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Abstract—Traditionally, threshold secret sharing (TSS)
schemes assume all parties have equal weight, yet emerging
systems like blockchains reveal disparities in party trustwor-
thiness, such as stake or reputation. Weighted Secret Sharing
(WSS) addresses this by assigning varying weights to parties,
ensuring security even if adversaries control parties with total
weight at most a threshold t. Current WSS schemes assume
honest dealers, resulting in security from only honest-but-
curious behaviour but not protection from malicious adver-
saries for downstream applications. Verifiable secret sharing
(VSS) is a well-known technique to address this, but existing
VSS schemes are either tailored to TSS, or require additional
trust assumptions. We propose the first efficient verifiable WSS
scheme that tolerates malicious dealers and is compatible with
the latest CRT-based WSS [9]. Our solution uses Bulletproofs
for efficient verification and introduces new privacy-preserving
techniques for proving relations between committed values,
which may be of independent interest. Evaluation on Ethereum
show up to a 100× improvement in communication complexity
compared to the current design and 20× improvement com-
pared to unweighted VSS schemes.

I. INTRODUCTION

Secret sharing is a fundamental cryptographic building
block. In a secret-sharing scheme, a secret is distributed
among a set of nodes such that only authorized subsets
can cooperate to recover it. Many popular distributed pro-
tocols are built on secret sharing, including multi-party
computation, threshold encryption, threshold signatures, and
distributed randomness generation. The most well-known
secret-sharing scheme is Shamir’s Secret Sharing (SSS) [14],
which ensures that any set of corrupted parties up to a thresh-
old t cannot learn the secret. A key assumption implicit in
SSS and other threshold schemes is that all participating
parties are of equal importance, trust, or weight.

In many recent applications, the notion of equal weight
fails to capture real-world characteristics. For instance, in
Proof-of-Stake (PoS) blockchains [10], each party is asso-
ciated with a stake that can vary significantly. Similarly,
in Oracle networks [3], servers are treated according to
their respective reputation scores and an event is consid-
ered certified only if it is endorsed by a set of servers
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with enough total reputation score. Side-chains are another
example where each party is associated with a “deposit”
of the main chain’s currency, and the amount of the deposit
determines the party’s voting power. These scenarios, among
many others, highlight the necessity for schemes in which
the adversary is modeled not by the number of individual
nodes it corrupts, but by the total weight of the compromised
nodes.

The traditional solution is to “virtualize” parties, replacing
a party of weight w with w virtual parties of weight 1,
and using an unweighted scheme such as SSS. This leads
to communication and computation costs of O(w · λ) per
party, which grows quickly in large systems with significant
inequalities.

In [9], Garg et al. propose an efficient weighted secret
sharing scheme based on the Chinese Remainder Theorem
(CRT) with costs growing linearly with a party’s weight w,
eliminating the λ factor. They describe a protocol with a
trusted dealer and explore applications such as multi-party
computation (MPC), threshold decryption, and threshold
signatures. However, they only consider an honest dealer,
consequently their applications can only tolerate semi-honest
adversaries, i.e. parties are assumed to follow the protocol
specification, but may try to learn additional information.

Verifiable secret sharing (VSS) [13] allows shareholders
to verify the integrity of the deal, which is crucial when
the dealer cannot be fully trusted, or when using VSS
as a subprotocol. As stated in [9], upgrading their CRT-
based scheme to VSS would enhance security to withstand
malicious adversaries. While VSS is well-studied for linear
schemes such as SSS, the only known CRT-based VSS [11]
requires large unknown-order groups, relies on the strong
RSA assumption, and needs a trusted setup. Since CRT-
based secret sharing is non-linear, the techniques used by
SSS-based VSS schemes cannot be applied and achieving
an efficient CRT-based VSS without unknown-order groups
has been unclear.

Therefore, we ask the question,
Can we construct an efficient CRT-based verifiable
weighted secret sharing scheme without trusted
setup, and assuming only a single group in which
the discrete logarithm problem is hard?

In this paper, we answer the above question in the
affirmative by enhancing the CRT-based weighted secret
sharing scheme of [9] with verifiability of the shares in
an efficient manner. We work with standard prime order
elliptic curve groups (assuming the hardness of the discrete
logarithm problem) which are widely used in real-world
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applications, particularly in the case of blockchain systems
where weighted secret sharing has become prominent.

A. Our Contributions

Our results in this work can be summarized as follows.
Verifiable Weighted Ramp Secret Sharing. We construct the
first efficient non-interactive CRT-based verifiable weighted
secret sharing scheme. Our scheme relies on prime order
groups in which the discrete logarithm problem is assumed
to be hard, such as an elliptic curve group, and does not
require a trusted setup. Our verifiability technique applies to
any CRT-based secret sharing scheme, including the thresh-
old construction of [1] and the weighted-ramp1 construction
of [9]. The scheme is efficient, with communication cost
scaling logarithmically in all parameters.
Proof-of-Mod. The technical core of our construction is a
novel non-interactive zero-knowledge (NIZK) argument to
prove that two committed values v, s satisfy v = s mod p,
where p is a known prime. While this is straightforward
for values within a small subset of the commitment group
(e.g. 64-bit values within a 256-bit elliptic curve group),
because of the wrap-around effect it was not clear how to
do this efficiently for arbitrary values until our work. Further,
we extend our approach to values that are much larger
than the group order, using prime-order decomposition. The
argument is efficient in that proof size is logarithmic in the
size of the inputs and may be of independent interest.
Practical evaluation. We evaluate a case study of Ethereum
Staking and find that our scheme can reduce bandwidth by
up to a 20× factor compared to unweighted schemes. We
also provide a proof-of-concept implementation and confirm
that proof sizes are logarithmic, under 2 KiB for Ethereum.
Running times scale linearly with the number of parties
and the size of the secret, but with large constants. With
a more optimized arithmetic circuit proof, our technique
immediately becomes practical.

II. OVERVIEW

In this section, we give an overview of our methods and
the required background while avoiding technical details.
Please see Sections III and IV for full details.

A. CRT-based Secret Sharing

Let us begin with a high-level description of Chinese Re-
mainder Theorem-based secret sharing [1], [12]. We assume
a trusted dealer is given a secret s0 ∈ F , where F is a field of
size p0. To share the secret among n parties, we first choose
n numbers, p1, . . . , pn, all co-prime to each other and p0.
The choice of pi values depends on the desired properties
of the secret sharing scheme, which we discuss later. For a
parameter L, the dealer chooses uniformly random a

$←− [L]
and sets:

s = s0 + ap0 ≤ (L+ 1)p0

We call s the lifted secret. The dealer then calculates the
share for party i as si = s mod pi, and sends each party

1Ramp secret sharing has two threshold parameters: t and T . Parties with
aggregate weight above T can reconstruct the correct secret, while parties
with aggregate weight below t learn no information about the secret.

their share privately. Consider some set of parties A ⊆ [n].
Let PA =

∏
i∈A pi. By the Chinese Remainder Theorem,

the system of equations {si = s′ mod pi}i∈A has a unique
solution modulo PA, which can be solved to obtain s′. If
PA > (L + 1)p0, then s′ = s, and we can find s0 = s′

mod p0. Let A be the set of all access sets authorized to
reconstruct the secret. For reconstruction, we require that:

(L+ 1)p0 ≤ min
A∈A

PA = PMIN

Let Ā be the set of all unauthorized access sets, define:
PMAX = max

Ā∈Ā

∏
i∈Ā

pi

It can be shown that the statistical distance between the
solution to the CRT equations and uniformly random is at
most PĀ/L (see [9]), thus the security error of our scheme
is upper bounded by PMAX/L. Our desired property for
both reconstruction and privacy of the system can thus be
succinctly stated as:

PMAX << L < PMIN/p0 − 1

Extension to Weighted Ramp Secret Sharing. The con-
struction of a weighted secret-sharing scheme from the CRT
construction of the previous subsection is brilliant in its
simplicity. Let us assume that each party has an associated
weight wi, and that there are two thresholds: a reconstruction
threshold T and a privacy threshold t. A set of parties
A is authorized if

∑
i∈A wi ≥ T , and unauthorized if∑

i∈A wi < t. Notice that weights in between these two
thresholds are neither authorized nor unauthorized. We pick
each prime pi such that it has bit length wi, i.e. pi is
less than but close to 2wi . As a result, PMAX < 2t and
PMIN > 2T−O(1). Let λ be our security parameter, and
set p0 to have bit length λ. If we set L = 2λ+t, then
we achieve security error 2−λ. Our system is correct if
T −t > 2λ+O(1). If the gap is insufficient, we can amplify
all of the weights by a constant c. See [9] for more a more
detailed analysis.

B. CRT-based Verifiable Secret Sharing

In addition to providing secret shares, in a VSS the
dealer must also prove to the participants that the deal was
correctly executed (see E for a formal definition). For CRT-
based secret sharing schemes, the obvious approach is to
provide commitments to the secret and the shares, and then
prove in zero-knoweldge that the committed share values
are congruent to the original secret modulo the relevant
prime. The participants verify the proofs, and that their share
is consistent with the given commitments. If any of these
checks fail they reject the deal. Otherwise, they use CRT
reconstruction to obtain the secret when needed.

The main challenge is finding an appropriate commitment
scheme and proof technique. Using group-based commit-
ments (e.g. Pedersen’s) the naïve approach leverages the
homomorphic property: the prover provides a commitment
K = Com (ki; r

′
i) such that s = si + kipi, and then

the verifier checks that S = Si ⊕ (pi ⊗ Ki), where ⊕
is the commitment group operation, and ⊗ is the scalar
operation. This technique works if s is in a small subset of



the message space, but for arbitrary values, any group-based
commitment scheme faces a wraparound issue. Specifically,
if the commitment group has order p0, then the equation
above is not over the integers but rather Zp0

. The dealer can
always find k′ such that s = v+k′p mod p0 for any values
v, s since gcd(p, p0) = 1. As proven in Appendix B, this
problem affects all fixed-size homomorphic commitments.

Unstructured commitment schemes (such as hash-based
schemes) avoid this problem, but there are currently no
known efficient arithmetic circuit proofs for such schemes.
Thus, for arbitrary field values, it is not clear how to
efficiently construct a secure NIZK proof. 2

C. Proof-of-Mod

The fundamental problem in creating a CRT-based VSS
is proving that committed values satisfy v = s mod p for
a known prime p without revealing v or s. Here we give
an overview of our "proof-of-mod" (PoM) protocol which
achieves this goal, see Section III for full details.

a) Base PoM: To begin, suppose s < p0 (i.e. s is within
the order of the commitment group), and let s = v+kp, with
p0 = qp+ t where 0 ≤ t < p (i.e. q is the quotient of p0/p
and t is the remainder). In order to prove that v = s mod p,
it suffices to show (1) that 0 ≤ v < p and (2) 0 ≤ k < q.
The only other possibility is the last t values that s can take,
in which case we instead need to show (1) 0 ≤ v < t and
(2) 0 ≤ k ≤ q. Our key observation is that the PoM boils
down to a disjunction of two sets of range proofs, each of
which can be done within the group order:

[(0 ≤ v < p) ∧ (0 ≤ k < q)]

∨ [(0 ≤ v < t) ∧ (0 ≤ k ≤ q)]
(1)

b) Disjunction of Range Proofs: To understand how to
prove a disjunction of ranges, we first recap the range-proof
technique from Bulletproofs [5]. To prove that 0 ≤ vi < 2n,
where vi is the committed value, the prover shows that it
knows the n-bit binary decomposition of vi, by showing that
it knows values aj , bj that satisfy the following equations
(see Appendix F for a proof):

n∑
j=1

ai,j · 2j−1 = vi (2)

ai,j · bi,j = 0 1 ≤ j ≤ n (3)
ai,j − bi,j − 1 = ci,j = 0 1 ≤ j ≤ n (4)

Notice that if the range holds, then (4) is always zero. If
the range does not hold, then the prover can always find
aj , bj that satisfy (2) and (3) but not (4). Thus, to prove a
disjunction of 0 < v1 < 2n or 0 < v2 < 2n, we can form
a polynomial for each vi that evaluates to zero if ∀j, ci,j =
0, and non-zero with high probability otherwise. Let z be
a random value chosen by the verifier. This produces the
following equations:

n∑
j=1

c1,j · zj−1 = c′1,

n∑
j=1

c2,j · zj−1 = c′2 (5)

2One could always use Succinct Non-interactive Arguments (SNARGs)
for general circuits, but we believe a tailored NIZK proof would easily
outperform the SNARK approach both in prover and verifier time.

If the disjunction is true then it must be the case that the
product of the two is zero, i.e., c′1 · c′2 = 0. If neither range
holds, then with overwhelming probability the prover will
not be able to fulfil the proof for a random challenge z. We
refer the reader to Section III-A0b for more details.

c) Prime-order decomposition: For our CRT-based
VSS to be useful, we require s to be larger than p0. To that
end, we use the technique of “prime-order decomposition”
which allows us to extend the base PoM above to arbitrarily
large values. Consider the case that s = s0 + ap0 for
some a ∈ N, where s0 < p0. We now wish to prove
that v = s mod p. Notice that we can now decompose the
problem as follows:

v = (s0 + ap0) mod p

= (s0 mod p) + (a mod p)(p0 mod p)

If we assume that p2 + p < p0 then we can decompose
the problem into three smaller proofs for relations: (1) (s′0 =
s0 mod p), (2) (a′ = a mod p), and (3) v = s′0+a′t mod p,
where t = p0 mod p. The first two are simply applications
of the base PoM, while the third is an arithmetic circuit
followed by PoM. We can similarly extend this technique to
any value polynomial in p0. For full details see Section III-B.

d) Efficiency: Proof sizes for the base PoM, extended
PoM, and VSS are shown in Table I, assuming p0 < 2λ,
n parties, and lifted secrets less than p0

m. The base proof-
of-mod is discussed in more detail in Section III, while the
VSS proof is discussed in Section IV. The only additional
communication in the protocol is the n + 1 commitments
S0, . . . , Sn, and 2n field elements s1, . . . , sn, r1, . . . , rn, as
required to fulfill the definition of a VSS.

TABLE I: Proof sizes for PoM and VSS.

Group Elements Field Elements
Base PoM 2⌈log2(3λ+ 1)⌉+ 8 6
Ext. PoM 2⌈log2 3m(3λ+ 1)⌉+ 8 6
VSS 2⌈log2 3nm(3λ+ 1)⌉+ 8 6

D. Practical Parameters

To use a single prime order group, we make the assump-
tion that the size of the group is large enough that all of the
sharing primes pi are smaller than the group order. As there
is also a limit on how small the sharing primes can be in
practice, this necessarily puts a limit on the dynamic range of
weights that can be supported. If our group order is p0 < 2N ,
then as we will see in Section III-B, the maximum weight
supported is less than Nmax ≤ N/2. On the other end, if
the minimum practical weight is Nmin, then the dynamic
range available is N/2−Nmin.

For example, if we assume a 256-bit group order (such as
curve Sec256k1), and a minimum prime length of 10 bits,
then the dynamic range3 available is 118. In other words,
if the largest party has 10% of the total weight, then the
smallest party that can take part has weight 0.085%. We
feel this is sufficient for most practical purposes, including
Ethereum (see Section V), however if a larger dynamic range
is needed, then there are several solutions:

3Dynamic range is the ratio of the maximum to the minimum value.



1) Use a larger order group: For example, Curve448 has
order approximately 446 bits. With the same lower limit
of 10 bits, this produces a dynamic range of 213. Using
our example above, if the largest party has 10% of the
total weight, then the smallest party is now 0.047% of
the total weight.

2) Weight pooling: Similar to virtualization, it may be
possible at a protocol level to have very small weight
participants pool their weight together if they agree to
act as one party. While this goes against the design of
the protocol at a high level, for very small participants,
this may be an acceptable solution if it results in
considerable efficiency improvements.

3) Virtualization: On the opposite extreme, if there are
very few very large participants, it may be possible
to virtualize their shares. For example, if one party
has 33% of the total weight, then they could be split
into three virtual parties, each with 11% of the total
weight. If all other parties have weight less than 11%,
then only this party incurs the extra overhead. This
produces significantly better fairness for smaller parties,
while keeping the overhead for the large party quasi-
logarithmic.

E. Publicly Verifiable Secret Sharing
Notice that the above scheme requires a round of in-

teraction between the participants to ensure a quorum of
sufficient size has received valid shares and accepts the
deal As described in [16], we can eliminate this round of
interaction to implement what is called Publicly Verifiable
Secret Sharing (PVSS) if we use a Verifiable Encryption
scheme, such as Verifiable ElGamal (sometimes called “El-
Gamal in the exponent”). This allows the dealer to broadcast
encryptions of the share values, where the share of the i-th
party is verifiably encrypted under the i-th party’s public key.
The dealer then attaches a NIZK proof to prove to (all) the
participants that the encrypted values match the committed
values. Thus the participants can verify that the shares of
all parties are correct without revealing them and without
any interaction. Our construction is amenable to the PVSS
scheme of [16] to eliminate interaction between participants
at the cost of a larger broadcast to all participants.

F. Notation and Definitions
We use λ for the security parameter, which may be

implicit in a set of parameters, for example the parameters
of the verifiable secret sharing scheme. We use F to denote
an arbitrary field, and Zp to denote the field of integers
modulo a prime p. Let negl(λ) denote a negligible function,
that is for all polynomial p(λ), there exists λ0 such that
negl(λ) < 1/p(λ)∀λ > λ0. We denote by [n] the set
{1, . . . , n}. We use the v⃗ notation for vectors and uppercase
bold font M for matrices.

a) Commitments: We use Com (x; r) → c for a
commitment to x using randomness r. Once an adversary
provides c knowing x and r, it should be hard to find
another pair (x′, r′) such that c = Com (x′; r′) (binding).
Without x and r, it should also be hard to determine which
x was committed to (hiding). See Appendix A for details
and formal definitions.

b) Arithmetic Circuit Proofs: We will make exten-
sive use of Arithmetic Circuit Proofs, a special case of
Zero Knowledge Proofs (ZKP)4. A ZKP convinces a ver-
ifier that the prover knows a value x satisfying a re-
lation R without revealing x. Here, the prover shows
that committed values satisfy an arithmetic circuit, de-
fined by multiplication gates a⃗ ◦ b⃗ = c⃗ and constraints
on input and output values5. We denote the prover and
verifier algorithms as ΠCKT = (PCKT , VCKT ), where
PCKT ((V⃗ ,CKT, A,B,C); (v⃗, a⃗, b⃗, c⃗, r⃗v, (ra, rb, rc))) is the
prover taking input commitment V⃗ , circuit definition
CKT, wire commitments A,B,C, private inputs v⃗, wire
values a⃗, b⃗, c⃗, and randomness r⃗v, ra, rb, rc. The verifier
VCKT (V⃗ ,CKT, A,B,C) → ϕCKT takes the same public
inputs and returns ϕCKT ∈ {Accept,Reject}. See Ap-
pendix C and D for formal definitions and further details,
and [5] for an example implementation.

III. PROOF-OF-MOD

In this section we construct a NIZK proof that a commit-
ted value is the result of taking another committed value
modulo a known prime. We start with the case that all
values are within the order of the discrete log group, and
then show how to extent this technique to arbitrary values.
We build these proofs by constructing an arithmetic circuit
that is satisfied only if the proof condition holds. Since such
circuit proofs may be aggregated (see [5]), we can combine
many such proofs into a much smaller proof than if they
were constructed individually.

A. Initial Construction

a) Range Proof Circuits: As we discussed in Sec-
tion II-C, we can use Equations 2 to 4 to construct an
arithmetic circuit that is satisfied only if the input value vi is
in the range [0, 2n]. We can tighten the range to 0 ≤ vi < ui

by repeating this subcircuit, replacing vi with ui − vi. This
subcircuit is easily written in the form needed by circuit
proofs (see Appendix D), requires 2n multiplications, and
2n+ 2 constraints.

b) Disjunction of Ranges: We now construct a circuit
for a disjunction of ranges, that is, either 0 ≤ v1 < 2n or.
0 ≤ v2 < 2n. Let us assume that the prover chooses ai,j
and bi,j such that (2) and (3) hold for both values, but (4)
holds for one of v1, v2 but not the other. In this case, we
wish to prove that either all. c1,j values are zero, or all c2,j.
values are zero. To this end we construct two polynomials:

n∑
j=1

ci,j · zj−1 = c′i i ∈ {1, 2} (6)

After the prover has committed to the ai,j and bi,j values,
the verifier chooses a random z ∈ F . If all of the ci,j values
are zero then c′i will be zero for any choice of z. If at
least one of the ci,j values is non-zero, then c′i will be non-
zero with overwhelming probability. We can add one more
multiplication gate for c′1 · c′2 = 0. If one of the ranges

4A ZKP for computationally bounded adversaries is technically an
Argument, but we use the terms interchangeably.

5Arithmetic circuits of this form are also called Rank 1 Constraint
Systems (R1CS).



hold, then this gate is satisfied. If neither range holds, then
with very high probability c′1 · c′2 ̸= 0. Notice that we can
replace the n constraints in equation (4) with the single
constraint in equation (6) for each element in the disjunction
by eliminating the intermediate variables, thus reducing the
number of constraints from 2n to 2.

It may seem that the prover cannot satisfy the circuit
without first knowing the choice of z, but there is a solution.
The prover sets ai,1 = vi, bi,1 = 0, and all other ai,j = 0,
bi,j = −1. As a result, ci,1 = vi and all other ci,j = 0
satisfies the circuit for any value z chosen by the verifier.

c) Base Proof-of-Mod: As described in Section II-C,
we first construct a ZKA for a congruence relationship
between two values when all values are less than the order
of the group used for the commitments, which we call “Base
Proof-of-Mod”.

Definition 1 (Base Proof-of-Mod). Given a commitment
scheme (Setup,Com) over a message space M ⊂ N, a
proof-of-mod is a zero-knowledge argument of knowledge
for the relation Rmod:

Rmod((V, S, p), (v, s, rv, rs)) :=

V = Com (v, rv) ∧ S = Com (s, rv) ∧ v = s mod p (7)

Where V, S ∈ C, p ∈ N, v, s ∈ M, and rv, rs ∈ R, and
the modulo operation is over the natural numbers.

As discussed in Section II-C, the prover must show that
there exists a value k such that s = v + kp and that the
resulting value does not wrap around, i.e. that v+ kp < p0.
This results in the disjunction of ranges shown in Equation 1,
which we can use to construct a circuit that is satisfied if
and only if the proof condition holds. Let p0 = |M| be the
order of the commitment scheme, which we assume to be
prime, and p0 = qp+ t where q, t ∈ N and 0 ≤ t < p. Our
circuit takes as input v, s and is constructed as follows:

1) Write constraint s = v + kp for intermediate variable
k.

2) Write range subcircuits for 0 ≤ v < p and 0 ≤ k ≤ q.
3) Write disjunction subcircuit for k < q or v < t.
We show an optimized version of this circuit in Ap-

pendix G, which uses 3n1 + 3n2 + 1 multiplications and
5n1 +5n2 +9 constraints, where p < 2n1 and q < 2n2 . Let
ModCkt(p0, p, z)→ CKT be a function that generates the
circuit specification using the supplied constants.

Let ModSolve(v, s, p0, p) → a⃗, b⃗, c⃗ be a function that
produces the wire values that solve the circuit produced by
ModCkt(p0, p, z) for the given values. An implementation
of ModSolve is shown in Appendix G. We can now write
the base proof-of-mod as shown in Figure 1.

1) Security: Security rests on the security of the commit-
ments and the circuit proofs. We state our security theorem
below, and provide a proof.

Theorem 1. If the commitment scheme (Setup,Com) used
is computationally binding and perfectly hiding, and the
circuit proof protocol ΠCKT is perfectly complete, pro-
vides computational soundness, and special honest verifier
zero-knowledge, then ΠMOD is perfectly complete, provides

computational soundness, and special honest verifier zero-
knowledge.

Proof. Completeness. Given v, s, rv, rs such that v = s
mod p, the honest prover can always find a value of k and
all intermediate values that satisfies the circuit for any value
of z. From the completeness of the circuit proof protocol,
the verifier will always accept.

Computational Soundness. Consider a cheating prover
P ∗ that is given v, s, rv, rs such that v ̸= s mod p, and
both the verifier and prover are given V, S, p. Assume
S = Com (s, rs) , V = Com (v; rv), and 0 ≤ v < p
since this is the most advantageous condition for the prover.
Consider the following cases.

Case 1. P ∗ finds either v′, r′v such that V = Com (v′, r′v)
and v′ = s mod p, or s′, r′s such that S = Com (s′, r′s)
and v = s′ mod p. In either case the prover has broken
the binding property of the commitment scheme, which by
assumption the probability of any PPT adversary finding
such values is negligible.

Case 2. P ∗ sends commitments A ← Com (⃗a; ra) , B ←
Com

(⃗
b; rb

)
, C ← Com (c⃗; rc), but then finds an-

other set of openings a⃗′, b⃗′, c⃗′, r′a, r
′
b, r
′
c such that A =

Com (⃗a′; r′a) , B = Com
(⃗
b′; r′b

)
, C = Com

(
c⃗′; r′c

)
that

satisfy the circuit. In this case, the prover has broken the
binding property of the commitment scheme. By assumption
the probability of any PPT adversary finding such values is
negligible.

Case 3. P ∗ sends commitments A,B,C to values a⃗, b⃗, c⃗
that do not satisfy the circuit, yet the prover convinces the
verifier to accept. In this case, the prover has broken the
soundness of ΠCKT . By assumption the probability of any
PPT adversary finding such values is negligible.

Case 4. P ∗ finds values that satisfy the disjunction section
of the circuit despite the disjunction being false. More
precisely, at least one of a5,1− b5,1−1 ̸= 1 and at least one
of a6,1−b6,1−1 ̸= 1, yet one of c′1, c

′
2 is zero (see Equation 6

in Section III-A0b). By the fundamental theorem of algebra,
a polynomial of degree n has at most n roots. Thus, if z is
chosen uniformly at random, after the polynomial is fixed,
then the probability of this occurring is 2n/|F |. Assuming
n grows at most linearly with the security parameter λ and
|F | is exponential in the same, then the probably of this
occurring is negligible.

Case 5. If none of the above cases occur, then the ranges
specified in Section II-C are satisfied, and there exists k ∈ F

such that s = v + kp < p0.
Since the three cases above cover all possibilities, from

the law of total probability it can be seen that the advantage
of any PPT adversary in the soundness game is negligible.

Special Honest Verifier Zero-Knowledge. We show
SHVZK by building a simulator S that uses the simulator
SCKT of ΠCKT to simulate the protocol. First, S chooses
z ∈ F uniformly at random, and constructs the circuit using
ModCkt(p0, p, z). It then calls SCKT to get the transcript
of the circuit proof including the commits A,B,C. It then
outputs the transcript with the addition of z after A,B,C
are issued by the prover. By the SHVZK property of
ΠCKT , the transcripts produced by S must have the same



ΠMOD [(V, S, p), (v, s, rv, rs)]

P(V, S, p, v, s, rv, rs) V(V, S, p)

a⃗, b⃗, c⃗← ModSolve(v, s, p)

ra, rb, rc
$←− R;A,B,C ← Com (a⃗; ra) , Com

(⃗
b; rb

)
, Com (c⃗; rc)

A,B,C
−−−−−−−−−−−−−−−−−−−−−−−−−−→ z

$←− F

z
←−−−−−−−−−−−−−−−−−−−−−−−−−−

CKT← ModCkt(p0, p, z) CKT← ModCkt(p0, p, z)

PCKT [((V, S),CKT, A,B,C);

((v, s), a⃗, b⃗, c⃗, (rv, rs), (ra, rb, rc))] ΠCKT

· · ·

VCKT ((V, S),CKT, A,B,C)
←−−−−−−−−−−−−−

ϕCKT
−−−−−−−−−−−−−→

ϕ← ϕCKT

Fig. 1: Base Proof-of-Mod Protocol.

distribution as the transcripts produced by the honest run of
the protocol.

2) Efficiency: The circuit proof protocol ΠCKT given in
[5] requires 2⌈log2 n⌉ + 8 group elements and 5 field ele-
ments, where n in this case is the number of multiplication
gates. Our protocol adds only one field element, and uses
3λ+1 multiplications, where λ is the bit length of p0. Thus,
in total our protocol requires 2⌈log2(3λ + 1)⌉ + 8 group
elements and 6 field elements.

B. Prime-Order Decomposition

As discussed in Section II-C, we can extend the base
proof-of-mod to arbitrary values by a technique we call
“prime-order decomposition”, in which we decompose s
using p0 as a base. Consider that we can always write s
as:

s = a0 + a1p0 + a2p0
2 + · · ·+ amp0

m =

m∑
i=0

aip0
i

Where ai ∈ Zp0∀i ∈ [m]. We can now define an extended
version of the proof-of-mod as follows.

Definition 2 (Extended Proof-of-Mod). Given a commitment
scheme (Setup,Com) over a message space M ⊂ N, a
proof-of-mod is a zero-knowledge argument of knowledge
for the relation REMOD:

REMOD((V,A0, . . . , Am, p),

(v, rv, a0, . . . , am, r0, . . . , rm)) :=

v =

m∑
i=0

aip0
i mod p ∧ V = Com (v, rv)∧

Ai = Com (ai, ri)∀i ∈ [m]

Where V,A0, . . . , Am ∈ C, p ∈ N, v, a0, . . . , am ∈ M, and
rv, r0, . . . , rm ∈ R, and the modulo operation is over the
natural numbers.

We will again take a circuit-building approach in order
to prove REMOD. First, notice that we can decompose the
problem using Horner’s method:
v = a0 + p0(a1 + p0(a2 + · · ·+ (am−1 + p0am))) mod p

(8)
Let us define the intermediate steps in (8) as vi = ai +

p0vi+1 = ai + p0(· · ·+ p0am), where vm = am. Assuming
p0 > p2+p, then we can ensure that all values are within Zp0

by taking each step modulo p as follows. Let a′i = ai mod p
and t = p0 mod p. Define:

v′i = vi mod p

= ai + p0 · vi+1 mod p

= a′i + t · v′i+1 mod p ∀0 ≤ i < m

We can now apply the proof-of-mod circuit from Sec-
tion III-A first to the a′i values, and then to each of the v′i,
to build a circuit that proves the correctness of v with respect
to a0, . . . , am. More concretely, we construct the circuit as
follows:

1) Write proof-of-mod subcircuits for a′i = ai mod p for
i ∈ [0,m].

2) Let v′m = a′m. For j in [0,m− 1] write:
a) Constraint vj = a′j + t · v′j+1.
b) Proof-of-mod subcircuit for v′j = vj mod p.

3) Write constraint v = v′0.
In practice, the a′i, vi, v

′
i variables would be eliminated

and instead the bit decompositions used directly, but we
present this method for ease of understanding. If p0 > mp2

then instead of m PoM subcircuits for the v′i steps, we can
directly write a constraint for v from the a′i values. Let
EModCkt(p0, p, z) → CKT be a function that generates
the circuit specification using the method described above,
and let EModSolve(v, a0, . . . , am, p0, p) be a function that
produces the wire values that solve CKT. The resulting
protocol is identical to the previous protocol, replacing
ModSolve with EModSolve and ModCkt with EModCkt.
Thus we elide the protocol diagram and proof here. We



denote the extended proof-of-mod protocol provingREMOD

as ΠEMOD.

Efficiency. By constructing the proof as one large circuit
we achieve considerable efficiency in terms of proof size.
As in the previous subsection, each PoM requires 3λ + 1
multiplication gates, where p0 < 2λ. The full construction
uses 2m such PoM circuits and no additional multiplications.
Thus, the total communication cost is 2⌈log2 m+log2(3λ+
1) + log2 3⌉+ 8 group elements and 6 field elements.

a) Non-Interactive Construction: The Fiat-Shamir
heuristic [8] allows us to convert any public-coin interac-
tive protocol into a non-interactive one with computational
soundness by replacing any randomness used by the verifier
with a hash of the transcript to that point. As is discussed in
detail in [5], the circuit proof protocol ΠCKT can thus be
rewritten in the form of a prover procedure that produces a
transcript, πckt, and a verifier procedure that takes πckt as
input and outputs accept or reject.

Similarly, we can convert our proof-of-mod protocol into
a non-interactive proof simply by setting the verifier’s chal-
lenge, z to be the hash of the commitments A,B,C and
the inputs to the protocol. We then use the non-interactive
version of the circuit proof as a subroutine to get the full
proof. We show the full details of the non-interactive proof-
of-mod protocol in Appendix 15.

IV. CRT-BASED VSS

Armed with the extended proof-of-mod we constructed
in Section III, along with appropriate commitment and
arithmetic circuit proof schemes, we are now ready to flesh
out the CRT-based VSS scheme for which we gave a high
level description in Section II-B. We first construct a proof
that all of the shares are correct by grouping all of the proof-
of-mods into a single circuit, and treating the a0, . . . , am
values as intermediate variables that hold for all of the secret
shares. This way, separate commitments A1, . . . , Am are not
necessary. We can construct such a circuit taking s0, . . . , sn
as inputs as follows:

1) Let a0, . . . , am be intermediate variables
2) Write constraint that a0 = s0.
3) For i in 1 to n, write an extended proof-of-mod circuit

for si =
∑m

j=0 ajp
j
0 mod pi.

As in the Extended Proof-of-Mod construction, the in-
termediate variables will be eliminated in an optimized
circuit, but their existence and consistency is still guaranteed.
Let VSSCKT(p0, . . . , pn, z) → CKT be a function that
constructs the circuit as described above using z as the
challenge value for the proof-of-mod subcircuits, and let
VSSSolve(s0, . . . , sn, a1, . . . , am, p0, . . . , pn)→ a⃗, b⃗, c⃗ be a
function that produces the wire values that solve CKT for
any value of z. We can now write our non-interactive VSS
construction by defining the Share and Reconstruct programs
as shown in Algorithms 1 and 2 respectively.

This construction uses n extended proof-of-mod circuits,
each of which uses 3m(2λ+ 1) multiplication gates. Thus,
the size of πckt is 2⌈log2 n + log2 m + log2(3λ + 1) +
log2 3⌉+8 group elements and 6 field elements, including the
commitments A,B,C. The only additional outputs are the

n+ 1 commitments Y0, . . . , Yn in π, and 2n field elements
s1, . . . , sn, r1, . . . , rn.

Algorithm 1: VSS Share Procedure
Input: Secret s0 ∈ Zp0

, primes p0, . . . , pn
Output: Shares v1, . . . , vn, proof π

1 a1, . . . , am
$←− Zp0

; r⃗ = r1, . . . , rn
$←− R;

Y0 ← Com (s0; r0);
2 for i = 1 to n do
3 si ← s0 +

∑m
j=0 ajp

j
0 mod pi;

4 Yi ← Com (si; ri);
5 end
6 a⃗, b⃗, c⃗←

VSSSolve(s0, . . . , sn, a1, . . . , am, p0, . . . , pn);

7 ra, rb, rc
$←− R;A,B,C ←

Com (⃗a; ra) ,Com
(⃗
b; rb

)
,Com (c⃗; rc);

8 z ← H(p0, . . . , pn, Y0, . . . , Yn, A,B,C);
9 CKT← VSSCkt(p0, . . . , pn, z);

10 πckt ← tr < ΠCKT > ((Y0, . . . , Yn, A,B,C),

CKT, (s0, . . . , sn), a⃗, b⃗, c⃗, r⃗, ra, rb, rc);
11 π ← (Y0, . . . , Yn, A,B,C, πckt);
12 return (s0, r0), . . . , (sn, rn), π;

Algorithm 2: VSS Reconstruct Procedure
Input: Primes p0, . . . , pn, shares {(i, vi)}i∈A, proof

π
Output: Secret s′ or ⊥

1 Y0, . . . , Yn, A,B,C, πckt ← π; si, ri ← vi ∀i ∈ A;
2 z ← H(p0, . . . , pn, Y0, . . . , Yn, A,B,C);
3 CKT← VSSCkt(p0, . . . , pn, z);
4 if

VCKT ((Y0, . . . , Yn),CKT, A,B,C, πckt) ̸= Accept
or ∃i ∈ A |Yi ̸= Com (si, ri) then

5 return ⊥;
6 end
7 PA ←

∏
i∈A pi;

8 qi ←
∏

j∈A\{i} pj ; q
′
i ← qi

−1 mod pi ∀i ∈ A;
9 s′ ←

∑
i∈A siqiq

′
i mod PA;

10 return s′ mod p0;

a) Security: The security of our scheme rests on the
security of the building blocks. Secrecy follows from the
hiding property of the commitment scheme and the SHVZK
property of the circuit proof. Correctness follows from the
perfect correctness of the PoM circuit. Finally, commit-
ment follows from the binding property of the commitment
scheme, and the soundness of the circuit proof. We state our
final theorem below and provide a proof.

Theorem 2. If the commitment scheme is computationally
binding and perfectly hiding, and the circuit proof used
provides perfect completeness, computational soundness,
and SHVZK, then the NI-VSS shown in Algorithms 1 and 2
is secure using Definition 9.

Proof. Secrecy. Consider an arbitrary unauthorized access
set Ā ∈ Ā, and any two secrets s, s′. By the hiding



property of the commitment scheme, the distribution of
Y0, . . . , Yn, A,B,C are independent and indistinguishable
for any two secrets s, s′. Similarly, by the SHVZK property
of the circuit proof, πckt is indistinguishable for any two
secrets s, s′. The choices of {ri}i∈Ā are independent and
uniformly random, and thus also indistinguishable. Finally,
we assume that p0, . . . , pn are chosen such that for any
Ā ∈ Ā, PĀ ≤ Pmax < pm+1

0 . From [9], we can state the
the statistical distance of {si}i∈Ā from uniform is at most
Pmax/p

m+1
0 . Thus, if Pmax << pm0 , then the statistical

distance between the output of Sharepp for any s, s′ is
negligible.

Correctness. Consider an arbitrary A ∈ A. First, note
that the output of Sharepp will always be such that
si = s0 +

∑m−1
i=1 aip

m
0 mod pi, Yi = Com (si; ri)∀i ∈

[n]. Next, from the perfect correctness of the ex-
tended proof-of-mod circuit and the circuit argument,
the output values A,B,C, πckt are such that if z =
H(A,B,C) and CKT = VSSCkt(p0, . . . , pn, z), then
VCKT ((Y0, . . . , Yn),CKT, A,B,C, πckt) will always ac-
cept. Finally, by the Chinese Remainder Theorem, if
p0, . . . , pn are chosen such that PA > Pmin > pm+1

0 , then
the output of Reconstructpp will always be s′ = s0.

Commitment. To prove that no adversary D∗ can in time
polynomial in the security parameter produce a proof and
two sets of shares π, {vi}i∈A, {v′i}i∈A′ where A,A′ ∈ A
such that the two sets of shares reconstruct different secrets,
we consider the following cases.

Case 1. Assume in this case that D∗ is able to commit to
shares s1, . . . , sn as Y1, . . . , Yn that are consistent with the
honest protocol, but then provides an opening for at least
one of the shares for a different value, Yi = Com (si; ri) =
Com (s′i; r

′
i). By the computational binding of the commit-

ment scheme, the probability of a PPT D∗ finding such
values is negligible.

Case 2. In this case, assume the dealer commits to
s1, . . . , sn as Y1, . . . , Yn such that the arithmetic circuit is
not satisfied, yet manages to produce a transcript πckt such
that VCKT ((Y0, . . . , Yn),CKT, A,B,C, πckt) accepts. By
the computational soundness of the circuit proof, the prob-
ability of any PPT D∗ producing such a proof is negligible.

Case 3. In this case, assume that the commitments are
binding and that the circuit proof is sound, but that D∗ is able
to guess values of a⃗, b⃗, c⃗ that satisfy the circuit for the value
of z obtained by the hash function. By the random oracle
model, we can model H as a uniformly random function.
Thus the probability of z satisfying the circuit for a given
choice of a⃗, b⃗, c⃗ is at most n/|F | from the same argument
given in Section III-A1. Thus, if n grows at most linearly
in the security parameter, and |F | grows exponentially, then
each attempt has negligible probability of success, and a
polynomial number of such guesses by D∗ still results in
negligible probability of success.

Case 4. In this case, we assume that the commitments are
binding, the circuit proof is sound, and the choice of z is
such that no false roots are found. It must be the case that all
of the equations in the circuit are satisfied. Thus, there exists
a0, . . . , am ∈ Zp0

such that for all i ∈ [n], si =
∑m

j=0 ajp
j
0

mod pi. As a result, the reconstruction program will always

output s′ = a0.
By the law of total probability, the probability of D∗

producing inconsistent share values that pass the verification
program is negligible.

b) Practical Parameters: As we discussed in Sec-
tion II-A, in the WRSS scheme, the weight of participant
Pi is determined by the length of their associated prime
pi. In our construction, p0 > p2i + pi, and if p0 < 2N ,
then pi < 2

N−1
2 . If the minimum practical value of pi is

Nmin, then the dynamic range supported by the scheme is
N/2Nmin. For example, in Curve25519, p0 is approximately
2255, thus if Nmin = 10 then 210 < pi < 2127 and
our dynamic range is 12.7. Beyond this range parties must
again be virtualized, but notice that the virtualized parties
themselves have weight. Thus, the virtualization process is
not only more efficient, in that the number of virtual parties
is reduced by up to an order of magnitude, but also more
fair, as the weights are cumulative.

V. PERFORMANCE

To evaluate the performance of our VSS, we take a case
study of Ethereum staking. We then provide a theoretical
analysis of the overhead of using a traditional VSS scheme
with virtualization as compared to our scheme. Finally, we
implement our scheme to see the operating parameters in
practice.

a) Ethereum Staking: Staking is the process used by
proof-of-stake blockchains to validate transactions. To par-
ticipate, a user must deposit a certain amount of Ether (the
native currency of Ethereum) into a smart contract, which is
called their “stake”. The user is then allowed to participate
in the consensus mechanism, and is rewarded for doing so.
If the user misbehaves, their stake is slashed, i.e. a portion
of their deposit is destroyed. A minimum stake of 32 Ether
is required to participate. [15]

The current system uses aggregate BLS signatures, which
according to one analysis [4], processes 28, 000 signatures
per slot, and may rise to 1.8 million. Even with extremely
efficient aggregate signatures, this is a large overhead. The
resulting distribution of stakes is extremely wide, with the
top two staking pools (Lido and Coinbase) controling 45%
of the total stake. We show the distribution of the rest of the
system in Figure 2.

b) Comparing Virtualization to WR-VSS: Suppose
Ethereum adopts a consensus scheme based on threshold
signatures, wherein validators receive shares of the signing
key and collaborate to jointly sign proposed blocks. This
would require a full distributed key generation protocol, but
for the sake of comparison consider only VSS overhead.
As a baseline, consider the Feldman VSS [7], a simple
yet efficient VSS that uses Shamir’s Secret Sharing scheme
applied to discrete-log groups6. To share a secret among N
(virtual) parties with threshold t, the scheme requires N + t
group elements to be broadcast, and one field element sent
privately to each (virtual) party.

6More recent work provides better security, but to our knowledge, it does
not use less bandwidth.
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Fig. 2: Distribution of Ethereum Stakes for pools other than Lido and Coinbase. Note that the x-axis is logarithmic.

From our analysis, such a scheme would require 4, 110
virtual parties, and if t = 2N/3 then 6, 850 group elements
must be broadcast and 4, 110 field elements sent privately to
each party. This assumes a minimum stake of 0.02% which
excludes only 0.02% of the current staking. This is not a
large improvement over the current design, and has problems
with fairness7.

By contrast, if Ethereum used our Weighted-Ramp VSS
to generate the signing key with a reconstruction threshold
set to 2/3 of the total weight, and if the minimum stake of
0.02% corresponds to a weight of 10, then the total weight
in the system is 41, 125. Using a curve of order ∼ 2255,
we set m = 108 and need 365 parties. As can be seen in
Table II, this produces more than a 100× improvement on
the current design, and nearly 20× improvement in broadcast
and 5× improvement in private bandwidth compared to the
virtualized VSS.

Byte sizes assume Curve25519 for both VSS schemes,
and BLS381 (48 byte group elements) for the current design.
One last benefit to the WRSS approach is that depending on
the choice of signature scheme, it may not be necessary to
use a pairing-friendly curve (e.g. BLS12-381 as is currently
in use) and instead, use a simpler curve (e.g. Curve25519
or sec256k1), which both simplifies the overall scheme and
reduces the bandwidth overhead.

TABLE II: Comparison of bandwidth usage for current
Ethereum signature broadcast, Feldman-VSS, and our WR-
VSS with 0.02% minimum stake and t = 2/3N .

Design Broadcast Private
G Zp0 Total (B) Zp0 Total (B)

Current 28, 000 1, 344, 000
Feldman 6, 850 219, 200 4, 110 131, 520
WR VSS 389 6 12, 640 ∼ 892 28, 528

c) Implementation: To evaluate our scheme’s practical
performance, we implemented it in Rust using the Bullet-
proofs library from [6] for R1CS proofs8. We tested on an
Intel Xeon Gold 6230 (2.10 GHz) running Ubuntu 20.04.2
LTS. Prover running times for various configurations are

7E.g. if a validator has 0.05% of the total stake, should they receive 2
or 3 votes?

8R1CS, short for Rank-1 Constraint System, is another term for arith-
metic circuits.

shown in Figure 3. As expected, time is linear in both n
(number of parties) and m (lifting value). However, the
constants are large; even with this linear relationship, over
5 minutes is needed for just 4 parties with m = 4. We
extrapolate from this that applying our scheme to Ethereum
would require hours of prover time. Note that our implemen-
tation is not optimized, and the Bulletproofs library is still in
development, so significant improvements may be possible.

The main advantage of our scheme is its small proof
size. As shown in Figure 3, proof size is logarithmic in
both m and n, with small constants. We extrapolate that
for the Ethereum use cases, proof size should be under
2 KiB (excluding commitments), aligning with theoretical
expectations.

Thus, we have shown that our scheme achieves its pri-
mary goal of proof size, though currently due to the poor
performance of R1CS libraries, the prover time is too high
to be used in practice.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have shown how to construct a Verifiable
Weighted-Ramp Secret Sharing scheme. Our scheme is
based on the CRT and is the first to provide verifiability
for a weighted secret sharing scheme without a trusted
setup, unknown order groups, or the strong RSA assumption.
Along the way we developed a novel technique for proving
congruence relationships between committed values in zero
knowledge that may be of independent interest. We have
shown that our scheme is efficient, with communication
costs scaling logarithmically in all parameters, and running
times linear in all parameters.

At present, the scheme is implemented using the Bul-
letproofs arithmetic circuit proof system, which introduces
large constants in the prover time. Future work may optimize
this by using more efficient arithmetic circuit proof systems,
at which point the prover time may be more practical for
large systems. It may also be possible to trade off some of
the prover time for increased proof size. Finally, future work
may consider the case that the a party’s prime value is greater
than the group order, which would require a different proof-
of-mod system, in order to enable larger dynamic ranges.
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APPENDIX

A. Commitments

We will use the formal definition of commitments as be-
low. In general, Pedersen commitments are used in practice
in order to use the same discrete log group for commitments
and the rest of the system.

Definition 3 (Commitment). A non-interactive commitment
scheme is a pair of randomized polynomial time algorithms
(Setup,Com):

• Setup(1λ) → pp: Takes as input a security parameter λ
and outputs the parameters for the commitment scheme,
pp.

• Compp(x; r)→ c takes as input a message x ∈Mpp and
randomness r ∈ Rpp and outputs a commitment c ∈ Cpp.

For ease of notation we will often omit the subscript pp
when the setup step is clear. In general, it is expected that
r is drawn uniformly at random from the randomness space
Rpp when generating a fresh commitment.

Definition 4 (Binding Commitment). A commitment scheme
is said to be binding if for all PPT adversaries A there exists
a negligible function µ such that:

Pr

 Com (x0; r0)
= Com (x1; r1)
∧x0 ̸= x1

∣∣∣∣∣∣ pp← Setup(1λ),
x0, r0, x1, r1 ← A(pp)

 ≤ µ(λ)

Where probability is taken over all random coins of Setup
and A. If µ(λ) = 0 then we say that the scheme is perfectly
binding.

Definition 5 (Hiding Commitments). A commitment scheme
is said to be hiding if for all PPT adversaries A1,A2 there
exists a negligible function µ such that:∣∣∣∣∣∣∣Pr

b = b′

∣∣∣∣∣∣∣
pp← Setup(1λ), b $←− {0, 1},
r

$←− Rpp, x0, x1 ← A1(pp),
c← Com (xb; r) , b

′ ← A2

− 1

2

∣∣∣∣∣∣∣ ≤ µ(λ)

Where probability is taken over b, r, and all random coins
of Setup and A. If µ(λ) = 0 then we say that the scheme is
perfectly hiding.

a) Vector Commitments: A vector commitment scheme
is simply a commitment scheme where the message space
M is a vector space, such as Zn

p . The definitions for homo-
morphic, binding, and hiding commitments apply equally to
vector commitments.

B. Commitment Wraparound

Definition 6 (Homomorphic Commitments). A homomor-
phic commitment scheme is a non-interactive commitment
scheme such thatMpp,Rpp, Cpp are all abelian groups, and
for all x, y ∈Mpp and rx, ry ∈ Rpp:

Com (x; rx)⊗ Com (y; ry) = Com (x⊕ y; rx ⊕ ry)

Where ⊗ denotes the group operation in Cpp and ⊕
denotes the group operation in Mpp or Rpp respectively.

a) Wraparound: Notice that by the properties of
abelian groups, homomorphic commitments over a finite
commitment space such that |C| = p must necessarily wrap
around, such that Com (x+ p; r) = Com (x; r). This is
obvious for Pedersen commitments, but to see that this
is true in general, consider a generator g ∈ C such that
Com (1; 0) = g, for some interpretation of 1. For any integer
value p we can write y = 1 · p where scalar multiplication
in this case is interpretted as the group operation repeated p
times. We can thus write:

Com (x+ p; r) = Com (x; r)⊗ Com (1 · p; 0)
= Com (x; r)⊗ gp

By Fermat’s theorem, gp is the identity element of the
group.

As a concrete example, many proofs including Bullet-
proofs, use Pedersen Commitments, which for a group G

with generators g, h (generated by Setup) of prime order p
in which the discrete logarithm problem is hard, are defined
as:

Com (x; r) := gxhr

Pedersen commitments are homomorphic, computation-
ally binding, and perfectly hiding. Note that the discrete
logarithm of h with respect to g and vice versa must be
unknown to the prover. This notion can be extended to a
vector commitment by having setup generate a vector of
generators such that:

Com (x⃗; r) := g⃗x⃗hr = hr
n∏

i=1

gxi
i

C. Zero-Knowledge Arguments

Intuitively, a zero-knowledge proof of knowledge is an
interactive protocol between a prover P and a verifier V
such that on input x the prover proves to the verifier that
it knows a witness w that satisfies a relation R(x,w),
without revealing anything else about w. If the proof is
sound for only computationally bounded provers, we call it
a zero-knowledge argument (ZKA). If the verifier keeps no
secrets, then we say the proof (or argument) is public coin.
In this paper we consider only public-coin zero-knowledge
arguments, and use the following formal definition.

Definition 7 (Zero-Knowledge Arguments). Let R be an
NP relation. A zero-knowledge argument (ZKA) Π for R is
an interactive protocol between a prover P and a verifier V
consisting of k prover messages and k−1 verifier messages.
The prover is defined by a family of randomized algorithms
P = {Pi}i∈[k], while the verifier is defined by a predicate
ϕ such that:

• The prover P on the i-th round takes as input x and the
witness w along with all previous challenge messages cj
for j ∈ [i − 1] and a random input ri and outputs a
message mi. Written formally:

Pi(x,w, {cj}j∈[i−1]; ri)→ mi,∀i ∈ [k]



• The verifier V on the i-th round samples a random
challenge ci

$←− {0, 1}κ, ∀i ∈ [k − 1] and sends it to
the prover.

• After receiving all k messages from the prover, the verifier
outputs b← ϕ(x, {mi}i∈[k], {ci}i∈[k−1]).
We denote by ⟨P ′, V ′⟩ the random variable corresponding

to the output b of V ′ after interacting with P ′ in the execu-
tion of Π, and by TR(P ′, V ′) = (m1, c1, . . . , ck−1,mk) the
transcript of the execution of Π in which V ′ interacts with
P ′. We define the following security notions:

Completeness: We say that Π has perfect completeness if
for all (x,w) ∈ R:

Pr[⟨P (x,w), V (x)⟩ = 1] = 1

Computational Soundness: We say that Π has computa-
tional soundness if for all (x,w) /∈ R and PPT provers P ∗:

Pr[⟨P ∗(x,w), V (x)⟩ = 1] ≤ negl(λ)

Special Honest Verifier Zero-Knowledge (SHVZK): We
say that Π has SHVZK if there exists a PPT simulator S such
that for any (x,w) ∈ R the simulator S on input x outputs
a transcript that is indistinguishable from the transcript of
the honest prover P run with input x and witness w. Written
formally:

{TR(P (x,w), V (x))} ≈c {S(x)}

D. Arithmetic Circuit Proofs

Informally, an arithmetic circuit proof is a zero-knowledge
argument that a set of committed values satisfy a given arith-
metic circuit. As we discussed in Section II, we will make
extensive use of an efficient proof of circuit satisfiability
such as the construction given in [2] and refined in [5].
We assume that the commitments and the circuit operate
on some field F , which in practical terms will generally be
Zp for some prime p.

Consider a set of n values (v1, . . . , vn), with commitment
vector V⃗ = (V1, . . . , Vn) ∈ Cn, Vi = Com (vi; rvi). We can
define an arithmetic circuit by starting with m multiplication
gates. We label the inputs to the i-th gate as ai and bi, and the
output as ci. We can represent the circuit using the following
two sets of equations:

ai · bi = ci 1 ≤ i ≤ m (9)
m∑
i=1

wj,a,iai +

m∑
i=1

wj,b,ibi

+

m∑
i=1

wj,c,ici =

n∑
i=1

wj,v,ivi + kj 1 ≤ j ≤ q (10)

Where wj,x,i are weights determined by the circuit. We
can write this more succinctly by grouping the values into
vectors and matrices in the obvious way.

a⃗ ◦ b⃗ = c⃗ (11)

Wa · a⃗+Wb · b⃗+Wc · c⃗ = Wv · v⃗ + k⃗ (12)

We say that a circuit given by Wa,Wb,Wc,Wv is
satisfied by values v⃗ if there exists a⃗, b⃗, c⃗ such that equations
11 and 12 hold. This leads to a natural definition of a circuit
proof.

Definition 8 (Arithmetic Circuit Proof). Given a commit-
ment scheme (Setup,Com) an arithmetic circuit proof is a
zero-knowledge argument of knowledge for the relationRckt:

Rckt((V⃗ ∈ Cn,Wa,Wb,Wc ∈ F q×m,Wv ∈ F q×n,

k⃗ ∈ F q), (v⃗ ∈ F n, a⃗, b⃗, c⃗ ∈ Fm, r⃗v ∈ Rn))

:=

Vi = Com (vi, rvi)∀i ∈ [1, n]

∧ a⃗ ◦ b⃗ = c⃗

∧Wa · a⃗+Wb · b⃗+Wc · c⃗ = Wv · v⃗ + k⃗ (13)

Theorem 3. There exists an arithmetic circuit proof pro-
tocol Πckt with perfect completeness, computational sound-
ness, and perfect special honest verifier zero-knowledge
for Rckt. Moreover, Πckt has has communication complexity
O(logm).

We refer the reader to [5] for the security proof.
a) Notation: We will generally write CKT in place

of (Wa,Wb,Wc,Wv, k⃗) when the context is clear, im-
plying that the conditions above are satisfied. For ex-
ample, invoking the circuit proof protocol we will write
Πckt

[
(V⃗ ,CKT); (v⃗, a⃗, b⃗, c⃗, r⃗v)

]
.

E. Verifiable Secret Sharing

Intuitively, a verifiable secret sharing scheme (VSS) is
a secret sharing scheme with added functionality that al-
lows the participants to verify both the dealer actions
and the shares received by other participants. Let pp
be the parameters of the scheme, including the num-
ber of shares n and any parameters needed to de-
termine the set of authorized access sets as App =
{A ⊆ [n]|A authorized to reconstruct the secret}, and sim-
ilarly Āpp the set of all access sets explicitly unauthorized
to reconstruct the secret, where App ∩ Āpp = ∅. We will
consider only non-interactive VSS, which is composed of
two programs:

1) Sharepp(s) → ((v1, . . . , vn), π), the sharing program
takes as input a secret value s and produces n shares
of the secret and a proof π. The proof π is broadcast to
all parties, while vi is given only to party i.

2) Reconstructpp({(i, vi ∈ K)}i∈A, π) → s′ ∈ K|⊥,
the reconstruction programs take a set of shares and
reconstructs the secret as s′ or ⊥ /∈ K.

In practice there will generally also be a verification
program for accepting the shares. As this is not needed for
the security of our VSS, and should be quite clear from the
construction, we omit the formal definition.

Definition 9. We say that a VSS is secure if for any legal
parameters pp that contains a security parameter λ, the
following properties hold:

a) Secrecy: For any unauthorized set Ā ∈ Āpp, and
any two secrets s, s′ , the statistical distance between
the distribution of the shares produced by Sharepp(s) and
Sharepp(s′) is negligible. That is:



SD({π, {vi}i∈Ā|(v1, . . . , vn, π)← Sharepp(s)} ,
{π′, {v′i}i∈Ā|(v′1, . . . , v′n, π′)← Sharepp(s′)})

≤ negl(λ)
(14)

b) Correctness: For any authorized set A ∈ A, and
any secret s, if (v1, . . . , vn, π)← Sharepp(s) then:

Reconstructpp({vi}i∈A, π) = s

c) Commitment: For any PPT adversary D∗ taking
input pp and outputing π, {vi}i∈A, {v′i}i∈A′ the probability
that the two sets of shares reconstruct different secrets is
negligible. That is:

Pr[⊥ ≠ Reconstructpp({vi}i∈A, π)
̸= Reconstructpp({vi}i∈A′ , π) ̸= ⊥] ≤ negl(λ) (15)

F. Proof of Range Equations

Lemma 1. Let v be an integer, and F a field of size at least
2. For n > 0 ∈ N, v ∈ [0, 2n] if and only If there exists
vectors a⃗, b⃗ ∈ F n such that the following equations hold:

n∑
i=1

ai2
i−1 = v (16)

ai · bi = 0 1 ≤ i ≤ n (17)
ai − bi − 1 = 0 1 ≤ i ≤ n (18)

Proof. Rearranging (18) and substituting into (17) gives:
ai(ai − 1) = 0

Thus either ai = 0 or ai = 1. Applying this to (16):

0 ≤
n∑

i=1

ai2
i−1 = v ≤

n∑
i=1

2i−1 < 2n

G. Base Proof-of-Mod Circuit Equations

Inputs: v, s.
Constants: p0, n1, n2 ∈ N, p, q ∈ Zp0

, t ∈ Zp, such that:

p0 = pq + t

2n1 ≥ p

2n2 ≥ q

Equations for the base proof-of-mod circuit are shown in
Figure 4, written n the form required for Πckt in Section D.
The equations in brackets on the right are meant as an intu-
itive explanation. Equations eliminate k as an intermediate
value, and use a1, . . . , an2

instead. This construction uses
3n1 + 3n2 + 1 multiplication gates and 5n1 + 5n2 + 9
constraints.

H. ModSolve Function

Let Decomp(v, n) → a⃗, b⃗ be a a function that decom-
poses v into its binary representation in n bits, such that
⟨⃗a, 2⃗n⟩ = v, a⃗ ◦ b⃗ = 0⃗n, and a⃗ − b⃗ − 1⃗ = 0⃗n, if such a
representation is possible, or a1 = v, a2 = . . . = an =
0, b1 = 0, b2 = . . . = bn = −1 otherwise. Algorithm 3

Algorithm 3: ModSolve Function for Base Proof-of-
Mod.
Input: v ∈ Zp, s ∈ Zp0

, p0, p ∈ N, such that v = s
mod p.

Output: a⃗, b⃗, c⃗ that solve the equations in Figure 4.
1 n1 ← ⌈log2 p⌉;
2 n2 ← ⌈log2⌊p0/p⌋⌉;
3 k ← (s− v) · p−1 mod p0;
4 a⃗1, b⃗1 ← Decomp(k);
5 a⃗2, b⃗2 ← Decomp(q − k);
6 a⃗3, b⃗3 ← Decomp(v);
7 a⃗4, b⃗4 ← Decomp(p− v − 1);
8 a⃗5, b⃗5 ← Decomp(q − k − 1);
9 a⃗6, b⃗6 ← Decomp(t− v − 1);

10 a7 ← a5,1 − b5,1 − 1;
11 b7 ← a6,1 − b6,1 − 1;
12 a⃗← a⃗1||⃗a6||a7;
13 b⃗← b⃗1||⃗b6||b7;
14 c⃗← 0⃗3n1+3n2+1;
15 return a⃗, b⃗, c⃗;

shows the ModSolve function that calculates the wire values
that solve the equations in the previous section.

First, we assume a family of secure has functions H,
from which we select H ∈ H for use in the proto-
col below. Next we assume that the Fiat-Shamir heuris-
tic is applied to the circuit proof protocol using the
same family of hash functions, and that the first message
from the prover to the verifier includes vector commit-
ments to the wires of the circuit as A,B,C. Let tr <
ΠCKT > (V⃗ ,CKT, v⃗, a⃗, b⃗, c⃗, r⃗v, A,B,C, ra, rb, rc) → π
be a polynomial-time function that produces an accepting
transcript π for the resulting non-interactive proof that does
not include A,B,C, and let VCKT (V⃗ , CKT,A,B,C, πckt)
be a function that verifies transcript πckt for ΠCKT . We
can then construct a non-interactive proof-of-mod protocol
as follows using the procedures shown in Algorithm 4 and
Algorithm 5 for the prover and verifier respectively.



n2∑
i=1

p2i−1ai = s− v (pk = s− v)

n2∑
i=1

2i−1ai +

n2∑
i=1

2i−1an2+i = q (k ≤ q)

n1∑
i=1

2i−1a2n2+i = v (0 ≤ v)

n1∑
i=1

2i−1an1+2n2+i = p− v − 1 (v ≤ p− 1)

n2∑
i=1

2i−1ai +

n2∑
i=1

2i−1a2n1+2n2+i = q − 1 (k ≤ q − 1)

n1∑
i=1

2i−1a2n1+3n2+i = t− v − 1 (v ≤ t− v)

ai − bi − 1 = 0 1 ≤ i ≤ 2n1 + 2n2

n2∑
i=1

zi−1(a2n1+2n2+i − b2n1+2n2+i − 1)− a3n1+3n2+1 = 0

n1∑
i=1

zi−1(a2n1+3n2+i − b2n1+3n2+i − 1)− b3n1+3n2+1 = 0

ci = 0 1 ≤ i ≤ 3n1 + 3n2 + 1

Fig. 4: Base Proof-of-Mod Circuit Equations.

Algorithm 4: Non-interactive Prover for Proof-of-Mod.

Input: p0, p ∈ N, a0, . . . , am ∈ Zp0
, v =

∑m
i=0 aip0

i mod p ∈ Zp, rv, r0, . . . , rm ∈ R, V = Com (v; rv),
A0, . . . , Am = Com (a0; r0) , . . . ,Com (am; rm).

Output: Proof π.
1 a⃗, b⃗, c⃗← EModSolve(v, a0, . . . , am, p0, p);

2 ra, rb, rc
$←− R;

3 A,B,C ← Com (⃗a; ra) ,Com
(⃗
b; rb

)
,Com (c⃗; rc);

4 z ← H(A,B,C);
5 CKT← EModCkt(p0, p, z);
6 πckt ← tr < ΠCKT > ((V,A0, . . . , Am),CKT, (v, a0, . . . , am), a⃗, b⃗, c⃗, (rv, r0, . . . , rm), A,B,C, ra, rb, rc);
7 return π = (A,B,C, πckt);

Algorithm 5: Non-interactive Verifier for Proof-of-Mod.
Input: p0, p ∈ N, Commitments V,A0, . . . , Am, Proof π.
Output: Accept or Reject.

1 A,B,C, πckt ← Parse(π);
2 z ← H(A,B,C);
3 CKT← EModCkt(p0, p, z);
4 if VCKT ((V,A0, . . . , Am),CKT, A,B,C, πckt) = Accept then
5 return Accept;
6 else
7 return Reject;
8 end
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I. Ethereum Staking Data

Entity ETH Staked Marketshare Virtual Shares WRSS Bits WRSS Shares
Lido 9,370,076 31.7588 1588 1611 14
Coinbase 4,329,345 14.6738 734 749 7
Binance 1,162,816 3.9412 197 208 2
Kiln 989,472 3.3537 168 178 2
Figment 937,632 3.1780 159 169 2
Rocket Pool 853,934 2.8943 145 155 2
Kraken 825,601 2.7983 140 150 2
Staked.us 666,492 2.2590 113 123 1
OKX 587,649 1.9918 100 109 1
Bitcoin Suisse 541,942 1.8368 92 102 1
Upbit 374,912 1.2707 64 73 1
stakefish 374,752 1.2702 64 73 1
Mantle 338,048 1.1458 57 67 1
DARMA Capital 326,112 1.1053 55 65 1
Blockdaemon 263,712 0.8938 45 54 1
Frax Finance 231,488 0.7846 39 49 1
P2P.org 230,816 0.7823 39 48 1
Swell 182,688 0.6192 31 40 1
ether.fi 167,844 0.5689 28 38 1
Daniel Wang 151,648 0.5140 26 35 1
CoinSpot 137,664 0.4666 23 33 1
Diva (Pre-launch) 125,443 0.4252 21 30 1
Octant 100,000 0.3389 17 26 1
Stader 82,565 0.2798 14 23 1
Stakewise 76,672 0.2599 13 22 1
MyEtherWallet 63,235 0.2143 11 20 1
XHash 60,800 0.2061 10 19 1
imToken 60,128 0.2038 10 19 1
Bitstamp 52,032 0.1764 9 18 1
Revolut 45,152 0.1530 8 17 1
Gate.io 41,536 0.1408 7 16 1
StakeHound 37,504 0.1271 6 15 1
Liquid Collective 35,520 0.1204 6 15 1
Poloniex 31,072 0.1053 5 14 1
RockX 29,216 0.0990 5 14 1
KuCoin 26,464 0.0897 4 14 1
BlockFi 26,112 0.0885 4 13 1
Bitfinex 24,387 0.0827 4 13 1
Stkr (Ankr) 24,104 0.0817 4 13 1
Everstake 22,784 0.0772 4 13 1
Harbour 20,288 0.0688 3 12 1
arthapala.eth 18,816 0.0638 3 12 1
Consensys 18,240 0.0618 3 12 1
Bake 17,408 0.0590 3 12 1
WEX Exchange 16,000 0.0542 3 12 1
conurtrol.eth 15,840 0.0537 3 12 1
StakeWise 13,824 0.0469 2 11 1
Node DAO 12,288 0.0416 2 11 1
Bitpie 11,456 0.0388 2 11 1
HTX 10,368 0.0351 2 11 1
Mercado Bitcoin 10,368 0.0351 2 11 1
Celsius 8,993 0.0305 2 11 1
bitshameddesk.eth 8,640 0.0293 1 10 1



BTC-e 8,416 0.0285 1 10 1
honoraryape.eth 8,000 0.0271 1 10 1
Taylor Gerring 8,000 0.0271 1 10 1
was.eth 7,680 0.0260 1 10 1
Paxos 7,680 0.0260 1 10 1
Swell (Pre-launch) 7,188 0.0244 1 10 1
CoinDCX 7,136 0.0242 1 10 1
Vitalik Buterin 6,976 0.0236 1 10 1
Tranchess 6,976 0.0236 1 10 1
cryptostake.com 6,592 0.0223 1 10 1
guccilorian.eth 5,088 0.0172
for.eth 5,056 0.0171
EPotter 4,640 0.0157
Ebunker 4,640 0.0157
Sigma Prime Team 4,608 0.0156
Nimbus Team 4,608 0.0156
Teku Team 4,608 0.0156
Prysm Team 4,608 0.0156
SharedStake 3,584 0.0121
StaFi 3,456 0.0117
Redacted Pirex 3,378 0.0114
MintDice.com 2,688 0.0091
Bitget 2,688 0.0091
Bifrost 1,632 0.0055
DxPool 992 0.0034
Blox Staking 992 0.0034
staked.finance 960 0.0033
Flipside 512 0.0017
neukind.com 480 0.0016
Uphold 448 0.0015
ClayStack 128 0.0004
SenseiNode 96 0.0003
Other Solo Stakers 151,143 0.5123
Unidentified 5,026,342 17.0362
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