 0 39 2
trie_node_alloc 0 0 1 36 0
register_filter 1 0 0 36 0
ap_setup_prelinked_modules 0 11 0 24 0

Mujs
jsR_run 4 0 0 380 6
cstm 0 0 0 323 0
jsC_cexp 0 0 0 256 0
js_gc 2 0 0 197 0
statement 2 0 0 177 0

CJson
cJSON_Delete 0 0 0 23 0
get_object_item 0 0 0 18 0
add_item_to_object 0 0 0 18 0
add_item_to_array 0 0 0 16 0
UnityAssertEqualString 0 0 0 15 0

D. Evaluation framework implementation

We implement the evaluation framework in an open source
repository2, by creating a Python wrapper script for each
selected approach (angr, Miasm, Ghidra) to generate a data-
flow graph for a specified target function in a target binary.
Each of the selected approaches provide a number of settings
to fine-tune the data-flow analysis for a particular use case.
We make a best-effort approach to apply the settings that will
maximize performance on our data set. This is achieved by
performing an analysis with a variety of settings, and selecting
the best results per binary analysis engine to report. Next,
we discuss these settings as well as the process of converting
the approach-specific data-flow information into an unified-
representation comparable to ground truth.

a) angr.: By default, angr builds an inter-procedural
data-flow graph on top of a control-flow graph (CFG), aug-
mented with symbolic execution. In order to focus this data-
flow analysis on the target function, we reduce the scope of
CFG generation to only this function. We achieve this by dis-
abling context sensitivity and setting the call-depth parameter
to 0. angr produces a data-flow graph over the statements of
the Vex IR. Each of the statements in this IR is associated
with a machine code instruction via an IMark3 statement,
which contains the instruction address of this machine code

2Anonymized for review
3An IMark statement is a special statement in Vex IR that does not describe

the behavior an instruction, but instead its address and size in bytes.

instruction. We use these IMark statements to convert the
data-flow graph produced by angr, to one over machine code
instructions.

b) Ghidra.: Ghidra performs its data-flow analysis in
the process of converting the machine code instructions to
its P-code IR. In this process, the inputs and output of P-
code operations are linked. Each of these P-code operations
are associated with a machine code instruction address, which
we use to create a data-flow graph. Per its default settings,
Ghidra performs a number of simplification steps on the
produced P-code, such as consolidating some operations. This
simplification eliminates the mapping between some machine
code instructions and their corresponding P-code operations.
To prevent this, we set the simplification style to firstpass
instead.

c) Miasm.: Similar to angr, for Miasm we first create a
CFG for the target function over its intermediate representa-
tion. Then, we generate a dependency graph, while instructing
Miasm explicitly to consider memory dependencies, while
disregarding function calls.

V. EVALUATION

We evaluate the selected approaches on both the mi-
crobenchmark test cases and real-world test cases of our data
set.

A. Microbenchmark test cases

Our microbenchmarks consist of 277, 072 target binaries,
each paired with information regarding its target function,
target data flow and ground truth. We use our evaluation
framework to extract a static data-flow graph for the target
function, using each of the selected approaches. We inspect
the produced data-flow graphs to determine if the target data
flow is reported or not by each approach. We compare this
report with the ground truth for the test case. We show the
performance of the selected approaches on our microbench-
mark test cases in Table II. Here, we only show the results
of the fully-specified test cases because these have a clear
ground truth. In Section VI, we show angr’s performance on
some underspecified test cases and we show how we leverage
this to improve performance.

In Table II we observe that angr is capable of identifying
every unconditional data flow in each alias class. However,
it also reported a data flow for each of the impossible data
flows in the (Foreign, Foreign) and (Heap, Heap)
alias classes and some (20.19%) of the impossible data flows
in the (Stack, Stack) alias class. As all these data flows
are impossible, each of these cases represents a false positive.
In Section VI we conduct an investigation on these false
positives and show how they indicate an opportunity for
improvement. We also investigate the few cases in which
Ghidra reports a data flow. We conclude that Ghidra does
not perform alias analysis, it assumes all memory addresses
are unequal. There are a few exceptions in which it equates
memory addresses in global memory, but we leave the deep-
dive into Ghidra’s source code to establish the reason for this

TABLE II
PERFORMANCE OF SELECTED APPROACHES ON THE MICROBENCHMARK

TEST CASES

Alias Class Ground Truth Edge Edge % No Edge No Edge % Total
angr

(F, F) unconditional 158 100.00% 0 0.00% 158
(F, F) impossible 72 100.00% 0 0.00% 72
(G, G) unconditional 170 100.00% 0 0.00% 170
(G, G) impossible 0 0.00% 3, 726 100.00% 3, 726
(H, H) unconditional 376 100.00% 0 0.00% 376
(H, H) impossible 12, 988 100.00% 0 0.00% 12, 988
(S, S) unconditional 115 100.00% 0 0.00% 115
(S, S) impossible 717 20.19% 2, 835 79.81% 3, 552

Ghidra
(F, F) unconditional 0 0.00% 158 100.00% 158
(F, F) impossible 0 0.00% 72 100.00% 72
(G, G) unconditional 10 5.88% 160 94.12% 170
(G, G) impossible 210 5.64% 3, 516 94.36% 3, 726
(H, H) unconditional 0 0.00% 376 100.00% 376
(H, H) impossible 0 0.00% 12, 988 100.00% 12, 988
(S, S) unconditional 0 0.00% 115 100.00% 115
(S, S) impossible 0 0.00% 3, 552 100.00% 3, 552

Miasm
(F, F) unconditional 106 67.09% 52 32.91% 158
(F, F) impossible 24 33.33% 48 66.67% 72
(G, G) unconditional 52 30.59% 118 69.41% 170
(G, G) impossible 232 6.23% 3, 494 93.77% 3, 726
(H, H) unconditional 376 100.00% 0 0.00% 376
(H, H) impossible 2462 18.96% 10, 526 81.04% 12, 988
(S, S) unconditional 107 93.04% 8 6.96% 115
(S, S) impossible 150 4.22% 3, 402 95.78% 3, 552

as future work. Finally, we observe that Miasm sporadically
reports unconditional and impossible data flows. Miasm per-
forms alias analysis by syntactically comparing the memory
access instructions. This is a reasonable heuristic, but it is
also sensitive to how the compiler implements the access
instructions, especially with respect to register allocation.

B. Real-world test cases

Our real-world test cases consist of 6 real-world binaries,
each paired with information regarding 5 target functions and
dynamically recovered data flows. For each target function,
we compute the static data-flow graph using each of the
selected approaches. We show the run time of this process
in Table III. Miasm fails to produce a data-flow graph for 6
target functions, due to exceeding a memory limit of 100GB.
By using a profiler, we establish that the excessive memory
usage is related to its task list of states to process. These states
are differentiated by code location and data flows present at
that state. Consequently, the size of this task list may grow
disproportionately larger than the size of the target function.

We combine the data flows of each target function in a
particular binary and show the total number per alias class
in Table IV. Additionally, this table shows how many of the
dynamic data flows are discovered by the selected approaches
and the number of data flows reported by static analysis
only. We see that Ghidra surprisingly identifies data flows in
more alias-classes than during the microbenchmark evaluation
(Table II). However, after manual analysis, we conclude that
these data flows exist between synthetic P-code operations
inserted by Ghidra and do not reflect the target data flow.

We use the numbers in Table IV to compute an aggregated
performance score for each selected approach on real-world
binaries. For each selected approach α, we consolidate all

TABLE III
EXTRACTION TIME OF THE DATA-FLOW GRAPH FOR THE TARGET

FUNCTION IN EACH REAL-WORLD BINARY.

Target Function angr Ghidra Miasm
chmod

main 14.63s 12.59s OOM
quotearg_buffer_restyled 60.79s 13.08s OOM
fts_build 16.29s 12.21s OOM
rpl_fts_open 10.60s 12.11s 580.53
quotearg_n_options 9.38s 11.90s OOM

cp
copy_internal 87.95s 16.32s OOM
sparse_copy 17.36s 14.62s OOM
main 16.67s 14.92s 54.52s
backupfile_internal 15.90s 14.60s OOM
make_dir_parents_private 16.26s 14.27s OOM

ls
main 30.81s 18.98s OOM
quotearg_buffer_restyled 66.94s 17.99s OOM
mpsort_with_tmp.part.0 17.37s 16.75s 249.54s
canonicalize_filename_mode 18.85s 17.03s OOM
__strftime_internal.isra.0 77.55s 17.53s OOM

Apache-Httpd
trie_node_link 112.62s 43.09s 2.40s
ap_add_module 112.51s 44.51s 6.91s
trie_node_alloc 111.97s 43.42s 1.11s
register_filter 112.21s 43.97s 1.65s
ap_setup_prelinked_modules 112.47s 43.51s 1.66s

Mujs
jsR_run 50.05s 22.39s 0.73s
cstm 18.90s 21.94s 0.48s
jsC_cexp 24.92s 21.17s 0.44s
js_gc 17.45s 21.03s OOM
statement 21.69s 21.70s 19.81s

CJson
cJSON_Delete 5.05s 10.63s 0.78s
get_object_item 4.72s 10.81s 0.63s
add_item_to_object 4.85s 10.80s 0.55s
add_item_to_array 4.64s 11.01s 0.41s
UnityAssertEqualString 4.91s 10.56s 0.62s

data flows discovered dynamically and statically into a sets D
and Sα, respectively. We consider the intersection (D ∩ Sα)
the true positive data flows discovered by α. As discussed in
Section III-A3, dynamic analysis is incomplete. Every data
flow reported only by static analysis (Sα \D) may either be
a false positive, or a true positive for which we do not have
dynamic evidence. We assume each such data flow is a false
positive. Consequently, the number of true positives |D ∩ Sα|
and false positives |Sα \ D| we report is a lower and upper
bound approximation, respectively. To estimate the number of
false negatives, we identify the dynamic data flows not discov-
ered statically (D \Sα). This is a lower-bound approximation,
because there may be data flows unreported by both dynamic
and static analysis. We show these approximations in Table V
along with an approximation of the precision, recall an F1
score. Table V gives us an insight into how each of the selected
approaches perform on real-world binaries. We see that Miasm
has the highest F1 score estimation, but as we have seen from
Table III it also has scalability issues with respect to memory
consumption. We see that angr misses a significant number of
data flows and also reports a very large number of assumed
false positives. We use this as an opportunity to improve the
state of the art in data-flow analysis.

TABLE IV
THE NUMBER OF DATA FLOWS DISCOVERED DYNAMICALLY PER ALIAS

CLASS AND THE NUMBER OF THESE DISCOVERED STATICALLY.
ADDITIONALLY, WE SHOW THE NUMBER OF DATA FLOWS DISCOVERED

STATICALLY ONLY.

Alias Class Dyn angr angr % Ghidra Ghidra % Miasm Miasm %
chmod

(G, G) 16 0 0.00% 0 0.00% 0 0.00%
(H, H) 2 0 0.00% 0 0.00% 1 50.00%
(S, S) 97 24 24.74% 2 2.06% 4 6.19%
unknown 3 1 33.33% 0 0.00% 0 0.00%
Static-only - 1, 331 - 363 - 22 -

cp
(F, F) 4 0 0.00% 0 0.00% 0 0.00%
(G, G) 3 0 0.00% 0 0.00% 0 0.00%
(H, H) 2 0 0.00% 0 0.00% 0 0.00%
(S, S) 511 128 25.05% 9 1.76% 13 2.54%
unknown 11 2 18.18% 2 18.18% 0 0.00%
Static-only - 1, 555 - 654 - 56 -

ls
(F, F) 1 0 0.00% 0 0.00% 0 0.00%
(G, G) 66 7 10.61% 4 6.06% 0 0.00%
(H, H) 1 0 0.00% 0 0.00% 0 0.00%
(S, S) 208 96 46.15% 10 4.81% 37 17.79%
unknown 10 1 10.00% 0 0.00% 1 10.00%
Static-only - 3, 030 - 572 - 94 -

Apache-Httpd
(F, F) 10 9 90.00% 0 0.00% 9 90.00%
(G, G) 11 8 72.73% 0 0.00% 0 0.00%
(H, H) 1 1 100.00% 0 0.00% 1 100.00%
(S, S) 188 133 70.74% 19 10.11% 188 100.00%
unknown 2 1 50.00% 0 0.00% 0 0.00%
Static-only - 125 - 70 - 36 -

Mujs
(F, F) 8 2 25.00% 0 0.00% 2 25.00%
(S, S) 1, 333 519 38.93% 25 1.88% 217 16.28%
unknown 6 3 50.00% 0 0.00% 0 0.00%
Static-only - 976 - 363 - 57 -

CJson
(S, S) 90 79 87.78% 7 7.78 90 100.00%
Static-only - 70 - 31 - 26 -

TABLE V
PERFORMANCE OF SELECTED APPROACHES OVER ALL TARGET

REAL-WORLD BINARIES.

angr Ghidra Miasm
True positives (lower bound) 1, 014 78 563
False positives (upper bound) 7, 087 2, 053 291
False negatives (lower bound) 1, 570 2, 506 2, 021
Precision (lower bound) 0.1252 0.0366 0.6593
Recall (estimation) 0.3924 0.0302 0.2179
F1 score (estimation) 0.1898 0.0331 0.3275

VI. IMPROVING THE STATE OF THE ART

In this section, we leverage the results of our evaluation
to improve the state of the art in static data-flow analysis.
For this purpose, we select angr as the data-flow analysis
implementation to investigate and improve. In Section VI-A,
we highlight specific behavior of angr that reveals opportu-
nities for improvement. In Section VI-B we introduce three
novel data-flow model extensions that serve as alternatives to
angr’s behavior and show in Section VI-C that these do indeed
yield better results. Finally, in Section VI-D, we show that
leveraging these model extensions in a vulnerability-discovery
context leads to an improved recovery of vulnerability-related
instructions.

A. Identifying improvement opportunities

In our evaluation of the selected approaches, we see in
Table V that angr has a significant number of false negatives
and assumed false positives. This matches what we see in

TABLE VI
THE CHANGE (IN BOLDFACE) INTRODUCED BY C1 AND C2 IN HOW ANGR

REPORTS DATA FLOWS INTERRUPTED BY A CALLEE FUNCTION.

angr angrC
Alias Class Ground Truth Callee Edge Edge % Edge Edge %
(F, F) Unconditional No 158 100.00% 158 100.00%
(F, F) Under-specified Yes 0 0.00% 180 100.00%
(G, G) Unconditional No 170 100.00% 170 100.00%
(G, G) Under-specified Yes 0 0.00% 168 100.00%
(H, H) Unconditional No 376 100.00% 376 100.00%
(H, H) Under-specified Yes 0 0.00% 376 100.00%
(S, S) Unconditional No 115 100.00% 115 100.00%
(S, S) Under-specified Yes 0 0.00% 135 100.00%

Table II, where angr reports many impossible data flows
(false positives). These false positives and negatives are a
clear indication that angr can be improved by fine-tuning its
restrictions for when to report data flows.

In order to show the specific improvement opportunities, we
present two additional categorizations of our microbenchmarks
in Tables VI and VII. Table VI shows all unconditional data
flows, paired with their underspecified counterparts, where
the target data flow is interrupted by a function call. We
show an example of such a pair of data flows in Listings 11
and 12. From Table VI, we clearly see that the presence
of a callee function causes angr to not report the target
data flow. Since the callee function introduces out-of-scope
modifications to the program state, the ground truth is under-
specified. Therefore, one could argue that disrupting all data
flows that cross the callee function is an acceptable approach
for an intra-procedural data-flow analysis to take. However,
in Section VI-B we propose an alternative approach and in
Section VI-C we show that this reflects real-world behavior
more accurately and therefore yields better results.

1 mov BYTE PTR [rsp-0x1],dil ; Write
2 mov al,BYTE PTR [rsp-0x1] ; Read

Listing 11. A fully-specified unconditional data flow between exists
between lines 1 and 2.

1 sub rsp,0x10
2 mov BYTE PTR [rsp+0xf],dil ; Write
3 call 11e9
4 mov al,BYTE PTR [rsp+0xf] ; Read
5 add rsp,0x10

Listing 12. The counterpart of Listing 11. The data flow is interrupted
by a function call (line 3), resulting in a underspecified data flow
between lines 2 and 4.

We highlight our second opportunity for improvement with
Table VII. In this table, we select all fully-specified data
flows and categorize these with respect to ground truth, and
whether or not an offset transformation was applied to both
the write and read pointer with equal offsets (discussed in
Section III-A2). We show an example of such a test case
in Listing 13. In Table VII, we see that angr reports fully-
specified, impossible data flows with distinct offsets. Since
these are fully-specified test cases, we can confirm angr’s
behavior as erroneous. In order to understand how to correct
this behavior, we investigate angr’s source code. Shortly,
angr exhibits this behavior due to how it treats undefined
memory addresses. Such an address is artificially concretized

TABLE VII
THE CHANGE (IN BOLDFACE) INTRODUCED BY F WITH RESPECT TO HOW

ANGR REPORTS DATA FLOWS BETWEEN POINTERS TRANSFORMED BY
EQUAL OR DISTINCT OFFSETS.

angr angrF
Alias Class Ground Truth Equal Offset Edge Edge % Edge Edge %
(F, F) Unconditional Yes 158 100.00% 158 100.00%
(F, F) Impossible No 72 100.00% 0 0.00%
(G, G) Unconditional Yes 170 100.00% 170 100.00%
(G, G) Impossible Yes 0 0.00% 0 0.00%
(G, G) Impossible No 0 0.00% 0 0.00%
(H, H) Unconditional Yes 376 100.00% 376 100.00%
(H, H) Impossible Yes 8, 480 100.00% 3, 402 40.12%
(H, H) Impossible No 4, 508 100.00% 475 10.54%
(S, S) Unconditional Yes 115 100.00% 115 100.00%
(S, S) Impossible Yes 717 38.88% 0 0.00%
(S, S) Impossible No 0 0.00% 0 0.00%

to a constant specified in angr’s source code. This effectively
assumes all undefined memory addresses alias. We propose
an alternative approach in Section VI-B and in Section VI-C
we show that this reflects real-world behavior more accurately
and therefore yields better results.

1 lea rax,[rsi+0x1]
2 mov QWORD PTR [rsp-0x8],rax
3 mov BYTE PTR [rsi],dil ; Write
4 mov rax,QWORD PTR [rsp-0x8]
5 mov al,BYTE PTR [rax] ; Read

Listing 13. A fully-specified impossible data flow exists between
instructions 3 and 5 due to the distinct offsets of register rsi that are
accessed: [rsi+0x0] vs. [rsi+0x1].

B. Data-flow model extensions

Our novel model extensions focus on addressing the limi-
tations discussed in Section VI-A. Two extensions introduce
more precise handling of the state of a caller function upon
return from a callee function, discussed in Section VI-B1.
The third model extension introduces a simple, but effective,
way to improve field sensitivity of static data-flow analysis,
as described in Section VI-B2. We show how these three
model extensions vastly improve the accuracy of static data-
flow analysis in Section VI.

1) Handling function calls:
a) C1: Leveraging calling convention: A calling conven-

tion defines how function parameters and return values are
passed between a caller function and its callee functions. We
propose a model extension that improves intra-procedural data-
flow analysis by incorporating information about the calling
convention implemented by the target function. Consider List-
ing 6, in which register rdi is used to pass a memory address
from the caller function f_target (line 3) to callee function
f_callee (line 8) as a function argument. By identifying
such function arguments, a policy can be used to determine
whether to preserve or kill definitions at these addresses. We
implement our model extensions C1 with a policy that naively
assumes callee functions have no impact on intra-procedural
data flows and therefore data flows should be preserved.

b) C2: Stack frame preservation: Conventionally, callee
functions are implemented to preserve and restore the stack
frame of their caller function. As the callee function is out
of scope for an intra-procedural analysis, our model extension

preserves the stack frame artificially for all callee functions.
This is challenging as it requires suppressing the effect that the
call instruction itself has on the stack frame. In architectures
such as x86_64, the call instruction pushes the subsequent
instruction address to the stack automatically, modifying the
stack pointer. The matching return instruction, popping this
instruction address and restoring the stack pointer, is out of
scope of analysis. Therefore, artificial restoration is necessary.

2) Field sensitivity:
a) F: Constant-based Field Disunion: Programming lan-

guages often allow the programmer to group related data
together into a structure (aka structs). Separate values in such
a struct are referred to as fields. In machine code, this is
usually implemented by storing a base address of the struct,
and accessing the fields by computing an offset from the
base address. The sizes of the different fields must be defined
at compile time, meaning the offsets to the different fields
are constant and can be observed in the assembly code. Our
extension assumes there is no data flow between two memory
access instructions using distinct constant offsets, as these
represent different fields.

In Section VI-A, we mentioned that angr handles undefined
memory addresses by concretizing them to a single arbitrary
address. We implement F such that instead of concretizing
the entire undefined address, we only concretize the undefined
registers used in the address expression. This keeps address
concretization sensitive to offsets, as required by F .

C. Evaluating our model extensions

We refer to angr extended with C1 and C2 as angrC, with F
as angrF and with all three extensions as angrCF .

We show the difference between angr and angrC using
our microbenchmarks in Table VI and similarly for angrF in
Table VII. Table VI shows that we have successfully extended
angr to preserve data flows that cross a callee function.
Table VII shows that we have reduced the cases where angr
reports impossible data flows when two distinct offsets are
employed. An exception here is with the (Heap, Heap)
alias class in which 475 (10.54%) impossible data flows with
distinct offsets are still reported. After manually investigating
a number of the remaining cases, we concluded that the reason
for this is because of multi-byte memory accesses. A multi-
byte memory access instruction writes or reads to memory at
a small range of addresses. Even though two distinct offsets
are used for the memory write and read instruction, the
ranges overlap. We also observe an unexpected improvement
gained by angrF reducing the reported impossible data flows
with equal offset transformations in the (Heap, Heap) and
(Stack, Stack) alias classes. We established that the
reason for this is a secondary offset introduced by the compiler
due to different data types accessed by the write pointer and
read pointer. Since angrF does not distinguish between offsets
added explicitly in the source code or by the compiler, it
correctly does not report the data flow.

We prove the real-world improvement of angrCF by re-
performing our evaluation on real-world test cases and show

TABLE VIII
THE CONCRETE IMPROVEMENT GAINED BY EXTENDING ANGR WITH OUR

MODEL EXTENSIONS C1 , C2 AND F .

angr angrCF
True positives (lower bound) 1, 014 2, 569
False positives (upper bound) 7, 087 5, 351
False negatives (lower bound) 1, 570 15
Precision (lower bound) 0.1252 0.3244
Recall (estimation) 0.3924 0.9942
F1 score (estimation) 0.1898 0.4891

the results in Table VIII. We see that angrCF has a higher
F1 score estimation than angr, Ghidra and Miasm. We gain a
significant increase in true positives and reduction in assumed
false positives. Indeed, angrCF achieves nearly perfect recall,
meaning any real data flow is likely to be reported by angrCF

with near guaranteed certainty. This is achieved, while simul-
taneously improving precision from 13% to 32%, i.e., while
reducing false positives.

D. Security impact of our model extensions

Data flow is a critical component of vulnerability discovery.
Many vulnerability discovery tools, such as BVdetector [17]
and BinHunter [18], rely on data flow to capture binary in-
structions relevant to the vulnerability. Improving the accuracy
of flow analysis can help identify the relevant instructions
more accurately and, in turn, help improve vulnerability dis-
covery. In this section, we present three case studies. In each
case study, we perform manual analysis on the source and
assembly code of a vulnerable program in order to identify
which instructions are relevant to the vulnerability in question,
and to identify the (ground truth) data flows between these
instructions. We select these examples to show that angrCF is
capable of identifying the data flows between vulnerability-
relevant instructions more accurately than the original angr.

1) CVE-2018-5785: This is an integer-overflow vulnerabil-
ity that occurred in openjpeg2 in the module responsible
for processing bitmap image files. The bitmap image file
format includes a device-independent bitmap (DIB) header,
which contains metadata about the image, for example its
width, height and color format. The first 4 bytes of this header
specify the size of the header. When this size is larger than 56
bytes, the header includes a section for bitmasks, which are
used to define which bits in a 32-bit pixel value correspond
to the red, green, blue and alpha (transparency) channels.
Listing 14 shows the part of the source code of function
bmp_read_info_header in the vulnerable module, re-
sponsible for parsing the bitmasks. In this code snippet, if
the header size is at least 56 bytes, the program reads four
bytes from the input file and combines them to reconstruct
the red-color bitmask value. This is done by shifting and
merging each byte into a 32-bit integer. This code is the
root cause of an integer overflow, because it allows the mask
values to be zero. This zero value is later used to calculate a
negative shift value of a left-shift operator (1 << -1). This is
undefined behavior and may cause crashes or security issues.
As shown in Listing 14, the value of biRedMask is used

as the left-hand operand in a subsequent operation, creating a
data flow across lines 3, 4, 5, and 6. Listing 15 presents the
corresponding assembly instructions for this code snippet. The
value of biRedMask, stored in memory at [RAX+0x28],
is used in instruction fb0d (line 13), creating a data flow
between instructions faf5 (line 6) and fb0d (line 13).
Similarly, data flows exist between instruction pairs (fb16,
fb2e) and (fb37, fb4f). While the original angr fails
to detect any of these data flows, angrCF successfully captures
all of them. This behavior is consistent across other mask
values as well, including biGreenMask, biBlueMask,
and biAlphaMask. In total angrCF was able to recover
12 additional true positive data flows between vulnerability-
related instructions.

1 if (header->biSize >= 56U) {
2

3 header->biRedMask = (OPJ_UINT32)getc(IN);
4 header->biRedMask |= (OPJ_UINT32)getc(IN) << 8;
5 header->biRedMask |= (OPJ_UINT32)getc(IN) << 16;
6 header->biRedMask |= (OPJ_UINT32)getc(IN) << 24;
7 }

Listing 14. Part of source code function bmp read info header with
integer overflow vulnerability

1 fae3: MOV RAX,qword ptr [RBP + local_10]
2 fae7: MOV RDI,RAX
3 faea: CALL <EXTERNAL>::_IO_getc
4 faef: MOV EDX,EAX
5 faf1: MOV RAX,qword ptr [RBP + local_18]
6 faf5: MOV dword ptr [RAX + 0x28],EDX ; Write-1
7 faf8: MOV RAX,qword ptr [RBP + local_10]
8 fafc: MOV RDI,RAX
9 faff: CALL <EXTERNAL>::_IO_getc

10 fb04: SHL EAX,0x8
11 fb07: MOV EDX,EAX
12 fb09: MOV RAX,qword ptr [RBP + local_18]
13 fb0d: MOV EAX,dword ptr [RAX + 0x28] ; read-1
14 fb10: OR EDX,EAX
15 fb12: MOV RAX,qword ptr [RBP + local_18]
16 fb16: MOV dword ptr [RAX + 0x28],EDX ; Write-2
17 fb19: MOV RAX,qword ptr [RBP + local_10]
18 fb1d: MOV RDI,RAX
19 fb20: CALL <EXTERNAL>::_IO_getc
20 fb25: SHL EAX,0x10
21 fb28: MOV EDX,EAX
22 fb2a: MOV RAX,qword ptr [RBP + local_18]
23 fb2e: MOV EAX,dword ptr [RAX + 0x28] ; read-2
24 fb31: OR EDX,EAX
25 fb33: MOV RAX,qword ptr [RBP + local_18]
26 fb37: MOV dword ptr [RAX + 0x28],EDX ; Write-3
27 fb3a: MOV RAX,qword ptr [RBP + local_10]
28 fb3e: MOV RDI,RAX
29 fb41: CALL <EXTERNAL>::_IO_getc
30 fb46: SHL EAX,0x18
31 fb49: MOV EDX,EAX
32 fb4b: MOV RAX,qword ptr [RBP + local_18]
33 fb4f: MOV EAX,dword ptr [RAX + 0x28] ; read-3
34 fb52: OR EDX,EAX

Listing 15. Corresponding assembly instructions for Listing 14, which
contains an integer overflow

2) CVE-2022-4904: This is a buffer overflow vulnerability
that occurred in the c-ares package, a C library designed
for asynchronous DNS (Domain Name System) resolution.
This vulnerability exists in the function config_sortlist,
responsible for parsing and storing the sortlist configuration
used in DNS resolution. We show a snippet of this function
to illustrate the vulnerability in Listing 16. In this listing,
the while loops on lines 3-4 and 12-13 are responsible for
extracting an IP address or range from the configuration file.
In line 5, the memcpy function copies q - s bytes from this IP
address in the str buffer to the ipbuf buffer. Note that no

check is placed on the number of bytes copied into the ipbuf
buffer. Therefore, if the number of bytes copied exceeds
the size of ipbuf (16 bytes), a buffer overflow occurs. A
similar issue arises on line 14 with the ipbufpfx buffer.
Tracking the values of q and str is crucial for detecting these
overflows, as they determine whether the buffer boundaries are
respected in lines 5 and 14.

Listing 17 shows part of the corresponding assembly in-
structions of the function config_sortlist. The values of
str and q used in the size function argument of memcpy
are first defined at addresses bb96 (line 3) and bba9 (line 6).
The value of str has been read in bc00 (line 13) and
bc0a (line 15) as arguments for the first memcpy function
and then again read at addresses bc93 (line 25) and bc9d
(line 27) for the second memcpy function, and remains
constant in between. This creates a data flow between (bb96,
bc00), (bb96, bc0a), (bb96, bc93), and (bb96, bc9d).
The original angr fails to identify the last two data flows
blocked by the memcpy function, while angrCF identifies all of
them correctly. Therefore, relying solely on angr’s data-flow
analysis may lead to missing critical instructions related to
the vulnerability. Our evaluation demonstrated that angrCF was
able to recover 36 true positive data flows involving vulnerable
instructions that were missed by the original angr.

1

2 q = str;
3 while (*q && *q != ’/’ && *q != ’;’ && !ISSPACE(*q))
4 q++;
5 memcpy(ipbuf, str, q-str);
6 ipbuf[q-str] = ’\0’;
7 /* Find the prefix */
8

9 if (*q == ’/’)
10 {
11 const char *str2 = q+1;
12 while (*q && *q != ’;’ && !ISSPACE(*q))
13 q++;
14 memcpy(ipbufpfx, str, q-str);
15 ipbufpfx[q-str] = ’\0’;
16 str = str2;
17 }

Listing 16. A small part of the source code of the function
config_sortlist

1 bb8e: MOV qword ptr [RBP + local_80],RDI
2 bb92: MOV qword ptr [RBP + local_88],RSI
3 bb96: MOV qword ptr [RBP + local_90],RDX ; Write-1
4 bb9d: JMP LAB_0010bf6c
5 bba2: MOV RAX,qword ptr [RBP + local_90]
6 bba9: MOV qword ptr [RBP + local_10],RAX
7 bbad: JMP LAB_0010bbb4
8 bbaf: ADD qword ptr [RBP + local_10],0x1
9 ...

10 bbf8: TEST EAX,EAX
11 bbfa: JZ LAB_0010bbaf
12 bbfc: MOV RAX,qword ptr [RBP + local_10]
13 bc00: SUB RAX,qword ptr [RBP + local_90]
14 bc07: MOV RDX,RAX
15 bc0a: MOV RCX,qword ptr [RBP + local_90]
16 bc11: LEA RAX=>local_58,[RBP + -0x50]
17 bc15: MOV RSI,RCX
18 bc18: MOV RDI,RAX
19 bc1b: CALL <EXTERNAL>::memcpy
20 ...
21 bc4d: ADD qword ptr [RBP + local_10],0x1
22 bc52: RAX, qword ptr [RBP + local_10]
23 ...
24 bc8f: MOV RAX,qword ptr [RBP + local_10]
25 bc93: SUB RAX,qword ptr [RBP + local_90] ; read-1
26 bc9a: MOV RDX,RAX
27 bc9d: MOV RCX,qword ptr [RBP + local_90]
28 bca4: LEA RAX=>local_78,[RBP + -0x70]
29 bca8: MOV RSI,RCX
30 bcab: MOV RDI,RAX
31 bcae: CALL <EXTERNAL>::memcpy

Listing 17. Corresponding assembly instructions for function
config_sortlist

3) CVE-2023-31130: This is a buffer underflow vulnera-
bility in the c-ares library’s ares_inet_net_pton()
function, which can be triggered by certain malformed IPv6
addresses. Due to the scope of the vulnerability, we only focus
on a small segment, shown in Listing 18. In this listing, the
numerical value of an IPv6 hexadecimal segment should be
stored in val. However, the function fails to constrain val
within the correct numerical bounds (0 ≤ val < 216). In
order to discover the possible inappropriate value for val,
it is essential to recover all instructions that contribute to
computing this value. Therefore, it is necessary to identify
the data flow in Listing 18 from line 1 to 2. Listing 19 shows
the corresponding assembly instructions for the source code.
Observe that there should be a data flow between (16608,
1661c). While the original angr does not report this data
flow, angrCF does. In total, angrCF discovers 27 more correct
data flows related to this vulnerability than the original angr.

1 val <<= 4;
2 val |= aresx_sztoui(pch - xdigits);
3 if (++digits > 4)
4 goto enoent;

Listing 18. Part of source code function inet net pton ipv6 that
contains buffer underflow vulnerability

1 16608: SHL dword ptr [RBP + local_30],0x4 ; Write
2 1660c: MOV RAX,qword ptr [RBP + local_48]
3 16610: SUB RAX,qword ptr [RBP + local_20]
4 16614: MOV RDI,RAX
5 16617: CALL aresx_sztoui
6 1661c: OR dword ptr [RBP + local_30],EAX ; read

Listing 19. Corresponding assmbly instructions for function
inet net pton ipv6 that contains buffer underflow vulnerability

VII. FUTURE WORK

In Section III-A2b we introduce the offset pointer transfor-
mation that operates by adding a value to the write or read
pointer of a target data flow. Additional pointer transforma-
tions can be implemented, such as killing (redefining) the def-
inition of the write instruction. Any additional transformation

will yield more insight into how effectively a static data-flow
analysis approach can identify data flows in case of such a
transformation.

In Section III-A1 we define a pointer origin for pointers
passed as function arguments, the foreign pointers and for
pointers returned from a memory allocation function, the heap
pointers. It is possible to bridge these two pointer origins with
pointers returned from functions other than memory allocation
functions. Such a pointer is essentially also a type of foreign
pointer, as no information is available regarding its definition
site.

VIII. RELATED WORK

To the best of our knowledge, we are the first to evaluate
static data-flow analysis approaches on an extensive data set
of binary executables. There have been a number of other
benchmarks with related, but orthogonal goals. Andriesse
et al. [19] and similarly Pang et al. [20], [21] evaluate
disassembler implementations on a data set consisting of
binaries extracted from the SPEC CPU 2006 benchmark, as
well as real-world binaries. Such an evaluation has a number
of overlapping goals with ours, such as establishing ground
truth information for real-world binaries, but disassembly is
a problem orthogonal to data-flow analysis. Di Federico et
al. evaluate CFG recovery by creating a data set of binaries
with ground truth function boundaries [22]. They compare
their novel approach REV.NG with other approaches toward
function boundary detection. Data-flow analysis involves a
number of challenges independent of control-flow analysis, as
discussed in Section II-B.

Hind [23] has surveyed a number of approximating alias
analysis solutions on source code. This work is complementary
to ours. It approaches the challenge from a theoretical perspec-
tive, while we focus on measuring the concrete strengths and
weaknesses of implementations of binary data-flow analysis.

Machiry et al. introduced AutoFacts, an approach to inject
synthetic facts into real-world programs [24]. These facts allow
for ground truth knowledge, that is both sound and complete,
regarding aliasing pointers. The injected facts, however, are
entirely separate from the logic of the program into which
they are injected. Our approach focuses on the other two ends
of this spectrum: testing microbenchmarks that are disjoint
from real-world program logic and testing data flows fully
intertwined in real-world program logic. Additionally, while
the AutoFacts data set is introduced, authors did not use it
to analyze the implementations of static program analysis. In
both cases [23], [24] the alias approximations are divided into
a number of dimensions, called sensitivities. Since our selected
approaches (angr, Miasm, Ghidra) do not allow for enabling
or disabling these sensitivities, we do not use AutoFacts in our
evaluation.

IX. CONCLUSION

In this paper, we introduced a novel approach to classify
data flows, namely alias classes. Using these alias classes as
a guide, we implemented an open source framework to create

a data set of both microbenchmarks and real-world binaries
to evaluate data-flow analysis implementations. We also im-
plement an open source framework to perform this evaluation.
Finally, we evaluate angr, Ghidra and Miasm using our data set
and framework and provide insights into limitations that each
engine has with regards to data flow analysis. By leveraging
this evaluation, we propose three model extensions to angr that
greatly improve accuracy of its data-flow analysis and can be
used to improve vulnerability discovery.

REFERENCES

[1] G. Balakrishnan and T. W. Reps, “WYSINWYX: what you
see is not what you execute,” ACM Trans. Program. Lang.
Syst., vol. 32, no. 6, pp. 23:1–23:84, 2010. [Online]. Available:
https://doi.org/10.1145/1749608.1749612

[2] angr, “The Angr binary analysis platform,” http://angr.io, 2016.
[3] Ghidra, “Ghidra,” https://ghidra-sre.org/, 2022.
[4] Miasm, “Miasm,” https://miasm.re, 2019.
[5] T. W. Reps, “Undecidability of context-sensitive data-independence

analysis,” ACM Trans. Program. Lang. Syst., vol. 22, no. 1, pp. 162–186,
2000. [Online]. Available: https://doi.org/10.1145/345099.345137

[6] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools, ser. Addison-Wesley series in computer science
/ World student series edition. Addison-Wesley, 1986. [Online].
Available: https://www.worldcat.org/oclc/12285707

[7] Á. Kiss, J. Jász, G. Lehotai, and T. Gyimóthy, “Interprocedural static
slicing of binary executables,” in 3rd IEEE International Workshop on
Source Code Analysis and Manipulation (SCAM 2003), 26-27 September
2003, Amsterdam, The Netherlands. IEEE Computer Society, 2003, p.
118. [Online]. Available: https://doi.org/10.1109/SCAM.2003.1238038

[8] G. Balakrishnan, T. W. Reps, D. Melski, and T. Teitelbaum,
“WYSINWYX: what you see is not what you execute,” in
Verified Software: Theories, Tools, Experiments, First IFIP TC
2/WG 2.3 Conference, VSTTE 2005, Zurich, Switzerland, October
10-13, 2005, Revised Selected Papers and Discussions, ser. Lecture
Notes in Computer Science, B. Meyer and J. Woodcock, Eds.,
vol. 4171. Springer, 2005, pp. 202–213. [Online]. Available:
https://doi.org/10.1007/978-3-540-69149-5 22

[9] H. G. Rice, “Classes of recursively enumerable sets and their decision
problems,” Transactions of the American Mathematical society, vol. 74,
no. 2, pp. 358–366, 1953.

[10] G. Ramalingam, “The undecidability of aliasing,” ACM Trans. Program.
Lang. Syst., vol. 16, no. 5, pp. 1467–1471, 1994. [Online]. Available:
https://doi.org/10.1145/186025.186041

[11] pyelftools, “Pyelftools,” https://github.com/eliben/pyelftools, 2023.
[12] coreutils, “Coreutils - GNU core utilities,”

https://www.gnu.org/software/coreutils/, 2023.
[13] apache, “Apache - HTTP Server Project,” https://httpd.apache.org/,

2023.
[14] Artifex, “MuJS,” https://mujs.com/, 2023.
[15] cjson, “cJSON - Ultralightweight JSON parser in ANSI C ,”

https://github.com/DaveGamble/cJSON, 2023.
[16] C. Luk, R. S. Cohn, R. Muth, H. Patil, A. Klauser, P. G. Lowney,

S. Wallace, V. J. Reddi, and K. M. Hazelwood, “Pin: building
customized program analysis tools with dynamic instrumentation,” in
Proceedings of the ACM SIGPLAN 2005 Conference on Programming
Language Design and Implementation, Chicago, IL, USA, June 12-15,
2005, V. Sarkar and M. W. Hall, Eds. ACM, 2005, pp. 190–200.
[Online]. Available: https://doi.org/10.1145/1065010.1065034

[17] J. Tian, W. Xing, and Z. Li, “Bvdetector: A program slice-
based binary code vulnerability intelligent detection system,” Inf.
Softw. Technol., vol. 123, p. 106289, 2020. [Online]. Available:
https://doi.org/10.1016/j.infsof.2020.106289

[18] S. Arasteh, J. Mirkovic, M. Raghothaman, and C. Hauser, “Binhunter:
A fine-grained graph representation for localizing vulnerabilities in
binary executables*,” in Annual Computer Security Applications
Conference, ACSAC 2024, Honolulu, HI, USA, December 9-
13, 2024. IEEE, 2024, pp. 1062–1074. [Online]. Available:
https://doi.org/10.1109/ACSAC63791.2024.00087

[19] D. Andriesse, X. Chen, V. van der Veen, A. Slowinska, and
H. Bos, “An in-depth analysis of disassembly on full-scale x86/x64
binaries,” in 25th USENIX Security Symposium, USENIX Security
16, Austin, TX, USA, August 10-12, 2016, T. Holz and S. Savage,
Eds. USENIX Association, 2016, pp. 583–600. [Online]. Avail-
able: https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/andriesse

[20] C. Pang, T. Zhang, R. Yu, B. Mao, and J. Xu, “Ground
truth for binary disassembly is not easy,” in 31st USENIX
Security Symposium, USENIX Security 2022, Boston, MA, USA,
August 10-12, 2022, K. R. B. Butler and K. Thomas, Eds.
USENIX Association, 2022, pp. 2479–2495. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity22/presentation/pang-
chengbin

[21] C. Pang, R. Yu, Y. Chen, E. Koskinen, G. Portokalidis, B. Mao,
and J. Xu, “Sok: All you ever wanted to know about x86/x64
binary disassembly but were afraid to ask,” in 42nd IEEE Symposium
on Security and Privacy, SP 2021, San Francisco, CA, USA,
24-27 May 2021. IEEE, 2021, pp. 833–851. [Online]. Available:
https://doi.org/10.1109/SP40001.2021.00012

[22] A. D. Federico, M. Payer, and G. Agosta, “rev.ng: a unified
binary analysis framework to recover cfgs and function boundaries,”
in Proceedings of the 26th International Conference on Compiler
Construction, Austin, TX, USA, February 5-6, 2017, P. Wu and
S. Hack, Eds. ACM, 2017, pp. 131–141. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3033028

[23] M. Hind, “Pointer analysis: haven’t we solved this problem
yet?” in Proceedings of the 2001 ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis For Software Tools and Engineering,
PASTE’01, Snowbird, Utah, USA, June 18-19, 2001, J. Field and
G. Snelting, Eds. ACM, 2001, pp. 54–61. [Online]. Available:
https://doi.org/10.1145/379605.379665

[24] A. Machiry, N. Redini, E. Gustafson, H. Aghakhani, C. Kruegel,
and G. Vigna, “Towards automatically generating a sound and
complete dataset for evaluating static analysis tools,” Workshop
on Binary Analysis Research (BAR), 2019. [Online]. Available:
https://par.nsf.gov/biblio/10155111

