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Abstract—The pervasion of large-scale Deep Neural Net-
works (DNNs) and their enormous training costs make their
intellectual property (IP) protection of paramount importance.
Recently introduced passport-based methods attempt to steer
DNN watermarking towards strengthening ownership verification
against ambiguity attacks by modulating the affine parameters
of normalization layers. Unfortunately, neither watermarking nor
passport-based methods provide a holistic protection with robust
ownership proof, high fidelity, active usage authorization and
user traceability for offline access distributed models and multi-
user Machine-Learning as a Service (MLaaS) cloud model. In
this paper, we propose a Chameleon Hash-based Irreversible
Passport (CHIP) protection framework that utilizes the cryp-
tographic chameleon hash function to achieve all these goals.
The collision-resistant property of chameleon hash allows for
strong model ownership claim upon IP infringement and liable
user traceability, while the trapdoor-collision property enables
hashing of multiple user passports and licensee certificates to
the same immutable signature to realize active usage control.
Using the owner passport as an oracle, multiple user-specific
triplets, each contains a passport-aware user model, a user
passport, and a licensee certificate can be created for secure
offline distribution. The watermarked master model can also
be deployed for MLaaS with usage permission verifiable by
the provision of any trapdoor-colliding user passports. CHIP is
extensively evaluated on four datasets and two architectures to
demonstrate its protection versatility and robustness. Our code
is released at https://github.com/Dshm212/CHIP.

Index Terms—DNN IP protection, chameleon hash function,
watermark, active usage control.

I. INTRODUCTION

Over the past decade, deep neural network (DNN) parame-
ters have increased exponentially by five orders of magnitude,
which make training a model from scratch extremely time
consuming and costly [1]-[3]. The process of developing a
new DNN model involves extensive data collection, precise la-
beling, substantial computational resources, and expert knowl-
edge. It is no surprise that rigorously trained models have
become prime targets for piracy, unauthorized redistribution,
and illicit use. Recent studies [4]-[10] have underscored the
severity of DNN model intellectual property (IP) infringement,
which call for more versatile, robust and holistic protection.
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TABLE I: Qualitative comparison of passport-based IP pro-
tection methods. v/indicates presence, and Xindicates absence.

S Enhanced Multi-user Control
Method Watermark ‘ Fidelity ‘ Robustness | Online Olffine
DeeplIPR [19], [20] v X X X X
PAN [21] v v X X X
TdN [22] v v v X X
SteP [23] v v v v X
CHIP (Ours) v v v v v
Various DNN watermarking methods [11]-[18] have

emerged to embed ownership marks into the model by mod-
ifying network weights or adjusting decision boundaries to
specific inputs (triggers) with minimal or no degradation
on the primary task performance. Though many of these
approaches can achieve black-box ownership verification with
robust watermark against removal and modification, they are
susceptible to ambiguity attacks, wherein attackers embed an
additional watermark to claim ownership.

To resolve this copyright conflict, Fan et al. [19] proposed
the first passport-based watermarking method, which replaces
selected normalization (henceforth abbreviated as norm) lay-
ers in the target model with specially designed passport
layers. High inference performance, similar to that of an
unprotected model, can be achieved only when the correct
passport features is present in these layers. Thereafter, several
advanced passport-based methods [20]-[23] with enhanced ro-
bustness and flexibility have been introduced. However, exist-
ing passport-based methods still have limitations, including re-
duced performance fidelity [19], [20], poor robustness against
stronger ambiguity attacks with oracle passports [19]-[21],
trading signature privacy for enhanced robustness [22]. More
importantly, all these methods do not support single model
deployment for Machine Learning as a Service (MLaaS) with
authorized access control of multiple users and ad hoc user
subscription and withdrawal. This problem was solved in [23]
at the expense of limiting active usage control and traceability
on offline distributed instances.

This paper introduces Chameleon Hash-based Irreversible
Passport (CHIP), a new versatile IP protection framework that
overcomes the limitations of existing passport-based methods.
The provably secure cryptographic chameleon hash function is
utilized to create an immutable signature from the owner pass-
port and licensor certificate to watermark the master model.
The trapdoor-collision property of chameleon hash allows the
model owner to generate multiple user models based on the
master model for offline distribution, without compromising
robustness against ambiguity attacks or requiring extensive
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model retraining. Each user model is bound to a distinct
user passport and a licensee certificate. In addition, a skip
connection is introduced to the passport layer to create strong
dependence between critical affine factors and the passport.
This architectural enhancement guarantees that each user
model remains operational only with its designated paired
user passport. Consequently, the model owner can actively
restrict the usage of user models exclusively to authorized
users possessing the valid passports. Furthermore, CHIP also
allows the model owner to establish ownership proof and
actively trace registered users for unauthorized use or resale
of distributed models. The intended chameleon signature col-
lision to the immutable signature can only be produced by
its registered user with the designated paired passport and
licensee certificate issued by the model owner. CHIP can also
be applied to the online MLaaS mode with access control
and traceability of a large number of registered users by the
design of collision-resistant chameleon hash. Table I provides
a qualitative comparison of attributes across different passport-
based IP protection methods. Our contributions are as follows:

o We propose CHIP, a chameleon hash-based DNN IP protec-
tion method which effectively and efficiently achieves not
only model watermarking but also multi-user active control
in both online and offline scenarios.

o Through extensive evaluations on four datasets and two
model architectures, we demonstrate the superior perfor-
mance of CHIP over existing passport-based methods in
terms of effectiveness, fidelity, and robustness. The water-
mark can be successfully embedded into the target model
with no or negligible accuracy degradation. CHIP is also
resistant to various ambiguity attacks and removal attacks.

o We verify CHIP’s capability for active control in both online
and offline deployment modes.

« Beyond image classification, we validate the effectiveness
of CHIP on graph classification to showcase its versatility
on diverse ML tasks.

The rest of this paper is structured as follows. Section II
reviews related works. Section III introduces our threat model,
provides background knowledge on chameleon hash, and
discusses technical details of existing passport-based methods.
The proposed CHIP is elaborated in Section IV, followed by
experimental results and analysis in Section V. The paper is
concluded in Section VI.

II. RELATED WORKS

DNN models are facing security and privacy threat to model
stealing attacks [10] that aim to either precisely stealing crucial
components of the target model [4], [5], [9] or creating a sub-
stitute model that has the same or approximate functionality as
the target model [6]-[8]. Protection of DNN against IP theft
and related security threats can be broadly categorized into
passive and active protection methods.

DNN watermarking achieves passive IP rights protection by
concealing the copyright information into the target model for
verification. The first DNN watermarking method [11] embeds
secret information into the model’s weights by including an
additional regularization loss during training to constrain the

biases of the embedded hidden layers to follow a particular
distribution. Following this line of thought, advanced DNN
watermarking techniques further enhance the robustness [12]-
[14], performance fidelity [15], [16], transferability [17], and
generalizability [18]. Instead of hiding extraneous information
into the network, DNN fingerprinting methods extract unique
intrinsic characteristics from pretrained model for ownership
proof without modifying the model parameters. Specifically,
proprietary training details [24], decision boundaries [25]—
[28], and carefully selected distinctive weights [29] have been
explored to create unique fingerprints to identify originally
designed and trained DNN models.

On the other hand, active protection methods aim to proac-
tively prevent unauthorized access by restricting the model’s
utility without a valid key. Preemptive control can be achieved
through embedding the target model into a trustworthy hard-
ware [30], [31], encrypting the target model [32]-[34], and
training the target model on processed data and/or with
carefully-designed algorithms [35]-[38].

Originated with the aim against ambiguity attacks, a distinct
class of protection methods [19]-[23] replaces selected nor-
malization layers in the target model with purpose-designed
passport layers to embed the watermark for anti-forgery
ownership identification. Depending on the provision, these
methods can be passive or active. The proposed CHIP belongs
to the active category of passport-based methods. Section III-C
provides a comprehensive review and analysis of existing
passport-based approaches.

III. PRELIMINARIES
A. Threat Model

The owner is assumed to have complete knowledge and full
control of the training pipeline to embed watermark (aka sig-
nature in passport-based methods) for attesting the ownership
of an infringed model and identifying its registered users. The
watermark should be robust against potential attacks, such as
removal attacks and ambiguity attacks that forge watermarks
for false ownership claims.

A malicious registered user who has access to the protected
model and genuine user passport may also alter the model to
remove the watermark or counterfeit the passport to create
a copyright conflict. The attacker has limited training data
available, and this deed must not unduly degrade the model’s
performance.

B. Chameleon Hash

Hash functions (MD5 [39], SHA-1 [40], etc.) are commonly
used in digital signature schemes due to their one-wayness and
collision resistance. Given a message m, it is computationally
infeasible to find another collision message m’ # m such that
Hash(m) = Hash(m').

Chameleon hash [41] is a special trapdoor hash function
that provides controlled flexibility in generating collisions.
Let PK and SK be the paired public key and secret key,
respectively. The chameleon hash value is computed as h =
CH(PK,m,r), where m and r are a message and a random
string, respectively. The chameleon hash function has the same
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collision-resistant property as traditional hash functions if only
the public key PK is available. Generating collisions with
only PK is computationally intractable as the chameleon
hash is designed based on the hard discrete mathematical
problem [42]. However, when the secret key SK is known,
collisions of an arbitrary distinct message m’ # m can be
easily achieved. A corresponding random string 7’/ can be
efficiently found by trapdoor collision ' = Col(SK, m,r, m’)
that satisfies CH(PK, m,r) = CH(PK, m/,r"). More details
about chameleon hash are given in the Supplementary Mate-
rial, Sec. S1.

We use chameleon hash to create mutable user passports
by trapdoor collisions to the owner passport (message) while
maintaining the immutable signature (hash value).
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Fig. 1: Structures of (a) a typical convolutional block, and (b)
the passport layer of DeepIPR.

C. Existing Passport-based Protections Methods

Normalization (norm) layers are extensively used in deep
models to improve training efficiency and enhance perfor-
mance. Let x denotes the input feature map and ® be the
convolution operator. As shown in Fig. 1(a), = is first convo-
luted by the trainable convolutional kernel W to z,, = W®z,
and then further normalized to:

Ly —

+ 5, (D

where 1 and o are the mean and standard deviation (std)
of x,, respectively. Convoluted feature maps are calculated
differently for different normalization methods. For example,
Batch Normalization (BN) [43] computes i and o over mini-
batches during training, while Group Normalization (GN) [44]
divides features into groups and calculates p1 and o on-the-fly
during inference. v and g are the affine scale and bias factors.
They play a crucial role in projecting normalized features to
appropriate scales.

1) DeepIPR [19], [20]: This is the first passport-based
DNN IP protection scheme. It replaces selected convolutional
blocks in the target model with passport layers to embed a
robust watermark as shown in Fig 1(b). Given a passport

=

=7

p = {p,,ps} consisting of pre-defined feature maps p, and
pg, that shares the same spatial dimensions as the input x, the
passport layer operates through two norm branches:

A {’Yoxwo.“ +50;
T =

y1*et + By, passport-aware,

passport-free,

2

where the upper passport-free branch contains two learnable
affined factors 7y and [y that are trained originally without
the passport, while the lower passport-aware branch utilizes
feature maps convoluted from the passport as the affine factors:

61 = wpg, (3)

where wp, = Avg(W ®p,) and wpg = Avg(W ® pg), with
Avg(-) being the average pooling function. The statistics mean
and std are shared by the two branches.

The target model M is trained on the training dataset
Dy to achieve high performance with both passport-free and
passport-aware branches with the following losses:

['f = ]E(xiaYi)NDtr [’CCE(Mf(Xl)v Yz)] )
La = E(xiin)NDlr I:ECE(Ma(Xi)? Yz)] 5

where Lcg denotes the cross-entropy loss. M7 and M®
denote the model with only the passport-free or passport-aware
branch, respectively.

Moreover, the model owner arbitrarily creates a copyright
text 7 (e.g. “Copyright to Alice”) and converts it to a C-bit
+1 signature sequence & = {&,&, -, &0} € {—1,+1}°.
The signs of wp,, are enforced to match ¢ as follows:

Y1 = WP,

4)

C
L= ZMax[(T—fi - (wp~)1), 0], (5)

where 7 is a smalllpg)sitive threshold (0.1 in previous works)
to keep the magnitudes of wp, low and thereby its signs are
lazy-to-flip during fine-tuning due to small gradient.

By jointly optimized with the three losses (L;, L4, and
L), the convolutional layer of a passport layer is able to: (1)
properly extract features from the input z; (2) project p, and
pg to the correct affine factors v; and f51; and (3) ensure the
signs of wp, matches the signature string &.

Upon training, the passport-free model M is distributed to
users for deployment without the presence of passport. Once
IP infringement occurs, the owner can replace the passport-free
layers of the suspected model with the corresponding passport-
aware layers, and extract the signature from the signs of wpy
to prove the ownership.

2) Passport-Aware Normalization (PAN) [21]: Unfortu-
nately, matching the signs of wp,, with £ is a strong constraint,
which severely influences the feature extraction ability of the
convolutional layer by backward propagation, and thus may
lead to serious performance degradation on both branches.
PAN addressed this issue with two improvements. As depicted
in Fig. 2(a), PAN learns two groups of mean/std statistics
separately for the two branches. To alleviate the sign matching
constraint on the convolutional layer, PAN also introduces an
extra two-layer perceptron (TLP) after the average pooling
layer to locally project the affine factors to proper scales as:

y1 = TLP(wp,), Bi1 = TLP(wpg). (6)
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(a) Passport layer of PAN. The passport-free and passport-
aware layers utilize two groups of statistics mean/std.

&£ =SGN(Hash(p,)) e{-1, +1}¢

sign matching

Ty — Mo
Yo % + Bo

passport-free
Ty — M1
71 o1 + B
passport-aware

(1
)

N9y

(b) Passport layer of TdN. The passport p- is first hashed to
a C-bit binary sequence, and then mapped with SGN(-) to
generate the £1 signature £ = SGN(Hash(p-)).

Fig. 2: Passport layers of (a) PAN and (b) TdN.

3) Trapdoor Normalization (TdN) [22]: However, both
DeepIPR and PAN remain vulnerable to ambiguity attacks
with oracle passports. Due to the large parameter space of
the passport, it is feasible for the adversary to generate forged
passports that differ largely from the original one, while still
matching the signature and retaining the target model’s utility.

Definition 1 (Ambiguity attacks with oracle passports [22]).
Given a protected model, the original passport p, and the
signature &, a forge passport p = {p~,Pg} can be created
within the feasible perturbation space §(p) with respect to p
by solving the following bi-level optimization problem:

min E(Xi,yi)NDmb [Eb + A ﬁa},
s.t. p = argmaxDis(p,p), %)
pES(p)
where Dgyp, C Dy denotes a small subset of training data

available to the attacker, and Dis(-) measures the distance
between p and p. The forged p is significantly different from
the original p but achieves comparable inference performance,
while keeping & and the protected model unchanged.

TdN thwarts this attack by using a hash function of the gen-
uine passport as the owner signature. As shown in Fig. 2(b),
instead of being directly converted from a pre-defined text
message, the C-bit signature £ = SGN(Hash(p,,)) is created
by hashing the passport p., with a pre-defined hash function,
where SGN(-) : {0,1}" — {—1,41}" denotes a mapping
function that converts the binary hash result to a £1 string.
The one-way hash prevents the forged passport p obtained by
(7) from mapping to & as

¢ = SGN(Hash(p, )) # SGN(Hash(5,)) )

holds except with negligible probability.
Since it is computationally intractable to reverse a hash
function or generate a collision based on the hash value
(signature), the attacker cannot create a counterfeit passport

that passes the verification. One limitation of making the
signature passport-dependent is the signature can no longer
be freely designated and kept private from legitimate users or
attackers who acquire the passport.

4) Steganographic Passport (SteP) [23] : Only until re-
cently, both passive ownership proof and multi-user active
control without retraining are achieved by Steganographic
Passport (SteP) [23]. All the aforementioned passport-based
methods before SteP focus solely on overcoming ambiguity
attacks by providing a stronger non-repudiable ownership
claim upon model infringement.

Given a pre-trained invertible steganography network S(-; -),
the copyright text 7, and the original passport images (I =
{L,,13}), the owner passport images (I, = {l,,,Io,}) can
be created as I, = S(I,;7T) and I,, = S(Ig;T). S(5-)
imperceptibly embeds the copyright text 7 into owner passport
images without introducing visible perturbations. Similar to
TdN, SteP further trains the target model with the owner
passport p, = {po,,Po,} derived from I, = {I, , 1, }.
Each end-user is provided with unique passport images [, =
{I.., 1.}, which appear visually identical to I, but contain
an imperceptibly embedded user ID. In this context, the one-
way correlation is only established from I, to the signature,
and the user passport images fail to prove the ownership due
to the the avalanche effect of hash function.

SteP achieves active control in the online MLaaS scenario.
Specifically, each end-user provides the cloud server with I,
for authentication. The end-user is validated to be a legal user
only if a recorded user ID can be successfully recovered from
I,,. However, the active control of SteP is not applicable to
the offline mode, because the owner has no control over the
inference stage.

To fill the void in existing passport-based methods, we
propose CHIP — a more versatile and robust framework that (1)
resists ambiguity attacks with oracle passports; (2) provides
flexibility in certification of licensor and licensees without
requiring extensive model retraining; and (3) offers active
control on both online and offline modes.

IV. CHAMELEON HASH-BASED IRREVERSIBLE PASSPORT

A. Overview

Table S2 of the Supplementary Material summarizes the key
notations used throughout this paper. Fig. 3 depicts the overall
pipeline of CHIP, which consists of three main stages:

(a) Master model watermarking. The owner initializes an
owner passport p, = {Po. ,Po, } and a licensor certificate
r, converted from the copyright text 7, and uses them to
calculate an immutable signature ¢ with the chameleon
hash function. The target model is then trained with p,
and £ to obtain a watermarked master model M,,.

(b) User triplet generation and distribution. Instead of re-
leasing M,, the owner creates N unique triplets
{MJ,,pl, i}, from M, by trapdoor collision. Each
triplet is uniquely distributed to a registered user. A
registered user u; of model M7 can use the model
normally with its assigned passport p}, = {p/,_,p,,}, and
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Fig. 3: The proposed method contains three main stages: (a) Master model watermarking; (b) User triplet generation and

distribution; (c) Ownership verification and traitor tracing.
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Fig. 4: Passport layer of CHIP. The signature is created by
chameleon hash, and we add a skip connection from the
passport to passport-aware branch’s affine factors (i.e., y; and
[31) to enable effective active control.

prove his use permission upon request by presenting his
unique licensee certificate 7.

(c) Ownership verification and traitor tracing. On model
IP infringement, the owner presents p, and r, to vali-
date the chameleon hash signature ¢ recovered from the
suspected model. Additionally, the source of the model
leakage and infringement can be traced by identifying the
user passport.

B. Master Model Watermarking

As discussed in Sec. III-C3, TdN [22] employs a hash func-
tion to create passport-dependent signature to resist ambiguity
attacks with oracle passports. During training, the signature
loss L, ensures that the signs of wp, match the hashed
signature ¢ SGN(Hash(py)), thereby constraining the
convolutional kernel W. However, by coupling usage control
passport with ownership verification signature via a collision-
resistant hash, the framework inherently limits the ability to
achieve multi-user active control without retraining. Hence, to
embedded N distinct groups of passports and signatures into
N protected models, the owner must train the model from
scratch for IV times. This approach becomes impractical as
the number of users grows, posing a significant scalability
challenge in real-world applications.

To solve the dilemma, CHIP creates the signature ¢ using
a chameleon hash function. Fig. 4 presents the signature
generation process and the structure of a CHIP layer. Given the
owner passport p, = {Po. ;Do }» the copyright text 7', and the
public key PK and the secret key SKC defined by a chameleon

hash function, an immutable signature can be generated for
embedding as follows:

5 = SGN(CH(PKv Mo, 710))1 &)

where m, = Hash(p,, ) denotes a message digest derived
from Do, with a standard hash function (e.g., SHA-512 in this
work), and r, is an integer, referred to as a licensor certificate,
which directly encodes 7.

The chameleon hash-based signature offers three important
merits without conflicts: (1) Without knowledge of the secret
key SK, the mapping from p, to { remains irreversible,
effectively addressing the weak resistance of [19]-[21] to
ambiguity attacks with oracle passports; (2) The licensor
certificate 7, acts as a secure independent compactor of
copyright information to overcome the restriction of TdN [22],
and enhance the credibility of ownership verification; (3) The
trapdoor-collision property of chameleon hash enables the
owner to generate diverse user-specific passports to support
active control without retraining the model from scratch.

The owner passport and chameleon hash-based signature are
further utilized to train the master model M,. As shown in
Fig. 4, the architecture of the CHIP layer is similar to that of
the PAN or TdN layer but with two modifications.

First, we observe that the passport-aware branch exhibits a
certain degree of tolerance to passport errors. As a result, M?
can still produce normal predictions even when presented with
a forged passport that slightly deviates from the correct one.
This behavior can be primarily attributed to the fact that the
convolutional, pooling, and TLP layers tend to suppress subtle
features in the passport, leading to the generation of similar
affine factors. This limitation undermines the effectiveness of
active control, as the target model’s usage is not strictly bound
to a unique passport. To address this issue, we introduce a skip
connection that directly links the passport to the affine factors,
which is formulated as follows:

y1 = Ada(p,, ) + TLP(wp.. ),

10
51 = Ada(poﬁ) + TLP(pr[3)7 ( )

where wp,, = Avg(W ® p,, ), wpo, = Avg(W @ po,),
and Ada(-) denotes the adaptive pooling function used to
downsample p,., and p,, to match the dimensions of ; and
[B1. By incorporating this skip connection, the values of v,
and (31 become highly dependent on p, and p,,. Conse-
quently, a mismatched passport always results in significant
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performance degradation, thus achieving successful active
control.

Second, the two branches share the same set of mean and std
statistics. To ensure consistency between their affine factors,
we introduce a balance loss defined as:

Loa = £1(v0,71) + ¢1(Bo, £1), (11)

where ¢ (-,-) measures the ¢; loss. This design aims to min-
imize the performance deviation between the two branches:
when their affine factors are close, they are more likely to
produce highly similar outputs.

The master model is trained and watermarked through the
following joint optimization objective:

Etotal = Lf + ﬁa + Es + Ebal- (12)

The pseudo-code for the master model watermarking pro-
cess is shown in Algorithm S3 of the Supplementary Material.

C. User Triplet Generation and Distribution

To incorporate active control and licensee tracing into
distributed passport-aware models, we turn to Definition 1 to
reverse the malevolent passport forging attack into a benevo-
lent generator of user passports that can be tied to the signature
& by trapdoor collision of chameleon hash.

Definition 2 (User triplet generation). For each registered
user wuj, the owner optimizes the TLP layer and a copy of
owner passport p, to obtain a unique triplet {Mi,pﬂ,ri}
with the following bi-level objective:

min [L‘s + £bal] s

i1
j . j . ; (13)
s.t. p, = argmax | Dis(po, p7,) + Z Dis(pk, p’,)
PuES(Po) k=1

A unique licensee certificate for u; can then be generated
by trapdoor collision as r) = Col(SK,m,,T,, ml), where
ml = Hash(piv).

In the first line of Eq. (13), £, ensures persistent signature
embedding to the user model M7, while Ly, preserves the
user model performance in the presence of its designated user
passport p?. The second line of Eq. (13) forces p? to be
different from the owner passport p, and previously generated
user passports, i.e., {pl,p2,---,p/~1}. This is a data-free
optimization, which makes the user triplet generation process
flexible and efficient.

The trapdoor collision guarantees that CH(PK, m,,1,) =
CH(PK,mJ,rl) holds Vj € {1,2,---, N}. In other words,
all user passports can be successfully mapped to the immutable
signature ¢ without re-watermarking as

f = SGN(CH(P’C7mOa TO))
= SGN(CH(PK, mi,, 11)).

u’ ' u

(14)

Since all licensee certificates are generated by trapdoor colli-
sion, no meaningful text string can be decoded from them.
Therefore, the ownership information is only plaintext
encoded in the licensor certificate r,.

Unlike ambiguity attacks with oracle passports (Definition
1), we not only optimize the user passport but also fine-
tune the TLP layer of the passport-aware branch locally, such

that each user model M is bound exclusively to its user
passport p).. Applying a user passport p¥ k # j from a
different user model to M7 will result in significant perfor-
mance degradation. As the parameter amount of the TLP and
the passport is small, the computational cost of producing
a user model is considerably lower than retraining or re-
watermarking the model, making the triplet generation for
individual users highly efficient. The owner keeps the master
model private, and sells to each registered user u; a unique
distributed passport-aware user model M? with its exclusive
passport pJ, and licensee certificate 7.

Algorithm S4 of the Supplementary Material delineates the
process of creating multiple user triplets.

D. Verification and Tracing

Let M denote a suspected model. The verification stage
involves three parties: the plaintiff who claims the ownership
of M; the defendant who is accused of model infringement
or abuse; and an authority (e.g., a copyright tribunal or court)
with jurisdiction in dispute resolution.

The plaintiff presents the passport p, the certificate r, the
signature &, and passport-aware branch to the authority. The
authority replaces the norm layer of M with the provided
passport-aware branch and conduct the following four tests.

The performance fidelity test V'

VF — E(X'h)’i)Nst {]I[M (X1)7yz} } > 7-ﬁdelityv

where Trgeliry 1S the minimal inference accuracy threshold, and
Dy, denotes the test dataset. I[-,-] is an indicator function
which returns 1 if the two inputs are the same, and 0 otherwise.
VI evaluates the fidelity of M. Passing V" indicates that the
passport p submitted by the plaintiff can operate the suspected
model normally with the passport-aware branch.

The signature detection test V7:

15)

C

VD = Y= éZ(E* /\f) > 1 — Teror,

i=1

(16)

where 1) is the signature detection accuracy (SDA) which mea-
sures the proportion of matching bits between the extracted
signature £* = sign(wp.,) and the provided signature &. Teror
is a is a pre-defined small error tolerance (5%) between these
two signatures. A high SDA validates that the passport can be
correctly convoluted to a designated signature.

The passport hashing test V7

C
1 w n el
VH = 9= 6 ;(5 NE ) > 1 — Teror, (17)

where ¢’ = SGN(CH(PK,Hash(p,),r)) denotes the signa-

ture computed by the chameleon hash using p and r. The

passport hashing accuracy (PHA), denoted by ¢, measures the

proportion of matching bits between £* and ¢'. Passing VH

verifies the “chameleon” signature generated by p and r can

produce the intended collision with the extracted signature.
Lastly, the licensor test V:

VP = Dec(r), (18)
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TABLE II: Inference accuracy (%) of passport-free/passport-aware models across four datasets and two architectures. The
first row “clean” represents unprotected models without passport layers. “+bd” denotes the combination of the passport-based
method with a backdoor watermark [11]. Both “CHIP+bd” and “CHIP” are evaluated on watermarked master models. The

highest average accuracy for passport-free/passport-aware models is highlighted in bold in the last column.

AlexNet CIFAR-10 CIFAR-100 Caltech-101 Caltech-256 Mean
BN GN BN GN BN GN BN [ GN

clean 91.09 89.92 68.79 65.05 72.20 69.21 44.15 41.88 67.79
DeepIPR 86.17 /89.50  89.06 / 88.34 | 3270/ 64.04 62.80/60.79 | 65.59/64.29 66.89 /66.72 | 38.28 /39.89  40.34/35.02 | 60.23 / 63.57
PAN 91.12/90.87  89.89 /89.47 | 68.14/68.09 64.50/63.38 | 71.81/71.27 68.59/66.21 | 4472/41.25 41.18/39.68 | 67.49 / 66.28
TdN 9127/91.37  90.12/89.80 | 68.14/67.57  64.67/63.79 | 70.90 / 68.64 67.80 / 66.67 | 43.96/42.32 4136 /39.37 | 67.28 /66.19
SteP 91.62/91.63 89.92/89.72 | 68.02/67.28 64.91/61.95 | 71.19/70.11  69.89 / 67.91 | 44.20/41.99 41.84/38.59 | 67.70 / 66.15
CHIP+bd (Ours) | 90.70 /90.73  89.44 / 89.48 | 68.57 /68.58 64.91/64.92 | 71.53/71.53 6870/ 68.64 | 44.29 /4427 40.49 /4047 | 67.33/67.33
CHIP (Ours) 91.45/91.48 90.07/90.05 | 68.77/68.78 64.37/64.38 | 71.69/71.69 68.93/68.93 | 44.80 /44.82 41.00/ 40.98 | 67.64 / 67.64

CIFAR-10 CIFAR-100 Caltech-101 Caltech-256

ResNet-18 BN GN BN GN BN GN BN | GN Mean

clean 95.00 93.48 7639 72.16 70.68 66.67 5373 4538 71.69
DeepIPR 93.17/92.89  90.52/90.56 | 67.35/71.54 68.19/67.76 | 65.37/67.29 60.11/59.66 | 41.50 / 45.46  42.45/41.35 | 66.08 / 67.06
PAN 94.62/94.56  93.50/93.65 | 76.47/76.58  71.05/71.46 | 72.09/71.69  67.12/67.01 | 55.12/54.71 4470/ 43.94 | 71.83/71.70
TdN 9459 /94.54 93.51/93.40 | 7546/74.11 70.82/71.09 | 73.01 /7294 66.55/66.05 | 5479/ 54.81 44.65/44.19 | 71.67/71.39
SteP 94.65/94.55 93.29/93.42 | 75.66/74.62 71.35/71.95 | 74.18/73.90 6633/ 66.27 | 54.54 /5446 43.43/43.66 | 71.68/71.60
CHIP+bd (Ours) | 94.51/94.51 93.57/93.58 | 76.80/76.81 71.19/71.19 | 72.82/72.82 66.05/66.05 | 55.35/5532 45.28/4524 | 71.95/71.94
CHIP (Ours) 94.80 /9479  93.51/93.51 | 76.64/76.64 7091 /7091 | 72.54/72.60 67.74/67.68 | 55.04 /5507 44.90/44.93 | 72.01/72.02

where Dec(-) is the ASCII decoding operation. VX confirms passport and licensee certificate can be achieved at any time,

the validity of the ownership claim. Only the owner licensor
certificate can be decoded to a legible and meaningful copy-
right text. All licensee certificates are random hashed values
that cannot be decoded to meaningful texts.

Note that registered users can also pass V¥, VP and
VH but not V. Only when all four tests are passed can
an ownership claim be confirmed. Once the ownership is
validated, the culprit responsible for the model infringement
can be traced by subjecting user passports in the plaintiff’s
repository to the fidelity test in turn. The registered user whose
passport passes V! is identified as the culprit. Table S3 of the
Supplementary Material summarizes the goals of the four tests.

E. Cloud application

The above CHIP usage control and protection mechanism
applies to offline distributed models, which are safeguarded
against legal buyers who have white-box access to their
purchased models’ architectures and weights. For models
deployed as MLaaS, it is impractical to provide each registered
user with a separate model for usage control.

Instead of creating IV user triplets, the owner simply gener-
ates N distinct random passports {p.,p?, - ,p'} and com-
pute the corresponding licensee certificates {rl, r2 ... r¥
by trapdoor collision. Each licensed user u; is issued a unique
tuple {p/,, 77} that serves as the identity token. The API call
from a user is approved if the provided tuple can gener-
ate a intended signature, i.e., SGN(CH(PK, mi,ri)) = &.
Subsequently, the master model can process user-provided
test images for classification. In the cloud scenario where
the model owner maintains full control over inference, we
recommend using the passport-free branch for prediction.
As demonstrated in our complexity analysis (Sec. V-F), this
branch offers superior computational efficiency in inference
compared to the passport-aware branch.

CHIP provides great flexibility to the owner in the MLaaS

scenario: revoking an expired passport or issuing a new

through efficient chameleon hash computing.

Overall, since the cloud model is a black-box to users and
the owner has full control over the inference stage, it turns
out that with CHIP, single-model multi-user active control be-
comes simpler to implement on cloud. Hence, our evaluations
mainly focus on the more challenging offline scenario.

V. EVALUATIONS
A. Experimental Settings

Baselines. To benchmark CHIP, we compare it against
four state-of-the-art passport-based methods: DeepIPR [20],
PAN [21], TdN [22], and SteP [23]. These methods are re-
implemented using their official codes on GitHub.

Datasets and Networks. To be consistent with the base-
lines, experiments are conducted on four image classifica-
tion benchmarks, including CIFAR-10 [45], CIFAR-100 [45],
Caltech-101 [46], and Caltech-256 [46]. AlexNet [47] and
ResNet-18 [48] architectures are used for the evaluation, with
both BN [43] and GN [44].

Implementation details. All models are trained from
scratch for 200 epochs, starting with an initial learning rate of
0.01, which decays by a factor of 0.1 at epochs 100 and 150.
The SGD optimizer is used for training, with a weight decay of
5e-4. Following the configurations in [19], [20], the last three
norm layers of AlexNet, and the norm layers within “layer4”
of ResNet-18, are selected for passport embedding. We also
conduct additional experiments on CHIP with backdoor wa-
termarking [17] to demonstrate their compatibility. For user
triplet generation, the master model and the owner passport
are optimized with 5,000 iterations, with a fixed learning rate
of 0.01. Experiments are run on four NVIDIA A100 GPUs
using Python 3.10.16 and PyTorch 2.6.0.

B. Effectiveness and Verification Assessment

Table II presents the inference performance of passport-free
and passport-aware models. The first row “clean” in each sub-
table shows the accuracy of unprotected models. The DeepIPR
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has lower accuracy for passport-free and passport-aware mod-
els since the convolutional layer’s feature extraction ability is
severely undermined by the signature embedding constraint
(i.e., Ly). In contrast, CHIP has comparable accuracy as PAN,
TdN, and SteP that inserts a TLP layer after the pooling
layer to alleviate the training difficulty, and surpasses them in
some cases. Specifically, CHIP has the highest mean accuracy
for both passport-free and passport-aware models on ResNet-
18, and passport-aware model on AlexNet. For passport-free
model on AlexNet, CHIP achieves the second highest mean
accuracy of 67.64%, which which is merely 0.06% lower than
that of SteP. These results indicate that CHIP’s passport layers
will not compromise the model’s primary performance tasks.

Previous works witness an unignorable performance devi-
ation between the passport-free and passport-aware branches.
In general, the passport-aware model’s performance is lower
than that of the passport-free counterpart. For example, in
the case of “AlexNet_Caltech-256_BN_PAN”, the passport-
aware model is 3.47% lower than that of the passport-free
model. This level of performance degradation undermines the
passport-aware models’ utility for deployment. The balance
loss Ly of CHIP forces the affine factors of the two branches
to be close, making their performance deviation extremely low.

The penultimate row in each sub-table presents the accu-
racies of the models that are jointly protected by CHIP and
backdoor watermarking [11]. The backdoor training samples
cause only a slight performance drop in the passport-free and
passport-aware models, demonstrating that CHIP can be easily
supplemented by backdoor watermarking to provide additional
means of infringement detection.

All methods in comparison can achieve 100% SDA, i.e.,
the signature bits extracted from the passport layers perfectly
match the actual embedded signature bits.
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Fig. 5: (a) Confusion matrix for the performance evaluation of
five different user passports on five user models. The inference
accuracy of the unprotected model is 95.00%. (b) Cosine
similarity between user passports. Experiments are conducted
on “ResNet-18_CIFAR-10_BN”.

C. Active Control Assessment

We generate five user triplets based on the master model
to test the active usage control. Taking the case of “ResNet-
18_CIFAR-10_BN” as an example, Fig. 5(a) demonstrates
that all five user models achieve high inference accuracy
comparable to that of the clean model when the matched
passport is presented. However, the inference accuracy drops
dramatically to below 21% with a mismatched passport, even
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Fig. 6: Performance of protected models under random pass-

port attacks. In each histogram, the x-axis represents inference

accuracy (%), and the y-axis indicates frequency. The first row

displays results for AlexNet, while the second row shows those

for ResNet-18. Histograms for BN and GN are displayed in
and , respectively.

if it is also a legal user passport issued by the owner. This
highlights a significant advantage of CHIP over SteP [23],
which fails to bind a distributed model to a unique passport.
Hence, a user model can only be normally used by the unique
user who holds the designated paired passport. As depicted
in Fig. 5(b), the cosine similarity between two distinct user
passports is extremely small, indicating a high dissimilarity
between them. This makes it easy to distinguish different user
passports and conduct liable buyer traceability in the event
of IP infringement. Furthermore, all user triplets achieve high
SDA and PHA scores exceeding 99%, confirming that both V¥
and V¥ can be successfully validated when the user model,
user passport, and licensee certificate are properly matched.

Supplementary experimental results for active control as-
sessment are provided in Fig. S1 and Fig. S2 of the Supple-
mentary Material. These results conclude that CHIP achieves
successful active control across all cases.

D. Robustness

The protected master model remains private to the owner.
We assume that the attacker possesses a stolen user model,
and in the worst-case scenario, even holds the corresponding
user passport and the licensee certificate. The attacker may
launch either ambiguity attacks to falsely claim ownership
of the user model or removal attacks aimed at erasing the
embedded watermark.

Robustness against Ambiguity Attacks

Two types of ambiguity attacks are considered: (1) Random
passport attack. The attacker has no access to the correct
passport and thus uses random passports to operate the stolen
user model. (2) Ambiguity attack with oracle passport. As
defined in Definition 1, without sacrificing the inference
accuracy, the attacker creates a forged passport that can be
projected to the original signature or a designated signature
(e.g., flipping 10% bits of the original signature).
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TABLE III: Robustness of the four baselines and CHIP against ambiguity attack with oracle passport. Acc. (%) denotes the
inference accuracy of the stolen model when the forged passport is present. SDA (%) and PHA (%) are measured to verify
whether the forged passport passes VP and V| respectively. “N/A” denotes “not applicable”. Results are measured on BN.
Supplementary results for GN are provided in Table S1 of the Supplementary Material.

AlexNet CIFAR-10 CIFAR-100 Caltech-101 Caltech-256
Acc. SDA PHA Acc. SDA PHA Acc. SDA PHA Acc. SDA PHA
DeepIPR 89.45 100.00 N/A 65.27 100.00 N/A 68.51 100.00 N/A 41.27 100.00 N/A
PAN 89.38  100.00 N/A 67.49  100.00 N/A 70.87 100.00 N/A 4153 100.00 N/A
TdN 89.94 100.00 50.65 | 67.01 100.00 4696 | 68.88 100.00 50.61 | 42.24 100.00 52.56
SteP 90.91 100.00 50.56 | 67.52 100.00 5243 | 70.54 100.00 49.22 | 41.78 100.00 51.30
CHIP (Ours) | 82.36 100.00 51.00 | 48.24 100.00 52.69 | 64.21 100.00 51.26 | 32.68 100.00 48.78
ResNet-18 CIFAR-10 CIFAR-100 Caltech-101 Caltech-256
Acc. SDA PHA Acc. SDA PHA Acc. SDA PHA Acc. SDA PHA
DeepIPR 92.78  99.99 N/A 70.26  100.00  N/A 66.82 100.00 N/A 4454  100.00 N/A
PAN 94.42  100.00 N/A 75.66  100.00 N/A 7141 100.00 N/A 54.09 100.00 N/A
TdN 94.50  100.00 50.90 | 73.75 100.00 49.34 | 7297 100.00 50.55 | 54.16 100.00  49.38
SteP 94.62 100.00 4891 | 7425 100.00 49.38 | 73.56 100.00 4934 | 53.82 100.00 49.18
CHIP (Ours) | 94.48 100.00 50.27 | 65.79 100.00 50.86 | 68.49 100.00 48.01 | 45.88 100.00 51.02
Random passport attack. To assess the robustness of each oo # e I B s s =
CHIP model against this attack, we generate 100 random S w il =
passports and measure their inference accuracy on the stolen % 5 80 Ace.
model. Fig. 6 presents the resulting histograms for each case 5 o1 Sl o |
over 100 test runs. Across all cases, the stolen model consis- < w < |
tently displays an extremely low inference accuracy with dis- 40

tinct random passports. For example, with “AlexNet_CIFAR-
10_BN”, the 100 random passports yield an average accuracy
of just 10.15% (£1.07%). Such a significantly degraded per-
formance is comparable to that of an untrained model making
random guesses. Consequently, false ownership claims using
forged random passports fail the performance fidelity test V.
More critically, the attacker cannot even use the stolen model
normally with forged passports.

Ambiguity attack with oracle passport. The attacker is
assumed to hold the original passport and 30% of the original
training data to create a forged passport. We conducted exper-
iments on the four baselines and our CHIP to evaluate their
robustness against this attack. For each forged passport, the
inference accuracy (%), SDA (%), and PHA (%) are measured
to check whether it passes the performance fidelity test V¥,
the signature detection test V', and the passport hashing test
VH | respectively.

Experimental results are provided in Table III. A 100%
SDA can be achieved across all cases. This finding is not
surprising: given the vast parameter space, it is possible to
create a forged passport differs significantly from the original
one while producing the same signature. Hence, V' can be
trivially bypassed.

Regarding performance fidelity, forged passports achieve
inference accuracy comparable to unprotected models for all
four baselines. In contrast, CHIP models exhibit an average
accuracy drop of 13.68% with forged passports, causing false
claims to fail V¥ in certain cases. Benefited from the skip
connection, significant passport modifications drastically alter
affine factors, thus degrading inference performance.

The PHA measured on TdN, SteP, and CHIP remains near
50%, i.e., as bad as random guessing. For TdN and SteP, it
is computationally intractable for the attacker to re-construct
the one-way chameleon-hash from the forged passport to the

100 0 25 50 75 100
Flip rate (%)

(b) ResNet-18

0 25 50 75
Flip rate (%)

(a) AlexNet

Fig. 7: Inference accuracy (%), SDA (%), and PHA (%)
after ambiguity attacks with oracle passports. The flipping rate
ranges from 0% to 100%, with a step size of 10%. The dataset
is Caltech-101 and norm type is BN.

detected signature, thereby making false claims refuted by
VH  Additionally, CHIP provides a stricter test: the attacker
must provide both a forged passport passing V¥ and a valid
licensor certificate for VX. Both require finding a collision to
the chameleon-hashed signature, which is provably intractable
without the secret key SK. Consequently, false claims are
rejected for failing V7 and V*.

Beyond forging a passport, the attacker may also attempt to
embed a malicious signature that differs from the original.
To evaluate this threat, we conduct ambiguity attacks by
modifying the original signature with bit-flipping rates ranging
from 0% to 100%.

Fig. 7 presents the inference accuracy, SDA, and PHA of
CHIP models under these attacks. The SDA exhibits a smiling
curve across different flip rates. Specifically, as the flip rate
increases, the SDA initially decreases gradually until reaching
its minimum at 50% flip rate, then subsequently rises with
further increases in flip rate. This behavior is expected, as
a flip rate of 50% represents the most challenging case for
malicious signature embedding. On AlexNet, the SDA falls
too much to pass VP for flip rates between 20% to 90%;
while on ResNet-18, the SDA maintains above 95%, indicating
successful malicious signature embedding.

However, passing VP alone dose not imply a successful
removal, replacement or evasion of ownership proof. In fact,
such false claims on CHIP models remain detectable. The
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TABLE IV: Robustness of the four baseline methods and CHIP against transfer learning attacks. The values outside and inside
the brackets represent the optimized model’s inference accuracy (%) and SDA (%), respectively. The last column reports the

mean SDA (%) of each method.

AlexNet CIFAR-100 to CIFAR-10 CIFAR-100 to Caltech-101 Caltech-256 to CIFAR-10 Caltech-256 to Caltech-101 Mean
BN [ GN BN { GN BN { GN BN { GN SDA
DeepIPR 83.96 (100.00) 83.54 (98.48) | 75.93 (99.61) 75.93 (96.09) | 82.89 (100.00) 81.13 (99.18) | 74.75 (100.00) 72.43 (98.09) | 98.93
PAN 87.75 (86.33) 85.50 (81.12) | 78.87 (86.68)  75.76 (84.59) 83.69 (92.19) 81.18 (83.64) 75.48 (93.71) 73.39 (87.20) | 86.93
TdN 87.45 (85.03)  85.99 (82.12) | 78.98 (89.24)  76.89 (85.59) | 83.42 (91.54)  81.44 (84.11) | 74.97 (91.67)  72.32 (89.63) | 87.37
SteP 87.57 (81.03)  85.70 (84.77) | 78.76 (79.60)  77.10 (87.24) | 84.10 (91.36)  81.33 (87.50) | 74.69 (93.88)  73.22 (93.83) | 87.40
CHIP (Ours) 86.88 (95.88) 85.28 (97.92) | 77.46 (99.48)  75.31 (99.87) 83.87 (95.10) 80.86 (96.53) 74.12 (99.70) 71.07 (99.61) | 98.01
ResNet-18 CIFAR-100 to CIFAR-10 CIFAR-100 to Caltech-101 Caltech-256 to CIFAR-10 Caltech-256 to Caltech-101 Mean
) BN { GN BN { GN BN { GN BN { GN SDA
DeeplPR 88.59 (81.45) 84.82 (88.87) | 78.14 (79.53) 71.69 (76.99) | 84.26 (88.40) 79.68 (86.02) | 74.52 (91.13) 69.38 (75.70) | 83.51
PAN 91.19 (83.79)  88.99 (91.76) | 80.79 (82.07)  75.82 (88.32) | 89.06 (90.78)  84.54 (86.05) | 79.89 (88.75)  73.56 (82.77) | 86.79
TdN 90.98 (80.78)  89.13 (91.56) | 80.79 (79.53)  75.48 (91.31) | 89.21 (91.68) 84.33 (90.78) | 78.47 (89.26) 73.11 (88.87) | 87.97
SteP 90.86 (80.59)  88.97 (93.01) | 80.79 (78.13)  75.25 (91.64) | 89.55 (88.20)  83.64 (91.37) | 79.60 (88.71)  71.69 (90.66) | 87.79
CHIP (Ours) | 90.68 (99.18)  89.11 (99.38) | 79.44 (99.65) 73.90 (99.02) | 88.51 (98.20) 84.17 (96.91) | 76.27 (99.49)  69.83 (99.77) | 98.95
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After ~ 80 - —~ 80 ]
80 80 80 80 § Acc (£1-norm) g\c_, )
B 0 SDA (£1-norm) B 0
< <
60 60 60 60 5 4 Accfrandom) _ [ 5 49
Eé SDA (random) g
40 40 40 40 » N
Acc. SDA Acc. SDA Acc. SDA Acc. SDA 0 25 50 75 100 0 0 25 50 75 100
CIFAR-10 CIFAR-100 Caltech-101 Caltech-256 Pruning rate (%) Pruning rate (%)
(a) BN (b) GN

Fig. 8: Acc.(%) and SDA(%) of CHIP models before and after
fine-tuning with 30% of the original training dataset.

inference accuracy decreases monotonically with increasing
flip rates. Even a modest 10% flip rate is sufficient to cause
a drastic accuracy degradation and fail V. Furthermore, the
PHA remains near 50% across different flip rates, demonstrat-
ing that these ambiguity attacks consistently fail V.

In summary, CHIP is verified to be robust against various
ambiguity attacks, regardless of whether the attacker possesses
the original passport or additional training data.

Robustness against Removal Attacks

Fine-tuning. To investigate the robustness of CHIP against
fine-tuning attack, user models are trained for additional 100
epochs with a small learning rate of 0.001. The attack scenario
assumes a realistic setting where the adversary possesses only
30% of the original training data, otherwise, the attacker can
train a new model from scratch rather than fine-tuning a stolen
one. Following the re-train all layer (RTAL) configuration [49],
we first reinitialize the fully-connected layer before optimizing
all model parameters.

As shown in Fig. 8, CHIP models display remarkable
resilience: even if fine-tuned models can achieve comparable
inference accuracy to their original counterparts, the SDA
remains consistently above 95%, underscoring CHIP’s effec-
tiveness in maintaining watermark integrity. The embedded
watermarks cannot be removed through conventional fine-
tuning approaches, even when attackers have partial access
to training data and complete model parameter access.

Transfer learning. An adversary may attempt to remove an
embedded watermark by training a stolen model on a different
target dataset. To evaluate the robustness of CHIP against such
attacks, we conduct experiments under four transfer learning

Fig. 9: Inference accuracy (%) and SDA (%) after random
pruning or ¢;-norm pruning. Evaluations are conducted on
ResNet-18 models trained on CIFAR-10.

scenarios: CIFAR-100 to CIFAR-10, CIFAR-100 to Caltech-
101, Caltech-256 to CIFAR-10, and Caltech-256 to Caltech-
101. In each case, the stolen model is initially trained on the
first dataset and then undergoes transfer learning on the second
dataset. The fully-connected layer is first reinitialized to match
the class number of the new dataset, and then all weights are
trained for 100 epochs with a constant learning rate of 0.001.
Note: The attacker can only perform transfer learning on the
distributed model that has only one norm branch, as the dual-
branch master model is kept private by the model owner. In
other words, for the four baselines, the passport-free models
are optimized; whereas for CHIP, the passport-aware model
are tuned.

Table IV presents the evaluation results. On AlexNet,
DeepIPR and CHIP maintains a high SDA across all cases
after transfer learning. Even though all weights are involved
in the transfer learning process, the embedded signature can
still be successfully extracted from the optimized model with
a high SDA of over 98%. In contrast, the other three baseline
methods suffer significant SDA degradation (average 13%
drop), rendering their ownership claims unreliable as the error
rates exceed the predefined threshold 7eyo. On ResNet-18,
DeepIPR attains the lowest averaged SDA of only 83.51%.
The other three baseline methods still maintain an averaged
SDA close to 87%, which is insufficient for reliable ownership
verification. CHIP outperforms the four baseline methods with
an apparently higher averaged SDA of 98.95%, successfully
passing the signature detection test VP and enabling unam-
biguous ownership attestation.
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TABLE V: Inference accuracy (%) of CHIP models trained with different target norm layers.

AlexNet CIFAR-10 CIFAR-100 Caltech-101 Caltech-256 Mean
BN GN BN GN BN GN BN GN
clean 91.09 89.92 68.79 65.05 72.20 69.21 44.15 41.88 67.79
I 91.23/91.23  90.00/90.01 | 68.21/68.20 64.17/64.18 | 71.81/71.81 70.11/70.11 | 43.61/43.64 40.51/40.51 | 67.46/ 67.46
I 91.45/91.48 90.07 /90.05 | 68.77 /68.78 6437 /6438 | 71.69/71.69 68.93/6893 | 44.80/44.82 41.00/40.98 | 67.64 / 67.64
111 90.91/90.93  89.71 /89.69 | 68.37/68.39 6545/6549 | 70.23/70.23  68.02/68.02 | 44.06 / 44.02  40.60 / 40.62 | 67.17 / 67.17
ResNet.18 CIFAR-10 CIFAR-100 Caltech-101 Caltech-256 Mean
BN GN BN GN BN GN BN GN
clean 95.00 93.48 76.39 72.16 70.68 66.67 5373 45.38 71.69
I 94.80 /9479 93.51/93.51 | 76.64/76.64 7091 /7091 | 72.54/72.60 67.74/ 67.68 | 55.04 /5507 44.90/44.93 | 72.01 / 72.02
I 94.67/94.68 93.52/93.52 | 7723 /7722 7254 /7287 | 7328 /73.33 69.89/69.89 | 5553 /5563 4541/4546 | 72.76/72.83
111 94.83/94.86 93.93/9393 | 77.23/77.17 73.50/73.54 | 73.62/73.67 69.21/69.27 | 5451 /5446 46.78 /46.75 | 72.95/72.96
Weight pruning. Following [23], two pruning strategies are e A ... e 00
considered: random pruning and ¢;-norm pruning. The user 80
model is globally pruned with a pruning rate ranging from 2 " Q e 80
0% to 100%, and a step size of 10%. 8 I 8507 7975 9397 8580 70
Fig. 9 plots the inference accuracy and SDA of CHIP mod- . 40 -
. . 10.10 49.58 | 67.85 BEZA-PARCERE]
els pruned by the two strategies. It shows that the inference < < -60
accuracy declines more slowly with ¢;-norm pruning than g G2 A 7909 | c973 8896 87.10
. . o . -50
with random pruning. This is because ¢;-norm pruning tends Mo My My Mz M Mo My Mz Mz My

to eliminate less significant weights with small magnitudes
before crucial weights with larger magnitude to avoid per-
formance degradation. The SDA drops much later and more
gently than the inference accuracies on pruning, regardless
of the pruning strategy. At 80% pruning rate, the SDA stays
above 80% while the inference accuracies have dropped to
below 20% and 75% for BN (Fig. 9(a)) and GN (Fig. 9(b)),
respectively. More supplementary results are presented in Fig.
S4 and Fig. S5 of the Supplementary Material. These results
corroborate that the attacker cannot remove the embedded
signature without significantly degrading the inference perfor-
mance.

E. Cloud Application

To simulate the deployment of CHIP in the MLaaS sce-
nario, we generate 100 genuine tuples (ie., {pl,r}};%),
each distributed to a unique end-user as an identity token.
Additionally, 300 forged tuples are created to simulate three
types of adversarial attacks, including:

o Certificate forging attack: 100 tuples with valid user pass-
ports but randomized licensee certificates;

o Passport forging attack: 100 tuples with valid licensee
certificates but randomized passports;

o Brute-force attack: 100 tuples with both randomized user
passports and licensee certificates.

The 400 tuples are used to initiate 400 API calls to a
remote ML hosted on a cloud server. For each request, the
system computes the chameleon hash value from the submitted
passport and licensee certificate, and compares it against
the signature to verify authenticity. The evaluation results
show 100 true positives and 300 true negatives, with zero
false positives or false negatives. Consequently, the system
achieves flawless classification performance, attaining 100%
precision, recall, and F1 score. This empirically validates
CHIP’s provable security against all three attack types in
the simulated MLaaS deployment. The collision resistance
property of chameleon hash guarantees that attackers cannot

(a) with (w) (b) without (w/0)

Fig. 10: Inference accuracy confusion matrices measured on
CHIP models (a) with and (b) without skip connections.
Experiments are conducted on “ResNet-18_CIFAR-10_BN”.

forge valid tuples without the secret key. Additionally, CHIP
optimizes verification efficiency by requiring only a single
chameleon hash computation per API request, ensuring scal-
ability for large-scale API authentication.

F. Further Analysis

Ablation studies

Effect of the target norm layers. We investigate the impact
of target norm layers by training CHIP models with varying
passport embedding configurations. For AlexNet, we evaluate
three configurations: (I) only the last norm layer, (I) the last
three norm layers (default), and (III) all five norm layers. For
ResNet-18, we test norm layers in: (I) “layer4” (default), (I)
“layer3 + layer4”, and (III) “layer2 + layer3 + layer4”.

As shown in Table V, CHIP models consistently achieve
high inference accuracy comparable to those of the unpro-
tected models, regardless of the configurations of target norm
layers. Hence, the owner can freely select any subsets of norm
layers as passport layers.

Effect of the skip connection. As discussed in IV-B, the skip
connection from the passport to affine factors is critical for
effective active control. To evaluate its importance, we train
a CHIP model without this skip connection and derive five
user models from it. Fig. 10(a) demonstrates that models with
skip connections perform properly only with their designated
paired passports. Without the skip connection, however, non-
diagonal elements in the confusion matrix have their values
drawn closer to diagonal elements (Fig. 10(b)), indicating a
failure of active control. For instance, user passport p, achieves
92.51% inference accuracy on mismatched user model M.
This evidence confirms that skip connections make affine
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TABLE VI: Inference accuracy (%) of passport-free/passport-
aware models across four graph classification datasets. The
first row “clean” represents unprotected GIN models without
passport layers.

GIN IMDB-B COLLAB NCI1 AIDS
clean 74.00 81.00 81.27 98.83
CHIP | 73.67/73.67 81.40/81.40 80.78/80.78  99.17/99.17

factors highly dependent on the passport, ensuring each user
model operates exclusively with its designated paired passport.
CHIP for graph classification

We also evaluated CHIP’s performance generalizability be-
yond image classification by applying it to Graph Isomorphism
Networks (GINs) [50] for graph classification tasks. Protected
GINs are trained on four datasets (IMDB-Binary (IMDB-B),
COLLAB, NCII1, and AIDS [51]) for 200 epochs, with a 7:3
train-test split ratio. The initial learning rate is set to 0.01, and
reduced by half every 50 epochs.

As shown in Table VI, CHIP models achieve comparable
inference accuracy to clean models, demonstrating seamless
integration into GINs without performance degradation. Ow-
ing to the balance loss Ly, there is no performance deviation
between the two branches across all datasets. Meanwhile,
all CHIP models attain a 100% SDA, confirming successful
watermark embedding. We also conduct experiments to assess
the active control of CHIP on graph classification tasks, and
the results are provided in Fig. S3 of the Supplementary
Material. Similar to image classification, each GIN user model
operates correctly only with its designated paired passport, and
distinct passports exhibit low cosine similarity.

In summary, CHIP’s proven effectiveness in watermarking
GINs with multi-user access control for graph classification
tasks validates its generalizability across diverse ML tasks.
Complexity

Table VII compares the training and inference time of
clean and CHIP models measured on an NVIDIA A100
GPU. It shows that training a master CHIP model requires
approximately 3.71x (AlexNet) and 3.35x (ResNet-18) more
time than training an unprotected clean model. During infer-
ence, the passport-aware branch introduces additional com-
putational overhead for processing passports and generating
affine factors, resulting in average time complexities of 1.33x
(AlexNet) and 1.32x (ResNet-18) compared to clean models.

Security enhancements inevitably involve trade-offs. No-
tably, the training phase, typically a one-time process managed
by the model owner, can accommodate higher computational
costs for long-term security benefits. Moreover, the current
implementation presents opportunities for further optimization
that could reduce training time. The modest increase in infer-
ence time remains acceptable even for real-time applications,
making CHIP practical for offline deployment scenarios. This
reasonable computational overhead represents a worthwhile
investment for robust IP protection.

More importantly, CHIP allows efficient generation of mul-
tiple user triplets through trapdoor collision. Table VIII shows
that creating five distinct user triplets only requires several
minutes, which is significantly faster than training a single
watermarked model from scratch. Moreover, this data-free

TABLE VII: Training (T) and inference (I) time of clean and
CHIP models. The values are in second/epoch.

CIFAR-10 CIFAR-100 Caltech-101 Caltech-256
Model Type

T I T 1 T I T 1

clean 402 042 | 402 041 | 074 026 | 2.03 035
AlexNet
CHIP | 15.13 059 | 1528 059 | 227 029 | 735 045
clean 947  0.61 939 063 | 149 029 | 459 046
ResNet-18

CHIP | 31.81 093 | 3193 0.67 | 456 037 | 1524 0.67

TABLE VIII: Optimization time (minute) of generating five
distinct user triplets based on the master model. The values
are measured on an NVIDIA A100 GPU.

Model CIFAR-10  CIFAR-100  Caltech-101  Caltech-256
AlexNet 6.55 6.55 6.33 6.45
ResNet-18 10.38 10.48 10.00 10.23

process exhibits network-dependent but dataset-independent
complexity, as user model fidelity is guaranteed by minimizing
the balance loss Ly, to align affine factors with the master
model, rather than through traditional data-driven training.
Consequently, CHIP provides excellent flexibility and effi-
ciency to create multiple user triplets, making it particularly
suitable for scalable offline distribution scenarios where mul-
tiple customized models need to be efficiently generated and
distributed for traceability.

VI. CONCLUSION

This paper introduces a novel DNN IP protection method
called CHIP. It replaces selected norm layers of the target
model with carefully designed passport layers to embed an im-
mutable signature for watermarking and active control simulta-
neously. The embedded signature is generated by a chameleon
hash with the owner passport and a licensor certificate that
encode a plaintext copyright text. This design allows the owner
to create multiple different user models by efficiently fine tun-
ing the small TLP layers connected locally to each passport-
aware branch. Each user model is uniquely bound with a
distinct user passport and a licensee certificate generated by the
trapdoor collision. A registered user must present the assigned
user passport to normally use the distributed model. In the
event of IP infringement, the owner can verify ownership of
deployed models by presenting the master model’s passport-
aware branch, along with the owner passport and licensor
certificate. The master model can also be deployed for MLaaS
for online access by registered users with their assigned user
passports and licensee certificates. Comprehensive evaluations
across four datasets and two DNN models demonstrate that
CHIP can successfully embed a robust signature into the target
model without degrading inference performance, and restrict
model usage strictly to the specific registered user who holds
the correct passport. Our method has also been validated to
resist known ambiguity attacks and removal attacks.
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