arXiv:2506.00281v1 [cs.CR] 30 May 2025

Adversarial Threat Vectors and Risk Mitigation for
Retrieval-Augmented Generation Systems

Chris M. Ward, Josh Harguess

Fire Mountain Labs
San Diego, CA, USA
{chris, harguess}@firemountainlabs.com

ABSTRACT

Retrieval-Augmented Generation (RAG) systems, which integrate Large Language Models (LLMs) with external
knowledge sources, are vulnerable to a range of adversarial attack vectors. This paper examines the importance
of RAG systems through recent industry adoption trends and identifies the prominent attack vectors for RAG:
prompt injection, data poisoning, and adversarial query manipulation. We analyze these threats under risk
management lens, and propose robust prioritized control list that includes risk-mitigating actions like input
validation, adversarial training, and real-time monitoring.

Keywords: RAG systems, adversarial attacks, Pyramid of Pain, risk controls, AI Security, Risk Management,
Safe and Assured Al

1. INTRODUCTION

Retrieval-Augmented Generation (RAG) systems extend the capabilities of Large Language Models (LLMs) by
incorporating real-time, external data sources to enhance response relevance and accuracy. Since their introduc-
tion in 2020,' adoption has surged; recent reports indicate enterprise use exceeded 50% in 2024, up from 31%
the prior year.? RAG systems are increasingly embedded in critical industries such as finance, healthcare, and
legal services, creating new challenges for Al security.?

While RAG systems deliver flexible and up-to-date outputs, their reliance on external, mutable data in-
troduces unique security risks.* This creates a fundamental tension between functionality and security, where
protective measures must safeguard system integrity without unduly restricting utility.>8

In Sections 2.1 and 2.2, we provide a brief technical background on LLMs and RAG system architecture.
We discuss the AI Security Pyramid of Pain,” a structured framework for ranking controls/ mitigations by
robustness, in Section 2.3. Section 2.4 gives an overview of the MITRE Common Weakness Enumeration (CWE)
framework and its application to Al systems, distinguishing between system weaknesses and vulnerabilities.

Section 3 of this paper provides a detailed analysis centered on a structured threat modeling process process
applied to a generic Retrieval-Augmented Generation (RAG) system. The methodology unfolds in several key
stages, commencing with the definition of the system’s scope and objectives in Section 3.1, followed by a thorough
decomposition of its architecture to identify critical components and data flows in Section 3.2. Building on
this foundation, Section 3.3 identifies and examines significant risks to an operation RAG architecture, such as
sensitive information disclosure and RAG system poisoning, referencing frameworks like MITRE ATLAS and the
OWASP Top 10 for LLM Applications. We assess and prioritize these identified risks, including a quantification
of inherent risk, in Section 3.4. We discuss risk mitigation controls, and their prioritization using the Al Security
Pyramid of Pain to maximize adversary disruption in Sections 3.5 and 3.5.7 respectively. We examine remaining
residual risk in Section 3.5.8 and validate the effectiveness of our mitigation strategy. We discuss key findings
and propose areas for future work in Section 4. We conclude our analysis in Section 5.

2. BACKGROUND

We begin by exploring Large Language Models (LLMs), as they are central to our methodology and findings,
covering their architectural principles, training paradigms, and overall impact.

https://arxiv.org/abs/2506.00281v1

2.1 Large Language Models

In recent years, Large Language Models (LLMs) have emerged as a dominant paradigm in natural language
processing, built upon the transformer architecture introduced by Vaswani et al.'® These models implement
a self-attention mechanism that enables parallel processing of sequential data while maintaining awareness of
contextual relationships between tokens (words in sentence, or subsections of an image). Modern LLMs typi-
cally employ decoder-only architectures with autoregressive training objectives, optimizing next-token prediction
across massive text corpora.!! The computational backbone of LLMs consists of multi-head self-attention layers
alternating with feed-forward neural networks. Each attention head computes query, key, and value projections
to model token interactions across variable distances. This architecture enables the capture of complex linguistic
patterns, including long-range dependencies, syntactic structures, and semantic relationships.

2.2 Retrieval-Augmented Generation (RAG)

RAG systems are designed to enhance the capabilities of large language models (LLMs) by integrating real-time
data retrieval mechanisms. This allows RAG systems to generate responses that are not only based on pre-trained
knowledge but also enriched with up-to-date, context-specific information retrieved from external sources. The
RAG architecture, as illustrated in Figure 1, typically comprises several main conceptual components:

Embedding
User Ingest LLM Em‘gfzfitdoiz s Save
- g Embeddings
s : {E
Ingest Generate >
@ Embeddings
Vector
d DB
AI Curate Search information
Engineer Data for query
Query Al App J
==
S 0
—o p >N
User Provide response GenATl Send query + prompt + enhanced context
App Instruction
LLM
Client Location Cloud / On-Premesis

Figure 1: A generalized Retrieval Augmented Generation (RAG) Architecture

Retrieval Component: The retrieval phase fetches relevant information from external sources such as
structured databases, web data, internal documents, or specialized repositories.

Ezample: When a user asks a technical question, the system retrieves internal design documents or API
specifications as supporting context.

Generative Component: The generative model, typically a large language model, combines the user
query with the retrieved context to produce an accurate, contextually relevant response.

Ezxample: Given a user query and retrieved code documentation, the model generates a natural language
explanation of how a function works.

Embedding Model: Embedding LLMs convert text into compact vector representations that compress
semantic information.

Example: A transformer-based embedding model transforms an academic paper’s abstract into a vector,
enabling efficient clustering and retrieval of similar research.

RAG architecture improves on traditional language models by integrating live data retrieval with text gen-
eration. This yields more current and accurate answers, particularly for time-sensitive queries. It can also be
tailored with domain-specific knowledge for areas such as customer support, healthcare, finance, and research.
By accessing up-to-date information, the system stays relevant without the need for resource-intensive model
training or fine-tuning.

While RAG systems offer powerful advantages, their dependence on external data sources also introduces
unique security challenges. The retrieval process, in particular, can expose the system to vulnerabilities if the
external data is tampered with or contains malicious content. Understanding this Al architecture as a holistic
system is crucial for identifying and mitigating these risks.

2.3 AI Security Pyramid of Pain

The AI Security Pyramid of Pain? (shown in Figure 2) is a structured framework for categorizing and prioritizing
adversarial countermeasures for Al-enabled systems. By providing a hierarchical approach to driving down risk,
the framework enables organizations to systematically address weaknesses and vulnerabilities across multiple
layers, from foundational data integrity controls to undermining the adversaries’ tactical playbook.

Data

A Provenance
Robustness of countermeasures
i.e. amount of ‘“pain” dealt to adversary Adversarial Inputs
; ; / Adversarial Tools \
/ Al System Performance \

Data Integrity

Figure 2: The AI Security Pyramid of Pain (Ward et. al.”)

We apply the AI Security Pyramid of Pain to our generic RAG system in order to enhance operational
resilience by prioritizing more robust defenses. This approach not only addresses known weaknesses, but also
anticipates an evolving adversarial landscape, resulting in an adaptive security strategy for our RAG system.

2.4 Common Weaknesses

The CWE catalog helps identify and classify weaknesses in software, hardware, and other digital systems. Cre-
ated in 2006, CWE provides a standardized way to describe security flaws so that developers, businesses, and
researchers can work toward fixing them.'? In recent years, CWE has expanded its focus to include Al-related
weaknesses. '3

Because configuration management is complex for Al systems, we advocate for the use of the MITRE Common
Weakness Enumeration (CWE) framework, which is more generalizable and better suited than vulnerability
mapping (CVSS, etc) in the Al domain.'* 15

The CWE framework prefers the term “weakness” over “vulnerability” because it focuses on potential security
flaws that could lead to vulnerabilities if not addressed. A weakness represents an underlying issue in software,

Table 1: Comparison of Weakness vs. Vulnerability

weakness has been exploited or
has led to a security breach.

Term Definition Example

Weakness A flaw, mistake, or security over- | A web application accepts user
sight in design, code, or system | input without proper validation.
logic that could potentially be | (CWE-20: Improper Input Vali-
exploited. dation'®)

Vulnerability | A confirmed instance where a | An attacker injects malicious

SQL commands due to lack of
input validation, leading to data

leaks. (CVE-2023-5423: SQL In-
jection in Online Pizza Ordering
System!")

AT models, or hardware, whereas a vulnerability refers to an actively exploitable instance of a weakness. Table 1
highlights the core distinctions between these two terms with examples.

CWE provides a pathway for cataloging potential systemic issues before they become exploitable, recogniz-
ing that not all weaknesses immediately manifest as security vulnerabilities but can still compromise system
reliability, performance, and information integrity. This approach provides a broader coverage than traditional
vulnerability assessments. Table 2 provides two concrete examples of Al weaknesses covered by the CWE pro-
gram.

Table 2: Examples of Al Weaknesses and Their Potential Exploits
Weakness (CWE ID) Description Potential Vulnerability
CWE-1039: Inadequate Han- | Al fails to detect subtle manipu- | A facial recognition system is
dling of Adversarial Input'® lations in input data. tricked into granting unautho-
rized access using an altered im-
age.
Attackers manipulate Al re-
sponses to spread false news or
harmful content.

CWE-1426: Improper Validation
of AI Output'?

Al-generated text is not properly
checked, leading to misinforma-
tion or bias.

By focusing on weaknesses, CWE helps organizations improve system security before vulnerabilities emerge.
This is especially important in AI, where potential weaknesses like incorrect outputs,'® or inadequate handling
of adversarial inputs,'® can lead to serious security and ethical concerns if not addressed early.

3. ANALYSIS

Our analysis applies a generalized threat modeling process that can be applied to Al-enabled systems. Inspired
by Microsoft’s Security Development Lifecycle (SDL) threat modeling methodology?° and prior work in Doyle, et
al.,! this approach decomposes the system, identifies threats, and prioritizes them based on real-world likelihood
and impact. This process, shown in Figure 3, enables the identification of high-impact, system-level threats; it
supports actionable mitigation strategies tailored to the dynamics of generative Al

1. 2. 3. 4. 5.
Define Scope Decompose Identify Threat Assess & Implement
& the Vectors Prioritize Controls
Objectives > System > MITRE ATLAS, P> Risks > & Validate
Use cases, Data flows, OWASP OWASP factors, Pyramid of Pain,
Assets, Components, Top 10 for LLM Likelihood x Impact, Controls,
Objectives Users (2025) Inherent risk Residual risk

Figure 3: A generalized threat modeling process used in our analysis.

We conduct five sequential stages of analysis: (1) define scope and objectives; (2) decompose system architec-
ture and data flows; (3) identify threat vectors using MITRE ATLAS and OWASP Top 10 for LLMs; (4) assess
and prioritize risks based on OWASP factors, and inherent risk (likelihood x impact), ; and (5) implement con-
trols, validate, and measure residual risk. The process can be repeated until risks are drawn-down to acceptable
levels.

3.1 Define the Scope and Objectives

Our simple RAG is designed to integrate natural language understanding with access to an enterprise document
corpus. As shown in Figure 1, the architecture accepts user queries via a chat interface, retrieves semantically
relevant documents from a vector database, and injects both the prompt and retrieved context into the LLM’s
input. The system components include embedding generation pipelines, retrieval APIs, document ingestion
workflows, and the LLM inference layer - each introducing unique risks related to data exposure, integrity, and
model behavior.

The business use case for the RAG system is enterprise knowledge management. It supports employees
by providing natural-language access to internal documentation such as policies, procedures, product manuals,
and historical records. By replacing keyword-based search with contextualized responses, the system improves
employee efficiency, reduces support latency, and ensures consistent access to authoritative information across
business units.

3.2 Decompose the System

To understand where attack vectors may emerge in a system, we decompose the RAG system into its functional
components and analyze how data flows through each. Each component changes the attack surfaces, introducing
new vectors like document ingestion, embedding generation, prompt construction, and LLM inference.

The attack surface expands across the ingestion of untrusted content, construction of retrieval indexes, seri-
alization of vector representations, and retrieval logic. Additionally, the LLM interface itself becomes a target
due to its capability to interpret and act upon adversarially crafted inputs.

Lacking a pre-existing architecture diagram, one may opt to construct a high-level visual representation,
document the system’s components and data flows, or infer the architectural design by analyzing available
technical artifacts, source code, and Open source intelligence (OSINT). Figure 4 illustrates the attack surface
overlaid on the system’s logical architecture. This diagram highlights potential adversary access points, such
as document upload pipelines, embedding APIs, vector store queries, prompt injection vectors, and inference
endpoints.

3.3 Identify Threat Vectors

This section first introduces two primary threat models and then maps them to the relevant risk layers within a
RAG system. The objective is to provide a clear understanding of how specific adversarial techniques align with
vulnerabilities across distinct operational domains. In Figure 4, we map the comprehensive RAG attack surface,
detailing how adversaries can leverage weaknesses and vulnerabilities across ingestion, retrieval, and generation
components to compromise system integrity. While a broader range of threat models could (and should) be
considered, this focus allows for a thorough examination pertinent to the core objectives and constraints of this
work.

Embedding
User LLM Vecto.r
Embeddings
=
I A=
L
Vector
Al Curated bB
Engineer Data
I
O
6. 8
User Gen AI .
App Instruction
LLM U
Client Location Cloud / On-Premises n

Figure 4: RAG attack surface overlay. Approximate entry points for common weaknesses are shown.

3.3.1 Threat Model I: Sensitive Information Disclosure in RAG Systems

This threat model focuses on adversarial efforts to extract or expose confidential information from RAG systems.
These systems, which combine LLMs with external knowledge retrieval components, are vulnerable to prompt-
based manipulation. Attackers often employ direct or indirect prompt injection techniques to manipulate retrieval
queries, resulting in the unintended disclosure of sensitive content.

Sensitive information disclosure typically involves the exposure of Personally Identifiable Information (PII),
financial records, proprietary algorithms, internal business logic, or system-level prompts. Vulnerabilities in
prompt handling and insufficient guardrails around retrieved content allow LLMs to surface confidential infor-
mation not intended for output.

Key adversarial techniques include:

e Membership inference attacks to identify whether specific records were used during model training.??
e Model inversion attacks that reconstruct training data from model outputs.?3

e System Prompt leakage, where system or retrieval prompts containing confidential information are
exposed to the end user.2%2°

¢ Embedding exploitation, where attackers manipulate or query vector stores to extract hidden data.26:27

Figure 5a illustrates how adversaries craft poisoned retrieval queries and inject malicious tokens into the
generation process, while Figure 5b integrates these steps to depict the end-to-end attack flow.

These attacks target either data privacy, exposing training data, or model privacy. revealing internal model
configurations, like system prompts. In RAG systems, the tight coupling between retrieval and generation
increases the risk of cascading leaks across components.

3.3.2 Threat Model II: RAG System Poisoning

This threat model focuses on adversarial attempts to compromise the integrity and reliability of RAG systems
by introducing malicious inputs or manipulating model parameters. Poisoning attacks are designed to degrade
performance, embed hidden behaviors, or enable persistent leakage of sensitive information.*2%2% In RAG
systems, poisoning can occur across multiple stages of the Al pipeline, including;:

Embedding Vector
LLM Embeddings Save

' Embeddings
@® — ¢ =
Ingest Generate >
@ Embeddings

Curated
Search information

Data X
@ @ @ for query
Query AT App
N
@ e o

User Provide response GenAlI Send query + prompt + enhanced context]
App

Instruction

.
@ @ Client Location Cloud / On-Premises

(a) RAG Architecture labeled with Tactics, Techniques, and Procedures (TTPs) for Sensitive Information
Disclosure Attack

ML Model Privil Def i
Reconnaissance | Development Initial Access oce Execution - clense Discovery Exfiltration Impact
Access Escalation Evasion

1. Search 2. Obtain 4. Exploit 5. ML-Enabled 6. LLM 7. LLM 8. LLM 9. Gener- 10. LLM 11. Exter-
Victim-Owned Capabilities Public-Facing Product Prompt Jailbreak Jailbreak ative AT Data Leakage nal Harms
‘Websites Applicati or Service Injection - -
3. LLM Financial Harm
Prompt Direct -
i Reputational
Cratting Harm
Societal Harm
12. ML
Intellectual
Property Theft

(b) Sensitive Information Disclosure Attack flow & la MITRE ATLAS
Figure 5: Mapping Tactics, Techniques, and Procedures (TTPs) used in an example Sensitive Information
Exfiltration campaign

e Training and Fine-Tuning: Adversaries inject corrupted data into the initial training or fine-tuning
process, compromising model weights and behaviors.?®

e Document Ingestion: Poisoned documents are inserted into ingestion pipelines, polluting the retrieval
corpus and influencing downstream responses.*

e Retrieval and Indexing: Attackers manipulate retrieval datasets or vector stores to embed adversarial
payloads or mislead context retrieval.?”>28

e Prompt Engineering and System Prompts: Maliciously crafted prompts or poisoned system instruc-
tions are introduced to destabilize output or bypass controls.?°

e Downstream Applications: Third-party tools or integrated apps relying on model output become vec-
tors for supply chain risk.3!

External vs. Insider Threat Paths Figure 6 illustrates two distinct RAG poisoning attack paths: (6a) an
external threat actor and (6b) an insider threat or unwitting insider. Figure 6a shows how an external adversary,
operating outside the organizational boundary, targets public-facing ingestion points, typically exploiting insecure
document upload interfaces or submitting poisoned data through legitimate channels. This actor must overcome
perimeter defenses to inject malicious content, relying on open attack surfaces and indirect access to the retrieval
pipeline.

In contrast, Figure 6b maps the attack path of an insider threat or an unwitting insider. Here, the adversary
operates from within the trusted environment, often as an employee or contractor with direct access to ingestion
processes or document repositories. This positioning allows the threat actor to bypass certain external security
controls, making it easier to insert poisoned data or manipulate vector embeddings with fewer immediate bar-
riers. In some cases, well-meaning users may unintentionally contribute to poisoning by uploading unvetted or
compromised documents without malicious intent.

These two pathways underscore a critical security takeaway: while external attacks tend to focus on exploiting
exposed APIs and interfaces, insider threats leverage trusted roles and access rights, often requiring different
detection and mitigation strategies. As a result, effective RAG defense must address both perimeter-focused and
internal governance weaknesses, embedding continuous validation, monitoring, and access controls throughout
the entire data lifecycle.

A key distinction is that insider threats, whether malicious or unwitting, fundamentally accelerate the attack
process. Unlike external actors, who must progress through initial stages such as reconnaissance, capability
development, and system discovery (steps 1-5 in Figure 6c¢), insiders are already positioned past these hurdles.
They can move directly to poisoning activities (step 6 onward), drastically reducing the time-to-impact and
the effort required to compromise the system. This acceleration makes insider-driven poisoning both faster and
potentially harder to detect unless strong internal safeguards are in place.

3.4 Assess and Identify Risks

The impacts of sensitive information disclosure include privacy violations, regulatory non-compliance, legal risk,
reputational damage, and erosion of stakeholder trust. These risks are documented in OWASP Top 10 for LLM
Applications,?? and align with multiple adversarial techniques from the MITRE ATLAS framework.?? Figure
7 shows the inherent risk assessment for sensitive information disclosure, presenting the likelihood and impact
scores for each risk vector before any mitigations are applied.

The consequences of poisoning attacks include biased or unreliable outputs, covert activation of hidden
behaviors (such as backdoors), degraded system accuracy, and violations of policy or compliance mandates. These
issues can remain undetected for extended periods, undermining trust in the system and leading to significant
operational, reputational, and legal risks. Key assets at risk include model weights, vector embeddings, retrieval
datasets, and the integrity of generated responses. We summarize the inherent risk factors for RAG system
poisoning, including threat agent, vulnerability, and impact components, in the risk scoring model presented in
Figure 8.

Emi’zizli“g Vector Save
Ingest Bmbeddings 1 1 dings

User
N4
® ® 1=
[c—1
Generate 4 =
Embeddings
N Vector
DB
‘ Cgra;ted Scarch information
ata for query
Query AT App
. =
‘ = WM
| — ™
User Provide response GenAl Send query — prompt + enhanced context
App Instruction
’ . -
Client Location Cloud / On-Premises

(a) RAG Architecture labeled with Tactics, Techniques, and Procedures (TTPs) for RAG Poisoning Attack via
External Threat

Tt @), s
Ingest Embeddi "
& moeetngs Embeddings

v v‘

N N4
° S ° =
Ingest Generate =
. Embeddings V.
ector
DB
Al Curated Scarch information

Engineer Data ‘ P
or query
Query AI App ‘

User Provide response GenAl

D
It

t.
Send query | prompt | enhanced context
Instruction

A
‘ PP LLM
Client Location Cloud / On-Premises

(b) RAG Architecture labeled with Tactics, Techniques, and Procedures (TTPs) for RAG Poisoning Attack via
Insider Threat or Unwitting Insider

nitial Access PrivilegeBecatation
- - - - - - Financial Harm

Special Char- ‘

Reconnaissance [ResourceDevelopment

acter Sets

System
Instruction
Keywords

(c) RAG Poisoning Attack Flow & la MITRE ATLAS
Figure 6: Mapping Tactics, Techniques, and Procedures (TTPs) used in an example RAG Poisoning campaign

Likelihood Factors

Skill Level: 1 Ease of Discovery: 9

Motive: 7 Ease of Exploit: 9

Opportunity: 7 Awareness: 9

Size: 7 Intrusion Detection: 3

Threat Agent Factors (TAF: 5.5) Vulnerability Factors (VF: 7.5)

Impact Factors

Loss of Confidentiality: 4 Financial Damage: 6

Loss of Integrity: 4 Reputation Damage: 3

Loss of Availability: 0 Non-compliance: 3

Loss of Accountability: 7 Privacy Violation: 0

Technical Impact Factors (TIF: 3.75) Business Impact Factors (BIF: 3)

Risk Summary

Likelihood Factor: 6.5 \ Impact Factor: 3

Overall Risk Severity: High (19.5)

Figure 7: Inherent Risk Scoring for Sensitive Information Disclosure

Likelihood Factors

Skill Level: 5 Ease of Discovery: 6
Motive: 7 Ease of Exploit: 9
Opportunity: 7 Awareness: 9
Size: 7 Intrusion Detection: 3
Threat Agent Factors (TAF: 6.5) Vulnerability Factors (VF: 6.75)
Impact Factors
Loss of Confidentiality: 4 Financial Damage: 6
Loss of Integrity: 4 Reputation Damage: 3
Loss of Availability: 0 Non-compliance: 3
Loss of Accountability: 7 Privacy Violation: 0
Technical Impact Factors (TIF: 3.75) Business Impact Factors (BIF: 3)
Risk Summary
Likelihood Factor: 6.63 | Impact Factor: 3

Overall Risk Severity: High (19.88)

Figure 8: Inherent Risk Scoring for RAG Poisoning

3.5 Implement Controls and Validate

Because these risks are manifested from system weaknesses, vulnerabilities in RAG systems cannot be remedied
through a single patch or isolated update. Unlike traditional software flaws that may be resolved with targeted
fixes, the risks in RAG systems span multiple layers from input handling to data governance and lifecycle
management. This inherent complexity, combined with evolving attack techniques, necessitates a comprehensive
mitigation strategy. Here we explore applicable risk controls for RAG systems. We show residual risk and
estimated control efficacy in Figures 9, 10 respectively.

3.5.1 Input Validation and Sanitization

Input validation and sanitization involves enforcing rigorous checks on all incoming prompts and queries to
identify and block malicious or malformed inputs. Clearly defined acceptable formats and character sets should
be established, while known malicious patterns are systematically filtered out. Automated filters, leveraging
either machine-learning techniques or rule-based systems, are implemented to proactively flag suspicious tokens,
sequences, or prompts prior to processing. Effective controls here drive down Fase of Fxploit, Opportunity, and
Loss of Integrity factors.

3.5.2 Adversarial Training and Testing

Adversarial Training and Testing requires the generation of synthetic attack scenarios, such as deliberate prompt
injection attempts, to continuously assess the model’s resilience. Incorporating adversarially perturbed data dur-
ing fine-tuning hardens the model against real-world threats. Additionally, penetration testing, often conducted
by a red team, provides practical insights into hidden vulnerabilities in data pipelines and model interfaces.
These practices can mitigate risks by increasing the Skill Level required to exploit vulnerabilities (raising it from
“some technical skills” to “security penetration skills”), reducing the Fase of Exploit (moving it from “easy” or
“automated tools available” toward “difficult” or “theoretical”), and limiting the Size of potential threat agents
(narrowing from “anonymous internet users” to more specialized attackers).

3.5.3 Real-Time Monitoring and Detection

Real-time monitoring and detection involve continuous scrutiny of query patterns and outputs to identify anoma-
lies, such as unusually frequent prompt requests or content irregularities. Detailed logging of user interactions
facilitates forensic analysis and compliance reporting. Integrating these logs with Security Information and Event
Management (SIEM) systems further enables automated alerts whenever suspicious activities are detected.

Real-time monitoring and detection combine continuous telemetry collection with behaviour-based analytics
to spot abuse patterns the moment they emerge. Every inference request, retrieval query, and model output is
timestamped, tagged with a unique session ID, and pushed into a centralized log pipeline.

Statistical baselining (bursty prompt-submission, sudden spikes in retrieval-error rates, or output entropies
outside the learned norm. These signals are enriched with user- and host-level context and forwarded to a STEM
for correlation against other enterprise events. Automated response logic (Security Orchestration, Automation,
and Response (SOAR) playbooks) can throttle, sandbox, or temporarily block the offending principal while
human analysts investigate. From an OWASP risk-rating lens, robust monitoring decreases Intrusion Detection
scores and indirectly raises the Skill Level required for a successful exploit (because attackers must now evade
layered anomaly detectors), it also shrinks Loss of Accountability by ensuring high-fidelity audit trails are available
for forensic reconstruction.

3.5.4 Data Governance and Curation

A cross-functional data-governance committee defines the approved data sources and rule sets, reviews exceptions,
and audits compliance on a regular cadence. Under this framework, every dataset that can influence retrieval
or model fine-tuning is subjected to strict hygiene controls. External corpora first pass through a secure staging
zone where schema validation, MIME-type whitelisting, and multi-engine malware scanning run in parallel.
Content then undergoes automated and/or manual review to strip sensitive information such as Personally
Identifiable Information (PII), profanity, and policy-violating text, followed by fact-consistency checks against
trusted references. Only documents and artifacts that clear every gate are version-pinned, cryptographically

signed, and stored immutably; provenance metadata (origin URL, hash, ingestion timestamp) is written to a
tamper-evident ledger to preserve chain-of-custody. Role-based access controls and encrypted transfer protocols
prevent unauthorized edits and eavesdropping. Collectively, these controls slash the Opportunity available to
threat actors, raise the Fase of Ezploit bar for data-poisoning attacks, and curb both Loss of Integrity and
downstream Reputation Damage or Privacy Violations by ensuring that only vetted, traceable knowledge reaches
production.

3.5.5 AI Lifecycle Management and Machine Learning Operations (MLOps)

Lifecycle management ensures that AI systems remain secure, reliable, and effective from initial development
through sustained operation. A robust, assured deployment pipeline, anchored in continuous integration and
continuous deployment (CI/CD) practices, is critical. The CRISP-ML(Q) framework3! provides an excellent
foundation for structuring this full lifecycle, emphasizing traceability, transparency, and quality assurance at
every stage.

Phase 1. Business & Data Understanding Document requirements, success criteria, data-handling
rules, and regulatory limits before any coding starts, so that every later phase can be checked against the same
standards. These actions clarify acceptable use up-front, which lowers Opportunity for unnecessary, unauthorized,
or out-of-scope data collection and reduces downstream Reputation Damage if the project is questioned.

Phase 2. Data Engineering Data engineering processes establish immutable provenance and traceability
for data from initial collection through final storage. Data scientists and engineers carefully curate datasets to
ensure effective model training, reduce biases, and maintain data quality standards. Each stage produces a Data
Card, documenting data origin, transformations, and integrity checks, directly informing the AI System Bill of
Materials (ATl BOM). Measures here significantly reduce adversarial Opportunity for data tampering and raise
the Fase of Fxploit threshold for dependency-based attacks.

Phase 3. Model Engineering With respect to Al safety and security, static analysis and test suites are
used to identify vulnerabilities, assess common weaknesses, evaluate bias and limitations in this phase. Perfor-
mance benchmarks are established to enable ongoing monitoring for drift, anomalies, and degraded inference
quality. Models are versioned and frozen upon release to ensure reproducibility and auditability, with all key
details captured in a Model Card, which is integrated into the AI System Bill of Materials (AI BOM). Early
defect detection in this phase shifts Fase of Exploit from “easy” toward “difficult,” maintaining a low potential
for Loss of Integrity.

Phase 4. Model Evaluation After training, models undergo rigorous evaluation to validate performance,
robustness, and suitability for deployment. Testing is performed on held-out datasets to confirm generalization,
while additional stress tests using noisy, adversarial, or edge-case data assess the model’s resilience. Evaluation
criteria are aligned with business and regulatory requirements, covering accuracy, fairness, explainability, and
resource efficiency. Where applicable, explainability tools are applied to ensure transparency and foster trust,
especially in high-stakes domains. Evaluation results, along with reproducibility checks (e.g., multiple random
seeds), are documented thoroughly in the Model Card to support oversight and compliance. Careful evaluation at
this stage helps catch hidden defects, further reducing Loss of Integrity potential and increasing system resilience
before production deployment.

Phase 5. Deployment New models are deployed gradually, initially serving a small test group. Key
health signals—such as performance, error rates, and latency—are closely monitored; if metrics remain within
acceptable thresholds, rollout proceeds to broader audiences. If issues arise, rapid rollback mechanisms restore
the previous stable version with minimal delay. Progressive rollout strategies limit the blast radius of failures,
reducing Loss of Awailability and minimizing potential Financial Damage or Reputation Damage from faulty
releases.

Phase 6. Monitoring & Maintenance Once deployed, ML models require continuous monitoring to
ensure stable, reliable performance in real-world conditions. A primary risk is model staleness, where accuracy
and effectiveness degrade as the model encounters new or shifting data patterns. Performance can also be
impacted by changes in hardware or software environments.

Best practice follows the Continued Model Evaluation pattern: models are routinely evaluated against fresh
data to detect drift, anomalies, or performance degradation early.?> Monitoring insights drive decisions on
retraining, model replacement, or process adjustments to maintain alignment with business objectives. All
configuration changes and retraining cycles are tracked in version control and require peer approval, ensuring
transparency and governance. Continuous evaluation and disciplined maintenance keep the Fase of Exploit high
for would-be attackers and minimize the window for successful attacks, sustaining a low overall Likelihood of
compromise.

3.5.6 Incident Response and Recovery

Incident Response is a critical control that provides a structured, rehearsed plan for detecting, containing, and re-
covering from security incidents. In the context of RAG systems, where data and model integrity are paramount,
the Incident Response Plan (IRP) ensures that any breach, whether through data poisoning, model tampering,
or infrastructure compromise, is rapidly addressed to minimize damage. The Incident Response Plan outlines
specific procedures: immediate isolation of compromised components or data sources, invocation of automated
and manual playbooks, and coordinated response across security, IT, and AI/ML teams. Maintaining secure, up
to date backups of critical models, datasets, and configuration files is essential to restore operations quickly and
limit downtime. Beyond technical response, the Incident Response Plan defines roles and responsibilities, escala-
tion paths, legal and compliance notification requirements, and communication strategies to manage stakeholder
expectations and preserve organizational trust. Post incident reviews (root cause analysis and lessons learned)
are mandatory steps, feeding improvements back into the overall security posture. This process strengthens
resilience by identifying control gaps, fine tuning detection capabilities, and iterating on response readiness. As
a formal risk control, Incident Response and Recovery mitigate potential Loss of Awvailability, Integrity, and
Reputation Damage by ensuring that even when preventive defenses fail, impact is contained and recovery is
swift, preserving business continuity and regulatory compliance.

3.5.7 Control Prioritization: AI Security Pyramid of Pain Analysis

The AI Security Pyramid of Pain prioritizes controls based on how robust they are and the degree of disruption,
or “pain”, they inflict on adversaries. At the lower levels of the pyramid, data integrity measures are relatively
easy for an adversary to adapt to; these issues can typically be patched with targeted fixes, and adversaries
can quickly modify their tactics. In contrast, higher up in the pyramid lie threats that are intertwined with
the adversary’s tactics, techniques, and procedures (TTPs). Mitigations at these levels, such as robust data
governance and comprehensive adversarial training, force adversaries to fundamentally alter their operational
approach, which in turn imposes significant costs and delays on their efforts.

By aligning risk mitigation strategies with the upper tiers of the pyramid, organizations can impose a greater
operational burden on adversaries. Controls that target the intrinsic aspects of data poisoning or adversarial
query manipulation, for example, require adversaries to redesign their entire attack methodology rather than
simply circumvent a superficial patch. This layered defense strategy not only strengthens the overall security
posture of RAG systems but also maximizes the adversary’s difficulty in resourcing and sustaining effective
attacks.

Based on the AI Security Pyramid of Pain, the Table 3 ranks the controls by the degree of disruption they
inflict on adversaries. Controls at the top force adversaries to fundamentally change their tactics, while those
lower in the ranking are more easily bypassed or reactive in nature.

Many of the implemented controls and CRISP-ML lifecycle phases span multiple tiers of the AI Security
Pyramid of Pain. Upper-tier controls impose significant disruption, forcing adversaries to rethink their tactics
and methodologies, while lower-tier controls provide essential protections and maintain overall system resilience.

Table 3 provides a structured mapping of these controls and CRISP-ML phases to the corresponding Pyramid
layers, highlighting how each mitigation contributes across different tiers of defense.

Table 3: Multi-Level Mapping of Controls and CRISP-ML Phases to the AI Security Pyramid of Pain

Pyramid Layer

Mapped Controls and Phases

TTPs

- Adversarial Training and Testing
- CRISP-ML Phase 3: Hardening through static analysis and version control

Data Provenance

- Data Governance and Curation

- Data Engineering (Data Cards and AI BOM)

- CRISP-ML Phase 2: Data Engineering (provenance and traceability enforcement)
- Lifecycle Management (embedding provenance into CI/CD pipelines)

Adversarial Inputs

- Input Validation and Sanitization
- CRISP-ML Phase 1: Business and Data Understanding
- CRISP-ML Phase 3: Model Engineering (prompt injection testing)

Adversarial Tools

- Integration of Red Teaming Tools
- CRISP-ML Phase 4: Model Evaluation (leverage adversarial tools for testing)
- Real-Time Monitoring and Detection (detection of automated adversarial scripts)

AI System Perfor-
mance

- Model Evaluation (stress testing, explainability audits)

- Deployment Monitoring and Maintenance (benchmarking and drift detection)
- CRISP-ML Phase 5: Deployment (progressive rollout strategies)

- CRISP-ML Phase 6: Monitoring and Maintenance (continuous evaluation)

Data Integrity

- Incident Response and Recovery (containment and restoration)
- Incident Response (root cause analysis and remediation)

3.5.8 Validation and Residual Risk Measurement

In this section, we reassess risks, following control implementation, to understand the remaining residual risk
and its alignment with acceptable thresholds. For each control, we assess its impact by analyzing how it limits
the adversary’s capability or opportunity. For example, examining how input validation blocks specific injection
vectors. The resulting risk profile reflects the reassessed likelihood and impact, providing a clear indication of
the remaining exposure after mitigation measures are applied. Following the application of mitigating controls,
the numerical risk profiles for both primary threat models showed substantial reductions.

For Sensitive Information Disclosure (Threat Model I), we observed a meaningful reduction in residual risk,
as detailed in Figure 9. The Overall Risk Severity decreased from High (19.5), to Low (10.41); this was driven
by its Likelihood Factor dropping from 6.5 to 4.63 and its Impact Factor dropping to 2.25 from 3.

Similarly, for RAG System Poisoning (Threat Model II), the Overall Risk Severity was reduced from High
(19.88), to Low (6.94). The application of strict data governance and lifecycle controls significantly curtailed
the adversary’s ability to persist within the retrieval pipeline, as illustrated in Figure 10. This results in a
decrease in overall Likelihood Factor from 6.63 to 4.63 and a significant reduction in Impact Factor from 3 to
1.5. These quantitative improvements underscore the positive impact of the implemented mitigation strategies.
While poisoning threats cannot be fully eradicated, the residual risk now sits within a low-risk bracket, supported
by enhanced detection and containment capabilities.

Likelihood Factors

Skill Level: 5 Ease of Discovery: 6
Motive: 7 Ease of Exploit: 9
Opportunity: 1 Awareness: 3
Size: 3 Intrusion Detection: 3
Threat Agent Factors (TAF: 4) Vulnerability Factors (VF: 5.25)
Impact Factors
Loss of Confidentiality: 4 Financial Damage: 6
Loss of Integrity: 0 Reputation Damage: 3
Loss of Availability: 0 Non-compliance: 0
Loss of Accountability: 7 Privacy Violation: 0
Technical Impact Factors (TIF: 2.75) Business Impact Factors (BIF: 2.25)
Risk Summary
Likelihood Factor: 4.63 \ Impact Factor: 2.25
Overall Risk Severity: Low (10.41)

Figure 9: Residual Risk Scoring for Sensitive Information Disclosure

4. DISCUSSION AND FUTURE WORK

Our analysis demonstrates that a multi-layered mitigation strategy, aligned with the AI Security Pyramid of
Pain, can meaningfully reduce the inherent risks associated with RAG systems. By addressing key adversarial
vectors, such as prompt injection, data poisoning, and adversarial query manipulation, we achieved significant
risk drawdown across the attack surface. The integration of rigorous input validation, adversarial training,
proactive data governance, and continuous monitoring proved particularly effective in driving down both the
likelihood and impact of adversarial exploits.

Despite these successes, certain residual risks remain unavoidable due to the dynamic and evolving nature
of adversarial tactics. For example, sophisticated insider threats or advanced supply chain compromises will

Likelihood Factors

Skill Level: 5 Ease of Discovery: 6
Motive: 7 Ease of Exploit: 9
Opportunity: 1 Awareness: 3
Size: 3 Intrusion Detection: 3
Threat Agent Factors (TAF: 4) Vulnerability Factors (VF: 5.25)
Impact Factors
Loss of Confidentiality: 4 Financial Damage: 3
Loss of Integrity: 0 Reputation Damage: 3
Loss of Availability: 0 Non-compliance: 0
Loss of Accountability: 7 Privacy Violation: 0
Technical Impact Factors (TIF: 2.75) Business Impact Factors (BIF: 1.5)
Risk Summary
Likelihood Factor: 4.63 | Impact Factor: 1.5
Overall Risk Severity: Low (6.94)

Figure 10: Residual Risk Scoring for RAG Poisoning

continue to challenge even well-defended RAG architectures. Additionally, while our mitigation strategy effec-
tively reduced opportunity and ease of exploit, the persistence of latent weaknesses and vulnerabilities in large,
distributed systems requires ongoing vigilance and adaptive countermeasures.

Future work should focus on deepening system resilience and advancing operational assurance. Empirical
validation through red teaming exercises and live adversarial testing is critical to verify the robustness of the
proposed mitigation strategies under real-world conditions. By coupling formal risk assessments with hands-on
stress testing, organizations can more confidently operationalize RAG systems in sensitive environments while
maintaining a strong security posture.

5. CONCLUSION

As adversarial tactics evolve, securing RAG systems demands a comprehensive strategy that spans all layers of
the AT Security Pyramid of Pain. By integrating robust defenses against prompt injection, data poisoning, and
adversarial query manipulation, organizations can better protect the integrity and reliability of their systems.
Continuous monitoring, improved input sanitization, and proactive data curation are essential to mitigate these
risks and support the ongoing adoption of RAG technology in critical domains This structured approach enables
organizations to effectively mitigate RAG-specific threats while ensuring the reliability, trustworthiness, and
compliance of their Al-driven applications.

6. ACKNOWLEDGMENTS

We would like to thank our colleague Dr. Mike Tan for the helpful conversations and insights that informed this
work. His perspective contributed to our thinking during the development of the material, and we appreciate
his input during the research process.

REFERENCES

[1] Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Kiittler, H., Lewis, M., Yih, W.-t.,
Rocktéschel, T., et al., “Retrieval-augmented generation for knowledge-intensive nlp tasks,” Advances in
neural information processing systems 33, 9459-9474 (2020).

[2] Tully, T., Redfern, J., and Xiao, D., “2024: The state of generative ai in the enterprise.” Menlo Ventures
Blog (Nov 2024). Industry survey: 51% enterprise adoption of RAG, up from 31% in 2023.

[3] Babeanu, “Is your rag a security risk?.” RSA Conference Blog (Feb 2025). Industry analysis of GenAT risks
including prompt injection and data exposure.

[4] Xue, J., Zheng, M., Hu, Y., Liu, F., Chen, X., and Lou, Q., “Badrag: Identifying vulnerabilities in retrieval
augmented generation of large language models,” arXiv preprint arXiv:2406.00083 (2024).

[5] Rieder, G., Simon, J., and Wong, P.-H., “Mapping the stony road toward trustworthy AI: Expectations,
problems, conundrums,” in [Machines We Trust: Perspectives on Dependable AI], Pelillo, M. and Scantam-
burlo, T\, eds., 27-40, The MIT Press, Cambridge, MA (2021).

[6] Dahj, J. N. M., [Mastering Cyber Intelligence: Gain comprehensive knowledge and skills to conduct threat
intelligence for effective system defense|, Packt Publishing (2022).

[7] AL, N., “Artificial intelligence risk management framework (ai rmf 1.0),” URL: hitps://nvlpubs. nist.
gov/nistpubs/ai/nist. ai , 100-1 (2023).

[8] Shostack, A., [Threat Modeling: Designing for Security], Wiley (February 2014).

[9] Ward, C. M., Harguess, J., Tao, J., Christman, D., Tan, M., Spicer, P., and Cranium, A., “The ai security
pyramid of pain,” in [Proc. of SPIE Vol], 13054, 1305408-1 (2024).

[10] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.; Kaiser, L., and Polosukhin,
L., “Attention is all you need,” Advances in neural information processing systems 30 (2017).

[11] Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang, J., Dong, Z., et al.,
“A survey of large language models,” arXiv preprint arXiv:2303.18223 1(2) (2023).

[12] The MITRE Corporation, “Common weakness enumeration (cwe).” https://cwe.mitre.org/. Accessed:
2025-03-17.

[13] The MITRE Corporation, “Cwe community working groups & special interest groups.” https://cwe.
mitre.org/community/working_groups.html. Accessed: 2025-03-17.

[14] The MITRE Corporation, “Common weakness enumeration (cwe).” https://cwe.mitre.org/ (2006). Ac-
cessed: 2025-05-06.

[15] Martin, R. A. and Barnum, S., “Common weakness enumeration (cwe) status update,” ACM SIGAda Ada
Letters 28(1), 88-91 (2008).

[16] The MITRE Corporation, “CWE-20: Improper Input Validation.” https://cwe.mitre.org/data/
definitions/20.html (February 2024). Part of the Common Weakness Enumeration (CWE). Sponsored
by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency
(CISA). Accessed: May 6, 2025.

[17] CVE Program, “CVE-2023-5423: SQL Injection in SourceCodester Online Pizza Ordering System 1.0.”
https://cve.org/CVERecord?id=CVE-2023-5423 (2023). Accessed: 2025-05-07.

[18] The MITRE Corporation, “CWE-1039: Automated Code Generation Based on Stale Schemas or Spec-
ifications.” https://cwe.mitre.org/data/definitions/1039.html (April 2023). Part of the Common
Weakness Enumeration (CWE). Sponsored by the U.S. Department of Homeland Security (DHS) Cyberse-
curity and Infrastructure Security Agency (CISA). Accessed: May 6, 2025.

[19] The MITRE Corporation, “CWE-1426: Unintended Exposure of Sensitive Information in Generated Code.”
https://cwe.mitre.org/data/definitions/1426.html (February 2024). Part of the Common Weakness
Enumeration (CWE). Sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and
Infrastructure Security Agency (CISA). Accessed: May 6, 2025.

[20] Center, M. S. E., “Threat modeling.” https://www.microsoft.com/en-us/securityengineering/sdl/
threatmodeling (2022). Accessed March 2025.

[21] Doyle, M., Harguess, J., Manville, K., and Rodriguez, M., “The vulnerability of uavs: An adversarial
machine learning perspective,” in [Geospatial Informatics XI], 11733, 81-92, SPIE (2021).

[22] MITRE ATLAS, “Infer training data membership (aml.t0024.000).” https://atlas.mitre.org/
techniques/AML.T0024.000 (2023).

[23] MITRE ATLAS, “Invert ml model (aml.t0024.001).” https://atlas.mitre.org/techniques/AML.T0024.
001 (2023).

[24] MITRE ATLAS, “Prompt leakage (aml.t0051.000).” https://atlas.mitre.org/techniques/AML.T0051.
000 (2023).

https://cwe.mitre.org/
https://cwe.mitre.org/community/working_groups.html
https://cwe.mitre.org/community/working_groups.html
https://cwe.mitre.org/
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/20.html
https://cve.org/CVERecord?id=CVE-2023-5423
https://cwe.mitre.org/data/definitions/1039.html
https://cwe.mitre.org/data/definitions/1426.html
https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling
https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling
https://atlas.mitre.org/techniques/AML.T0024.000
https://atlas.mitre.org/techniques/AML.T0024.000
https://atlas.mitre.org/techniques/AML.T0024.001
https://atlas.mitre.org/techniques/AML.T0024.001
https://atlas.mitre.org/techniques/AML.T0051.000
https://atlas.mitre.org/techniques/AML.T0051.000

[25] OWASP Foundation, “LIm07:2025 system prompt leakage — owasp top 10 for llm applications.” https:
//genai.owasp.org/llmrisk/11m072025-system-prompt-leakage/ (2025). Accessed: 2025-05-06.

[26] MITRE ATLAS, “Exploit vector embeddings (aml.t0024.002).” https://atlas.mitre.org/techniques/
AML.T0024.002 (2023).

[27] OWASP Foundation, “Llm08:2025 vector and embedding weaknesses — owasp top 10 for llm appli-
cations.” https://genai.owasp.org/llmrisk/11m082025-vector-and-embedding-weaknesses/ (2025).
Accessed: 2025-05-06.

[28] MITRE ATLAS, “Aml.t0018.000 — poison training data.” https://atlas.mitre.org/techniques/AML.
T0018.000 (2023). Accessed: 2025-05-06.

[29] Foundation, O., “Llm04:2025 data and model poisoning,” (2025). Accessed: 2025-03-24.

[30] OWASP Foundation, “Llm01: Prompt injection — owasp top 10 for llm applications.” https://genai.
owasp.org/llmrisk/11m01-prompt-injection/ (2025). Accessed: 2025-05-06.

[31] OWASP Foundation, “L1m03:2025 supply chain vulnerabilities — owasp top 10 for llm applications.” https:
//genai.owasp.org/llmrisk/11m032025-supply-chain/ (2025). Accessed: 2025-05-06.

[32] OWASP Foundation, “OWASP Top 10 for LLM Applications — L1L.M02:2025 Sensitive Information Disclo-
sure.” https://owasp.org/www-project-top-10-for-large-language-model-applications/ (2025).

[33] The MITRE Corporation, “MITRE ATLAS Adversarial Threat Landscape for Artificial-Intelligence Sys-
tems.” https://atlas.mitre.org (2023).

[34] Studer, S., Bui, T. B., Drescher, C., Hanuschkin, A., Winkler, L., Peters, S., and Miiller, K.-R.., “Towards
crisp-ml (q): a machine learning process model with quality assurance methodology,” Machine learning and
knowledge extraction 3(2), 392-413 (2021).

[35] Lakshmanan, V., Robinson, S., and Munn, M., [Machine Learning Design Patterns: Solutions to Common
Challenges in Data Preparation, Model Building, and MLOps], O’Reilly Media, Sebastopol, CA (2020).

https://genai.owasp.org/llmrisk/llm072025-system-prompt-leakage/
https://genai.owasp.org/llmrisk/llm072025-system-prompt-leakage/
https://atlas.mitre.org/techniques/AML.T0024.002
https://atlas.mitre.org/techniques/AML.T0024.002
https://genai.owasp.org/llmrisk/llm082025-vector-and-embedding-weaknesses/
https://atlas.mitre.org/techniques/AML.T0018.000
https://atlas.mitre.org/techniques/AML.T0018.000
https://genai.owasp.org/llmrisk/llm01-prompt-injection/
https://genai.owasp.org/llmrisk/llm01-prompt-injection/
https://genai.owasp.org/llmrisk/llm032025-supply-chain/
https://genai.owasp.org/llmrisk/llm032025-supply-chain/
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://atlas.mitre.org

	Introduction
	Background
	Large Language Models
	Retrieval-Augmented Generation (RAG)
	AI Security Pyramid of Pain
	Common Weaknesses

	Analysis
	Define the Scope and Objectives
	Decompose the System
	Identify Threat Vectors
	Threat Model I: Sensitive Information Disclosure in RAG Systems
	Threat Model II: RAG System Poisoning

	Assess and Identify Risks
	Implement Controls and Validate
	Input Validation and Sanitization
	Adversarial Training and Testing
	Real-Time Monitoring and Detection
	Data Governance and Curation
	AI Lifecycle Management and Machine Learning Operations (MLOps)
	Incident Response and Recovery
	Control Prioritization: AI Security Pyramid of Pain Analysis
	Validation and Residual Risk Measurement

	Discussion and Future Work
	Conclusion
	Acknowledgments

