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Abstract

We compare the efficiency of restaking and Proof-of-Stake (PoS) pro-
tocols in terms of stake requirements. First, we consider the sufficient
condition for the restaking graph to be secure. We show that the condi-
tion implies that it is always possible to transform such a restaking graph
into secure PoS protocols. Next, we derive two main results, giving upper
and lower bounds on required extra stakes that one needs to add to val-
idators of the secure restaking graph to be able to transform it into secure
PoS protocols. In particular, we show that the restaking savings com-
pared to PoS protocols can be very large and can asymptotically grow in
the worst case as a square root of the number of validators. We also study
a complementary question of transforming secure PoS protocols into an
aggregate secure restaking graph and provide lower and upper bounds on
the PoS savings compared to restaking.

1 Introduction

Restaking has recently been proposed as a cryptoeconomically more efficient
alternative to the Proof-of-Stake solution concept for blockchains. The latter
was proposed on its own as an energy-efficient alternative to the Proof-of-Work
concept 1. In restaking, validators that are staked for one protocol can reuse
their stake to secure other projects or protocols of their choice. This gives a
boost to newer projects in attracting capital for their cryptoeconomic security.
Cryptoeconomic security refers to a security derived from staked parties being
slashed their stakes in case of misbehavior. Restaking seems to be attractive
for the validators of the original protocol as well. In particular, restaking allows
them to reuse their computational power and storage allocation for additional

∗We thank Ed Felten, Manvir Schneider, Paolo Penna, Pranay Anchuri, Christoph Schlegel
and Bruno Mazorra for useful discussions. No AI was consulted when working on the paper.
All errors are our own.

1See [6] for a more detailed discussion on Proof-of-Work vs. Proof-of-Stake concepts.
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payoffs coming from other projects’ rewards. The original protocol, for which
the validators are staked, may have requirements that do not exhaust all the
resources of the validators, usually for the purpose of decentralization2. Another
potential reason for such availability might be economies of scale for establishing
further validation services.

The idea of restaking was originally proposed in the whitepaper of the Eigen-
layer project, [7]. A similar concept existed in traditional finance literature
under the name of rehypothecation, [4]. The interdependencies between proto-
cols and validators introduced by restaking create new risks, which have been
modeled and analyzed in the original whitepaper, as well as in the series of
papers [3], [1], [8], [5]. The simplest way to verify the security of the restaking
uses a cost-benefit analysis. In this analysis, the total amount of lost stakes of
attackers is compared to the total value obtained from the attack of a set of
validators. The same cost-benefit analysis can be used to check the security of
a Proof-of-Stake protocol, in which a single project/service is secured by mul-
tiple validators. This allows a reasonable comparison of restaking and multiple
PoS protocols. [2] discusses ways to estimate the value gained from attacking a
protocol and cryptoeconomic security more in detail.

Since the Proof-of-Stake protocol is simpler and hence safer solution concept
than restaking, we are interested in checking comparative benefits of restaking
protocols. One particular attractive point of restaking protocols can be the
lower total staking requirements than that of Proof-of-Stake protocols, since
there are opportunity costs associated with locking up stake for security reasons.
Most PoS protocols pay for this cost by rewarding stakers with newly issued
tokens, which leads to inflation. Hence, minimizing the total stake amount while
maintaining security can be a reasonable goal in both restaking or PoS protocols.
Starting with a secure restaking protocol and initial stake endowments for all
validators, we measure how much extra stake would be required if validators
decided to form separate Proof-of-Stake protocols with their stake amounts,
dividing them across the same set of projects they secure in the original restaking
graph. We only allow all validator stakes to (weakly) increase. This captures
a real-life consideration in which validators’ stakes can not be taken away, but
their stakes can be increased through financing when needed. If both increasing
and decreasing of validator stakes were allowed, it would be trivial to construct
a restaking graph with minimum total stake. This amount is equal to the sum of
all project values, and secure PoS protocols for all projects can be constructed
by dividing the stakes of the validators.

Our Contributions First, we check the sufficient condition for a secure
restaking graph, specified by the EigenLayer project [7]. Although this suf-
ficient condition is the only currently available (generic) condition that can be
checked in polynomial time in the size of the restaking graph, it does not save

2Check out Ethereum network plans to resolve this asymmetry be-
tween validator resources using rainbow staking https://ethresear.ch/t/

unbundling-staking-towards-rainbow-staking/18683.
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on total required stake. In particular, it is possible to divide the initial stakes to
obtain secure PoS protocols across all projects. To further extend the analysis,
we define restaking savings of a secure restaking graph. It is equal to the ex-
tra stake required, relative to the original total available stake in the graph, to
be able to obtain secure PoS protocols through the division of stake described
above. Higher restaking savings indicate an advantage of restaking to PoS.
To upper bound this value, we use simple secure PoS constructions from the
original restaking graph. In particular, we upper bound the value of restaking
savings with the highest degree among the projects. Another upper bound is
the minimum incidence of any validator in the cover of a validator set by project
neighborhoods. The third upper bound is equal to second largest multiplicative
inverse of the security parameter, which is a small constant value in many prac-
tical cases. The last upper bound is equal to the square root of the number of
validators. Next, we give a construction to lower bound this value. The lower
bound example asymptotically matches all upper bounds obtained.

We study a complementary question of aggregating given secure PoS pro-
tocols into a secure restaking graph. When aggregating, each validator adds
stakes across projects that they secure in separate PoS protocols, resulting in
a restaking graph. Similarly to the restaking savings, we define PoS savings as
the total additional stake required to add validators in the aggregate restaking
graph to make it secure. We first construct an example showing that the re-
sulting restaking graph is not secure, in fact, at least an additional stake equal
to the original total stake is required to make it secure, thus showing a lower
bound of 1 on PoS savings. We also provide an upper bound on PoS savings as
a function of the underlying restaking graph.

2 Model

Our notation closely follows [3]. A restaking graph G = (S, π, α, V, σ,E) consists
of the following:

• S denotes the set of m services {1, ...,m},

• π ∈ Rm
+ denotes values of services (we will refer projects as services from

now on throughout the paper),

• α ∈ Rm
+ denotes security parameters of services, where αs ∈ [0, 1],

• V denotes the set of n validators {1, ..., n},

• σ ∈ Rn
+ denotes stakes of validators,

• The set of edges E connecting S nodes (services) to V nodes (validators).

An edge (s, v) ∈ E indicates that a service s is secured by a validator v.
Hence, a restaking graph is represented as a bipartite graph with two parts
made up of services and validators.

3



Let NG(s) denote the neighborhood of the service s ∈ S in the restaking
graph G, i.e. NG(s) := {v ∈ V : (s, v) ∈ E}, is the set of validators staked on
service s. Similarly, NG(v) denotes the neighborhood of the validator v ∈ V ,
i.e., NG(v) := {s ∈ S : (s, v) ∈ E}, is the set of services validator v is staked on.

A service s has a security parameter αs if only subsets of validators staked
on this server that have at least αs fraction of the total stake of validators staked
on s can attack it. More formally:

Definition 1. A subset of validators W ⊆ V can attack the service s if and
only if ∑

k∈W∩NG(s) σk∑
v∈NG(s) σv

> αs.

For each subset of validators A, we can define the maximal set of services
that they can collectively attack. Let this set be denoted by M(A). That is
M(A) = {s ∈ S : A can attack s}. The attack carried out by the validators in
A is profitable when

∑
s∈M(A) πs >

∑
v∈A σv, that is, validators lose less total

stake than the total value they obtain from the attack.

Definition 2. A restaking graph G is secure if there exists no subset of valida-
tors A that can profitably attack its corresponding set of services M(A).

We are interested in the following question:

Question 1. Is it possible to divide the stakes of all validators between all
services they secure in the graph G so that all services are secure in their cor-
responding PoS protocols?

A division of stake σv of validator v across services it secures in G induces
a vector cv ∈ R|NG(v)|

+ , such that,
∑

s∈NG(v) c
v
s = σv. We say that division of

stake is secure if in the corresponding Proof-of-Stake protocols, that represent
star graphs centered at the service, we have guaranteed security. That is, for
each service s with security parameter αs, a vector of stakes {k ∈ NG(s) : c

k
s} is

secure, which means that there is no profitable attack by validators having stakes
{k ∈ NG(s) : cks}. Let W(G) denote all initial stake vectors σ for which such
division is possible. To simplify notation, here we implicitly assume that the
stake vector is not part of a restaking graph G, and only keep its combinatorial
nature together with the π and α vectors.

We consider stake vectors σ′ that (weakly) dominate stake vector σ, that
is, σ′

s ≥ σs for any s. The set of all stake vectors that dominate σ is denoted
by D(σ). Let T (σ) :=

∑
v∈V σv. Then, the total extra value to reach from

the stake vector σ to the stake vector σ′ is T (σ′)− T (σ). The rationale behind
considering (weakly) dominant vectors of stakes is that we assume that initial
stakes cannot be taken away from the validators, but they can be increased if
needed.

The Eigenlayer project, [7], specifies a sufficient condition when a restaking
graph is secure: for any v ∈ V , the following inequality holds:
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σv ≥
∑

s∈NG(v)

σv∑
k∈NG(s) σk

πs

αs
. (1)

This condition allows to check whether a given restaking graph is secure in
polynomial time in the input graph size. In fact, the time is even linear in the
number of edges |E| 3.

3 Results

In this section, we first check the sufficient condition (1), then define restaking
and Proof-of-Stake savings, and last, we obtain lower- and upper-bound results
for them.

3.1 Restaking Savings

If the sufficient condition on validator stakes (1) is satisfied, there is a division
of stakes such that all services are secure in their corresponding PoS protocols.
More formally, we obtain the following result:

Proposition 1. When the stake vector σ satisfies (1), then σ ∈ W(G).

Proof. Consider the following division of stakes: the validator v allocates at
least

σv∑
k∈NG(s) σk

πs

αs

stake to a service s it secures in G. Such allocation is possible because of (1).
Each service s is assigned a total stake amount of at least πs

αs
, since∑

v∈NG(s)

σv∑
k∈NG(s) σk

πs

αs
=

πs

αs
,

by bringing the outer summation operator into the nominator. With πs

αs
total

stake amount in PoS protocol for service s, there is no profitable attack, since
for the successful attack the attackers should control at least πs

αs
αs = πs stake,

hence, it cannot be profitable.

Note that the value πs

αs
is the minimum required total stake in a PoS protocol

for a service s with value πs and security parameter αs that guarantees that
there is no profitable attack. For any smaller amount t < πs

αs
, there exists a

distribution of the total stake t among any number of validators such that there
is a profitable attack.

There is a minimum total stake requirement to ensure that there is a division
in secure PoS protocols. The amount is equal to

∑
s∈S πs. It can be distributed

arbitrarily among validators, with the only guarantee that each service can

3The general decision problem whether a given restaking graph is secure is difficult, see [3].
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get its own value staked by one of the validators securing it. However, such
a distribution does not take into account that validators already have stakes,
which cannot be taken away from them. Another consideration is that the
restaking graph with the minimum total stake in W(G) is not necessarily secure,
while we will focus on secure restaking graphs from now on.

Next, we define the restaking savings for a given secure restaking graph:

Definition 3. For a given secure restaking graph G, restaking savings, RS(G),
denotes a minimum extra total value to add to the stakes in σ vector, in relative
terms, so that secure subdivision of the new stake vector is possible. That is,

RS(G) = min
σ′∈D(σ)∩W(G)

T (σ′)− T (σ)

T (σ)
.

Let dG(u) denote the degree of vertex u ∈ S ∪ V in graph G. Note that
dG(u) = |NG(u)|. Consider a subset of services whose neighborhoods cover the
entire set of validators V :

R := {R : R ⊆ S& ∪s∈R NG(s) = V }.

For each of these covers, calculate the incidences of all validators in it, and take
the largest incidence number. Let K be minimum such number over all elements
of R. Formally,

K = min
R∈R

{k|k = max
v∈V

∑
s∈R

I(v ∈ NG(s))},

where I(P ) = 1 whenever the statement P is true.
We prove several upper bounds on the restaking savings, as a function of

different parameters of the graph G. Note that since the original graph is secure,
we have the following inequality:

T (σ) =
∑
v∈V

σv ≥
∑
s∈S

πs = T (π).

Otherwise, there is a profitable attack that involves all validators V .

Proposition 2. RS(G) is upper bounded by the following values: maxs∈S(dG(s))
and K.

Proof. First, we list three types of secure PoS constructions for a service s ∈ S.

1. the vector of stakes in a corresponding PoS protocol (c1, ..., cdG(s)) is equal
to (0, ..., 0, πs, 0, ...0). This construction is secure for any αs since the only
validator that can attack the service is losing at least the value it is gaining.

2. the vector of stakes (c1, ..., cdG(s)) is equal to (0, ..., 0, πs + σv, 0, ...0) for
any v. This construction is secure for a similar reason to above.
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3. the vector of stakes (c1, ..., cdG(s)) is equal to (σv1 , ..., σvdG(s)
), whereNG(s) =

{v1, ..., vdG(s)}. This construction is secure for any αs since otherwise the
original restaking graph G would not be secure: validators that secure the
service s have a profitable attack on the service s.

We can add the value πs to all stakes in NG(s), i.e., add it dG(s) times,
and use subdivision for each validator v that allocates σv + πs once to some
service s in its neighborhood NG(v) and πk to all other corresponding services
k ∈ NG(v) \ {s}. This way, all services are secure. Also all original stake sizes
are used, so that the resulting stake vector is in D(σ). At the same time, extra
value added is upper bounded by∑

s∈S

dG(s)πs ≤ max
s∈S

(dG(s))
∑
s∈S

πs ≤ max
s∈S

(dG(s))
∑
v∈V

σv.

Next, we show RS(G) ≤ K. Consider a cover of vertices in V by neighbor-
hoods of services s ∈ R ⊆ S that has the minimum maximum incidence number
K. For each neighborhood NG(s), where s ∈ R, use construction 3: original
(σv1 , ..., σvdG(s)

) stakes from the restaking graph to secure service s in the PoS
protocol. To be able to do that, we need to add at most K − 1 times all σv

stakes, for any v ∈ V . In this way, we utilize all σv stakes and secure services
in the cover set R. For service s in S \ R, we add πs stake once to any of its
neighbors in NG(s) and use construction (0, , , 0, πs, 0, ..., 0) to secure service s
in a corresponding PoS protocol. This makes sure we have secured all services
and utilized all stakes of all validators. Then, RS(G) ≤ (K − 1) + 1 = K.

Note that RS(G) ≤ K in particular implies that RS(G) ≤ maxs∈S(dG(s)),
as K is upper bounded by maxs∈S(dG(s)). There are examples where K =
maxs∈S(dG(s)), implying that the upper bound can be as bad as n. However,
next, we show an upper bound as a function of the number of validators, which
is asymptotically much lower than n.

Theorem 1. For any secure restaking graph G, the following inequality holds
RS(G) ≤ 2

√
n− 1.

Proof. The proof combines constructions from the proof of Proposition 2. Ini-
tialize the set SL := ∅ and VL := ∅. The following procedure is repeated until
it is no longer possible: At each step, find a service s in S \ SL such that its
degree in the set V \ VL is at least

√
n. Update the set SL := SL ∪ s and

VL := VL ∪NG(s). Note that after at most
√
n steps, it is not possible to find a

new service s and, hence, the procedure stops. That is, for the resulting set of
services SL, we have |SL| ≤

√
n. This, in particular, implies that the maximum

outdegree of a validator v in VL to SL, denoted by dSL
(v), is upper bounded by√

n.
Add to each validator v ∈ VL a stake amount (dSL

(v) − 1)σv. This allows
to secure any service s ∈ SL by using a construction (σv1 , ..., σvdG(s)

) from the
proof of Proposition 2. Together with securing all services in SL, we also utilize
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validator stakes in VL, and this is done by adding at most (
√
n− 1)T (σ) extra

stake.
We can secure any service s ∈ S \SL by adding stakes πs for to all its neigh-

bors in V \ VL, that is, by adding dV \VL
(s)πs extra stakes. By the construction

of the set SL we know that dV \VL
(s) is upper bounded by

√
n for any s ∈ S\SL.

We can, at the same time, utilize the remaining stakes in V \ VL, by using a
construction of type (0, .., 0, πs+σv, ..0) for v ∈ V \VL. The last step is possible,
because for each validator in V \VL, there must be at least one service in S \SL

it secures. The total extra stake is upper bounded by
√
nT (πS\SL

) ≤
√
nT (σ),

where T (πS\SL
) denotes the sum

∑
s∈S\SL

πs. By summing up two values of

extra stakes used to secure SL and S \ SL sets, and also utilizing all stakes in
V , we get

RS(G) ≤ (
√
n− 1)T (σ) +

√
nT (σ)

T (σ)
= 2

√
n− 1,

a required bound of the Theorem claim.

Note that in the proofs of Proposition 2 and Theorem 1, we did not use
any property of α values. Both upper bounds use combinatorial features of
the underlying restaking graph G. Next, we show an upper bound that is
a function of the security parameters αs. The upper bound is interesting in
practical cases, since the security parameters of most protocols are usually from
the set of fractions { 1

4 ,
1
3 ,

1
2}. These values come from Byzantine fault-tolerant

mechanisms, used to achieve consensus on the state of the chain. We show the
following upper bound on RS(G):

Proposition 3. Assume that services are labeled in the way that the security
parameters are sorted in increasing order α1 ≤ α2 ≤ ... ≤ αm. Then, the
following inequality RS(G) ≤ 1

α2
holds.

Proof. For the service s = 1, allocate the original stakes of the restaking graph
in the PoS protocol: (c1, ..., cdG(1)) = (σv1 , ..., σvdG(1)

). This PoS protocol is
secure. Repeat the following procedure for all services s > 1:

1. add stake ts =
πs

αs
to any validator v ∈ NG(s),

2. use construction (σv1 , ..., σvdG(s)
) to secure service s in PoS protocol,

3. set all values in the vector (σv1 , ..., σvdG(s)
) to 0.

Each PoS derived at step 2. is secure, as the total stake allocated for a
service s > 1 is at least πs

αs
.

In this way, we add
∑

s∈S,s>1
πs

αs
total extra stake to the original stakes of

validators. This implies the following chain of inequalities:

RS(G) ≤
∑

s∈S,s>1
πs

αs

T (σ)
≤ 1

α2

∑
s∈S,s>1 πs

T (π)
≤ 1

α2
.
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Next, we construct an example of a secure restaking graph that derives a
lower bound on the restaking savings, that is linear in the number of services
and asymptotically matches to all upper bounds derived so far.

Theorem 2. For any m ∈ N, there are instances of a secure restaking graph G
in which the restaking savings RS(G) ∈ Θ(m).

Proof. Assume the number of validators is n = m2 + 1 for some m ∈ N. The
edge set E consists of m edges (s,m2 + 1), for any 1 ≤ s ≤ m and m2 edges of
type (s, (s− 1)m+ j), for any 1 ≤ s ≤ m, 1 ≤ j ≤ m.

The value of service s is defined as πs = 2 for any 1 ≤ s ≤ m. Any validator
with index less than v < m2 +1 has stake σv = 1

m . The last validator has stake
σm2+1 = 2m. Security parameter of service s is defined as αs =

1
2m+1 .

Intuitively, there is one validator with large stake and many validators with
equal small stakes. Each service is easy to attack, but the large staked validator
does not find it profitable to attack. On the other hand, each service is hard
enough to attack by all small staked validators that secure it. Each service is
secured by m small staked validators. See the Figure 1 for m = 3.

First, we show that G is a secure restaking graph. Note that the large
validator, indexed with m2 + 1 and with stake σm2+1 = 2m does not want
to participate in any attack, as she is losing at least the total value available
across all services. No service s ∈ {1, 2, ...,m} can be attacked by all validators
securing it other than the large validator, since the service security parameter is
αs =

1
2m+1 , while all small validators indexed ((s−1)m+1, (s−1)k+2, ..., sm)

make up stake 1 in total. The total available stakes securing a service s is 2m+1.
To show a lower bound on RS(G), first we show that when any service with

value 2 and security parameter 1
2m+1 gets initial allocation of stakes in PoS

protocol equal to a vector ( 1
m , ..., 1

m , 0), there needs to be at least an extra m
stake to make the PoS protocol secure. Suppose we add stakes such that new
vector of stakes becomes (a1, ..., am, am+1). From now on we distinguish three
cases:

1. If there is a subset of validators, whose stakes sum up to a number between
1 and 2, then it must be that the total stake,

∑m+1
i=1 ai, is at least 2m+1.

Otherwise, this subset would be able to attack the service and the attack
would be profitable. This implies that the extra stake size is at least
2m = 2m+ 1−m 1

m .

2. If there is a subset of validators, whose stakes sum up to a number between
0.5 and 1, then it must be that the total stake,

∑m+1
i=1 ai, is at least m+1.

Otherwise, this subset would be able to attack the service and the attack
would be profitable. This implies that the extra stake size is at least m.

3. If there is no such subset for either of the cases 1. and 2., then it must be
that more than half of the numbers among (a1, ..., am, am+1) are at least
2, which implies that at least m+1

2 (2− 1
m ) ≥ m extra stake was added to

the initial stake distribution of ( 1
m , ..., 1

m , 0).

9



2

2

2

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

6

S

V

Figure 1: Example construction for m = 3.
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Initially, 2m stake of validator indexed m2+1 is available, therefore, we need
to add at least extra m ·m− 2m stake:

• there are m services to secure,

• and for each service we need to add extra stake at least m.

On the other hand, original total stake amount is T (σ) = 3m, therefore,
restaking savings satisfy

RS(G) ≥ m ·m− 2m

3m
∈ Ω(m).

This shows a lower bound on the required stake.
It is easy to show that O(m2) total stake is enough to add to validators in

V , so that the resulting stake vector σ ∈ W(G). It can, for example, be done
by adding the stake 2m2 − m to the validator m2 + 1 so that it total stake
become (2m + 1)m. Then splitting this stake into m stakes of 2m + 1 each in
each of m PoS protocols. Small stakers in these protocols can not attack any of
the services even if they all coordinate, while the large staker does not find any
attack profitable. This proves the claim of the theorem, RS(G) ∈ Θ(m).

The sets SL and VL from the proof of Theorem 1 end up being the sets S and
V , respectively. The highest degree in VL is equal to m = ⌊

√
n⌋. This provides

an asymptotically matching lower bound to the upper bound result derived in
Theorem 1.

Corollary 1. There are instances of secure restaking graphs G in which RS(G) ∈
Θ(

√
n).

Note that in the lower bound example construction from Theorem 2, inverse
of the security parameter 1

αs
= 2m + 1 for any s ∈ S, hence, this construction

gives an asymptotically matching lower bound to the 1
αs

− 1 upper bound as
well. The upper bounds obtained in Proposition 2, maxs∈S dG(s) and K, are
also of the order Θ(m), hence asymptotically matching the lower bound from
Theorem 2.

The total stake in the example of Theorem 2 is equal to 3m, while the
lower bound requirement on the total stake derived from condition (1) is equal
to

∑
s∈S

πs

αs
= m(2m + 1), which shows that in some cases the condition (1)

requires a substantially higher total stake than would be enough to secure the
restaking graph. Moreover, the condition for any validator v except the last
validator v = m2 + 1 translates into

1

m
≥ 1/m

2m+ 1
· 2

1
2m+1

=
2

m
,

which is violated by a factor two. The condition for the validator v = m2 +1 is
violated by a very large multiplicative factor, as it is equivalent to:

11



2m ≥
m∑
s=1

2m

2m+ 1
· 2

1
2m+1

= 4m2.

Definition 4. Let RS := supG RS(G) denote the restaking savings in the ex-
tremal case on all secure restaking graphs.

Then, the direct corollary of Theorem 2 is the following:

Corollary 2. RS = ∞.

That is, restaking savings are not bounded by a constant, and they may
grow unboundedly as the number of services and validators grow. Note that we
need both values to grow unboundedly. Otherwise, upper bounds obtained in
Proposition 2 ensure that RS(G) is constant.

3.2 PoS Savings

Suppose a PoS protocol centered at any service s ∈ S, having security parameter
αs and allocated σs

v stakes for any v ∈ NG(s) is safe, by the same definition as
above: no attacking set of validators find it profitable to attack service s. Let
the partition of the stake vector σ be denoted by σS . Consider the total stake for
any validator v ∈ V defined as σv =

∑
s∈NG(v). That is, we aggregate all stakes

that the validator has staked across all PoS protocols in which it participates.
We ask a similar question to the previous section:

Question 2. How much stake do we need to add to the aggregate validityator
stakes, σv, so that the resulting restaking graph is secure?

The security of the restaking graph is considered by the original Definition 2.
More formally, for each restaking graph, we define:

Definition 5. For a given aggregate restaking graph G, PoS savings, PoSS(G)
denotes a minimum additional total value to stakes in σ vector in relative terms
to T (σ) so that the resulting restaking graph G is secure:

PoSS(G) = min
σ′∈D(σ)

T (σ′)− T (σ)

T (σ)

First, we note the following inequality that relates the total value to capture
from services and the total staked amount of validators. It will be useful to
obtain an upper bound on the PoS savings.

Lemma 1. T (σ) ≥ T (π).

Proof. A PoS protocol centered at s ∈ S is secure implies that∑
v∈NG(s)

σs
v ≥ πs, (2)
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as otherwise all validators inNG(s) would be able to profitably attack the service
s. Summing up left hand side of (2) for all s ∈ S and the definition of σv imply
the claim of the lemma:

T (σ) =
∑
v∈V

σv =
∑
s∈S

∑
v∈NG(s)

σs
v ≥

∑
s∈S

πs = T (π).

Similarly to restaking savings RS, we can define a measure PoSS, which is
maximized on all instances of the underlying graph G and initial secure PoS
protocols.

Definition 6. Let PoSS := supG,σS
v
PoSS(G) denote the extreme value of PoS

savings, where the stake vector {σs
v : v ∈ NG(s)} constitutes the secure PoS

protocol for any s ∈ S.

We obtain the following lower bound on this value, by constructing a family
of graphs G with an increasing number of services for which PoSS(G) converges
to 1.

Proposition 4. PoSS ≥ 1.

Proof. Consider PoS protocols with m services, each service s ∈ S having value
πs = 1, security parameter αs = 1

m+1 and two validators, labeled s and m+ 1

with stakes equal to σs
s = 1 and σs

m+1 = 1
m . Note that all PoS protocols are

secure:

• large staked validator s does not attack since it is burning stake equal to
the value it obtains,

• small staked validator m+ 1 can not attack the service since its stake

share is equal to
1
m

1+ 1
m

= 1
m+1 , that is the same as a security parameter of

the service.

We claim that the minimum extra stake required is m− 1. In the resulting
restaking protocol, validator m+ 1 has stake equal to m 1

m = 1. It can attack
all services unless one of the other validators gets an extra m−1 stake, in which
case the claim is trivially true. This amount is enough. Consider adding stake
m− 1 to the validator m+ 1 so that it now controls the stake amount m. This
validator does not attack services since it is losing at least the amount she can
gain by attacking. Other validators are not able to attack their corresponding
services, and it is also not profitable to attack.

Hence, PoSS ≥ m−1
m+1 for any m, since the original total stake amount among

the validators was m+ 1. Taking m → ∞ gives PoSS ≥ 1.

Next, we provide an upper bound on PoSS(G), similar to the upper bound
obtained for restaking savings in Proposition 2.

13



Proposition 5. PoSS(G) ≤ maxs∈S dG(s).

Proof. For each service s ∈ S, add to all its validators v ∈ NG(s) a stake equal
to πs. The resulting restaking graph is secure. For any subset of validators,
U ⊆ V , they lose more stakes than the value they derive from the maximal set
they attack, M(U). The reason for this is that by our construction, at least one
of the validators in U received an additional stake of πs, for any s ∈ M(U). We
added an extra stake of∑

s∈S

dG(s)πs ≤ max
s∈S

dG(s)T (π) ≤ max
s∈S

dG(s)T (σ),

where the last inequality is derived in Lemma 1. This completes the proof of
the claim of the proposition.

4 Conclusion

We started a framework to compare restaking and implied Proof-of-Stake proto-
cols in terms of total stake requirements. We provide asymptotically matching
lower and upper bounds on restaking savings, as well as a constant lower bound
on the PoS savings and nonconstant upper bounds on it. Our results indicate
that none of the solution concepts dominates another. Closing the gap for PoS
savings remains an interesting question. Another open question is to come up
with a (generic) sufficient condition for a restaking graph to be secure, that can
be checked in a polynomial time, and the condition accepts some graphs with
positive restaking savings.
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