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Abstract

Large Language Models (LLMs) are being extensively used for cybersecurity purposes. One of them is the detection
of vulnerable codes. For the sake of efficiency and effectiveness, compression and fine-tuning techniques are being de-
veloped, respectively. However, they involve spending substantial computational efforts. In this vein, we analyse how
Linear Probes (LPs) can be used to provide an estimation on the performance of a compressed LLM at an early phase
— before fine-tuning. We also show their suitability to set the cut-off point when applying layer pruning compression.
Our approach, dubbed LPAS S, is applied in BERT and Gemma for the detection of 12 of MITRE’s Top 25 most dan-
gerous vulnerabilities on 480k C/C++ samples. LPs can be computed in 142.97 s. and provide key findings: (1) 33.3
% and 72.2% of layers can be removed, respectively, with no precision loss; (2) they provide an early estimate of the
post-fine-tuning and post-compression model effectiveness, with 3% and 8.68% as the lowest and average precision
errors, respectively. LPAS S -based LLMs outperform the state of the art, reaching 86.9% of accuracy in multi-class
vulnerability detection. Interestingly, LPAS S -based compressed versions of Gemma outperform the original ones by
1.6% of F1-score at a maximum while saving 29.4 % and 23.8% of training and inference time and 42.98% of model
size.
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1. Introduction

The wide variety of devices, systems and networks favors the emergence of vulnerabilities, defined as weaknesses
in a system or security controﬂ Lots of research works have been carried out to counter them. Particularly, multiple
works have focused on vulnerability detection [1} 12| 3], that is, whether a piece of software is vulnerable or not,
whereas others aim to identify them, that is, which vulnerability is present [4} S, 6]. This latter problem is more
challenging as it requires a fine-grained knowledge of all vulnerabilities to tell them apart [7]]. Therefore, in this paper
we concentrate on this issue.

Context. The use of Artificial Intelligence (AI) has been a constant in this field. Many works apply traditional Al
algorithms such as support vector machines [8| 9]], K-nearest neighbor [8, 9] or graph neural networks [[10} [11], once
having extracted code features like the program dependency graph [[10, [11]], the control flow graph [12] or the number
of lines of code [8]], among others.

However, since the appearance of Large Language Models (LLMs), which are based on using deep learning
techniques to manage massive amounts of data, novel vulnerability detection systems have appeared [13]. The main
advantage of these models is their ability to manage complex tasks, but the required computational cost becomes a
burden. Some of these models apply millions or even billions of parameters whose tuning and execution involves a
high cost in terms of time and resources.

Thttps://csrc.nist.gov/glossary/term/vulnerability , last access September 2024
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New research lines try to reduce LLMs, speeding up the classification process and reducing the amount of used
computing resources. Techniques such as pruning focus on reducing the amount of model parameters [[14] or network
components [15]. On the other hand, quantization is another well-known approach that reduces the size of each
parameter. However, compression methods incur in accuracy losses which have to be minimized [16]]. In the context
of vulnerability detection, to the best of authors’ knowledge only [17]], [18] have applied model compression. They
apply knowledge distillation [[19] to compress CodeBERT and GraphCodeBERT, reaching promising inference speeds
and efficiency. However, they focus on a binary classification problem (i.e., vulnerable / non-vulnerable) with an
accuracy of 59.9 % — only 10% over a random guess.

Motivation. Efficiency in vulnerability detection is of outmost relevance considering the increasing pace of soft-
ware generation. For the sake of illustration, Google Play counts on 2.61 billion apps nowadays ﬂ At the same
time, not only the amount of vulnerabilities, but also their severity, have been steadily growing in the last decade.
According to CVEdetailf], the amount of vulnerabilities with a severity ranked between 7 and 10 raised from 1.9k
in 2014 to 16.7k in 2023. Therefore, a vulnerability detection mechanism streamlined with the publication process
would be desirable. Interestingly, identifying which is the vulnerability at stake enables providing a suitable response
— while dangerous vulnerabilities may require stronger controls, irrelevant ones may simply raise a warning before
distributing the analysed pieces of software.

As noted in [20], fine-tuning of models involves substantial energy expenses. For the sake of illustration, pre-
training and fine-tuning Meta’s LLaMA model could cause up to 2.76 MtCO;-eq emissions, equivalent to the total
pollution caused by manufacturing one dose of COVID-19 vaccine for all humans on Earth [21]]. Therefore, saving
resources related to the model fine-tuning and compression is paramount.

The closest effort to ours, namely Chen et al. [22] is focused on compressing visual models, thus unrelated to
vulnerability detection. They proposed using feature representations in convolutional neural networks to identify
layers with high weight overlap after training, aiming to reduce the model size. In contrast, our approach seeks to
compress pretrained LLMs by determining which layers of a model provide valuable information for a specific task
before any fine-tuning or further training. Therefore, although Chen et al.’s method can save resources post-training,
it requires training the entire model beforehand. Our approach, on the other hand, reduces the model size prior to
fine-tuning, minimizing the computational resources needed for that task.

Research question and contribution. Given the computational cost of model fine-tuning and compression, our
research question is: Can we predict their impact to make informed decisions on their use and save resources? To
address this, we leverage linear classifier probes (LPs) [23]] to gain early insights of the internal model status that
can be valuable to guide the use of fine-tuning and compression techniques and estimate their effect in performance.
Our approach, dubbed LPAS S (LPs As Stepping Stones) is inspired by recent efforts that apply LPs to analyse the
knowledge captured at varying depths within LLMs [24], as well as the internal uncertainty [25]]. LPs are a first layer
of explainability by providing interpretability. As such, our use of LPs can be regarded as a first step for a explainable
compression method, which has been recently pointed out as an open issue [26].

The list of contributions is as follows:

e We adopt linear probes (LPs) in vulnerability detection for 1) determining the cut-off point when applying layer
pruning and 2) estimating the effectiveness and performance of fine-tuned and compressed models.

o We test LPASS in two well-known LLMs, namely Bert [27] and Gemma [28]], compressed by means of layer
pruning and quantization [29]. Bert is selected for being a common choice in previous works, whereas Gemma
is a recent, state-of-the-art alternative. Three representative datasets are applied, namely DiverseVul [1]], Big-
Vul [30] and PrimeVul [3]. We focus on 12 of the most dangerous vulnerabilities according to MITRE Top 25
[31]. Our compressed models outperform the state-of-the-art while exhibiting promising performance features.

e We release our experimental materials to foster further research.

The remaining of this paper is as follows. Section |2| gives the background. Section [3|describes the foundations
of LPAS S, whereas Section [4] details the approach. Section [5] describes its assessment. Section [6] shows the related
work. Lastly, Section [7] concludes the paper and points out future work directions.

Zhttps://www.businessofapps.com/data/google-play-statistics/, last access 20 june 2024.
3https://Www.cvedetails.com/, last access September 2024



2. Preliminaries

In this section, model compression techniques, the notion of linear probes and the Common Weakness Enumera-
tion (CWE) approach for naming vulnerabilities are introduced.

2.1. Model compression

There are several techniques available to reduce the size of models and lower computational resource requirements.
Interested readers may refer to [26]. The following three are predominant.

One such technique is knowledge distillation [[19]], where the responses of a larger model (the teacher) are used to
guide the training of a smaller version of the original model (the student).

Another commonly used technique is pruning, which was previously referred to as ’neural network pruning’
[32] 33]], which aims at reducing model size. Pruning can be done either by modifying the original model architecture
(structured pruning) or by removing individual weights and activations (unstructured pruning). This technique reduces
the model’s complexity and the memory needed to run and store the models.

Quantization, on the other hand, focuses on reducing the model size and computational requirements by mapping
continuous infinite numbers to a smaller set of discrete finite numbers. It involves converting weights stored in high-
precision values to lower-precision data types. For example, 32 bits weights can be mapped to 8-bit integers in the
range [-128, 127] or to 4-bit integers in the range [-8, 7]. It minimizes the number of required bits and the precision
of the computations while trying to maximize accuracy, either post-training or after training [14]. According to
Marchisio et al. [34] the effect of quantization is dependent on the language or context. Thus, anticipating its effects
is far from straightforward.

2.2. Linear probes

Linear Classifier Probes, hereinafter Linear Probes (LP), are simple classifiers that contribute to deep learning
models explainability efforts by providing insights into how the model processes information internally [23]. These
LPs are used to make predictions over the hidden states of the models, trying to predict or identify if some specific
information is correctly represented within them. For LLMs, a LP classifier is typically placed after each layer of
the network and takes the hidden states as input X and predicts a simple characteristic Y (e.g. predict the number
of lines of a piece of code). They are trained on probing datasets designed to predict expected characteristics that
are predefined and known in advance, giving a sense of how different layers of the model encode and retain the
expected information. They have previously been employed to enhance explainability in tasks such as document
ranking [35[], and to shed light on model behavior, including hallucinations and the internal representation of code
and general knowledge [36, 37, 38| 124} [39]. Beyond their use for understanding representations, linear probes have
also been applied to directly improve model performance—by identifying task-relevant components within the model
[40} 41]—and to mitigate undesirable behaviors such as sycophancy [42].

2.3. Common Weakness Enumeration (CWE)

The Common Weakness Enumeration (CWE) [31]] is a community-driven classification and categorization system
designed to identify potential common software and hardware vulnerabilities. It defines families of taxonomies that
encompass vulnerabilities, which are interrelated or serve as the basis for higher-level abstract classes, by assigning
a unique identifier and a potential damage score. This information is subsequently used to rank common flaws and
errors made by developers.

For instance, the MITRE Top 25E] is a list updated three times per year that highlights the most common and
impactful software weaknesses, which are often easy for attackers to exploit.

3. LPASS foundations

Section [3.1] provides an overview of the proposal to then introduce the pursued goals in Section

4https://cwe.mitre.org/topZS/
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Figure 1: LPASS overview. Steps of LPASS are numbered and colored flows are used to assess the approach when using LLMs to detect
vulnerabilities. The orange flow (dot-dot-dash) computes the baseline results, whereas the green (dot-dash), yellow (dashes) and pink (dots) flows
refer to compressed LLMs, that is after applying quantization, layer pruning or both techniques at the same time, respectively.

3.1. Overview & Use case

LPAS S is framed in a typical vulnerability detection pipeline, which includes both static and dynamic analyses
as part of a mobile application security testinéﬂ as the one in use by Google or Apple in their application store. Thus,
codes are subject to a static and dynamic analysis to detect if there are any vulnerabilities (Figure [Tjupper part). The
focus of LPAS S is on the static analysis phase, that is supposed to be carried out by means of LLMs.

The aim of LPASS is to help on deciding whether investing resources for fine-tuning and compressing a LLM
are worthy. In this regard, the user of LPAS'S is only requested to extract simple code features F from the samples
at stake and compute the LPs. Both tasks involve negligible computational efforts. The remaining values needed for
making the decision are the ones provided as a result of our work, as explained later.

Resorting to the selected code features F is essential for a real-world usage of LPASS. The user does not know
whether the samples are vulnerable or not — it is the actual purpose of the LLM at stake. However, these code features
F can be extracted very easily without the need of any LLM. Therefore, features F' can be regarded as proxies for
the presence or absence of vulnerabilities in the code. Such a feature extraction is natural in a vulnerability detection
pipeline, as many of them (e.g., lines of code or the control flow graph) are routinely used.

The proposed approach is depicted in Figure[T] Firstly, for each dataset (see Section[5.2)), LPs are trained over the
internal activations after each layer of the LLMs, using the code samples as input. The goal is to predict the selected
code features F using these activations. The selection of which features F to consider is a key aspect of LPASS.
Secondly, the accuracy of LPs on each dataset D (accpp(D)) is used to set the cut-off point when compressing the
LLM using layer pruning, where all layers beyond the cut-off layer k., are removed from the LLM. Thirdly, LPs are
also used for estimating the vulnerability detection effectiveness (&(D)) without the need of fine-tuning or executing
any LLM. To assess the quality of the estimations, vulnerabilities are detected (E(D)) using the original LLMs to
compute baseline results (orange arrow), as well as in compressed LLMs, that is after applying quantization, layer
pruning or both techniques at the same time (green, yellow and pink arrows, respectively).

It must be noted that in order to validate the quality of the provided estimations, in this paper we carry out both
fine-tuning and compression techniques on two representative LLMs.

3.2. Goals
LPAS S aims to meet the following goals:

Shttps://mobile-security.gitbook.io/mobile-security-testing-guide/overview/0x04b-mobile-app-security-testing
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Figure 2: Linear probes used for determining k.. Code features F are the target of the prediction, which is based using the LLM’s internal
activations per layer. The layer in which the best prediction is made is selected as the cut-off point k.,

o Early assessment. It must be possible to ascertain whether the LLM will be effective or not in vulnerability
detection while spending a reduced amount of computational efforts.

e Vulnerability detection. LPAS S -built LLMs must suitably detect vulnerable codes, identifying which vulner-
ability is present in a given piece of code.

o Time efficiency. LPAS S -built LLMs must minimize the time needed for training and inference.
e Memory efficiency. LPAS S -built LLMs must reduce the memory requirements.

As it can be seen, the first goal refers to LPASS itself, whereas the remaining ones are the expected results of its
use in LLMs. It must be noted that imposing restrictions on time and memory are aligned to achieving energy savings.

4. Description of LPASS

This section describes the proposed method. For the sake of clarity, the two main steps are presented separately
— the way to guide layer pruning using LPs (Section .T) and using LPs to estimate the post-fine-tuning and post-
compression performance in terms of effectiveness, time and model size (Section 4.2).

4.1. Layer pruning leveraging Linear Probes

In this proposal, LPs, depicted in Figure[2] are implemented with a Multi-Layer Perceptron (MLP) applied at each

LLM layer k. In particular, the internal activations Hj are collected at each layer k and they are used as input to a MLP
which predicts the selected code features F.

Once having classes for MLPs, linear probes are computed and their result is the accuracy (acc) per layer k and
CWE, though the average acc of all CWE per k (avg(accy)) is determined. Finally, the calculus of the loss of avg(accy)
allows identifying which is the cutting & (k) to remove upper layers and enforce structured pruning. The loss refers
to the amount of accuracy lost in each k and it is calculated through the difference between the maximum avg(accy),
at a particular k, and the avg(accy) Yk € K, Equation|[T]

lossy = mz}(x(avg(acci)) — avg(accy) (D)
1€,

This is carried out for all datasets (noted 9D = {D}) and code features F, and k., is set as the kX which minimizes
the sum of loss, in absolute value, for each k, Equation |Zl

keu = arg rgn[p[ > |lossk|} 2)

[IDIIX[IF1|
where || X|| denotes the cardinality of a set X and |x| the absolute value of x.
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4.2. Estimating performance for vulnerability detection

The same LPs used for layer pruning are now used for estimating the performance of the LLM to detect vulnera-
bilities in case compression or fine-tuning techniques were applied. Let &(D) be the set of effectiveness metrics of a
LLM at stake, which contains precision, recall and F1-score for a dataset D. The overall estimation process bases on
computing & = & as shown in Equation [3|for each of these metrics.

ED) = accp(D) + 8 3

The goal is to determine which value 8 should be added to the result of LPs on D, namely their accuracy
(accrp(D)), to obtain the estimate. Note that accyp(D) € [0, 1], and 8 € [0, 1] as explained later. Thus, &(D) must be
post-normalized to fit into [0, 1] as well.

4.2.1. Computing B
B is the value provided within this proposal to be used in the equation above. It is computed leveraging a knowledge
base formed by datasets D’ # D, as shown in Equation [4]

B=&WD") —accrp(D) )

In order to get S, it is necessary to obtain &(D’), that is, the real performance result for the LLM on the dataset
D’. However, note that users of LPAS S will not need to perform this operation — we later show that our results for 8
generalize for different datasets.

4.2.2. Validating E(D)
To assess the approach, an Estimation Error (Err) is computed to determine the error incurred, as shown in
Equation 5]

Err = &D) — &D) %)

In our approach, we select different datasets (as introduced later) and we apply a leave-one-out cross validation.
This ensures the generalization of our results.

5. Evaluation

This section assesses LPAS S . For this purpose, the LLMs and data at stake are introduced in Sections[5.1]and [5.2]
respectively. The selected code features F are described in Section[5.3] Sections[5.4]and[5.5]describe the experimental
settings and metrics. Results are presented in Section[5.6] Lastly, Section[5.7]discusses the results and the limitations
of the approach.

5.1. LLMs

A couple of large language models (LLMs) are selected. On one hand, the BERT model is chosen due to its
widespread use [43]], and its prominence in related works such as [} [18} [6]. The large variant of BERT is used,
featuring 334 million parameters and 24 layers. On the other hand, Gemma model is chosen for being one of the
latest and most recently used LLMs [28]], configured, due to resource limitations, with 2 billions of parameters and 18
layers.

All LLMs base on a fundamental unit, the token, which is the minimum processed information. In the case of
BERT, 512 tokens are the maximum applied, while in Gemma this number can increase up to 8,192. Nonetheless, our
resource constraints force the use of Gemma with up to 1,024 tokens.



5.2. Datasets and Vulnerabilities

Three C/C++ datasets, are selected for being well-known and for facilitating a multi-class classification. Indeed,
they are chosen among those used in the state of art (cf. Section[6)). DiverseVul [1]] is composed of extracted commits
from vulnerable and non-vulnerable functions covering more than 295 projects after crawling security issue websites.
Big-Vul [30] is a vulnerability dataset from 348 open source Github projects, where vulnerability-related code com-
mits and extracted relevant code changes are collected. PrimeVul [3] is a dataset of benign and vulnerable functions
composed of a merging of four well-known vulnerability datasets, including both previously mentioned. Note that
based on related work (Section [6)), Devign and Draper datasets were also considered but discarded since they do
not provide information about the CWE, just vulnerable or not. Similarly, CVE-fixes and SARD were analysed and
discarded because the amount of samples per CWE were smaller (3k maximum) than the ones of the chosen datasets.

Among all existing vulnerabilities, the Top 25 most dangerous CWE E] are considered herein. As not all CWEs
appear in all datasets, we select the 10 CWEs with the highest number of samples per dataset. Table[I|summarizes the
number of samples per dataset and selected CWE, most of them common for all datasets. Hence, a total of 12 CWEs
are at stake. It is noteworthy that 1,024 token size allows increasing the sample set, thus leading to 480k samples.
Samples beyond 512 or 1,024 tokens on each of the cases have been removed.

Table 1: Samples per dataset of the 10 most represented CWEs within MITRE Top 25

512 Tokens 1,024 Tokens
DiverseVul | Big-Vul [ PrimeVul || DiverseVul | Big-Vul | PrimeVul
CWE # ! # 1
20 22,197 15,326 25,799 33,491 25,799 25,596
119 19,853 18,321 22,575 32,013 22,575 17,216
125 23,675 4,774 2,498 32,951 6,206 19,377
Common 190 8,905 2,632 3,900 29,395 3,262 7,524
362 7,729 4,363 6,206 11,493 5478 6,882
416 23,691 7,428 8,993 32,951 8,993 16,593
476 16,691 2,943 5,478 27,981 3,900 12,781
787 19,241 2,020 3,262 29,395 2,498 27,199
22 2,409 - - 3,693 - -
Different 78 2,233 - 875 3,051 - 29,066
79 - 699 857 - 857 653
269 - 639 - - 875 -
Total 146,624 | 59,145 76,543 236,414 | 80,443 162,887

5.3. Code features F

Cyclomatic Complexity (CC) and Halstead Difficulty (HD) of code samples are the chosen code features F. There
are lots of F that could be predicted but looking for capturing code complexity [44]] and considering the state of the art
in vulnerability detection [45, [8], both CC and HD were chosen for their ability to capture the structural information
of the code. CC is a quantitative measure of the number of linearly independent paths in the code [46], while HD
measures the diversity of operands present in the cod Accurately predicting these features would indicate that the
LLMs effectively encode the structural information of the code, offering a more abstract and complex understanding
than simply predicting basic metrics like the number of lines or tokens. These features are particularly valuable
because they are challenging to predict, requiring the LLMs to deeply understand and analyze the code, unlike simpler
metrics such as line counts.

CC and HD are integer and float numbers respectively, from O to infinite and thus, the number of classes of the
MLP has to be determined. To do so, CC and HD are computed for all samples in each dataset and after the analysis
of their distribution, the number of classes is set such that the vast majority of samples of each dataset (in our case,
we opted for 85%) are included.

5.4. Experimental settings

This section outlines the training settings for the chosen models. Our experimental materials are publicly release(ﬂ
Training was conducted on two NVIDIA consumer GPUs, a RTX 4090 and a RTX 4080, using the Pytorch framework

Ohttps://cwe.mitre.org/top25/ , last access September 2024

7https://product-help.schneider-electric.com/Machine%ZOExpert/V2.O/en/CodeAnly/C0deAn1y/D-SE-OO95969.html, last accessed September
2024

8A reduced version is published until acceptance; https://github.com/Luisibear98/LPASS-pruning
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and the Hugging Face library ﬂ For both training and validation, all datasets were split in an 80%-20% random
distribution to accommodate the imbalance of data. Each CWE is limited to 5,000 samples for training because, after
a trial and error process, such value allows the execution of both models, while lower ones do not work in both of
them. To ensure balanced CWE classes, if a CWE does not have enough samples, oversampling is carried out copying
samples until getting to the set limit [47]. Otherwise, undersampling is enforced removing samples [47], though
setting aside 20% for the validation set. Besides, computations are repeated 3 times per model and pruning set-up and
results present the average of all executions.

BERT model is fine-tuned for training based on [[1]], specifically a learning rate of 2e-5 is applied, using the Adam
optimizer [48] over 10 epochs. For Gemma, Galore low-rank adaptation training [49] was adopted due to resource
constraints, using per layer-weights update implementation. Since higher rank requires more GPU memory, when
fine-tuning the entire model, the rank is limited to 256 but fine-tuning pruned models it is set to 1,024.

In what comes to the batch size, our preliminary tests show that small sizes do not affect the accuracy while
harm performance. Thus, the batch size is set to the maximum capacity per GPU. Finally, concerning the class 'non
vulnerable’, in DiverseVul it corresponds to samples marked as non-vulnerable, in PrimeVul and big-vul refers to
samples tagged as ’None’ in the CWE-ID field.

5.5. Metrics

Effectiveness metrics used to measure the model’s capabilities in a multi-class classification problem include
Accuracy, F1 Score, Precision, and Recall. These metrics are reported in two ways. First, they assess the model’s
overall ability to discern among multiple classes, reflecting its pure capacity in a multi-class context. Second, they
evaluate the model in a binary fashion, determining its ability to differentiate between code with a CWE and code
without a CWE, thus considered no vulnerable. Indeed, in this latter case, given the class imbalance (5,000 non
vulnerable vs 50,000 vulnerable), F1 is the computed metric. Additionally, performance metrics refer to time and
memory ones. The former ones corresponds to training time of the model and the inference one required for each
sample prediction. By contrast, memory metrics refer to the minimum amount of GPU memory required for training
and inference the model setting a batch size of 1, the number of effective parameters and the model size.

5.6. Results

This section presents results of the enforcement of structured pruning applying LP (Section [5.6.1)), the detection
of vulnerability (Section[5.6.2)), the effects of the detection process in time and memory efficiency (Section[5.6.3)) and
the early assessment of the model effectiveness after fine-tuning and compression (Section [5.6.4).

Understanding Tables 2] and 3} These tables summarize the impact of layer pruning using the cut-off point
(Table and also quantization (Table [3)) on effectiveness, time, model memory and size. For clarity, baseline results
are shown in gray in Table 2| The results of the models after applying these compression techniques are then presented
as the difference (in %) between the baseline and each compressed version. Thus, negative values in effectiveness are
preferred — this means that the compressed model outperforms the baseline. On the contrary, positive values in time
and model memory/size are desired — the compressed model would then be faster and smaller.

5.6.1. Layer pruning

This step involves the computation of LP. Firstly, MLP classes are established based on Section[d] CC and HD
are calculated getting the average of all CWE. A similar distribution is identified in all cases. Considering a coverage
of 85% or more (recall Section ), 5 classes are defined for CC [1,2,3,4,5] and 6 for HD [1-5,6-10,11-15,16-20,21-
25,25-30], where HD are divided in groups of 5. Note that O or floats with O as the integer part are discarded for not
being considered representative enough.

Once having classes, LLMs are applied and LPs are computed for all datasets D and both features F (i.e., CC
and HD). For the sake of fairness, the same number of samples per CWE class is considered — it is set considering
the class with the minimum number of samples and downsampling the remaining classes. Figure [3| presents the loss
in all cases. In the case of BERT (Figure 3}A), it is identified that, specially in CC, loss gets the minimum, in all
cases, around k=15. In HD the trend is not so clear, but loss tends to remain constant at k=15 or increase, in the

“https://huggingface.co



Table 2: Vulnerability detection, time and memory results - Baseline (in gray) & Layer pruning (% vs baseline). For effectiveness columns, a
negative value refers to an increment over the baseline. For time and model, a positive values means an improvement over the baseline.

Effectiveness
Multi-class detection Binary de- Time Model
tection
Rank | Removed | Accuracy | F1 Precision | Recall F1 Training Inference Memory Memory Effective Param- | Model size
layers time time GPU- GPU- eters
train inference
Gemma (18 layers)
DiverseVul
256 0 73.40% 74.90% 75.30% 75.00% 95.90% 3h 10 min | 0.018s 8.96GB 5.76GB 2506172416 4770.15MB
256 13 0.8 [ 053 [ 043 0.87 -0.06 30.18 41.07
1024 3 219 | 216 | 19 216 013 52.63 78 3498 48.09 5272 57.02
PrimeVul
256 0 88.10% 89.00% 88.80% 88.10% 99.50% 3h3Im s | 0.013s 8.96GB 5.46GB 2506172416 4770.15MB
256 13 1 [ 16 [ 02 1.61 -0.06 70.62 41.07
1024 3 2 | 15 | 05 117 -0.02 71.36 76.15 3498 49.08 5272 57.02
Big-Vul
256 0 71.00% 79.30% 78.80% 79.90% 95.30% 3h  46m | 0.013s 8.96GB 5.46GB 4770.15MB
16s
256 13 051 [ -142 ] -2.04 -0.83 0.43 65.54 41.07
1024 3 269 | 348 | 459 2.63 0.78 5881 76.15 3498 | 49.08 5272 57.02
BERT (24 layers)
DiverseVul
- 0 78.20% 79.60% 79.50% 79.60% 96.10% | 2h  48m | 0.0056s 7.21 GB 1.726 GB 335153163 | 1278.46 MB
49s
- 8 0.48 ‘ 0.92 ‘ 0.44 1.14 0.28 47.47 32.14 27.77 15.41 35.7 26.32
PrimeVul
- 0 86.10% 86.90% 87.10% 86.60% 99.20% | 2h  46m | 0.0056s 7.21 GB 1.726 GB 335153163 | 1278.46 MB
26s
- 8 0.2 ] 0.2 ] 0.52 -0.27 0.21 68.54 32.14 27.71 15.41 26.31 26.32
Big-Vul
- 0 82.40% 85.10% 85.40% 84.70% 95.90% | 2h  38m | 0.0056s 721 GB 1.726 GB 335153163 | 1278.46 MB
47s
- 8 0.34 0.45 0.57 1.9 0.06 68.91 32.14 27.71 15.41 26.31 26.32

Table 3: Vulnerability detection, time and memory results - Quantization & Layer pruning (% vs baseline shown in Table

Effectiveness
Multi-class detection Binary Time Model
detection
Quantization | Removed Accuracy | F1 Precision | Recall | F1 Inference | Memory | Effective Pa- | Model size
layers time GPU- rameters
inference
(GB
Gemma (18 layers/ 256 rank)

DiverseVul
8 bits 0 1 1.32 1 1.25 1.43 -763.49 36.46 0 39.35
4 bits 0 18.78 19.8 10.65 19.68 2.18 -400.5 43.98 39.54 56.75
8 bits 13 1.3 1.48 0.71 12 -0.43 -4.5 51.35 57.11 68.01
4 bits 13 1.2 1.26 0.6 1.19 -0.4 20.8 57.33 68.09 72.84

PrimeVul
8 bits 0 0.17 0.04 0.24 -0.71 -0.04 -2.130.77 32.97 0 39.35
4 bits 0 22.38 27.4 15.4 30.85 1.08 -300 40.90 39.54 56.75
8 bits 13 1 1.5 2.46 1.11 -0.02 -223.08 48.68 57.11 68.01
4 bits 13 4.1 3.1 4.1 1.18 0 -153.85 54.98 68.09 72.84

Big-Vul
8 bits 0 0.05 0.77 0.56 0.41 0.42 -846.15 32.97 0 39.35
4 bits 0 10.05 9.92 5.46 10.06 1 -420.77 40.90 39.54 56.75
8 bits 13 -2.05 -2.13 -291 -1.76 0.22 -190.77 48.68 57.11 68.01
4 bits 13 -1.25 -1.61 -2.6 -1.23 0.8 -69.23 54.98 68.09 72.84
BERT (24 layers)

DiverseVul
8 bits 0 0.32 0.23 -0.12 0.38 0.2 -846.43 18.31 0 72.53
4 bits 0 0.89 0.71 0.3 0.88 0.39 -176.79 6.72 82.51 80.08
8 bits 8 0.59 1.28 0.58 1.27 0.38 -517.86 30.48 51.11 82.48
4 bits 8 1.7 1.36 1 1.51 0.33 -85.71 18.89 164.13 86.73

PrimeVul
8 bits 0 0| -0.08 -0.18 -0.12 0.02 -828.57 17.15 0 72.53
4 bits 0 0.14 0.07 -0.24 0.22 0.01 -167.86 3.82 82.51 80.08
8 bits 8 0.5 0.47 1.1 0.53 0.11 -507.14 31.63 S51.11 82.48
4 bits 8 1 1.2 1.1 0.8 0.11 -78.57 21.21 164.13 86.73

Big-Vul

8 bits 0 0.26 0.18 0.03 0.3 -0.12 -828.57 13.67 0 72.53
4 bits 0 0.95 0.58 0.34 0.78 -0.05 -167.86 11.94 82.51 80.08
8 bits 8 0.64 1.05 1.23 0.82 0.15 -525 28.56 51.11 82.48
4 bits 8 0.84 1.66 1.63 1.7 0.09 -87.5 24.1 164.13 86.73
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Figure 3: LLMs loss in absolute value for D, CC, and HD. Notice the decrement until the K., layer and the later increment after that layer denoting
that the hidden representations are not adding extra information to the embeddings.

case of Big-Vul. Then, based on Equation |ZL k=15 including the embedding layer. On the contrary, in the case of
Gemma (Figure 3} B), loss shows that from k=3 on there are some changes in trends, being around k=5 and 6 when
loss becomes quite constant or even decrease, reaching k.,,=5. In both models CC is the code feature which presents
more differences among k and shows a clear trend, probably because the complexity it involves becomes harder to
predict.

5.6.2. Vulnerability detection

This section presents vulnerability detection results of all datasets D, BERT and Gemma (Tables [2and [3). Effec-
tiveness metrics are computed for identifying CWESs and for distinguishing if a code sample is or not vulnerable.

BERT model shows no meaningful difference compared to the baseline values when discerning across different
datasets, CWEs or discerning among vulnerable and no vulnerable samples. Detecting CWE and considering just
layer pruning, just the recall in DiverseVul and Big-Vul degrades more than 1%. When applying quantization, while
the difference is minimum, the pruned model shows more degradation than the non-pruned counterpart. For instance,
DiverseVul and quantization 8 bits yields a degradation of 0.32% and the pruned one 0.59%. Similarly, in case of
distinguishing vulnerable and no vulnerable samples results are almost equivalent to baseline ones with a degradation
of F1 of less than 1%.

For Gemma model results are even more successfully, as there are more negative values, which shows improve-
ment concerning baseline results. In some cases such as in DiverseVul and Big-Vul when using a rank of 1,024,
the pruned model shows better performance than the baseline. When applying quantization, with 4 bits is the only
configuration that should be discarded if layer pruning is not applied, as the degradation is significant, for instance,
22.38% of accuracy in PrimeVul. On the other hand, when distinguishing among vulnerable and no vulnerable sam-
ples, excluding the case of Big-Vul with a rank of 256, every other set-up and dataset shows a light improvement with
respect to the baseline.

Analysis per CWE. Tables[4]and[5]show two confusion matrices of Gemma, for the sake of illustration (the remaining
ones are available in our repository) for the DiverseVul and BigVul datasets. Among the common CWEs, CWE-119
and CWE-20 generally show worse results across the datasets and models, with precision usually below the mean of
the other CWESs with precisions of 76%/78% in BERT and 76.5%/ 74.5% in Gemma.

CWE-119 refers to setting Improper Restrictions of Operations within the Bounds of a memory buffer, indicating
that the models may fail when analyzing if the operations where properly restricted as the amount of possible improper
operations is large. CWE-20 refers to improper Input Validation, suggesting that the models may lack knowledge of
potential runtime inputs. Additionally, these two IDs are more general and abstract, encompassing more children
classes.

While the mistakes across CWEs are low, these two CWEs in Gemma and BERT tend to be mixed, being some
of the instances of the CWE-119 classified as CWE-20 and viceversa. Additionally, confusion matrices also shows
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Table 4: Gemma, DiverseVul, no pruning, no quantization Table 5: Gemma, DiverseVul, with pruning and quantization

CWE-119 623 72 42 45 8 38 27 38 12 41 54 646 39 9 148 0 9 64 14 3 0 16
CWE-I25 36 714 17 Y 10 8 51 39 17 55 21 ) 570 9 5 0 6 45 13 3 0 2
CWE-190 24 31 795 30 n 19 16 27 3 25 19 58 28 276 62 0 0 42 16 2 0 2
CWE-20 40 30 23 687 18 51 38 41 5 19 48 123 13 2 678 1 19 68 10 3 3 n
CWE-22 2 3 4 12 326 1 8 2 5 4 3 7 o 1 6 11 1 2 o 1 o o
CWE362 11 3 16 28 6 853 37 18 1 4 23 89 5 I 102 1 444 i 19 0 2 4
CWE-416 20 37 27 18 13 s1 740 28 16 21 29 7 6 [ o 64 0 21 673 5 3 1 6
CWE-476 35 50 9 43 12 30 52 686 8 55 20 CWE-476 74 13 9 59 0 1 55 367 2 0 4
CWE-78 2 3 1 12 3 0 14 2 264 1 3 CWE-79 60 n 3 35 0 14 30 5 216 0 10
CWE-787 56 48 15 40 2 10 39 40 8 718 24 CWE-787 10 2 ‘ o 30 0 2 10 1 0 7 3
No CWE 65 50 20 78 16 55 12 29 7 23 545 No CWE 200 18 4 291 0 56 102 7 10 o 279
CWE-119 CWE-125 | CWE-190 CWE-20 CWE-22 CWE-362 | CWE<416 CWE-476 CWE-78 | CWE-787 | No CWE CWE-119 | CWE-125  CWE-190 CWE-20 | CWE-269 | CWE362  CWE-416 | CWE-476 | CWE-79 | CWE-787 No CWE

that most of the miss-classifications are because the model shows lower effectiveness when discerning more these two
abstract classes and the negative class.

CWE-787 and CWE-125, which refer to Out-of-bounds Write and Read respectively, show average precision
across models and datasets with averages of 89.2%/86.1% in BERT and 87%/ 82.5% in Gemma. While these are
specific types of operations within the broader class of CWE-119, they are more fine-grained, making them easier for
the models to detect. The same applies to CWE-362 (race-condition) and to CWE-190 (integer overflow) — they are
more concrete than CWE-119 and CWE-20.

Corroborating ke, appropriateness. On the one hand, tests in Table [6 have been run using | k., J/2 as cut-off value,
that is 5 in Gemma and 15 in BERT. Thus, the new cut-off value is 2 and 7 for Gemma and BERT respectively,
such that 15 and 16 layers are removed in each case. All models’ metrics get worse, corroborating that the proposed
approach achieves a nice reduction of the model, while keeping or improving the results of the original models.

Table 6: Additional layer pruning. Notice that a positive value means a decrement with respect to the baseline.

Effectiveness
CWE Vul-
NoVul
Rank Removed | Accuracy | F1 Precision | Recall F1
layers ‘ ‘
Gemma (18 layers)
DiverseVul
256 0 7340%  7490% | 75.30% 75.00% | 95.90%
256 | 15 2,50 [226 2,48 [229 0,48
1024 | 15 2,82 [ 301 3,04 [ 264 0,19
PrimeVul
256 0 88.10%  89.00% | 88.80% 88.10% [ 99.50%
256 [ 15 3,00 [210 0,80 [211 028
1024 | 15 4,20 [ 363 3,23 | 2,60 0,17
Big-Vul
256 0 77.00%  79.30% | 78.80% 79.90% | 9530%
256 | 15 2,46 [ 137 0,49 [201 1,48
1024 [ 15 6,96 [ 528 5,46 [ 453 2,18
BERT (24 layers)
DiverseVul
- 0 [ 7820% 79.60% | 79.50% 79.60% | 96.10%
- [ 16 ] 4.1 ] 373 | 45 ] 327 | 1.02
PrimeVul
0 [ 86.10% 86.90% | 87.10% 86.60% | 99.20%
- [ 16 ] 2] 1.9 | 1.81 ] 18] 299
Big-Vul
- 0 | 8240%  85.10% | 8540% 84.70% | 95.90%
[ 16 ] 144 ] 1.05 | 143 ] 0.28 | 0.55

On the other hand, a comparison against random layer removal (as done in [50])) has been carried out in Figure [
keu random layers are removed, and repeated 3 times, from BERT and Gemma to analyse average results afterwards.
Specially in Gemma results are quite worse removing random layers than using our proposed k., with a reduction
of 20% of accuracy in the best case. BERT, though to a lesser degree, also presents a degradation of accuracy when
applying random pruning, that is around 10% and 2.5% in the worst and best case respectively.

5.6.3. Time and memory efficiency

Tables [2] and [3] also show these performance metrics. For BERT, the memory required for full fine-tuning on a
consumer-grade GPU is reduced by 27.7%, making it more accessible for lower-budget GPUs. The memory required
for inference also decreases by around 15.41%, while 35.7%. parameters and 26.32% the model size due to the need
to store fewer weights. This also translates to better inference time, with an improvement across all datasets of 32%.
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Figure 4: Comparison of random pruning vs LPAS S -based pruning. Dotted line represents the random pruning version of their respective models

When BERT is quantized, inference time is slowed down, especially on 8-bit versions. Nonetheless, pruning
alleviates this problem, reducing the slowdown from -846% (non-pruned DiverseVul) to -517% (pruned 8-bit Diver-
seVul). This could be due to the extra overhead and operations required by the 8-bit and 4-bit linear layers. Despite
this increase in inference time, BERT model benefits from quantization by reducing the model size and the effective
parameters further. A 4-bit pruned BERT reduces the original model size by 86.73% with a reduction of 164% in
effective parameters. In terms of GPU memory, the requirements are significantly reduced, especially in the 8-bit
versions, which, after pruning, are reduced by 30% across the datasets.

Gemma also shows a positive impact on its metrics thanks to pruning, reducing the training time by 71.36% in
PrimeVul with a rank of 1,024. These gains are also seen in inference time, with reductions of 78%. While higher
ranks require more GPU memory for fine-tuning, a rank of 1024 reduces memory usage by 34.98%, and a rank of 256
41%. Pruning the model also benefits memory usage for inference, which drops by 49%, primarily due to a 52.72%
reduction in effective parameters. This results in model sizes being 57% smaller.

As with in previous model, quantizing the Gemma model translates to worse inference times. However, pruned
Gemma alleviates this issue due to the smaller model complexity, reducing the increase from -2130.77% (8-bit Prime-
Vul non-pruned) to -223.08% (8-bit PrimeVul pruned). Additionally, quantized Gemma reduces the original model
size by 72% in the 4-bit version, which can be explained by the reduction of effective parameters by around 68%
across the datasets.

Overall, performance metrics show that training time is reduced by almost 30% in PrimeVul and Big-Vul and
more than 50% in DiverseVul, while inference time decreases by 28% across all datasets and models. Model metrics
also improve similarly across all datasets, with around a 30% improvement in each.

5.6.4. Early assessment

The performance estimation process requires computing &(D). First, Table[7|presents values of 8 for combinations
of O applying the leave-one-out cross-validation — a couple of datasets are used for computing 3, and the remaining
one to compute &(D). Interestingly, it can be seen that 3 is reasonably stable for different datasets, which is beneficial
for supporting the generalization of this approach.

Recalling Equation 5} the combination of 8 and &(D) allows computing Err in each case. Table 8|depicts Err for
all D, original models and compression configurations, namely original models, models with 4 and 8 bits quantization,
after established layer pruning and pruning together with quantization.

BERT produces the best results with an Err between 8% and 4% and an average of 4.6% in CC and 7% in HD.
On the other hand, Gemma presents a bit worse results, specially for CC in which the Err is between 17% and 11%
and an average of 13.1%, while in CC the average Err in 10.2%. Moreover, there is not a clear distinction of LLM
configurations as Err remains similar among them.

5.7. Discussion and Limitations

Our results endorse the use of LPs to pick the cut-off layer when compressing LLMs by means of layer pruning.
Considering the size of the LLMs at stake, as well as the comprehensiveness of the three chosen datasets, we believe
that the validity of our findings is supported. In fact, the results obtained by compressed LL.Ms outperform the state of
the art, as it will be further shown in Section[6] Interestingly, our compressed models improve the results as compared
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Table 8: Err (in %) per code feature F for each LLM setup phase. Datasets are used following a leave-one-out cross-validation.

Table 7: Values for B (in %) for each LLM setup phase

Baseline Quantization 4 bits Quantization 8 bits Tayer pruning L. Pruning+ Quant L. Pruning+ Quant
4 bits 8 bits
Precision | Recall | F1 Precision [ Recall [ FI Precision | Recall [ FI Precision | Recall | FI Precision | Recall [ F1 Precision | Recall | F1
BERT
CcC

DiverseVul+ 38 38 38 38 38 38 38 38 38 38 38 38 37 37 37 38 38 38
PrimeVul

PrimeVul+ 38 38 38 38 38 38 38 38 38 38 38 38 37 37 37 38 38 38
Big-Vul

DiverseVul+ 37 37 37 36 37 37 37 37 37 36 37 36 35 36 35 36 36 36
Big-Vul

AllD 38 38 38 37 37 37 38 38 38 37 37 37 37 37 36 37 37 37

HD

DiverseVul+ 41 41 41 41 41 41 41 41 41 40 40 40 39 39 39 40 40 40
PrimeVul

PrimeVul+ 41 40 40 37 40 40 41 40 41 40 40 40 40 40 40 40 40 40
Big-Vul

DiverseVul+ 37 37 37 33 36 36 37 37 37 35 36 35 34 35 34 35 35 35
Big-Vul

AllD 40 40 39 37 39 39 40 39 40 38 39 38 38 38 38 38 38 38

Gemma
CcC

DiverseVul+ 28 27 27 10 4 6 28 28 28 24 27 28 25 19 21 28 27 27
PrimeVul

PrimeVul+ 24 24 24 13 2 2 25 24 24 28 26 27 20 10 12 26 26 26
Big-Vul

DiverseVul+ 18 18 18 4 4 4 18 17 17 16 19 19 16 10 11 19 19 19
Big-Vul

AllD 23 23 23 9 3 4 24 23 23 22 24 25 20 13 15 24 24 24

HD

DiverseVul+ 35 34 34 17 6 8 35 34 35 32 36 37 34 28 30 37 36 36
PrimeVul

PrimeVul+ 35 34 35 18 11 13 35 35 35 39 38 38 32 21 24 37 37 37
Big-Vul

DiverseVul+ 27 26 26 7 6 8 26 26 26 25 29 29 25 20 21 28 29 28
Big-Vul

AllD 32 31 32 14 8 10 32 32 32 32 34 35 30 23 25 34 34 34

CWEs are considered

Only common

Baseline Quantization 4 bits Quantization 8 bits Layer pruning L. Pruning+ Quant 4 L. Prun8ng+ Quant 8
bits bits
LP datasets | Prediction Precision | Recall F1 Precision| Recall F1 Precision | Recall F1 Precision | Recall F1 Precision | Recall F1 Precision | Recall F1
| | e | | sl | sl |
BERT
DiverseVul+ | Big-Vul 5 5 5 5 5 5 5 5 5 5 6 5 5 6 5 4 6 5
PrimeVul
CC | PrimeVul+ DiverseVul 5 5 5 5 5 5 5 5 5 5 6 6 6 7 6 6 6 6
Big-Vul
DiverseVul+ | PrimeVul 3 3 3 4 3 3 3 3 3 4 3 3 5 4 4 4 4 4
Big-Vul
Mean 5 4 4 5 4 4 4 4 4 5 5 Bl 5 6 Bl S 5 5
DiverseVul+ | Big-Vul 6 5 5 6 6 5 6 5 5 4 6 5 5 5 5 5 5 5
PrimeVul
HD | PrimeVul+ DiverseVul 6 6 6 5 6 6 6 6 6 8 9 8 8 9 8 8 9 8
Big-Vul
DiverseVul+ | PrimeVul 8 7 8 12 8 8 8 7 8 10 9 9 10 10 10 9 9 9
Big-Vul
Mean 7 6 6 8 7 7 7 6 6 7 8 7 8 8 8 7 7 7
Gemma
DiverseVul+ | Big-Vul 14 13 13 15 16 11 14 14 14 11 10 10 17 19 18 12 11 11
PrimeVul
CC | PrimeVul+ DiverseVul 5 9 6 13 16 11 7 7 7 16 9 9 6 13 9 8 9 8
Big-Vul
DiverseVul+ | PrimeVul 16 15 16 17 19 11 17 17 17 20 16 16 17 14 12 15 14 15
Big-Vul
Mean 11 13 12 15 17 11 13 13 13 16 12 12 14 15 13 12 12 12
DiverseVul+ | Big-Vul 8 6 6 10 10 6 6 7 5 6 5 12 13 12 6 7 6
PrimeVul
HD | PrimeVul+ DiverseVul 7 9 8 11 14 13 8 8 8 16 9 9 5 7 5 8 9 8
Big-Vul
DiverseVul+ | PrimeVul 13 13 13 17 16 9 15 14 15 17 13 13 17 13 12 13 12 13
Big-Vul
Mean 9 10 9 13 13 9 10 10 10 13 9 9 11 11 10 9 9 9
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to the original, non-compressed versions. As pointed out in [16], model-level optimizations such as compression or
pruning tend to come with a loss in performance. Nonetheless, our results show that pruning a model for a specific
task and optimizing it for a really specific downstream task, such as code vulnerability detection, can even lead to
better results.

In the same vein, LPs have been shown to be effective for having an early (yet accurate) estimate on the post-fine-
tuning and post-compression model performance. Estimation errors are affordable, indeed. However, we opted for
using a linear relationship between LP results and the target values (recall Equation [3), as the amount of instances
is limited. Therefore, exploring non-linear relationships could lead to better results and is an interesting research
direction.

LPs are also affordable and cost-effective. The training time per layer for the LPs in BERT is, on average, 0.05
seconds per layer across the three datasets, compared to the 6,072 seconds it takes on average to fine-tune BERT across
the datasets. For Gemma, only 1.49 seconds per layer is needed for LPs, in contrast with the 5,162 seconds required
on average to fine-tune the model. For each sample, the time required to extract the features is 0.007 seconds for
BERT and 0.009 seconds for Gemma. While the final time required to compute a single round of the LPs may depend
on the number of samples used, 98.18, 21.92, and 41.69 seconds were required with BERT for DiverseVul, PrimeVul,
and BigVul, respectively. For Gemma, 142.97, 46.71, and 79.04 seconds were needed for the same datasets. This
represents a reduction of 99.11% and 98.26% in the average time needed to fine-tune the models, respectively.

On the contrary, our results are not enough to confirm that LPs can be directly applied to other domains (such as
speech recognition or NLP-related tasks). Indeed, choosing which LPs and features to apply is not immediate. Hence,
this work must be regarded as a first attempt in this direction, opening interesting research venues to ascertain their
use in other domains or with different LLMs.

Our experimental settings impose a number of natural limits to our results. Thus, only C/C++ programming
languages are at stake, but additional ones could be tested. Similarly, we have resorted to a classic LLM (Bert) and a
very novel one (Gemma). However, others like Gamma or GPT-40, could also be relevant.

Regarding other compression methodologies, such as merging layers or knowledge distillation, we consider these
techniques complementary to our approach. We could use a larger teacher model to enhance the representations of
our pruned models or further compress our pruned model by merging similar layers. These are interesting lines of
research to explore if LPs can be used in addition to these methods to create smaller models while leveraging the
insights from the hidden states of the LLMs.

6. Related work

Vulnerability detection using LLMs presents a critical challenge in the development of tools that assist security
analysts in writing or auditing code. The vast array of existing vulnerabilities, including zero-day threats, exacerbates
this challenge due to the potentially infinite spectrum of vulnerabilities [7].

For this reason, academia has extensively explored various proposals. General models such as GPT-4, Chat-GPT,
and LLama2 have been studied [52, 43] to evaluate their effectiveness in classifying vulnerabilities across binary
and multi-class frameworks [54]], specifically within C, Java [55], and Python code [57], utilizing diverse prompting
strategies. Ahmad et al. [S1] studied these strategies to find vulnerabilities at a line-level approach, showing promising
results.

However, despite these efforts, the studies indicate that the current state of the art in prompt-based models under-
scores the necessity for specialized models tailored for vulnerability detection, particularly as current models struggle
with accurately identifying the potential CWE of the code (see [58] for more).

Among specialised models, finetuned LLMs have been the option that has lead to better results. Chen et al. [1]
covered a wide range of models’ families (RoOBERTa, TS,GPT-2) while introducing a new diverse C code vulnerability
dataset. Fu et al. [4] studied the possibility of predicting vulnerabilities on a line based approach. However, the
problem was covered as a binary classification problem and thus, models lack the ability of correctly discerning the
CWE type. They concluded that diversity of data sources, vulnerabilities and pre-training on code data are crucial for
better detection while larger models seems not to be beneficial. This was later also pointed by Steenhoek et al. [5]
who carried out an empirical study for vulnerability detection with fine-tuned LLMs.

Hanif et al. [6] explored to pre-train and finetune a model (RoBERTa) specifically for code vulnerability detec-
tion. They reach good results in both, binary and multi-class vulnerability detection. Nonetheless, pre-training this
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Table 9: Vulnerability detection using LLMs. Notice column Binary (B)/ Multiclass (M) marks if the set-up was binary or multiclass.

Reference Programming | Dataset Model Results CWE-level Binary Input features Max Compression
language analysis (B)/ Mul- tokens | tech-
ticlass nique(s)
™)
Fu et al [4 C/C++ Big-Vul Custom transformer Big-Vul: 65% Acc. v B Code 512 X
Steenhoek et al |5 | C/C++ Devign, MSR Vulberta and other custom transformers | Devign: 55%-89% F1 X B Code 512 X
models
Ahmad et al. [51 C/C++, Custom dataset Codex, GPT-3.5 Custom dataset: 66% Acc. | v B Code + prompt 50 X
Verlilog, lines
Python
Zhou et al. [43 C/C++ Vulnerability-fixing com- | GPT-3.5 GPT-4 VFC: 75.5% Acc. X B Prompt + code 4,096 | x
mit dataset
Fu et al. [52 C/C++ Big-Vul Chat-GPT Big-Vul with prompts: | x Band M Prompt + code 4,096 | x
13%-20, M. 10% Acc.,
B%
Big-Vul fine-tuned LLM:
65% Acc., M. 94% Acc.,
B
Fuetal. |53 C/C++ Big-Vul CodeBERT, Devign, ReGVDm Graph- | Big-Vul: 64% Acc. v M Code 512 X
CodeBERT, LFME, BAGS
Duetal. [2 C/C++ Big-Vul GraphCodeBert Big-Vul: 93.83 % Acc. X B Code 512 X
Chenetal. [ C/C++ diversevul, Devign, Re- | Roberta, GPT-2, T5 CVEFixes: 91.64 % Acc. v B Code 512 X
Veal, Big-Vul, CrossVul, Devign, ReVeal, Big-Vul,
CVEFixes (Jointly) CrossVul: 92.30% Acc.
DiverseVul: 92.30 % Acc.
(Best effort)
Gao et al. [54 C/C++ d2a, ctf, magma, big-vul, | chatglm2 -6b Llama-2 -7b vicuna -7b vi- | Joint datasets: 40.6 % FI, v Band M Prompt + code 2,048 X
and devign cuna -7b-16k Llama-2 -13b Baichuan2 | B/37.9 % FI.M
-13b vicuna -13b vicuna -13b-16k in-
ternlm -20b vicuna -33b CodeLlama -
34b falcon -40b Llama-2 -70b Platypus2
-70b GPT-3.5 GPT-4
Ding et al. [3 C/C++ Primevul Codet5, codebert, unixcoder, star- | PrimeVul: 96% Acc. X B Code 512 X
coder2,codegen, gpt-3.5 Gpt4
Hanif et al. [6; C/C++ Pre-training Vulberta Joint datasets: 99.59% F1 v M Code 512 X
(GitHub,Draper) +
finetuning on Vuldeep-
ecker, Reveal, Draper,
muVuldeepecker,
D2A,Devign
Tamberg et al. | Java Java Juliet 1.3 CodeQL, GPT-4, CLaude Java Juliet: 72% (max) | v B Code - X
155 Acc.
Shestov et al. [56] | Java 'VCMatch (custom) WizardCoder, coderbert VCMatch: 75% - 85% X B Code 2,048 X
ROC and
512
Jensen et al. |57 Python HumanEval, MBPP, Se- | Falcon-7b, Llama, llama2, dolly Joint datasets: 95.6% X B Prompt + code 4,096 X
curityEval 660 between Acc. with 37.9% F1
all
Shietal. [17 C/C++ Devign CodeBERT Devign: 59% Acc. X B Code 512 v Knowledge dis-
tillation
Ours C/C++ Big-Vul, DiverseVul, | BERT, Gemma Big-Vul: 82%-96% Acc. | v’ Band M Code 1,024 | v Layer pruning
PrimeVul DiverseVul:  77.7%-96% and quantization,
Acc. PrimeVul: 87.1%- guided by Linear
99% Acc. Probes
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model requires 96 hours and 80 GB of VRAM, which are usually resources not generally accessible. Additionally,
no vulnerable samples are ignored in the milticlass approach, training the model for just distinguishing among the
different CWEs. The characterization of CWE was covered by [53]] who proposed a set of abstract classes to reduce
the complexity of fine-grained predictions by grouping similar CWE.

Among compression proposals, only Shi et al. [[17, 18] have addressed the topic. They propose a two-step method
to find optimal model configurations for a base size BERT model (CodeBERT). First, they maximize accuracy while
reducing model size using a genetic algorithm. Afterward, they apply knowledge distillation to the optimized model.
However, this approach results in an accuracy of only 59% for binary code vulnerability detection, which is close to
random guessing. The trial-and-error methodology for testing configurations could be impractical due to the complex
hyperparameter search space, especially for larger models like those discussed in our paper.

Their solution requires a notable amount of time. In the first step, they need to limit the search space, which
takes 5 minutes on a cluster with 80 CPUs and 504 GB of RAM. The resultant set of 20 models needs to be pre-
trained, taking a minimum of another 10 hours. Finally, the fine-tuning process must be carried out, requiring an
additional 20 minutes. This process is both time and energy-consuming. As pointed out in [20], while fine-tuning
consumes significant energy and generates emissions, pre-training the models is the most resource-intensive step. In
our solution, no additional pre-training is required, thereby saving both energy and time.

Interestingly, our results suggests that compression techniques can also lead to improved performance results, as
opposed to the findings by Shi et al. which characterize the incurred loss.

Table [9] presents a comparison among works leveraging LLMs for vulnerability detection, pointing out the lan-
guage of the code, datasets, models, main results, if the study is carried out in a binary or multi-class classification
considering CWE or not, together with input features and tokens size. LPASS encompasses three C/C++ datasets,
the most common programming languages, and distinguishes among various CWEs, doing a multi-class classification
and determining also whether code samples are not vulnerable. The average accuracy that we achieve across datasets
for multi-class classification is 81% for BERT and 76.6% for Gemma, both of which outperform other approaches
reported in the literature [52,53]]. Specifically, on the Big-Vul dataset, BERT and Gemma achieve accuracies of 64%
and 65%, respectively, which are lower than our best result of 82%. For binary classification, our results can be
compared with studies that employ related datasets [[1} 2| |4, 3| |52]]. On the Big-Vul dataset, our approach achieves
an accuracy of 96%, surpassing the results of [2, 14} |52]], which reported accuracies ranging from 65% to 94%, with a
maximum of 93.83%. Additionally, the work by Chen et al. [1] on DiverseVul yields an accuracy of 92.30%, which
is lower than our performance of 96%. Finally, [3]] reports an accuracy of 96% on the PrimeVul dataset, while our ap-
proach achieves 99%. However, proposals in [55, 156,57 are not comparable to our work, as they focused on Python
and Java. Additionally, while other efforts such as [17,16, 154, [7I51]] did focus on vulnerability detection in C, like our
study, they use datasets like Devign or others that only indicate whether a vulnerability is present or not and then, as
pointed out in Section[5.2] their use has been discarded in our work.

Moreover, proposals for fine-tuned models [6} [1} 53] are limited to 512 tokens, which is the maximum context
window supported by most models.By contrast, we test a well-known model, BERT, and Gemma, not used until now,
with 1,024 tokens in this latter case and using code as input features. Additionally, the model at stake in the work by
Shi et al. [[17] is already smaller than ours. Thus, it is unknown how well their proposal may work with larger models
such ours as their approach may result in a substantially larger search space for their algorithms.

7. Conclusion

Reducing the size of LLMs is critical to ensure their scalability for vulnerability detection — as real-time demands
come into play, saving time and memory is paramount. However, model compression and fine-tuning requires non-
negligible resources, and the effect of these actions into the model performance is unknown beforehand. To address
these issues, in this paper an approach (dubbed LPAS S') has been proposed to assist in making informed decisions.
LPAS S helps on selecting the cut-off point for model compression using layer pruning. Moreover, it provides a
good estimate of the post-fine-tuning and post-compression performance by using linear classifier probes. Indeed,
LPAS S -based versions of two LLMs have not only outperformed the state-of-the-art in vulnerability detection, but
also non-compressed versions, thus showing the suitability of using probes.

Our results open a number of future research directions. On the one hand, our use of linear classifier probes
had not been proven in the context of model compression. Thus, the analysis on their suitability for other models
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or application domains is relevant. On the other hand, in the field of vulnerability detection, the suitability for other
languages remains an open issue.
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