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Abstract
The performance of existing audio deepfake detection frame-
works degrades when confronted with new deepfake attacks.
Rehearsal-based continual learning (CL), which updates mod-
els using a limited set of old data samples, helps preserve
prior knowledge while incorporating new information. How-
ever, existing rehearsal techniques don’t effectively capture
the diversity of audio characteristics, introducing bias and in-
creasing the risk of forgetting. To address this challenge, we
propose Rehearsal with Auxiliary-Informed Sampling (RAIS),
a rehearsal-based CL approach for audio deepfake detection.
RAIS employs a label generation network to produce auxil-
iary labels, guiding diverse sample selection for the memory
buffer. Extensive experiments show RAIS outperforms state-of-
the-art methods, achieving an average Equal Error Rate (EER)
of 1.953% across five experiences. The code is available at:
https://github.com/falihgoz/RAIS.
Index Terms: audio deepfake detection, rehearsal-based con-
tinual learning, sample selection

1. Introduction
Deep learning has shown promising performance in audio deep-
fake detection [1, 2, 3, 4]. However, as audio deepfake gen-
eration evolves, relying on past data without adaptation leads
to performance degradation over time [5, 6]. Fine-tuning on
new data risks catastrophic forgetting [7, 8, 9], where the model
forgets previously acquired knowledge as it adapts to new in-
formation. Alternatively, retraining the model from scratch is
computationally expensive and discards prior learning [8, 10].

Continual learning (CL) enables models to retain knowl-
edge while integrating new data and has been applied in com-
puter vision, robotics, graph data, and natural language process-
ing (NLP) [11, 10]. In audio deepfake detection, CL methods
such as DFWF [12], RWM [5], and RAWM [6] rely on regu-
larization but assume no access to past data [13, 14]. However,
updating the model without access to prior datasets can intro-
duce a bias toward newly observed data [15].

Rehearsal-based CL overcomes this by storing and re-
playing past samples, with methods like Experience Replay
(ER) [16] and ER with Asymmetric Cross-Entropy (ER-
ACE) [17] proving effective in reducing forgetting [18]. The
challenge lies in selecting representative samples within a fixed-
size memory buffer. While random sampling lacks balance,
strategies such as feature centroid distance [17, 19], class
mean [20], gradient-based [21, 22], and class-balanced selec-
tion [23] rely only on primary labels (fake/real). However, au-
dio contains diverse paralinguistic features, and ignoring them
can result in a less diverse sample selection, ultimately limiting
CL performance.

Rehearsal-based Continual Learning
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Figure 1: The Proposed Framework of RAIS

In this work, we propose Rehearsal with Auxiliary-
Informed Sampling (RAIS), which enhances stored sample
quality by incorporating auxiliary labels to capture diverse au-
dio characteristics. Since these auxiliary labels are latent, we
introduce an audio auxiliary generation module that infers them
via masked prediction. These labels then guide sample selec-
tion, ensuring a balanced representation of informative and di-
verse samples from past experiences. Our main contributions
are as follows:
• We propose RAIS, a rehearsal-based CL approach for audio

deepfake detection that improves sample diversity.
• We develop an audio auxiliary generation module that infers

auxiliary labels via masked prediction, eliminating manual
labeling.

• We introduce an auxiliary label-informed sampling strategy
that leverages the generated labels to select diverse and infor-
mative samples.

• Extensive experiments show RAIS outperforms state-of-the-
art CL methods, achieving the lowest average EER.

2. Methodology
In the CL setting, training is performed across a sequence of
experiences Ei. During the initial experience E0, the memory
buffer M is empty, so training relies solely on the dataset D0.
For subsequent experiences (i > 0), Di is combined with sam-
ples from M to train the model while mitigating forgetting of
previously learned knowledge.

RAIS, shown in Figure 1, enhances continual learning for
audio deepfake detection through two key modules: the Audio
Deepfake Detection Module (ADDM) for classification and the
Audio Auxiliary Label Generation Module (AAGM) for gener-
ating auxiliary labels to guide sample selection. The auxiliary
labels help mitigate catastrophic forgetting by ensuring diverse,
informative samples are retained.

https://arxiv.org/abs/2505.24486v1


2.1. Audio Deepfake Detection Training

RAIS employs two key modules: ADDM, which classifies au-
dio as fake or bona fide, and AAGM, which generates auxil-
iary labels to improve sample selection. These two modules are
jointly trained to enhance learning and knowledge retention.

2.1.1. Audio Deepfake Detection Module (ADDM)

ADDM consists of two components: a feature extractor g that
encodes input audio into a latent representation and a classi-
fication head c that maps the latent representation to logits.
Given an input audio signal x ∈ RT , the ADDM processes
it as SoftMax(c(g(x))), where g(x) produces a latent repre-
sentation z ∈ RD , and c maps z to logits. These logits are
then converted into a probability distribution p = (p0, p1) us-
ing the SoftMax function, where p0 represents the probability
of fake audio (y = 0) and p1 represents the probability of
bona fide audio (y = 1). The final classification decision is
ŷ = argmax(p). The ADDM is optimized using the cross-
entropy loss LADDM which encourages the model to correctly
classify audio as either fake or bona fide.

2.1.2. Audio Auxiliary Label Generation Module (AAGM)

While primary labels (fake/bona fide) provide essential super-
vision, they fail to capture the rich paralinguistic characteris-
tics inherent in audio. To address this, we introduce AAGM,
which automatically generates auxiliary labels to guide learn-
ing. AAGM is inspired by meta-auxiliary learning [24], but
differs in key ways:
1. Decoupled Optimization: Unlike conventional meta-
auxiliary learning, which jointly optimizes both the main task
and label generation, AAGM prevents conflicting gradients [25]
that could degrade primary task performance. This is achieved
using a stop-gradient to isolate AAGM updates.
2. Independent Training: Instead of a multi-task objective,
we train AAGM separately using a masked prediction objec-
tive [26], ensuring the auxiliary network remains independent
of ADDM.
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Figure 2: Audio Auxiliary Label Generation Module (AAGM)

Figure 2 illustrates AAGM’s design. It begins with a de-
tached latent representation z from the feature extractor. The
label-generation head h produces a vector q = h(z) ∈ RK ,
where K is the number of possible auxiliary labels. For each
input, AAGM categorizes it into one of these K labels. AAGM
then generates two multi-class probability vectors through sep-
arate branches:

1. Masked branch (Auxiliary-Specific SoftMax): To enforce
distinct auxiliary labels for fake and bona fide samples, we ap-
ply MaskedSoftMax [24]. The first K/2 labels are assigned to
fake audio, while the remaining K/2 labels correspond to bona
fide, ensuring category-specific labels. For each sample, a bi-
nary mask vector M is constructed based on its ground-truth
label y. Specifically, if the sample is fake (y = 0), the mask
activates only the first K/2 positions, setting the remaining po-
sitions to zero. If the sample is bona fide (y = 1), the mask
activates only the last K/2 positions, leaving the others at zero.
This mask ensures that each sample is only assigned to valid

auxiliary labels within its respective class. The masked proba-
bility vector pmask is then computed as:

pmask =
exp(q)⊙M∑
(exp(q)⊙M)

. (1)

2. Unmasked branch (Standard SoftMax): The second
branch calculates a standard SoftMax probability vector punmask.

AAGM is trained with a combination of two losses: (i)
MSE Loss: which aligns the masked and unmasked probabil-
ity vectors, and (ii) Diversity Loss (KL Divergence): which
prevents trivial solutions by ensuring a uniform distribution of
generated labels:

LAAGM = ∥pmask − punmask∥2︸ ︷︷ ︸
MSE Loss

+KL
(
p̄mask ∥ 1

K
1
)

︸ ︷︷ ︸
Diversity Loss

, (2)

where p̄mask is the average of masked probabilities over the
batch, and 1

K
1 is the uniform distribution over K auxiliary

classes. The final auxiliary label is determined as ŷaux =
argmax(pmask).

Overall Objective. The final training loss is L = LADDM +
LAAGM with stop-gradient decoupling, ensuring that AAGM
does not interfere with the primary audio deepfake detection
ADDM task training.

2.2. Sample Selection via Auxiliary-Informed Sampling

Traditional sampling methods rely solely on primary labels
(fake or bona fide), which can lead to poor sample diversity.
We propose Auxiliary-Informed Sampling (AIS), a novel strat-
egy that leverages auxiliary labels to ensure diversity and infor-
mativeness in selected samples.

AIS maintains a memory buffer M composed of segments
{G1,G2, . . . ,Gi}, where each Gk corresponds to a past expe-
rience Ek. For each new experience Ei, the allocation size is
set as L = |M|

i+1
. After training on Ei, L samples are selected

and added to M. Since the memory buffer has a fixed size,
each past memory segment Gk is updated to retain only the top
L most representative samples, ensuring that past experiences
remain well-represented.

The AIS strategy first partitions the dataset into two pri-
mary categories: fake samples, Di,ŷaux∈[0,K

2
−1], and bona fide

samples, Di,ŷaux∈[K
2
,K−1]. Within each category, samples are

further divided into groups based on their auxiliary labels. For
example, in the bona fide category, the groups are indexed from
K/2 to K − 1. Each group is then sorted in descending order
based on an importance score s, defined as:

s =
1

2

(
pŷ + pmask

ŷaux

)
, (3)

where pŷ is the classification confidence from ADMM, and
pmask
ŷaux is the confidence score from AAGM. The scoring mecha-

nism prioritizes samples with higher overall confidence, ensur-
ing that the most reliable and informative samples are retained.

To maintain class balance, AIS introduces a ratio r, select-
ing L × r fake samples and L × (1 − r) bona fide samples.
AIS then performs stratified selection using a round-robin ap-
proach across the auxiliary label groups within each category,
ensuring each auxiliary label is represented within its category
in M. If a group runs out of samples, the process continues
with the remaining groups until the required number of samples
is reached. Finally, the selected samples from both categories
are merged and re-sorted in descending order by the importance



Table 1: Dataset statistics across different experiences in the CL setting.

E
ASVSpoof 2019 LA

E0 (English)
VCC 2020

E1 (Multi-language)
InTheWild
E2 (English)

CFAD
E3 (Chinese)

OpenAI-LJSpeech
E4 (English)

Fake Bona fide Total Fake Bona fide Total Fake Bona fide Total Fake Bona fide Total Fake Bona fide Total
Train 22,800 2,580 25,380 2,920 805 3,725 5,908 9,981 15,889 25,600 12,800 38,400 6,550 6,550 13,100
Dev 22,296 2,548 24,844 1,460 402 1,862 2,954 4,991 7,945 9,600 4,800 14,400 3,275 3,275 6,550
Eval 63,882 7,355 71,237 1,460 403 1,863 2,954 4,991 7,945 42,000 21,000 63,000 3,275 3,275 6,550

score s, forming a new memory segment Gi. This segment is
then integrated into the memory buffer M, ensuring past expe-
riences remain well-represented.

3. Experiments
3.1. Datasets and Experimental Settings

Datasets. We evaluate our method and the baseline methods
in a CL setting for audio deepfake detection across five ex-
periences. The initial experience, E0, uses ASVspoof 2019
LA [27] with its original splits (training, development, and eval-
uation). Experiences E1 and E2 consist of the VCC 2020 [27]
and InTheWild [28] datasets, each split into 25% develop-
ment, 25% evaluation, and 50% training. Experience E3, is
the CFAD [29] dataset using its provided splits (training, de-
velopment, and evaluation, combining seen and unseen tests).
To incorporate more advanced speech generation tools, the fi-
nal experience is generated with the OpenAI TTS API1 using
scripts from LJSpeech2. Each transcript was synthesized with
a random OpenAI TTS voice (alloy, echo, fable, onyx, nova,
shimmer) and model type (tts-1 or tts-1-hd). Fake samples were
generated by OpenAI TTS, while bona fide samples were from
LJSpeech; both were split with the same proportions as VCC
2020 and InTheWild. Dataset statistics are provided in Table 1.
Experimental Settings. Audio clips were standardized to 4
seconds. We used Wav2Vec2 [30] (wav2vec2-xls-r-300m) as
the front-end to convert raw audio into a 2D matrix, then passed
it to AASIST [31, 4] for feature extraction. The model was
trained with a dropout rate of 0.1, a batch size of 64, and the
Adam optimizer with a learning rate of 0.00001. Training was
conducted for 10 epochs with early stopping. The classification
head c(·) and the label-generation head h(·) consist of two lin-
ear layers with hidden dimensions of 80 and 32. The auxiliary
label size was set to K = 90, with parameter sensitivity analy-
sis provided in Section 3.3. The fake/bona fide ratio was set to
r = 0.8. For evaluation, we used the equal error rate (EER) and
the average EER across all experiences. Each baseline was run
three times with different seeds, reporting the mean and stan-
dard deviation.

3.2. Experimental Results

Baselines. We compare our method against several baselines.
The naive baselines include “Trained on E0,” where the model
is trained only on the first dataset and evaluated on all experi-
ences; “Trained on all,” where all datasets are merged for the
best possible performance; and “Fine-tune,” where the model is
updated on each new experience without strategies to mitigate
forgetting. For regularization-based continual learning meth-
ods with no memory buffer, we include EWC [32], LwF [33],
and OWM [34], as well as 2 audio deepfake-specific meth-
ods: RAWM [6] and RWM [5]. Additionally, we evaluate
rehearsal-based strategies with buffer sizes of 256 and 512, in-

1https://platform.openai.com/docs/guides/text-to-speech
2https://keithito.com/LJ-Speech-Dataset/

cluding ER [16] and ER-ACE [17], where we use different sam-
ple selection strategies, including reservoir [17], herding [20],
and class-balanced [23] for ER and ER-ACE, and additionally
MIR [22] for ER only. Lastly, we excluded the gradient-based
sampling method GSS [21] as it led to out-of-memory issues,
making it impractical for high-dimensional audio data.
Results and Analysis. Table 2 presents the results, showing
that RAIS with a 512-sample buffer achieves an average EER
of 1.953%, closely matching the best possible performance of
the Train-on-all approach. Overall, CL strategies demonstrate
competitive performance relative to Train-on-all while being
significantly more efficient, eliminating the need for retrain-
ing from scratch with each new experience. In contrast, naive
methods such as training exclusively on the initial experience
E0 quickly become obsolete as new experiences emerge, while
fine-tuning alone fails to retain knowledge from earlier tasks.
Replay-based strategies consistently outperform regularization-
based approaches (e.g., EWC, LwF, RAWM, and RWM), which
lack memory buffers and cannot leverage past data. However,
these methods are not directly comparable, as rehearsal-based
methods, regularization-based CL retains knowledge by apply-
ing constraints to model updates instead of revisiting past data.
Compared to other rehearsal strategies such as Experience Re-
play (ER) and ER with Asymmetric Cross-Entropy (ER-ACE),
RAIS further improves performance by introducing an addi-
tional network branch that generates diverse auxiliary labels,
leading to better sample selection and a more representative
memory buffer based on meaningful and diverse audio charac-
teristics.

3.3. Ablation Studies and Parameter Sensitivity

Ablation Studies. We performed ablation studies using a 512-
sample buffer, removing key components one at a time. Three
configurations were evaluated. First, RAIS without the Au-
dio Auxiliary Label Generation Module (AAGM), denoted (-
) AAGM, which relies solely on main task labels and their
confidence scores for sample selection. Second, RAIS with-
out Auxiliary-Informed Selection (AIS), denoted (-) AIS, where
sample selection is based only on the highest score (Equation 3)
without diversifying across auxiliary label groups. Third, RAIS
without Diversity Loss, denoted as (-) DL, removes the diversity
loss in LAAGM. Table 3 shows that the complete RAIS consis-
tently outperforms its ablated variants.
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K = 90
K = 100

1.8
2.0
2.2
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Figure 3: Average EER (%) across different experiences for
varying auxiliary label size K.

Parameter Sensitivity. We assessed the sensitivity of the aux-



Table 2: EER (%) comparison of CL methods trained sequentially (E0 → E1 → E2 → E3 → E4) and evaluated on all test sets after
the final stage. Lower values indicate better performance (↓). Bold marks the best result, underline denotes the second-best, and Blue
highlights non-CL methods.

Buffer Size Method Sampling E0 E1 E2 E3 E4 Avg EER.
- Trained on E0 - 7.836 ± 5.820 2.481 ± 0.993 8.041 ± 0.133 10.170 ± 1.195 20.193 ± 11.098 9.744 ± 3.260
- Trained on all - 0.553 ± 0.126 0.000 ± 0.000 0.294 ± 0.023 8.013 ± 0.203 0.000 ± 0.000 1.772 ± 0.030
- Fine-tune - 1.446 ± 0.432 6.865 ± 4.155 4.855 ± 1.387 9.802 ± 1.127 0.000 ± 0.000 4.594 ± 1.071
- EWC - 1.894± 0.605 7.858± 4.228 6.044± 3.486 11.241± 2.215 0.000 ± 0.000 5.408± 1.950
- LwF - 1.523± 0.501 2.647± 1.249 0.521 ± 0.223 10.052± 0.731 0.275± 0.153 3.004 ± 0.552
- OWM - 1.550± 0.419 4.301± 2.940 6.438± 2.002 11.343± 2.247 0.000 ± 0.000 4.726± 0.376
- RAWM - 1.627± 1.206 5.376± 6.090 4.234± 1.898 10.451± 1.582 0.000 ± 0.000 4.338± 2.138
- RWM - 1.428 ± 0.987 4.549± 3.152 4.147± 0.626 11.211± 0.186 0.000 ± 0.000 4.267± 0.779

256 ER MIR 0.970 ± 0.450 3.060± 1.249 1.743± 0.106 9.029± 0.998 0.020± 0.018 2.964± 0.412
256 ER Class-balanced 1.215 ± 0.169 1.406 ± 0.517 1.122 ± 0.459 8.151 ± 0.172 0.010 ± 0.018 2.381 ± 0.180
256 ER Reservoir 0.657 ± 0.172 1.241± 0.248 1.837± 0.076 8.171± 0.215 0.000 ± 0.000 2.381± 0.033
256 ER Herding 2.479± 1.641 0.331 ± 0.143 1.282± 0.278 8.351± 0.060 0.000 ± 0.000 2.489± 0.292
256 ER-ACE Class-balanced 0.879 ± 0.348 1.241 ± 0.430 1.563 ± 0.386 8.197 ± 0.110 0.010 ± 0.018 2.378 ± 0.131
256 ER-ACE Reservoir 1.169± 0.575 1.654± 0.379 2.017± 0.418 8.119± 0.765 0.020± 0.035 2.596± 0.126
256 ER-ACE Herding 1.106± 0.417 1.489± 1.082 1.710± 0.313 7.930 ± 0.357 0.010 ± 0.018 2.449± 0.240
256 RAIS AIS 0.847± 0.143 0.248 ± 0.248 2.070 ± 0.182 7.971 ± 0.349 0.000 ± 0.000 2.230 ± 0.095
512 ER MIR 1.541± 0.594 2.564± 1.433 1.316± 0.281 8.492± 0.454 0.010 ± 0.018 2.785± 0.343
512 ER Class-balanced 0.979 ± 0.756 0.910 ± 0.379 0.928 ± 0.292 8.365 ± 0.138 0.000 ± 0.000 2.236 ± 0.259
512 ER Reservoir 1.260± 0.265 0.744± 0.430 1.002± 0.122 8.108± 0.307 0.010 ± 0.018 2.225± 0.094
512 ER Herding 1.187 ± 0.532 0.331 ± 0.143 0.922 ± 0.209 8.043 ± 0.203 0.000 ± 0.000 2.097 ± 0.067
512 ER-ACE Class-balanced 1.296 ± 0.263 2.647 ± 0.758 0.848 ± 0.117 8.179 ± 0.200 0.010 ± 0.018 2.596 ± 0.198
512 ER-ACE Reservoir 0.934± 0.188 2.233± 0.657 1.289± 0.189 8.348± 0.232 0.010 ± 0.018 2.563± 0.222
512 ER-ACE Herding 0.748± 0.286 1.820± 0.798 1.423± 0.434 8.014 ± 0.053 0.010 ± 0.018 2.403± 0.182
512 RAIS AIS 0.666 ± 0.187 0.083 ± 0.143 0.821 ± 0.151 8.197 ± 0.184 0.000 ± 0.000 1.953 ± 0.106

Table 3: EER (%) comparisons of RAIS and its ablated variants,
where lower is better (↓). Bold denotes the best result.

Method E0 E1 E2 E3 E4

(-) AAGM 3.89 ± 2.35 1.90 ± 1.65 2.61 ± 1.99 8.74 ± 0.09 0.01 ± 0.02
(-) AIS 3.56 ± 1.72 3.08 ± 3.37 3.01 ± 1.51 8.81 ± 0.57 0.01 ± 0.01
(-) DL 1.78 ± 0.65 0.45 ± 0.32 2.28 ± 0.61 8.16 ± 0.14 0.01 ± 0.01
RAIS 0.67 ± 0.19 0.08 ± 0.14 0.82 ± 0.15 8.20 ± 0.18 0.00 ± 0.00

Table 4: Forgetting Rate Comparisons on E1. CL methods are
trained sequentially (E1 → E2). Lower values indicate better
performance (↓). Bold denotes the best result, and Blue denotes
non-CL methods.

Buffer Size Method Sampling E1 E2 F1

- Trained on E1 - 0.00 ± 0.00 10.75 ± 3.88 -
- Trained on all - 0.08 ± 0.14 0.36 ± 0.17 -
- Fine-tune - 6.12 ± 1.52 0.31 ± 0.02 + (6.12 ± 1.52)

512 ER Herding 0.33 ± 0.38 0.34 ± 0.08 + (0.33 ± 0.38)
512 RAIS AIS 0.17 ± 0.14 0.29 ± 0.07 + (0.17 ± 0.14)

iliary label size K, which determines the number of possible
labels predicted by AAGM. We analyzed K values of 10, 20,
30, 40, 50, 60, 70, 90, and 100. As shown in Figure 3, K = 90
achieved the best performance with the lowest average EER.

3.4. Discussion

Forgetting in Audio Deepfake Detection. Surprisingly, Ta-
ble 2 shows no forgetting of E0 knowledge when comparing
“Trained on E0” with “Fine-Tune.” This may be due to the pres-
ence of unseen deepfake attacks in the ASVspoof 2019 LA (E0)
evaluation set, which were not part of the training data (simi-
larly for E3). However, some of these unseen deepfake gener-
ators—or generators with similar fingerprints—may appear in
the training sets of later experiences. Fine-tuning on new expe-
riences can therefore, in some cases, improve performance by
exposing the model to previously unseen patterns. This is re-
flected in the EER drop for E0 from 7.836% (trained solely on
E0) to 1.446% after sequential fine-tuning.

To directly assess forgetting, we designed an experiment

where the evaluation set only includes attack types that are
present in the training set, ensuring similar generator finger-
prints in the train, development, and test splits. For this, we
used datasets from E1 (VCC 2020) and E2 (InTheWild). Table 4
reports the forgetting rate F1 for E1, defined as the performance
drop after sequentially learning E1 → E2 compared to training
on E1 alone. Notably, RAIS consistently achieves the lowest
forgetting rate (0.17%), outperforming the second-best baseline
ER with Herding, demonstrating superior mitigation of forget-
ting in CL scenarios.
Limitations and Future Directions. RAIS maintains CL per-
formance with a 512-sample memory buffer (∼ 50 MB), offer-
ing high efficiency compared to full dataset storage (>50 GB).
Future work should explore scalability for larger CL scenar-
ios. Secondly, while RAIS prioritizes fake samples to reduce
privacy risks, storing genuine audio may still pose concerns.
Investigating privacy-preserving techniques such as differential
privacy could help mitigate these risks. Additionally, the inter-
pretability of auxiliary labels remains an open question. Future
research should examine what these labels capture, how they
evolve over time, and whether they provide deeper insights into
deepfake detection.

4. Conclusion
We introduced Rehearsal with Auxiliary-informed Sampling
(RAIS), a CL approach for audio deepfake detection. RAIS im-
proves sample diversity in the memory buffer by automatically
generating auxiliary labels, capturing diverse audio characteris-
tics without the need for manual labeling. These labels guide
sample selection, ensuring a balanced representation of audio
features. Extensive experiments show that RAIS outperforms
state-of-the-art CL and experience replay methods across five
experiences, achieving the lowest average EER.
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