
ar
X

iv
:2

50
5.

24
26

7v
1

 [
cs

.C
R

]
 3

0
M

ay
 2

02
5

MUSE: Model-Agnostic Tabular Watermarking via
Multi-Sample Selection

Liancheng Fang1, Aiwei Liu2∗, Henry Peng Zou1, Yankai Chen1,
Hengrui Zhang1, Zhongfen Deng1, Philip S. Yu1

1University of Illinois Chicago 2Tsinghua University
lfang87@uic.edu, liuaw20@mails.tsinghua.edu.cn, psyu@uic.edu

Abstract

We introduce MUSE, a watermarking algorithm for tabular generative models.
Previous approaches typically leverage DDIM invertibility to watermark tabular dif-
fusion models, but tabular diffusion models exhibit significantly poorer invertibility
compared to other modalities, compromising performance. Simultaneously, tabular
diffusion models require substantially less computation than other modalities, en-
abling a multi-sample selection approach to tabular generative model watermarking.
MUSE embeds watermarks by generating multiple candidate samples and selecting
one based on a specialized scoring function, without relying on model invertibility.
Our theoretical analysis establishes the relationship between watermark detectabil-
ity, candidate count, and dataset size, allowing precise calibration of watermarking
strength. Extensive experiments demonstrate that MUSE achieves state-of-the-art
watermark detectability and robustness against various attacks while maintaining
data quality, and remains compatible with any tabular generative model supporting
repeated sampling, effectively addressing key challenges in tabular data watermark-
ing. Specifically, it reduces the distortion rates on fidelity metrics by 81− 89%,
while achieving 1.0 TPR@0.1%FPR detection rate. Implementation of MUSE
can be found at https://github.com/fangliancheng/MUSE.

1 Introduction

Tabular Video Image
0

20

40

60

80

100

In
ve

rs
io

n
A

cc
. (

%
)

Tabular Video Image

100

101

102

103

104

G
en

er
at

io
n

G
FL

O
Ps

Figure 1: Left: Tabular diffusion models exhibit
the lowest inversion accuracy (bit accuracy) when
compared to video and image diffusion models.
Right: Tabular diffusion models require much
fewer generation GFLOPs than video and image
diffusion models. Models used: TabSyn [Zhang
et al., 2024c] (tabular), Stable Diffusion [Rombach
et al., 2022, Blattmann et al., 2023] (image/video).

The rapid development of tabular generative
models [Kotelnikov et al., 2023, Gulati and
Roysdon, 2024, Castellon et al., 2023, Zhang
et al., 2024c, Shi et al., 2024, Zhang et al., 2024a,
Fang et al., 2025] has significantly advanced syn-
thetic data generation capabilities for structured
information. These breakthroughs have enabled
the creation of high-quality synthetic tables for
applications in privacy preservation, data aug-
mentation, and missing value imputation [Zhang
et al., 2024b, Hernandez et al., 2022, Fonseca
and Bacao, 2023, Assefa et al., 2020]. How-
ever, this advancement concurrently raises seri-
ous concerns about potential misuse, including
data poisoning [Padhi et al., 2021] and financial
fraud [Cartella et al., 2021]. To address these
risks, watermarking techniques have emerged as

∗Corresponding author.

Preprint. Under review.

https://github.com/fangliancheng/MUSE
https://arxiv.org/abs/2505.24267v1

a pivotal technique. By embedding imperceptible yet robust signatures into synthetic data, water-
marking facilitates traceability, ownership verification, and misuse detection [Liu et al., 2024].

Earlier works on tabular data watermarking [Zheng et al., 2024, He et al., 2024] utilize edit-based
watermarking, embedding signals by modifying table values. However, this approach has a funda-
mental limitation with tabular data: direct value alterations, especially in columns with discrete or
categorical data, can easily corrupt information or render entries invalid. For instance, such edits
might introduce non-existent categories or generate values outside permissible numerical ranges,
significantly compromising data integrity. Recently, generative watermarking has emerged as an
alternative approach for tabular data, drawing from successful techniques in diffusion models for
images and videos [Wu et al., 2025, Yang et al., 2024, Wen et al., 2023, Hu et al., 2025]. This
approach exploits the reversibility of DDIM samplers by setting patterned initial Gaussian noise
and measuring its correlation with noise recovered through the inverse process. TabWak [Zhu et al.,
2025] applies this concept to tabular diffusion models. Unlike edit-based watermarking, this method
maintains better generation quality since the watermark is embedded within noise patterns that closely
resemble Gaussian distributions, minimizing impact on the generated content.

However, watermarking tabular diffusion models is significantly more challenging than for image
and video diffusion models. This stems from the substantially lower accuracy of DDIM inverse
processes in tabular diffusion models, as shown in Figure 1 (left). When using the same Gaussian
shading algorithm [Yang et al., 2024], tabular modality exhibits the lowest reversibility accuracy.
This challenge arises because tabular diffusion models incorporate multiple additional algorithmic
components that are difficult to reverse, such as quantile normalization [Wikipedia contributors,
2025] and Variational Autoencoders (VAEs) [Kingma and Welling, 2013] used in TabSyn[Zhang
et al., 2024c]. During watermark detection, the entire data processing pipeline must be inverted to
recover the watermark signal, but this process accumulates errors as precisely reversing each step is
often difficult or impossible. Key challenges in the inversion process include: (1) inverting quantile
normalization is inherently problematic as this transformation is non-injective; (2) VAE decoder
inversion relies on optimization methods without guarantees of perfect implementation. Due to
limitations in tabular DDIM inversion accuracy, watermark detectability becomes highly dependent
on model implementation, severely restricting its application scope and practical utility.

In this work, we introduce MUSE, a model-agnostic watermarking algorithm for tabular data
that operates without relying on the invertibility of diffusion models. A key insight enabling our
approach is that tabular data generation demands significantly less computation than image or
video generation, as shown in Figure 1 (right). This computational efficiency makes a multi-sample
selection process practical. MUSE leverages this by generating m candidate samples for each data
row. A watermark is embedded by selecting one candidate based on a score function, which is
calculated using values from specific columns. Because it does not depend on model invertibility,
MUSE is broadly applicable to any tabular generative model. We also show that our method
can maintain the original data distribution (distortion-free) when using certain column selection
techniques. Furthermore, we establish a mathematical relationship between detectability, the number
of candidates (m), and the number of rows (N), ensuring reliable watermark detection.

With these mechanisms, MUSE achieves high watermark detectability while preserving the gener-
ation quality of the underlying model, as validated across diverse tabular datasets and evaluation
metrics. Moreover, MUSE exhibits strong robustness against a wide range of post-generation attacks
specific to tabular data. Importantly, MUSE is model-agnostic and compatible with any tabular
generative model supporting repeated sampling. This flexibility allows MUSE to integrate seamlessly
with sampling-efficient diffusion models, such as TabSyn [Zhang et al., 2024c], thereby effectively
mitigating the computational overhead introduced by repeated sampling processes. We summarize
the main contributions of this paper as follows:

• We propose tabular watermarking via multi-sample selection (MUSE), a novel generative water-
marking method for tabular data that completely avoids the inversion process in the data processing
and sampling pipeline.

• We provide a theoretical analysis of the detectability of MUSE, which enables precise calibration
of watermarking strength under a given detection threshold.

• Extensive experiments across multiple tabular datasets demonstrate that MUSE consistently
achieves state-of-the-art performance in generation quality, watermark detectability, and robustness
against various tabular-specific attacks.

2

Selected ValueUnwatermarked
Samples

1

2

3

4

9 870 1st 60

11 79 5th 80

2 128 3th 90

8 400 9th 50

1st

79

2

50

011001

110110

101111

001011

1

0

0

0

Seed

Bernulli argmaxHash Function

Watermark Key

609 870 1st

Watermarked Sample

Score

Col. Selection

§ 3.3 Eq. (2) Eq. (3)

Eq. (1)

Figure 2: An overview of the MUSE watermark generation process. MUSE operates by generating
multiple samples and selecting the highest-scoring sample (ties are broken randomly). The selected
row is appended to the watermarked table, while others are discarded.

2 Preliminaries

Tabular Generative Models. A tabular dataset with N rows and M columns consists of i.i.d.
samples (xi)

N
i=1 drawn from an unknown joint distribution p(x), where each xi ∈ RM (or mixed-

type space) represents a data row with M features. A tabular generative model aims to learn a
parameterized distribution pθ(x) ≈ p(x) to generate new realistic samples.

Watermark for Tabular Generative Models. Tabular watermark involves two main functions.

1. Generate: Given a secret watermark key k, this function produces a watermarked table. Similar
to standard generation, each row of this table is sampled i.i.d., but from a distribution p(x, k).

2. Detect: Provided with a table and a specific key k, this function examines the table to determine
if it carries the watermark associated with that particular key.

Threat Model. We consider the following watermarking protocol between three parties: the tabular
data provider, the user, and the detector.

1. The tabular data provider shares a watermark key k with the detector.
2. The user asks the tabular data provider to generate a table T .
3. The user publishes a table T ′, which can either be an (edited version of the) original table T or

an independent table.
4. The detector determines whether the table T ′ is watermarked or not.

3 Proposed Method

In this section, we introduce MUSE, a model-agnostic watermarking method for tabular generative
models. Considering the low reverse accuracy of tabular diffusion models and fast generation
compared to other modalities, our method is based on multi-sample selection instead of DDIM
inversion. We first introduce the overall watermark generation process in Section 3.1 and then
introduce the Watermark Scoring Function and Column Selection Mechanism in Section 3.2 and
Section 3.3 respectively, followed by the detailed watermark detection in Section 3.4.

3.1 Watermark Generation Framework

We define the overall generation process of our MUSE method in this section. The generation of
each watermarked row can be decomposed into the following two steps:

1. Sample m candidate rows from the tabular generative model p(x).
2. Apply a watermark scoring function sk(x) to each candidate using watermark key k and select

the highest-scoring candidate as the watermarked row. Details of the watermark scoring
function will be introduced in section 3.2.

Then we could repeat the above process N times to generate the watermarked table. In practice, the
selection procedure can be parallelized across the N groups since each group contains i.i.d. samples.
The overall process is illustrated in Figure 2.

3

Discussions. The advantages of this approach are twofold: (1) Model-agnostic: since we do not
modify the row generation process of the tabular generative model, the method is applicable to
any tabular generative model that supports repeated sampling. (2) Distribution-preserving: we
demonstrate in subsequent sections that the watermark remains unbiased under specific watermark
scoring functions.

3.2 Watermark Scoring Function

In this section, we detail the design of our watermark scoring function, denoted as s(x, k), which
involves two key steps as follows:

1. Column Selection Mechanism: Given an input sample x which consists of M columns, the
first step involves selecting a specific subset of n columns from these M available columns.
Let π(x) represent the operation that extracts the values from this chosen subset of n columns
of x. The specific strategies for how these n columns are selected (e.g., adaptive or fixed
methods) will be further elaborated in Section 3.3.

2. Score Generation: The second step takes the selected column values π(x) from the previous
stage and the predefined watermark key k as inputs. These are processed by a cryptographic
hash function H(·) to produce a deterministic hash value:

h = H(π(x), k). (1)

This resulting hash value h is then used to seed or as an input to a pseudorandom function f .
This function f maps the hash h to a scalar score s ∈ [0, 1]. In our implementation, we define
f as a Bernoulli distribution with a mean of 0.5:

sk(xi) = f(hi), f ∼ Bernoulli(0.5). (2)

The rationale behind choosing a Bernoulli(0.5) distribution is discussed in Lemma 3.2.

Discussion on Scoring Design. An important question is why our scoring function incorporates
column selection rather than simply using H(k) as the score. The key insight is that content-dependent
scoring through π(x) makes each row’s selection appear pseudo-random while still respecting the
original data distribution p(x). If we used a fixed score based solely on the watermark key, the
multi-sample selection process would become arbitrary, potentially biasing the resulting distribution
away from p(x).

3.3 Column Selection Mechanism

In this section, we introduce two strategies for the column selection procedure π(·) used in our
watermark scoring function (Equation (1)):

1. Fixed Column Selection: A straightforward approach that uses a predefined set of columns
for all samples, regardless of data characteristics.

2. Adaptive Column Selection: A dynamic approach that selects columns based on properties
of each individual sample, as detailed below.

For the adaptive strategy, we leverage each sample’s statistical properties. Unlike sequential language
models that naturally provide randomness [Kirchenbauer et al., 2023, Dathathri et al., 2024, Zhao
et al., 2023], tabular generation is often non-sequential. Therefore, we use the sample itself as a
source of entropy.

Specifically, we select columns based on how sample x deviates from the training data distribution T .
For each column j ∈ {1, . . . ,M}, we compute the empirical quantile rank:

rj =
1

N

N∑
i=1

1{Ti,j ≤ xj}, (3)

where N is the number of training samples. We then select columns (typically 3) corresponding to
the smallest, median, and largest rj values, resulting in an index set J = π(x) for hash computation.

4

Discussion. The adaptive column selection offers several advantages: (1) Enhanced Security: By
varying columns between samples, it prevents attackers from targeting specific columns; (2) Increased
Diversity: The diversity in column selection improves the uniformity of hash values, minimizing
distortion in watermarked data; (3) Improved Robustness: By linking selection to the data’s empirical
distribution, the method better withstands post-processing attacks that don’t significantly alter the
overall statistical properties. The complete MUSE watermark generation algorithm is presented in
Algorithm 1.

Repeated Column Masking. While our column selection mechanism introduces diversity, achiev-
ing true pseudo-randomness requires an additional safeguard. We adopt a repeated column masking
strategy that detects when previously selected column values reappear. In such cases, the scoring
function assigns a random score, thereby skipping watermark embedding for that instance. This
mechanism is inspired by the repeated key masking technique used in LLM watermarking [Hu et al.,
2023, Dathathri et al., 2024]. Further implementation details and experimental results are provided in
Section 4.3.

3.4 Watermark Detection

Detection Statistic. Since MUSE biases the selection process toward high-scoring samples, the
sum of scores for a watermarked table is expected to be higher than that of an unwatermarked table.
Given a (watermarked or unwatermarked) table T consists of N rows: T := (x1, . . . ,xN). We detect
watermark by computing the mean score:

S(T) =
1

N

N∑
i=1

sk(xi). (4)

We then compare with the mean score S(Tno-wm) of an unwatermarked table Tno-wm. We conclude
that T is watermarked if S(T) > S(Tno-wm).

Calibrating the Number of Repeated Samples. Given the detection statistic Equation (4), we
move on to show how the detectability of MUSE depends on (1) the number of watermarked samples
N and (2) the number of repeated samples m.
Lemma 3.1. Denote a watermarked table as Twm and an unwatermarked table as Tno-wm, each
consisting of N rows. Let x ∼ p(x) be a random variable drawn from the data distribution, and
let x1, . . . ,xm be i.i.d. samples from p(x). Define µno-wm = Ex∼p(x)[sk(x)] as the expected score
of an unwatermarked sample, and define µm

wm = Exi∼p(x)

[
maxi∈[m] sk(xi)

]
as the expected score

of a watermarked sample obtained via m repeated samples. Suppose the scoring function satisfies
sk(·) ∈ [0, 1], then, the False Positive Rate (FPR) of the watermark detection satisfies:

Pr (S(Tno-wm) > S(Twm)) ≤ exp

(
−N(µm

wm − µno-wm)
2

2

)
. (5)

Lemma 3.2 (Optimal Scoring Distribution). Let sk(x) be any random variable supported on [0, 1]
with mean 0.5, the right-hand-side of Equation (5) is minimized when sk(x) follows a Bernoulli(0.5)
distribution.

Theorem 3.3 (Minimum Watermarking Signal). Under the same assumptions as in Lemma 3.1,
suppose the scoring function sk(x) is instantiated as a hash-seeded pseudorandom function such
that sk(x) ∼ Bernoulli(0.5), the FPR is upper-bounded by:

Pr (S(Tno-wm) > S(Twm)) ≤ exp

(
−N

2
(0.5− 0.5m)

2

)
. (6)

To ensure the FPR does not exceed a target threshold α, it suffices to set the number of repeated
samples m as:

m = max

(
2,

⌈
log0.5

(
0.5−

√
2 log(1/α)

N

)⌉)
, (7)

where ⌈·⌉ denotes the ceiling function. This expression is valid when N > 8 log(1/α).

5

Algorithm 1 MUSE Watermark Generation

1: Input: watermark key k, unwatermarked table T ∈ RN×M , False Positive Rate α
2: Compute the number of repeated samples m based on N and α via Equation (7)
3: Randomly split rows of T into N/m groups: (Gi)N/m

i=1 , each containing m rows
4: Initialize an empty setR, and a list Twm to store the watermarked table
5: for i← 1 to N/m do
6: x1, . . . ,xm ← Gi
7: for t ∈ {1, . . . ,m} do ▷ Adaptive column selection.
8: Let x← xt

9: For each column j, compute quantile rank rj of xj in T [:, j] ▷ See Equation (3).
10: Sort {rj}Mj=1 and identify column indices with min, median, and max ranks
11: Let Jt be the set of selected column indices
12: end for
13: for t ∈ {1, . . . ,m} do ▷ Multi-sample selection.
14: rt = hash(k,xt[Jt])
15: Seed Bernoulli distribution with rt
16: st ∼ Bernoulli(0.5)
17: end for
18: i← argmaxt∈{1,...,m} st
19: Append xi to Twm

20: end for
21: return Twm

100 200 300 400 500
N

2.0

2.5

3.0

3.5
m

α= 0.01

α= 0.001

α= 0.0001

Figure 3: m vs. N under differ-
ent α values (smoothed).

Theorem 3.3 enables MUSE to calibrate the number of repeated
samples m to achieve a target false positive rate with theoretical
guarantees. This allows the method to embed just enough wa-
termarking signal to ensure the desired detectability. Intuitively,
since no redundant watermarking signal is embedded, the impact
of watermarking on the generation quality is minimal. In Figure 3,
we plot m as a function of table size N for various target FPRs,
based on Equation (7) (omitting the ceiling operation for clarity).
We observe that m quickly saturates as N increases. For instance,
to achieve a 0.01% FPR, m = 2 suffices when N ≥ 300, and even
for N = 100, m = 4 is enough. In the rest of the paper, MUSE’s
m is set by Equation (7) unless otherwise specified.

4 Experiments

In this section, we provide a comprehensive empirical evaluation of MUSE. We aim to answer the
following research questions: Q1: Detectability v.s. Invisibility (§4.2): Can MUSE achieve strong
detectability while preserving the distribution of the generated data? Q2: Robustness (§4.2): How
resilient is the watermark to a range of post-processing attacks, such as row/column deletion or value
perturbation? Q3: Component-wise Analysis (§4.3): How does MUSE perform under different
design choices of its components?

4.1 Setup

Datasets. We select six real-world tabular datasets containing both numerical and categorical
attributes: Adult, Default, Shoppers, Magic, Beijing and News. Due to space constraints, we
defer the results on News and Beijing to Appendix A.1. The statistics of the datasets are summarized
in Table 5 in Appendix C.2.

Evaluation Metrics. (a) To evaluate the detectability of the watermark, we report the area under
the curve (AUC) of the receiver operating characteristic (ROC) curve, and the True Positive Rate
when the False Positive Rate is at 0.1%, denoted as TPR@0.1%FPR. (b) To evaluate the distortion of
the watermarked data, we follow standard fedelity and utility metrics used in tabular data generation

6

Table 1: Watermark generation quality and detectability, indicates best performance,
indicates second-best performance. For clarity, only our method is highlighted in detection.

Watermark Generation Quality Watermark Detectability

Dataset Method Num. Training Rows 100 500

Marg. Corr. C2ST MLE Gap AUC T@0.1%F AUC T@0.1%F

Adult

w/o WM 0.994 0.984 0.996 0.017 - - - -
TR 0.919 0.870 0.676 0.046 0.590 0.004 0.774 0.171
GS 0.751 0.619 0.058 0.084 1.000 1.000 1.000 1.000
TabWak 0.935 0.885 0.769 0.048 0.844 0.089 0.990 0.592
TabWak* 0.933 0.879 0.713 0.085 0.999 0.942 1.000 1.000
MUSE 0.979 0.963 0.883 0.017 1.000 1.000 1.000 1.000

Default

w/o WM 0.990 0.934 0.979 0.000 - - - -
TR 0.895 0.888 0.564 0.161 0.579 0.001 0.848 0.034
GS 0.701 0.678 0.059 0.182 1.000 1.000 1.000 1.000
TabWak 0.911 0.902 0.568 0.156 0.896 0.071 0.997 0.611
TabWak* 0.906 0.894 0.550 0.176 0.965 0.218 1.000 0.995
MUSE 0.983 0.925 0.963 0.002 1.000 1.000 1.000 1.000

Magic

w/o WM 0.990 0.980 0.998 0.008 - - - -
TR 0.898 0.936 0.621 0.129 0.652 0.014 0.592 0.102
GS 0.688 0.838 0.030 0.064 1.000 1.000 1.000 1.000
TabWak 0.905 0.929 0.605 0.120 0.904 0.067 0.997 0.737
TabWak* 0.891 0.916 0.520 0.100 0.873 0.050 0.995 0.687
MUSE 0.991 0.982 0.999 0.010 1.000 1.000 1.000 1.000

Shoppers

w/o WM 0.985 0.974 0.974 0.017 - - - -
TR 0.888 0.880 0.501 0.077 0.575 0.001 0.830 0.058
GS 0.729 0.688 0.061 0.154 1.000 1.000 1.000 1.000
TabWak 0.903 0.886 0.548 0.132 0.860 0.106 0.990 0.353
TabWak* 0.897 0.879 0.525 0.384 0.742 0.002 0.981 0.185
MUSE 0.982 0.974 0.950 0.015 1.000 1.000 1.000 1.000

[Zhang et al., 2024c, Kotelnikov et al., 2023]: we report Marginal distribution (Marg.), Pair-wise
column correlation (Corr.), Classifier-Two-Sample-Test (C2ST), and Machine Learning Efficiency
(MLE). For MLE, we report the gap between the downstream task performance of the generated data
and the real test set (MLE Gap). We refer the readers to [Zhang et al., 2024c] for a more detailed
definition of each evaluation metric.

Baselines. Since our method belongs to the class of generative watermarking techniques, we pri-
marily compare it with TabWak [Zhu et al., 2025], which is the only existing generative watermarking
approach for tabular data. We use the official implementations of both TabWak and its improved
variant TabWak* in all experiments to ensure consistency. In addition, following the experimental
setup in TabWak, we include two image watermarking methods, TreeRing (TR) and Gaussian Shading
(GS), as auxiliary baselines. For completeness, we also evaluate against representative edit-based
watermarking methods, including TabularMark [Zheng et al., 2024] and WGTD [He et al., 2024]. Due
to space constraints, detailed descriptions and results for these methods are deferred to Appendix A.3.

Implementation Details. We use the same tabular generative model as TabWak, namely Tab-
Syn [Zhang et al., 2024c], and train it using the official codebase. For TabWak, we use its official
implementation to generate watermarked data. Notably, it bypasses the inversion of quantile normal-
ization, which assumes access to ground-truth data not available for watermark detection, potentially
giving it an advantage under our evaluation protocol. Generation quality is evaluated across ten
repetitions, and we report the averaged results.

4.2 Main Results

Distortion and Detectability. We address the first question: whether the watermarking method
achieves high watermark detectability while introducing minimal distortion to the generated data.
As shown in Table 1 and Appendix A.1, MUSE consistently achieves strong performance across
both fidelity and detection metrics on all six datasets. It yields the highest marginal statistics,

7

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00

TP
R

@
1%

FP
R

 (
)

Shuffle

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Alteration

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Cell deletion

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Row deletion

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Column deletion

Ours TabWak TabWak*

Figure 4: Detection performance of watermarking methods against different types of tabular data
attacks across varying attack intensities.

correlation, C2ST and MLE, often closely matching the unwatermarked baseline. This suggests that
the underlying data distribution is well preserved. In terms of detectability, MUSE achieves nearly
perfect detection performance across all datasets and detection budgets, as measured by both AUC
and T@0.1%F. For example, on the Default dataset, it attains a marginal statistic of 0.983 and AUC
of 1.000, compared to 0.911 and 0.896 for TabWak. Notably, while GS also achieves strong detection
scores, this comes at the cost of significantly higher distortion across all fidelity metrics. For instance,
on the Adult dataset, GS results in a C2ST of only 0.058 and correlation of 0.619, in contrast to
the higher values of 0.883 and 0.963 from MUSE, respectively. These results indicate that MUSE
embeds a detectable watermark signal while preserving the statistical properties of the generated data
to a greater extent than existing approaches.

Robustness against Attacks. We assess the robustness of watermarking methods under five
representative attacks on tabular data: row shuffling, row deletion, column deletion, cell deletion, and
value alteration. Each attack is applied at varying intensities, with attack percentages ranging from
0.0 to 1.0 in increments of 0.2. For deletion-based attacks, a specified fraction of rows, columns, or
cells is randomly removed and replaced with unwatermarked values independently sampled from
the same generative model. In the value alteration attack, selected numerical values are perturbed by
multiplying each with a scalar drawn uniformly from (0.8, 1.2). Row shuffling permutes a fraction
of the dataset’s rows. We benchmark the detectability of MUSE against TabWak and TabWak* on
the Adult dataset, using N=500 and m=2. As shown in Figure 4, MUSE consistently outperforms
or matches the performance of TabWak and TabWak* under four of the five attacks—row shuffling,
row deletion, cell deletion, and value alteration. Under column deletion, however, MUSE shows a
drop in performance due to its watermark being embedded via selected columns, which are partially
removed by this attack. For benchmark results on other datasets, we refer readers to Appendix A.2.

Table 2: Component-wise ablation study of MUSE. Each color block indicates a different component
of the method. Details of the experimental setup are in §4.3.

Model Score func. Col. Select Mask Num. Col. z-stat.↑ Marg.↑ Corr.↑ C2ST↑ MLE Gap↓
TabSyn Bernoulli Adaptive No 3 7.348 0.979 0.963 0.883 0.017

TabDAR Bernoulli Adaptive No 3 7.270 0.977 0.958 0.880 0.018
DP-TBART Bernoulli Adaptive No 3 7.544 0.951 0.931 0.759 0.020

TabSyn Bernoulli Adaptive No 3 7.348 0.979 0.963 0.883 0.017
TabSyn Uniform Adaptive No 3 5.012 0.964 0.940 0.808 0.015

TabSyn Bernoulli Adaptive No 3 7.348 0.979 0.963 0.883 0.017
TabSyn Bernoulli Fixed No 3 5.439 0.949 0.907 0.601 0.015

TabSyn Bernoulli Adaptive No 3 7.348 0.979 0.963 0.883 0.017
TabSyn Bernoulli Adaptive Yes 3 4.819 0.985 0.973 0.940 0.017

TabSyn Bernoulli Adaptive No 1 4.987 0.931 0.879 0.544 0.015
TabSyn Bernoulli Adaptive No 3 7.348 0.979 0.963 0.883 0.017
TabSyn Bernoulli Adaptive No 5 8.624 0.989 0.969 0.983 0.017
TabSyn Bernoulli Adaptive No 7 8.728 0.990 0.976 0.995 0.018

4.3 Ablation Study and Further Analysis

We perform a component-wise ablation study to evaluate the contribution of each design choice in
our watermarking framework. All experiments are conducted on the Adult dataset and we generate

8

watermarked table with N = 100 rows, if not otherwise specified. For detectability, we report the
z-statistic defined as

∑N
i=1 sk(xi)−N/2√

N/4
.

Score Function. We compare two scoring distributions: (1) a Bernoulli distribution with mean 0.5,
and (2) a uniform distribution over [0, 1]. As shown in Table 2, MUSE with the Bernoulli score yields
higher detectability. This result aligns with our theoretical analysis in Lemma 3.2, which identifies
Bernoulli(0.5) as the optimal scoring distribution under our detection formulation.

Column Selection. We compare adaptive column selection strategy with a fixed set strategy that
selects the first three columns. As shown in Table 2, adaptive column selection leads to higher
detectability. We also investigate the effect of varying the number of selected columns. Increasing
the number of selected columns generally improves both detectability and generation quality due to
improved diversity for the hash function. However, using more columns increases vulnerability to
column deletion attacks. Additionally, detectability tends to saturate beyond three columns. Thus, we
use three adaptively selected columns in all main experiments for a balanced trade-off.

Distortion-Free Watermarking. Ideally, the selection process described in Section 3 would
introduce no distortion to the data distribution if it were entirely independent of sample values. In
practice, however, some dependence is necessary to ensure watermark detectability. To approximate
this ideal, we leverage the insight that if a value in the selected columns has not been previously used
for watermarking, its selection can be considered effectively random. To enforce this, we implement
a masking mechanism that tracks previously watermarked values and skips watermarking on samples
that would reuse them. As shown in Table 2, this mechanism helps preserve the underlying data
distribution and improves generation quality. However, it also reduces the number of watermarked
samples, slightly compromising overall detection strength.

Model-Agnostic Applicability. While our primary experiments are based on a diffusion
model [Zhang et al., 2024c], MUSE is universally applicable to any generative model and pre-
allocated tabular data. To demonstrate this, we evaluate MUSE on two additional representative
paradigms of tabular generative modeling: (1) Autoregressive models: we adopt DP-TBART [Castel-
lon et al., 2023], a transformer-based autoregressive model that predicts each tabular entry conditioned
on preceding entries; and (2) Masked generative models: we use TabDAR [Zhang et al., 2024a], a
masked autoencoder model that predicts randomly masked values. As shown in Table 2, MUSE
consistently achieves strong detectability and generation quality across all three model families,
confirming its generality and robustness across diverse generative architectures.

0 20 40 60 80 100
Time (s)

GS

TR

TabWak

TabWak*

MUSE

Generation
Detection

Figure 5: Watermark generation and detection
time of MUSE and inversion-based baselines.

Computation Time. We compare the effective
watermarking time (generation + detection) of
MUSE with baselines that rely on DDIM inver-
sion. We generate 10K watermarked rows of the
Adult dataset. As shown in Figure 5, MUSE
achieves significantly lower detection time by
avoiding the costly inversion process. Notably,
its generation time is also lower than that of the
baselines, despite using multi-sample generation
(m = 2). This efficiency arises from MUSE’s
compatibility with fast score-based diffusion models [Zhang et al., 2024c, Karras et al., 2022], which
require only 50 sampling steps, compared to the 1,000 steps typically needed for DDIM inversion to
ensure sufficient discretization.

5 Related Work

Generative Watermarking. Generative watermarking embeds watermark signals during the gener-
ation process, typically by manipulating the generation randomness through pseudorandom seeds.
This approach has proven effective and efficient for watermarking in image, video, and large language
model (LLM) generation. In image and video generation, where diffusion-based models are the
de facto standard, watermarking methods inject structured signals into the noise vector in latent
space [Wen et al., 2023, Yang et al., 2024, Huang et al., 2024]. Detection involves inverting the
diffusion sampling process [Dhariwal and Nichol, 2021, Hong et al., 2024, Pan et al., 2023] to recover

9

the original noise vector and verify the presence of the embedded watermark. For LLMs, generative
watermarking methods fall into two categories: (1) Watermarking during logits generation, which
embeds signals by manipulating the model’s output logits distribution [Kirchenbauer et al., 2023,
Zhao et al., 2023, Hu et al., 2023, Dathathri et al., 2024, Giboulot and Furon, 2024, Liu et al., 2023];
and (2) Watermarking during token sampling, which preserves the logits distribution but replaces
the stochastic token sampling process (e.g., multinomial sampling) with a pseudorandom procedure
seeded for watermarking [Aaronson and Kirchner, 2022, Kuditipudi et al., 2023, Christ et al., 2024].
In this sense, sampling-based watermarking is conceptually similar to inversion-based watermarking
used in diffusion models. We refer the reader to [Liu et al., 2024, Pan et al., 2024] for a comprehensive
survey of watermarking for LLMs. Closest to our approach are SynthID [Dathathri et al., 2024]
and Watermax [Giboulot and Furon, 2024], both of which embed watermarks via repeated logit
generation. However, our approach is specifically designed for unconditional tabular data generation,
unlike these methods which primarily target discrete text. This focus on tabular data introduces
unique challenges due to its distinct data structure. Consequently, our watermarking technique is
engineered for robustness against a different set of attacks prevalent in the tabular domain.

Watermarking for Tabular Data Traditional tabular watermarking techniques are edit-based,
injecting signals by modifying existing data values. WGTD [He et al., 2024] embeds watermarks by
altering the fractional parts of continuous values using a green list of intervals, but it is inapplicable
to categorical-only data. TabularMark [Zheng et al., 2024] perturbs values in a selected numerical
column using pseudorandom domain partitioning, but relies on access to the original table for
detection, limiting its robustness in adversarial settings. Another significant drawback of such
methods is the potential to distort the original data distribution or violate inherent constraints. To
overcome this, TabWak [Zhu et al., 2025] introduced the first generative watermarking approach
for tabular data. Analogous to inversion-based watermarks in diffusion models, TabWak embeds
detectable patterns into the noise vector within the latent space. It also employs a self-clone and
shuffling technique to minimize distortion to the data distribution. While TabWak avoids post-hoc
editing, its reliance on inverting both the sampling process (e.g., DDIM [Song et al., 2020]) and
preprocessing steps (e.g., quantile normalization [Wikipedia contributors, 2025]) can introduce
reconstruction errors. These errors will in turn impair the watermark’s detectability.

6 Conclusion

We propose MUSE, a model-agnostic watermarking method that embeds signals via multi-sample
selection, eliminating the need for costly and error-prone inversion procedures. MUSE achieves
strong detectability while introducing negligible distributional distortion and seamlessly scales across
a wide range of generative models. Extensive experiments on benchmark datasets validate its
effectiveness, consistently outperforming prior edit-based and inversion-based approaches in both
generation fidelity and watermark robustness. As synthetic tabular data becomes increasingly adopted
in high-stakes domains such as healthcare, finance, and social science, ensuring data traceability
and integrity is critical. MUSE provides a practical and generalizable solution for watermarking
synthetic data, enabling reliable provenance tracking, ownership verification, and misuse detection.
We believe this work opens new avenues for trustworthy synthetic data generation and highlights the
importance of integrating security considerations into the core of data-centric AI systems.

10

References
Scott Aaronson and Hendrik Kirchner. Watermarking gpt outputs. https://www.scottaaronson.
com/talks/watermark.ppt, 2022. Presentation.

Samuel A Assefa, Danial Dervovic, Mahmoud Mahfouz, Robert E Tillman, Prashant Reddy, and
Manuela Veloso. Generating synthetic data in finance: opportunities, challenges and pitfalls. In
Proceedings of the First ACM International Conference on AI in Finance, pages 1–8, 2020.

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

Francesco Cartella, Orlando Anunciacao, Yuki Funabiki, Daisuke Yamaguchi, Toru Akishita, and
Olivier Elshocht. Adversarial attacks for tabular data: Application to fraud detection and imbal-
anced data. arXiv preprint arXiv:2101.08030, 2021.

Rodrigo Castellon, Achintya Gopal, Brian Bloniarz, and David Rosenberg. Dp-tbart: A transformer-
based autoregressive model for differentially private tabular data generation. arXiv preprint
arXiv:2307.10430, 2023.

Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models. In The
Thirty Seventh Annual Conference on Learning Theory, pages 1125–1139. PMLR, 2024.

Sumanth Dathathri, Abigail See, Sumedh Ghaisas, Po-Sen Huang, Rob McAdam, Johannes Welbl,
Vandana Bachani, Alex Kaskasoli, Robert Stanforth, Tatiana Matejovicova, Jamie Hayes, Nidhi
Vyas, Majd Al Merey, Jonah Brown-Cohen, Rudy Bunel, Borja Balle, Taylan Cemgil, Zahra
Ahmed, Kitty Stacpoole, Ilia Shumailov, Ciprian Baetu, Sven Gowal, Demis Hassabis, and
Pushmeet Kohli. Scalable watermarking for identifying large language model outputs. Nature,
634(8035):818–823, Oct 2024. ISSN 1476-4687. doi: 10.1038/s41586-024-08025-4. URL
https://doi.org/10.1038/s41586-024-08025-4.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Liancheng Fang, Aiwei Liu, Hengrui Zhang, Henry Peng Zou, Weizhi Zhang, and Philip S Yu.
Tabgen-icl: Residual-aware in-context example selection for tabular data generation. arXiv
preprint arXiv:2502.16414, 2025.

Joao Fonseca and Fernando Bacao. Tabular and latent space synthetic data generation: a literature
review. Journal of Big Data, 10(1):115, 2023.

Eva Giboulot and Teddy Furon. Watermax: breaking the llm watermark detectability-robustness-
quality trade-off. arXiv preprint arXiv:2403.04808, 2024.

Manbir Gulati and Paul Roysdon. Tabmt: Generating tabular data with masked transformers.
Advances in Neural Information Processing Systems, 36, 2024.

Hengzhi He, Peiyu Yu, Junpeng Ren, Ying Nian Wu, and Guang Cheng. Watermarking generative
tabular data. arXiv preprint arXiv:2405.14018, 2024.

Mikel Hernandez, Gorka Epelde, Ane Alberdi, Rodrigo Cilla, and Debbie Rankin. Synthetic data
generation for tabular health records: A systematic review. Neurocomputing, 493:28–45, 2022.

Seongmin Hong, Kyeonghyun Lee, Suh Yoon Jeon, Hyewon Bae, and Se Young Chun. On exact
inversion of dpm-solvers. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7069–7078, 2024.

Runyi Hu, Jie Zhang, Yiming Li, Jiwei Li, Qing Guo, Han Qiu, and Tianwei Zhang. Videoshield:
Regulating diffusion-based video generation models via watermarking. arXiv preprint
arXiv:2501.14195, 2025.

Zhengmian Hu, Lichang Chen, Xidong Wu, Yihan Wu, Hongyang Zhang, and Heng Huang. Unbiased
watermark for large language models. arXiv preprint arXiv:2310.10669, 2023.

11

https://www.scottaaronson.com/talks/watermark.ppt
https://www.scottaaronson.com/talks/watermark.ppt
https://doi.org/10.1038/s41586-024-08025-4

Huayang Huang, Yu Wu, and Qian Wang. Robin: Robust and invisible watermarks for diffusion
models with adversarial optimization. Advances in Neural Information Processing Systems, 37:
3937–3963, 2024.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565–26577,
2022.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. In International Conference on Machine Learning, pages
17061–17084. PMLR, 2023.

Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: Modelling
tabular data with diffusion models. In International Conference on Machine Learning, pages
17564–17579. PMLR, 2023.

Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-free
watermarks for language models. arXiv preprint arXiv:2307.15593, 2023.

Aiwei Liu, Leyi Pan, Xuming Hu, Shiao Meng, and Lijie Wen. A semantic invariant robust watermark
for large language models. ArXiv, abs/2310.06356, 2023.

Aiwei Liu, Leyi Pan, Yijian Lu, Jingjing Li, Xuming Hu, Xi Zhang, Lijie Wen, Irwin King, Hui
Xiong, and Philip Yu. A survey of text watermarking in the era of large language models. ACM
Computing Surveys, 57(2):1–36, 2024.

Inkit Padhi, Yair Schiff, Igor Melnyk, Mattia Rigotti, Youssef Mroueh, Pierre Dognin, Jerret Ross,
Ravi Nair, and Erik Altman. Tabular transformers for modeling multivariate time series. In
ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 3565–3569. IEEE, 2021.

Leyi Pan, Aiwei Liu, Zhiwei He, Zitian Gao, Xuandong Zhao, Yijian Lu, Binglin Zhou, Shuliang
Liu, Xuming Hu, Lijie Wen, et al. Markllm: An open-source toolkit for llm watermarking. arXiv
preprint arXiv:2405.10051, 2024.

Zhihong Pan, Riccardo Gherardi, Xiufeng Xie, and Stephen Huang. Effective real image editing
with accelerated iterative diffusion inversion. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 15912–15921, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684–10695, 2022.

Juntong Shi, Minkai Xu, Harper Hua, Hengrui Zhang, Stefano Ermon, and Jure Leskovec. Tabdiff:
a unified diffusion model for multi-modal tabular data generation. In NeurIPS 2024 Third Table
Representation Learning Workshop, 2024.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Yuxin Wen, John Kirchenbauer, Jonas Geiping, and Tom Goldstein. Tree-ring watermarks: Fin-
gerprints for diffusion images that are invisible and robust. arXiv preprint arXiv:2305.20030,
2023.

Wikipedia contributors. Quantile normalization – Wikipedia, the free encyclopedia. https://en.
wikipedia.org/wiki/Quantile_normalization, 2025. Accessed: 2025-05-11.

Junchao Wu, Shu Yang, Runzhe Zhan, Yulin Yuan, Lidia Sam Chao, and Derek Fai Wong. A
survey on llm-generated text detection: Necessity, methods, and future directions. Computational
Linguistics, pages 1–66, 2025.

12

https://en.wikipedia.org/wiki/Quantile_normalization
https://en.wikipedia.org/wiki/Quantile_normalization

Zijin Yang, Kai Zeng, Kejiang Chen, Han Fang, Weiming Zhang, and Nenghai Yu. Gaussian shading:
Provable performance-lossless image watermarking for diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12162–12171, 2024.

Hengrui Zhang, Liancheng Fang, Qitian Wu, and Philip S Yu. Diffusion-nested auto-regressive
synthesis of heterogeneous tabular data. arXiv preprint arXiv:2410.21523, 2024a.

Hengrui Zhang, Liancheng Fang, and Philip S Yu. Unleashing the potential of diffusion models for
incomplete data imputation. arXiv preprint arXiv:2405.20690, 2024b.

Hengrui Zhang, Jiani Zhang, Balasubramaniam Srinivasan, Zhengyuan Shen, Xiao Qin, Chris-
tos Faloutsos, Huzefa Rangwala, and George Karypis. Mixed-type tabular data synthesis with
score-based diffusion in latent space. In The twelfth International Conference on Learning
Representations, 2024c.

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and Yu-Xiang Wang. Provable robust watermarking for
ai-generated text. arXiv preprint arXiv:2306.17439, 2023.

Yihao Zheng, Haocheng Xia, Junyuan Pang, Jinfei Liu, Kui Ren, Lingyang Chu, Yang Cao, and
Li Xiong. Tabularmark: Watermarking tabular datasets for machine learning. In Proceedings
of the 2024 on ACM SIGSAC Conference on Computer and Communications Security, pages
3570–3584, 2024.

Chaoyi Zhu, Jiayi Tang, Jeroen M. Galjaard, Pin-Yu Chen, Robert Birke, Cornelis Bos, and Lydia Y.
Chen. Tabwak: A watermark for tabular diffusion models. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?id=
71pur4y8gs.

13

https://openreview.net/forum?id=71pur4y8gs
https://openreview.net/forum?id=71pur4y8gs

Appendix

A Additional Experiments Results 15

A.1 Omitted Results on Distortion and Detectability 15

A.2 Omitted Results on Robustness . 15

A.3 Omitted Results on Edit-based Watermarking . 15

B Further Analysis of the Inversion-Based Watermarking 16

B.1 Pipeline of Inversion-based Watermarking . 17

B.2 Inversion of (Inverse) Quantile Transformation 17

B.3 Inversion of VAE decoder . 17

B.4 DDIM Inversion . 17

B.5 Error Accumulation . 18

C Experimental Details 19

C.1 Hardware Specification . 19

C.2 Dataset Statistics . 19

C.3 Fidelity Metrics . 19

C.3.1 Marginal Distribution . 20

C.3.2 Correlation . 20

C.3.3 Classifier Two-Sample Test (C2ST) . 20

C.3.4 Machine Learning Efficiency (MLE) . 21

C.4 Watermark Detection Metrics . 21

D Ommited Proofs in Section 3 21

E Technical Lemmas 23

14

A Additional Experiments Results

A.1 Omitted Results on Distortion and Detectability

We present the omitted results on distortion and detectability in Table 3.
Table 3: Watermark generation quality and detectability, indicates best performance,
indicates second-best performance. For clarity, only our method is highlighted in detection.

Watermark Generation Quality Watermark Detectability

Dataset Method Num. Training Rows 100 500

Marg. Corr. C2ST MLE Gap AUC T@0.1%F AUC T@0.1%F

Beijing

w/o WM 0.977 0.958 0.934 0.199 - - - -
TR 0.914 0.873 0.734 0.396 0.577 0.000 0.548 0.007
GS 0.656 0.529 0.097 0.715 1.000 1.000 1.000 1.000
TabWak 0.923 0.871 0.792 0.375 0.925 0.096 0.999 0.978
TabWak* 0.917 0.860 0.761 0.403 0.996 0.734 1.000 1.000
MUSE 0.972 0.955 0.926 0.209 1.000 1.000 1.000 1.000

News

w/o WM 0.960 0.973 0.899 0.024 - - - -
TR 0.899 0.963 0.641 0.041 0.547 0.000 0.549 0.005
GS 0.673 0.907 0.031 0.065 1.000 1.000 1.000 1.000
TabWak 0.929 0.968 0.749 0.066 0.998 0.869 1.000 1.000
TabWak* 0.924 0.964 0.719 0.044 1.000 0.991 1.000 1.000
MUSE 0.959 0.973 0.883 0.033 1.000 1.000 1.000 1.000

A.2 Omitted Results on Robustness

We present the omitted robustness results in Figure 6, where MUSE is compared against TabWak and
TabWak* on the Beijing, Default, Magic, News, and Shoppers datasets. Overall, MUSE
demonstrates stronger robustness under cell deletion and row deletion attacks, while achieving com-
parable performance on alteration and column deletion attacks. Both MUSE and TabWak/TabWak*
remain resilient to shuffle attacks, due to embedding watermarks at the individual row level. Notably,
we observe that TabWak and TabWak* exhibit instability on certain datasets, such as Shoppers and
Beijing, where detection performance fluctuates—first decreasing and then increasing—as attack
intensity increases. We hypothesize that this behavior stems from the inherent instability of the VAE
inversion process.

A.3 Omitted Results on Edit-based Watermarking

We compare our method against two representative edit-based watermarking baselines, which embed
watermarks by directly altering table entries. Since the official implementations of these methods are
not publicly available, we reimplement them based on the descriptions in their original papers. We
first outline their core methodologies and our reimplementation details, then present the comparative
results in Table 4. Our reproduced codes are provided in the supplementary material. Below are
the detailed implementations of the baselines.

WGTD [He et al., 2024]. WGTD embeds watermarks by modifying the fractional part of continuous
data points, replacing them with values from a predefined green list. Consequently, it is limited to
continuous data and cannot be applied to tables containing only categorical features.

The watermarking process in WGTD involves three main steps: (i) dividing the interval [0, 1] into
2m equal sub-intervals to form m pairs of consecutive intervals; (ii) randomly selecting one interval
from each pair to construct a set of m “green list” intervals; and (iii) replacing the fractional part
of each data point with a value sampled from the nearest green list interval, if the original does not
already fall within one. Detection is performed via a hypothesis-testing framework that exploits the
statistical properties of the modified distribution to reliably identify the presence of a watermark. For
reproducibility, we adopt the original hyperparameter setting with m = 5 green list intervals.

TabularMark [Zheng et al., 2024]. TabularMark embeds watermarks by perturbing specific cells
in the data. It first pick a selected attribute/column to embed the watermark, then it generate
pesudorandom partition of a fixed range into multiple unit domains, and label them with red and
green domains, and finally perturb the selected column with a random number from the green domain.

15

Table 4: Watermark generation quality and detectability, indicates best performance,
indicates second-best performance. For clarity, only our method is highlighted in detection.

Watermark Generation Quality Watermark Detectability

Dataset Method Num. Training Rows 100 500

Marg. Corr. C2ST MLE Gap AUC T@0.1%F AUC T@0.1%F

Adult

w/o WM 0.994 0.984 0.996 0.017 - - - -
TabularMark 0.983 0.949 0.987 0.021 1.000 1.000 1.000 1.000
WGTD 0.987 0.972 0.978 0.019 1.000 1.000 1.000 1.000
MUSE 0.979 0.963 0.883 0.017 1.000 1.000 1.000 1.000

Beijing

w/o WM 0.977 0.958 0.934 0.199 - - - -
TabularMark 0.935 0.789 0.941 0.528 1.000 1.000 1.000 1.000
WGTD 0.964 0.948 0.929 0.527 1.000 1.000 1.000 1.000
MUSE 0.972 0.955 0.926 0.209 1.000 1.000 1.000 1.000

Default

w/o WM 0.990 0.934 0.979 0.000 - - - -
TabularMark 0.987 0.939 0.961 0.004 1.000 1.000 1.000 1.000
WGTD 0.989 0.913 0.919 0.000 1.000 1.000 1.000 1.000
MUSE 0.983 0.925 0.963 0.002 1.000 1.000 1.000 1.000

Magic

w/o WM 0.990 0.980 0.998 0.008 - - - -
TabularMark 0.985 0.975 0.999 0.026 1.000 1.000 1.000 1.000
WGTD 0.979 0.977 0.998 0.019 1.000 1.000 1.000 1.000
MUSE 0.991 0.982 0.999 0.010 1.000 1.000 1.000 1.000

News

w/o WM 0.960 0.973 0.811 0.024 - - - -
TabularMark 0.959 0.969 0.877 0.130 1.000 1.000 1.000 1.000
WGTD 0.903 0.968 0.861 0.131 1.000 1.000 1.000 1.000
MUSE 0.959 0.973 0.883 0.033 1.000 1.000 1.000 1.000

Shoppers

w/o WM 0.985 0.974 0.974 0.017 - - - -
TabularMark 0.974 0.930 0.975 0.013 1.000 1.000 1.000 1.000
WGTD 0.964 0.944 0.887 0.008 1.000 1.000 1.000 1.000
MUSE 0.982 0.974 0.950 0.015 1.000 1.000 1.000 1.000

In our implementation, we choose the first numerical column as the selected attribute, and set the
number of unit domains k = 500, the perturbation range controlled by p = 25, and configure nw as
10% of the total number of rows.

During detection, TabularMark leverages the original unwatermarked table to reverse the perturbations
and verify whether the restored differences fall within the green domain. However, this approach
assumes access to the original unwatermarked table, which is often impractical, especially in
scenarios where the watermarked table can be modified by adversaries.

Discussions. As demonstrated in Table 4, both WGTD and TabularMark exhibit strong detection
performance across all datasets. Furthermore, their generation quality is generally comparable to
that of MUSE. However, a notable observation is the significant performance degradation measured
by the MLE metric for both WGTD and TabularMark on the Beijing and News datasets. We
hypothesize that this performance drop stems from the post-editing process, which may introduce
substantial artifacts into the data. These artifacts, in turn, could negatively impact the performance of
downstream machine learning tasks.

B Further Analysis of the Inversion-Based Watermarking

We first introduce the overall pipeline of inversion-based watermarking in Figure 7. The difficulty lies
in the inversion of three components, in sequential order: (1) inverse Quantile Transformation (IQT)
§B.2, (2) the VAE decoder §B.3, and (3) the DDIM sampling process §B.4. Finally, we analyze the
error accumulation and detection performance across the inversion stages in §B.5.

16

B.1 Pipeline of Inversion-based Watermarking

Diffusion
Sampling

VAE
Decoder

Noise vector
(Watermarked) IQT Tabular

Data

DDIM
Inversion

Inverse VAE
Decoder

Noise vector
(Recoverd) Inverse IQT Tabular

Data

AttackCompare

Watermark Generation

Watermark Detection

Figure 7: Pipeline of Inversion-based Watermarking. Top: The watermark signal is embedded in
the noise vector in the latent space, a watermarked table is subsequently generated. Bottom: To
detect the watermark signal, we need to reverse the entire pipeline. IQT stands for the inverse map of
Quantile Transformation.

B.2 Inversion of (Inverse) Quantile Transformation

The Quantile Transformation [Wikipedia contributors, 2025] is a widely used [Zhang et al., 2024c,a,
Shi et al., 2024, Kotelnikov et al., 2023] data preprocessing step in tabular data synthesis. It
regularizes the data distribution to a standard normal distribution. The Quantile Transformation can
be implemented as follows:

1) Estimate the empirical cumulative distribution function (CDF) of the features.

2) Map to uniform distribution with the estimated CDF.

3) Map to standard normal distribution with inverse transform sampling: z = Φ−1(u), where
Φ is the CDF of the standard normal distribution.

Note that in the second step, only the ordering of the data is preserved, and the exact values are not
preserved, making the map non-injective, therefore, the inverse of the Quantile Transformation is
inherently error-prone. Based on the official codebase, TabWak [Zhu et al., 2025] bypass the inversion
of quantile normalization by caching the original data during watermarking, this is infeasible in
practical scenarios where the ground truth is unavailable. To study the impact of the inversion error
of the Quantile Transformation, we apply the original Quantile Transformation to the sampled tabular
data to inverse the inverse quantile transformation.

B.3 Inversion of VAE decoder

Denote the VAE decoder as fθ, and the VAE decoder output as x = fθ(z). To get z from x, [Zhu
et al., 2025] employ a gradient-based optimization to approximate the inverse of the VAE decoder.
Specifically, we can parametrize the unknown z with trainable parameters, and optimize the following
objective with standard gradient descent:

z = argmin
z
∥x− fθ(z)∥22 .

where z is inilitaized as g(fθ(x)), and g(·) is a VAE encoder. However, there is no guarantee that
the above optimization will converge to the true z, and we observed that the optimization process is
unstable (sometimes produce NaN) for tabular data and introduce significant error in the inversion
process.

B.4 DDIM Inversion

The DDIM diffusion forward process is defined as:

q(xt | xt−1) = N (xt;
√

1− βtxt−1, βtI),

17

where x0 is the original data, xt is the data at time t, and βt is the variance of the noise at step t.
Based on the above definition, we can write xt as:

xt =
√
ᾱtxt−1 +

√
1− ᾱtϵ, (Forward process)

where ᾱt =
∏t

i=0(1− βi), ϵ ∼ N (0, I).

Starting from xT , we sample xT−1, . . . ,x0 recursively according to the following process:

xt
0 =

(
xt −

√
1− ᾱtϵθ(xt, t)

)
/
√
ᾱt

xt−1 =
√
ᾱt−1x

t
0 +

√
1− ᾱt−1ϵθ(xt, t),

(Reverse process)

where ϵθ(xt, t) is noise predicted by a neural network.

The DDIM inversion process is defined as the inverse of the DDIM reverse process. Specifically,
starting from x0, our goal is to recover the original noise vector xT in the latent space. We introduce
the basic DDIM inversion process proposed in [Dhariwal and Nichol, 2021], and is widely adapted in
inversion-based watermark methods [Wen et al., 2023, Yang et al., 2024, Zhu et al., 2025, Hu et al.,
2025].

We can abtain the inverse of the DDIM forward process by replacing the t− 1 subscript with t+ 1 in
Equation (Reverse process), but use xt to approxiate the unknown xt+2:

xt+1 =
√
ᾱt+1x

t
0 +

√
1− ᾱt+1ϵθ(xt, t),

Due to the approximation xt ≈ xt+2, the inversion process generally demands a finer discretization
of the time steps. For instance, inversion-based watermarking methods [Wen et al., 2023, Zhu et al.,
2025] typically adopt T = 1000 steps, whereas diffusion models optimized for fast inference [Karras
et al., 2022, Zhang et al., 2024c] often operate with a coarser discretization of T = 50 steps.

Advanced Inversion Methods. To address the inexactness of the above inversion process, recent
works [Hong et al., 2024, Pan et al., 2023] have proposed more accurate inversion methods based on
iterative optimization. However, we empirically found that those methods still suffer from inversion
error due to already noisy input from the previous steps (VAE decoder and Quantile Transformation).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Cumulative Error

L1 Error

Detectability

IQ+VAE+DDIM VAE+DDIM DDIM

DDIM
VAE Decoder
Inverse Quantile

0.07 0.24 1.00
TPR@1%FPR

Figure 8: Error Accumulation and Detection Performance Across Inversion Stages of TabWak. The
ℓ1 error is computed between the estimated and ground truth noise vectors in latent space.

B.5 Error Accumulation

In Figure 8, we analyze the error accumulated at each inversion stage and its impact on detection per-
formance using the Adult dataset. Specifically, we compute the TPR@1%FPR over 100 watermarked
tables, each with 100 rows. The top bar chart shows detection performance when progressively
inverting different parts of the pipeline. From left to right:

• When we invert the entire pipeline (IQ→ VAE→ DDIM), the detection performance drops
to 0.07 TPR@1%FPR.

• When we provide the ground-truth IQ and only invert the VAE decoder and DDIM, the
performance improves to 0.24 TPR@1%FPR.

• When both the ground-truth IQ and VAE decoder outputs are provided (i.e., only DDIM is
inverted), detection reaches a perfect 1.0 TPR@1%FPR.

18

The bottom bar chart reports the ℓ1 error between the estimated and ground-truth noise vectors in the
latent space. From left to right, the bars correspond to:

• Inverting only DDIM (given the ground-truth VAE output),

• Inverting both the VAE decoder and DDIM (given the ground-truth IQ), and

• Inverting the full pipeline (IQ→ VAE→ DDIM).

This comparison highlights how errors accumulate through the inversion stages and directly affect
watermark detectability.

C Experimental Details

C.1 Hardware Specification

We use a single hardware for all experiments. The hardware specifications are as follows:

• GPU: NVIDIA RTX 4090

• CPU: Intel 14900K

C.2 Dataset Statistics

The dataset used in this paper could be automatically downloaded using the script in the provided code.
We use 6 tabular datasets from UCI Machine Learning Repository2: Adult3, Default4, Shoppers5,
Magic6, Beijing7, and News8, which contains varies number of numerical and categorical features.
The statistics of the datasets are presented in Table 5.

Table 5: Dataset statistics.
Dataset # Rows # Continuous # Discrete # Target # Train # Test Task

Adult 32, 561 6 8 1 22, 792 16, 281 Classification
Default 30, 000 14 10 1 27, 000 3, 000 Classification
Shoppers 12, 330 10 7 1 11, 098 1, 232 Classification
Magic 19, 021 10 1 1 17, 118 1, 903 Classification
Beijing 43, 824 7 5 1 39, 441 4, 383 Regression
News 39, 644 46 2 1 35, 679 3, 965 Regression

In Table 5, # Rows refers to the total records in each dataset, while # Continuous and # Discrete
denote the count of numerical and categorical features, respectively. The # Target column indicates
whether the prediction task involves a continuous (regression) or discrete (classification) target
variable. All datasets except Adult are partitioned into training and testing sets using a 9:1 ratio, with
splits generated using a fixed random seed for reproducibility. The Adult dataset uses its predefined
official testing set. For evaluating Machine Learning Efficiency (MLE), the training data is further
subdivided into training and validation subsets with an 8:1 ratio, ensuring consistent evaluation
protocols across experiments.

C.3 Fidelity Metrics

The fidelity metrics used in this paper (Marginal, Correlation, C2ST and MLE) are standard metrics
in the field of tabualr data synthesis. Here is a reference:

2https://archive.ics.uci.edu/datasets
3https://archive.ics.uci.edu/dataset/2/adult
4https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
5https://archive.ics.uci.edu/dataset/468/online+shoppers+purchasing+intention+

dataset
6https://archive.ics.uci.edu/dataset/159/magic+gamma+telescope
7https://archive.ics.uci.edu/dataset/381/beijing+pm2+5+data
8https://archive.ics.uci.edu/dataset/332/online+news+popularity

19

https://archive.ics.uci.edu/datasets
https://archive.ics.uci.edu/dataset/2/adult
https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
https://archive.ics.uci.edu/dataset/468/online+shoppers+purchasing+intention+dataset
https://archive.ics.uci.edu/dataset/468/online+shoppers+purchasing+intention+dataset
https://archive.ics.uci.edu/dataset/159/magic+gamma+telescope
https://archive.ics.uci.edu/dataset/381/beijing+pm2+5+data
https://archive.ics.uci.edu/dataset/332/online+news+popularity

• Marginal: Appendix E.3.1 in [Zhang et al., 2024c].
• Correlation: Appendix E.3.2 in [Zhang et al., 2024c].
• C2ST: Appendix F.3 in [Zhang et al., 2024c].
• MLE: Appendix E.4 in [Zhang et al., 2024c].

Below is a summary of how these metrics work.

C.3.1 Marginal Distribution

The Marginal metric assesses how well the marginal distribution of each column is preserved in the
synthetic data. For continuous columns, we use the Kolmogorov–Smirnov Test (KST); for categorical
columns, we use the Total Variation Distance (TVD).

Kolmogorov–Smirnov Test (KST) Given two continuous distributions pr(x) and ps(x) (real and
synthetic, respectively), the KST measures the maximum discrepancy between their cumulative
distribution functions (CDFs):

KST = sup
x
|Fr(x)− Fs(x)| , (8)

where Fr(x) and Fs(x) denote the CDFs of pr(x) and ps(x):

F (x) =

∫ x

−∞
p(x) dx. (9)

Total Variation Distance (TVD) TVD measures the difference between the categorical distributions
of real and synthetic data. Let Ω be the set of possible categories in a column. Then:

TVD =
1

2

∑
ω∈Ω

|R(ω)− S(ω)| , (10)

where R(·) and S(·) denote the empirical probabilities in real and synthetic data, respectively.

C.3.2 Correlation

The Correlation metric evaluates whether pairwise relationships between columns are preserved.

Pearson Correlation Coefficient For two continuous columns x and y, the Pearson correlation
coefficient is defined as:

ρx,y =
Cov(x, y)

σxσy
, (11)

where Cov(·) is the covariance and σ denotes standard deviation. We evaluate the preservation of
correlation by computing the mean absolute difference between correlations in real and synthetic
data:

Pearson Score =
1

2
Ex,y

∣∣ρR(x, y)− ρS(x, y)
∣∣ , (12)

where ρR and ρS denote correlations in real and synthetic data. The score is scaled by 1
2 to ensure it

lies in [0, 1]. Lower values indicate better alignment.

Contingency Similarity For categorical columns A and B, we compute the Total Variation Distance
between their contingency tables:

Contingency Score =
1

2

∑
α∈A

∑
β∈B

|Rα,β − Sα,β | , (13)

where Rα,β and Sα,β are the joint frequencies of (α, β) in the real and synthetic data, respectively.

C.3.3 Classifier Two-Sample Test (C2ST)

C2ST evaluates how distinguishable the synthetic data is from real data. If a classifier can eas-
ily separate the two, the synthetic data poorly approximates the real distribution. We adopt the
implementation provided by the SDMetrics library.9

9https://docs.sdv.dev/sdmetrics/metrics/metrics-in-beta/detection-single-table

20

https://docs.sdv.dev/sdmetrics/metrics/metrics-in-beta/detection-single-table

C.3.4 Machine Learning Efficiency (MLE)

MLE evaluates the utility of synthetic data for downstream machine learning tasks. Each dataset
is split into training and testing subsets using real data. Generative models are trained on the real
training set, and a synthetic dataset of equal size is sampled.

For both real and synthetic data, we use the following protocol:

• Split the training set into train/validation with an 8:1 ratio.

• Train a classifier/regressor on the train split.

• Tune hyperparameters based on validation performance.

• Retrain the model on the full training set using the optimal hyperparameters.

• Evaluate on the real test set.

This process is repeated over 20 random train/validation splits. Final scores (AUC for classification
task or RMSE for regression task) are averaged over the 20 trials for both real and synthetic training
data. In our experiments, we report the MLE Gap which is the difference between the MLE score of
the (unwatermarked) real data and the MLE score of the synthetic data.

C.4 Watermark Detection Metrics

For watermark detection metrics, we primaryly use the area under the curve (AUC) of the receiver
operating characteristic (ROC) curve: AUC, and the True Positive Rate (TPR) at a given False
Positive Rate (FPR): TPR@x%FPR.

z-statistic In addition, we can formalize a statistical test for watermark detection for MUSE. Specif-
ically, consider a table T containing N samples (rows) x1, . . . ,xN . Recall that during watermarking,
each row is assigned a binary score of 0 or 1 based on a pseudorandom function, and the row that
scores higher is kept. Therefore, for a watermarked table, the total count of rows with a score 1,
denoted by |W |, is expected to be significantly higher than random chance. To statistically validate
this, we formulate watermark detection as a hypothesis testing problem:

H0 : The table is generated without watermarking.
vs. H1 : The table is generated with watermarking.

Under the null hypothesis, |W | follows a binomial distribution with mean µ = N/2 and variance
σ2 = N/4. The standardized z-statistic is computed as:

z =
|W | − µ

σ
=
|W | −N/2√

N/4
.

We perform a one-tailed test (upper tail) since the alternative hypothesis predicts |W | > N/2. The
z-statistic is compared against a critical value zα corresponding to a desired significance level α (e.g.
α = 0.05 yields zα = 1.645). If z > zα, we reject the null hypothesis and conclude that the table is
watermarked.

D Ommited Proofs in Section 3

Recall that for a table T (wateramarked or unwatermarked) with N rows: x1, . . . ,xN , we define the
watermark detection score as

S(T) =
1

N

N∑
i=1

sk(xi), (14)

where sk(xi) is the score of the i-th sample, k is the fixed watermark key.
Lemma 3.1. Denote a watermarked table as Twm and an unwatermarked table as Tno-wm, each
consisting of N rows. Let x ∼ p(x) be a random variable drawn from the data distribution, and
let x1, . . . ,xm be i.i.d. samples from p(x). Define µno-wm = Ex∼p(x)[sk(x)] as the expected score
of an unwatermarked sample, and define µm

wm = Exi∼p(x)

[
maxi∈[m] sk(xi)

]
as the expected score

21

of a watermarked sample obtained via m repeated samples. Suppose the scoring function satisfies
sk(·) ∈ [0, 1], then, the False Positive Rate (FPR) of the watermark detection satisfies:

Pr (S(Tno-wm) > S(Twm)) ≤ exp

(
−N(µm

wm − µno-wm)
2

2

)
. (5)

Proof. Let S(Tno-wm) =
∑N

i=1 ci denote the sum of N i.i.d. scores from the unwatermarked table,
where each ci = sk(xi) for xi ∼ p(x), and similarly let S(Twm) =

∑N
i=1 c′i denote the sum of

N i.i.d. scores from the watermarked table, where each c′i = max{sk(xi1), . . . , sk(xim)} with
xij ∼ p(x).

Define the expected values:
µno-wm = E[ci], µm

wm = E[c′i].

We are interested in bounding the false positive rate:

Pr(S(Tno-wm) > S(Twm)) = Pr

(
N∑
i=1

(ci − c′i) > 0

)
.

Let wi = ci−c′i. Since sk(x) ∈ [0, 1], we have ci ∈ [0, 1] and c′i ∈ [0, 1], so wi ∈ [−1, 1]. Moreover,
E[wi] = µno-wm − µm

wm =: −δ, where δ = µm
wm − µno-wm > 0.

We apply Hoeffding’s inequality to the sum of wi’s:

Pr

(
N∑
i=1

wi > 0

)
= Pr

(
N∑
i=1

wi − E[
N∑
i=1

wi] > Nδ

)
≤ exp

(
−2N2δ2

4N

)
.

Plug in the definition of δ, we have:

Pr(S(Tno-wm) > S(Twm)) ≤ exp

(
−N2δ2

2

)
= exp

(
−N(µm

wm − µno-wm)
2

2

)
.

which proves the result.

Lemma 3.2 (Optimal Scoring Distribution). Let sk(x) be any random variable supported on [0, 1]
with mean 0.5, the right-hand-side of Equation (5) is minimized when sk(x) follows a Bernoulli(0.5)
distribution.

Proof. Let s1, . . . , sm be i.i.d. copies of a random variable sk(x) ∈ [0, 1] with fixed mean
E[sk(x)] = 0.5. Define:

µ := E[sk(x)] = 0.5, µmax := E[max(s1, . . . , sm)].

Let ∆ := µmax − µ be the gap between the expected maximum score over m repetitions and the
mean score. The upper bound in Equation (5) is:

Pr(Sno-wm > Swm) ≤ exp

(
−N∆2

2

)
,

so minimizing the FPR corresponds to maximizing ∆ under the constraint that E[sk(x)] = 0.5 and
sk(x) ∈ [0, 1].

We now show that ∆ is maximized when sk(x) ∼ Bernoulli(0.5).

Step 1: Write µmax and µ as integrals over the CDF. Let F be the cumulative distribution
function (CDF) of sk(x). Then the CDF of max(s1, . . . , sm) is Fm(x). By the tail integration
formula, we can compute the expected maximum as:

µmax =

∫ 1

0

Pr(max(s1, . . . , sm) > x)

=

∫ 1

0

(1− F (x)m) dx.

22

Similarly, we have: µ =
∫ 1

0
(1− F (x)) dx.

Therefore, the gap ∆ can be written as:

∆ = µmax − µ =

∫ 1

0

[F (x)− F (x)m] dx.

Step 2: Leverage the concavity. By Lemma E.1, the integrand F (x)− F (x)m is concave in F (x).
By Lemma E.2, the integral is maximized when F (x) is the CDF of a Bernoulli distribution with
mean µ = 0.5.

Therefore, among all sk(x) ∈ [0, 1] with E[sk(x)] = 0.5, the Bernoulli(0.5) distribution maximizes
∆, which minimizes the upper bound on the FPR. Hence, the lemma holds.

Theorem 3.3 (Minimum Watermarking Signal). Under the same assumptions as in Lemma 3.1,
suppose the scoring function sk(x) is instantiated as a hash-seeded pseudorandom function such
that sk(x) ∼ Bernoulli(0.5), the FPR is upper-bounded by:

Pr (S(Tno-wm) > S(Twm)) ≤ exp

(
−N

2
(0.5− 0.5m)

2

)
. (6)

To ensure the FPR does not exceed a target threshold α, it suffices to set the number of repeated
samples m as:

m = max

(
2,

⌈
log0.5

(
0.5−

√
2 log(1/α)

N

)⌉)
, (7)

where ⌈·⌉ denotes the ceiling function. This expression is valid when N > 8 log(1/α).

Proof. When sk(x) ∼ Bernoulli(0.5), we have:

µno-wm = E[sk(x)] = 0.5, µm
wm = E[max(s1, . . . , sm)] = 1− 0.5m.

Plug in into the FPR bound Equation (16), we have:

Pr (S(Tno-wm) > S(Twm)) ≤ exp

(
−N

2
(0.5− 0.5m)

2

)
,

which completes the proof.

E Technical Lemmas

Lemma E.1. For any integer m ≥ 2, the function f(x) = x− xm is concave on the interval [0, 1].

Proof. To prove that f(x) = x − xm is concave on [0, 1], we show that its second derivative is
non-positive on this interval.

Compute the first derivative:

f ′(x) =
d

dx
(x− xm) = 1−mxm−1.

Compute the second derivative:

f ′′(x) =
d

dx
(1−mxm−1) = −m(m− 1)xm−2.

Observe that for all x ∈ [0, 1] and m ≥ 2: m(m− 1) > 0 and xm−2 ≥ 0.

Therefore,
f ′′(x) = −m(m− 1)xm−2 ≤ 0 for all x ∈ [0, 1].

Hence, f(x) is concave on [0, 1].

23

Lemma E.2. Let ϕ : [0, 1] → R be a concave function, and let F be the cumulative distribution
function (CDF) of a random variable supported on [0, 1] with fixed mean µ ∈ (0, 1). Then the integral∫ 1

0

ϕ(F (x))dx

is maximized when F (x) =


0 if x < 0

1− µ if 0 ≤ x < 1

1 if x ≥ 1

, i.e. the CDF of a Bernoulli distribution with

mean µ.

Proof. Step 1: Rewrite the Mean Constraint

By the tail integration formula, the mean constraint for the random variable X with CDF F (x)
supported on [0, 1] is: ∫ 1

0

(1− F (x)) dx = µ.

Rearranging this equation gives the integral of F (x):∫ 1

0

F (x) dx = 1− µ. (15)

Step 2: Upper Bound the Integral

The function ϕ : [0, 1] → R is concave. The CDF F (x) takes values in [0, 1] for x ∈ [0, 1], so
ϕ(F (x)) is well-defined. We can apply Jensen’s inequality for integrals, which for a concave function
ϕ and an integrable function g(x) on an interval [a, b] states:

1

b− a

∫ b

a

ϕ(g(x)) dx ≤ ϕ

(
1

b− a

∫ b

a

g(x) dx

)
.

Plug in a = 0, b = 1, g(x) = F (x). Jensen’s inequality then becomes:∫ 1

0

ϕ(F (x)) dx ≤ ϕ

(∫ 1

0

F (x) dx

)
.

Substituting Equation (15) into the right hand side, we have:∫ 1

0

ϕ(F (x)) dx ≤ ϕ(1− µ). (16)

Step 3: Verify F (x) achieves the upper bound

It is straightforward to verify that F (x) satisfies the mean constraint. Next, we will show that F (x)
achieves the upper bound ϕ(1− µ). For x ∈ [0, 1), F (x) = 1− µ. Therefore, we have:∫ 1

0

ϕ(F (x)) dx =

∫ 1

0

ϕ(1− µ) dx = ϕ(1− µ).

We have shown that F (x) satisfies the mean constraint and achieves the upper bound ϕ(1−µ), which
completes the proof.

24

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
TP

R
@

1%
FP

R
 (

)

Shuffle

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Alteration

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Cell deletion

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Row deletion

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Column deletion

Ours TabWak TabWak*

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00

TP
R

@
1%

FP
R

 (
)

Shuffle

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Alteration

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Cell deletion

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Row deletion

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Column deletion

Ours TabWak TabWak*

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00

TP
R

@
1%

FP
R

 (
)

Shuffle

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Alteration

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Cell deletion

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Row deletion

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Column deletion

Ours TabWak TabWak*

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00

TP
R

@
1%

FP
R

 (
)

Shuffle

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Alteration

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Cell deletion

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Row deletion

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Column deletion

Ours TabWak TabWak*

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00

TP
R

@
1%

FP
R

 (
)

Shuffle

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Alteration

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Cell deletion

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Row deletion

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Column deletion

Ours TabWak TabWak*

Figure 6: Detection performance of MUSE vs. TabWak/TabWak* against different types of tabular
data attacks across varying attack intensities. From top to bottom: Beijing, Default, Magic,
News and Shoppers.

25

	Introduction
	Preliminaries
	Proposed Method
	Watermark Generation Framework
	Watermark Scoring Function
	Column Selection Mechanism
	Watermark Detection

	Experiments
	Setup
	Main Results
	Ablation Study and Further Analysis

	Related Work
	Conclusion
	Appendix
	Additional Experiments Results
	Omitted Results on Distortion and Detectability
	Omitted Results on Robustness
	Omitted Results on Edit-based Watermarking

	Further Analysis of the Inversion-Based Watermarking
	Pipeline of Inversion-based Watermarking
	Inversion of (Inverse) Quantile Transformation
	Inversion of VAE decoder
	DDIM Inversion
	Error Accumulation

	Experimental Details
	Hardware Specification
	Dataset Statistics
	Fidelity Metrics
	Marginal Distribution
	Correlation
	Classifier Two-Sample Test (C2ST)
	Machine Learning Efficiency (MLE)

	Watermark Detection Metrics

	Ommited Proofs in sec:methods
	Technical Lemmas

