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Abstract—Malware detection and classification remains a topic
of concern for cybersecurity, since it is becoming common for
attackers to use advanced obfuscation on their malware to stay
undetected. Conventional static analysis is not effective against
polymorphic and metamorphic malware as these change their
appearance without modifying their behavior, thus defying the
analysis by code structure alone. This makes it important to use
dynamic detection that monitors malware behavior at runtime.
In this paper, we present a dynamic malware categorization
framework that extracts API argument calls at the runtime exe-
cution of Windows Portable Executable (PE) files. Extracting and
encoding the dynamic features of API names, argument return
values, and other relative features, we convert raw behavioral
data to temporal patterns. To enhance feature portrayal, the
generated patterns are subsequently converted into grayscale
pictures using a magma colormap. These improved photos are
used to teach a Convolutional Neural Network (CNN) model
discriminative features, which allows for reliable and accurate
malware classification. Results from experiments indicate that
our method, with an average accuracy of 98.36% is effective in
classifying different classes of malware and benign by integrating
dynamic analysis and deep learning. It not only achieves high
classification accuracy but also demonstrates significant resilience
against typical evasion strategies.

Index Terms—API call, Dynamic Analysis, Magma Colormap,
Malware Classification, CNN, PE Files, API Call Arguments.

I. INTRODUCTION

As there is an intensifying digitalization of services and
infrastructure, the danger of cybercrime is rising in amplitude
and sophistication. Organizations are facing an upswing of
advanced cyberattacks fueled by geopolitics, vulnerabilities
in the supply chain, and new technologies, according to the
World Economic Forum’s Global Cybersecurity Outlook 2025.
Industry reports stress there is an imperative for intelligent,
responsive security mechanisms due to changing threat vectors
[1].

Malware detection has become increasingly harder in recent
years with advancements in evasion and code obfuscation at
an accelerated rate. Polymorphic and metamorphic malware
examples modify their code at run time so that traditional
static code inspection, as well as signature-based detection, is
evaded by them [2]. To bypass these shortcomings, dynamic
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analysis methods have become popular. By observing run-time
activities, particularly API call sequences and their arguments
at run-time upon running Windows Portable Executable (PE)
files, analysts can identify malicious intent with better relia-
bility [3].

One of the latest developments in malware analysis is to
convert such sequences of API calls to grayscale or RGB
images to produce graphical representations that retain tem-
poral as well as behavioral patterns. These images can further
be classified by deep learning models, especially by Convo-
lutional Neural Networks (CNNs), which are exceptionally
efficient in extracting spatial features from images [4], [5].
CNNs have manifestly excelled in evasive threat detection
based on their capability to learn hierarchically from raw
inputs.

Along with standard CNN models, certain works explored
advanced architectures and hybrid methods. For instance,
Musaev et al. blended an optimized CNN with fine-tuning
MobileNetV2 to achieve maximum performance on the Mal-
img dataset, highlighting that methods based on ensembling
perform well [6]. They proposed MVC-RSN, a CNN approach
that aims to improve malware classification under adversarial
environments [7]. A lightweight CNN architecture designed
for effective malware detection in resource-constrained IoT
environments was also presented by Yuan et al. [8].

Further expanding the application of deep learning for
malware detection, Sweety et al. proposed a multi-view CNN
model for both classification and signature generation, point-
ing to the strength of synergistically integrating behavioral
views [9]. Divya presented a system named Mal Class,
which employs deep CNNs for malware image classification
with promising accuracy over various malware families [10].
Darwish and Roy compared federated learning, traditional
machine learning, and deep learning in a study that showed
that deep models such as CNNs outranked traditional means
under all circumstances, especially with distributed or in IoT-
based scenarios [11].

In this study, we propose a CNN-based visual malware
classification system that leverages dynamic behavioral data.
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By capturing runtime API call sequences and transforming
them into images, we aim to extract discriminative features
for accurate malware classification. The scope of our work
includes preprocessing API logs, designing a CNN architecture
tailored for malware patterns, and benchmarking the model’s
efficiency on real-world data. Our objective is to propose an ef-
fective, scalable, and adaptable malware detection framework
suitable for deployment in evolving cyber threat landscapes.
The objective of this paper is to explore the effectiveness of
using dynamically generated API call-based images to classify
malware samples using a CNN architecture. By leveraging the
power of visual data and deep learning, we aim at enhancing
the robustness and accuracy of malware classification systems.
The approach is further validated using a comprehensive
experimental setup and evaluation metrics, contributing to the
growing domain of visual malware classification research.
The remaining sections of the paper are formatted as fol-
lows: Section II outlines the basic concepts related to Malware
Analysis and CNN. Section III reviews the existing related
work. Section IV details the methodology used in this research.
Section V describes the experimental setup employed. Section
VI presents the results and their analysis. In Section VII, we
compare our approach with state-of-the-art techniques. Finally,
Section VIII concludes with future research directions.

II. BASIC CONCEPTS
A. Malware Analysis

Malware analysis is the practice of assessing malware
to determine its intent, functional attributes, and potential
risk. Security professionals can identify the various strains
of malware, come up with appropriate countermeasures, and
reinforce the defenses against cyber threats by studying mal-
ware carefully. There are two general categories into which
the analysis techniques can be classified.

1) Static analysis: Static analysis refers to the process of
examining a malware sample without running it. The method
analyzes the internal structure of the code, such as embedded
strings, file headers, and binary patterns. This aims to distill
useful information (e.g., function calls, file dependencies, well-
known signatures) that is helpful for enabling early detection.

2) Dynamic analysis: In contrast, dynamic analysis moni-
tors malware behavior when it is operating in a controlled or
sandboxed environment. Analysts can use this to watch how
the operating system is affected by the malicious code, what it
alters, and what external connections it tries to make. Such a
real-time glimpse provides valuable insights into the malware’s
goals and potential destruction.

B. Sandboxing

Sandboxing refers to a security method whereby one runs
suspected files or software in an isolated environment to
identify their behavior without putting the actual system in
danger. This approach revolutionizes the detection of zero-
day exploits and the analysis of yet unrecognized malware
variants. The sandbox emulates a real OS so that malware can

behave naturally, but it is also isolated from the main machine
so it cannot do any damage.

1) Cuckoo Sandbox Analysis Process: An open-source au-
tomated malware analysis tool called Cuckoo Sandbox enables
dynamic executable analysis. When a file is executed inside
the sandbox, Cuckoo collects information about its behav-
ior and outputs a comprehensive behavioral report in JSON
format. It contains information about API calls (invoked by
the executable) with their order and frequency, arguments,
process-level activity, network traffic, and regime changes.
This detail is key for determining the malware’s objective,
spread methodology, and the damage that could be done to
the target computer.

C. Convolutional Neural Networks (CNN)

This is followed by processing and analyzing visual data,
which is called convolutional neural networks (CNN). They
learn hierarchical features from images automatically, uti-
lizing completely linked layers, pooling, and convolutions.
Mathematically, the convolution operation, which is the basic
building block of CNNs, can be described as:

output(i, j) = Z Zinput(i +m,j+n)-kernel(m,n) (1)

In this equation:

« output(i, 7) is the output at pixel position (¢, 7).

e input(i + m,j + n) corresponds to the pixel values in
the input image at the specific position that is m and n
units away respectively from the reference point given by
(i,)).

o kernel(m,n) is the filter (or kernel) applied at position
(m,n) over the input image.

More specifically, a kernel is a matrix of arbitrary size
that is used to slide over the image and take dot products
as it moves around. CNNs are particularly powerful in fields
like image classification and object detection because they
can automatically recognize spatial hierarchies, minimizing the
need for manual feature extraction for efficient learning from
images.

The mapping of features to their images is IM-
AGE[EXEMPLAR][DENSITY][LIGHT][ANGLE], which in-
dicates that each feature is represented as an image in image
space.

Experimental Conversion of Features into Image: Data
Conversion

The process included feature encoding to the matrix or
image-like structure so that convolutional networks could be
applied to the data. A very common function that maps
a feature x to another one could be summed up with the
following equation:

I(z,y) = f(X) 2)
In this equation:

o I(z,y): pixel solution on the coordinates (z,y) of the
converted image.



o X: feature vector derived from the original high-
dimensional data.

e f(X) represents a function that manipulates the feature
vector to give it an image-like appearance (through re-
shaping or normalizing it into a 2D grid).

Because CNNs find underlying spatial patterns in images,
features can also be generalized using this data transformation
and applied to any type of features which will allow CNN
to learn the basic spatial patterns and structure relationships
that are characteristic of the features, thus greatly aiding any
prediction or analysis task.

IIT. RELATED WORK

Deep learning, particularly with Convolutional Neural Net-
works (CNNs), has drastically enhanced malware classifica-
tion, primarily due to their exceptional ability to identify
visual trends in the data. Traditional techniques like signature
and heuristic-based methods can hardly detect obfuscated
and polymorphic malware. Consequently, researchers are now
increasingly targeting dynamic, image-based, and hybrid de-
tection methods.

Sasikala and Shanmuganathan [5] proposed an image-based
approach for malware classification based on a specially
trained CNN. The approach converts malware binaries into
both grayscale and RGB photo format imprints, which gets
past the network and truly recognizes design. This method
reached 10% level of accuracy and was resilient to many
obfuscation techniques.

Sweety et al. [9] recently proposed a multi-view CNN-
based system for dynamic malware detection and signature
generation. By analyzing malware behavior from multiple
perspectives, their method was able to accurately detect threats
and generate precise signatures, highlighting the power of
behavior-driven visual analysis.

Divya [10] presented Mal Class, a CNN-based architec-
ture for automated classification of malware images. Using
both monochrome and RGB image representations, the model
achieved promising results on the Malimg dataset, showcasing
CNNs’ capacity for learning discriminative visual patterns
even under adversarial variance.

Musaev et al. [6] proposed an ensemble method that
integrates a custom CNN with a fine-tuned MobileNetV2.
Their Optimized Epoch Selection strategy selects the best-
performing model checkpoints, resulting in improved gener-
alization and setting a new accuracy benchmark of 99.05% on
the Malimg dataset.

Wu et al. [7] developed MVC-RSN, a malware classifica-
tion method with variant identification capability. It utilizes
ResNet-based architectures to improve generalization and ro-
bustness in detecting evolving malware variants, particularly
in adversarial settings.

To address the limitations of computational overhead, Yuan
et al. [8] designed a lightweight CNN (LCNN) optimized
for IoT malware classification. Their approach utilized mul-
tidimensional Markov images derived from raw binaries and

demonstrated over 99.35% accuracy on resource-constrained
platforms.

Darwish and Roy [11] performed a comparative analysis
of federated learning, deep learning, and traditional methods
for IoT malware detection. Their findings indicated that deep
CNNs consistently outperformed other models in distributed
environments, underscoring the value of deep representations.

Javed and Amjad [3] explored the integration of dynamic
behavioral analysis and SIEM systems with deep learning.
Their approach processed API sequences extracted via Cuckoo
Sandbox [17] and achieved significant accuracy improvements
through few-shot learning, showcasing the benefit of incorpo-
rating contextual behavioral logs.

Gond et al. [13] proposed a deep learning framework
for malware classification that integrates Natural Language
Processing (NLP) techniques. By using n-grams of API call se-
quences, they successfully capture malware behavior patterns,
achieving enhanced classification accuracy and robustness in
contrast to conventional techniques.

Rajneekant et al. [14] conducted a comparative analysis of
machine learning models based on API sequences for malware
classification. Their results show that XGBoost outperforms
other models, achieving an accuracy of 98.87%, demonstrating
the effectiveness of incorporating API call sequences and
arguments for precise malware detection.

Kishore et al. [15] proposed a hybrid analysis model
for classifying malicious applications using computationally
efficient machine learning techniques. Their method, which
combines static and dynamic analysis, achieves high Matthews
Correlation Coefficients (MCC), including 89% to classify
malware and 81% to classify malware families, addressing
class imbalance effectively.

Our work expands these core studies by creating a flexible
malware classification system that turns API call sequences
into grayscale images. We use a deep CNN model trained on
these images to effectively pull out features and identify mal-
ware families. This blended method enhances both structural
and behavioral detection while staying strong against evasion
tactics.

IV. PROPOSED FRAMEWORK

Figure 1 illustrates our proposed work, which uses a multi-
step system to identify malware by analyzing its behavior
through image-based deep learning. The process involves
preparing malware behavior logs, converting features into
visual images, and training a Convolutional Neural Network
(CNN) to classify them. The three key stages are: Pre-
processing, Feature Transformation, and Model Training &
Evaluation.

Phase 1: Analysis Phase

In Analysis phase, We carry out the following activities: After
obtaining the PE files from VirusShare' and Virustotal® for all
eight multiclass like Adware, Backdoor, Benign, Downloader,

Uhttps://virusshare.com/
Zhttps://www.virustotal.com/
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Fig. 1: Proposed CNN-based Architecture for Malware Analysis

Spyware, Trojan, Virus, and Worm we performed behavioral
analysis using Cuckoo Sandbox, resulting in a behavioral
report in JSON format. We then split the file into four parts:
API category, API name, API argument, and API return.
From this, We selected the API name and argument to create
unigrams, where the API name is the first part and the API
call argumant is added using underscores.

Phase 2: Preprocessing Phase
The following actions are taken during the preprocessing stage:

1) API Dataset & Cuckoo Sandbox Analysis: The data
used in this study was collected from VirusShare, a well-
known malware sample repository. Each sample was executed
in a controlled environment using Cuckoo Sandbox, which
generated behavioral reports in JSON format, capturing run-
time interactions of PE (Portable Executable) files.

2) API Feature Extraction: From each behavioral JSON
file, we extracted API-level elements such as APICategory,
APIName, APIArgument, and APIreturn. These fields
provide insight into how the malware interacts with the system.

3) CSV File Construction: For every malware sample,
a single row was created in a CSV file. The first column
contains the malware hash (unique identifier), the second
column specifies the malware family label (e.g., backdoor),
and the remaining columns store numeric values representing
frequency or intensity of specific API calls.

This CSV file was then used as the structured input for
further processing.

Phase 3: Feature Transformation Phase
This phase focuses on converting the structured CSV data into
images® suitable for training with CNN.

1) Normalization and Reshaping: All numeric API values
in each row were normalized into a range of 0-255. The
resulting vectors were reshaped into square matrices (e.g.,

3Code and Dataset

128x128), generating grayscale image representations of API
usage patterns for each malware.

2) Image Enhancement Techniques: To highlight im-
portant features and patterns in the image, the following
techniques were applied:

o Gaussian Blur — To reduce noise and smooth variations.

e CLAHE (Contrast Limited Adaptive Histogram
Equalization) — For improving local contrast.

o Sobel Edge Detection — To emphasize edge transitions
and structural boundaries.

Fig. 2: A sample image after applying Magma Colormap

3) Color Mapping and Saving: A magma colormap was
applied to the grayscale images, adding color richness for
enhanced feature representation as shown in Figure 2. Finally,
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contrast and sharpness improvements were applied before
saving the images to disk for training.
Phase 4: Model Training and Evaluation Phase

This phase includes the design, training, and evaluation of a
CNN model tailored for malware classification using grayscale
images generated from API call patterns.

1) CNN Model Architecture: The architecture for our
CNN model is defined as follows:

Input on layer: (128,128, 1)
Convolutional Layer 1: Filters = 32, Kernel Size = 3,
Activation = ReLU
MaxPooling Layer 1: Pool Size = 2
Convolutional Layer 2: Filters = 64, Kernel Size = 3,
Activation = ReLU
MaxPooling Layer 2: Pool Size = 2
Convolutional Layer 3: Filters = 128, Kernel Size = 3,
Activation = ReLU
MaxPooling Layer 3: Pool Size = 2
Flatten Layer: Flattens the input to a 1D array
Neurons = 256, Activation = ReLU
Dropout Rate = 0.5

Neurons = 8, Activation = Softmax

Dense Layer:
Dropout Layer:
Output Layer:

CNN Architecture: We designed a custom CNN from
scratch as shown in Figure 3, comprising:

o Three convolutional layers with increasing filter sizes.

o Three Max pooling layers for downsampling after each
convolution.

« A flattened layer followed by a dense layer with dropout
for regularization.

The images were resized to 128 x 128 pixels and normalized
before feeding into the network. To improve generalization,
during training, data augmentation methods like flipping,
zooming, and rotation were used.

2) Training and Output Generation: : The CNN model
was trained for 100 epochs utilizing categorical cross-entropy
loss and the Adam optimizer. The model artifacts, including
trained weights, prediction results, evaluation plots, and train-
ing logs, were saved in a time-stamped results folder.

3) Performance Evaluation: : The trained model got eval-
uated using

o Confusion Matrix: Analyzing False Negatives, True

Negatives, True Positives, and False Positives.
o Classification Metrics: Including F1-Score, Accuracy,
Precision, and Recall.

These metrics collectively provided thorough explanation
of how well the model could categorize different malware
families.

V. EXPERIMENTAL SETUP

Our experimental setup was designed to evaluate the effec-
tiveness of image-based malware classification using behav-
ioral API features. It comprises the following components:

1) Analysis Environment:

o Host System: An Intel Xeon(R) Silver 4216 CPU with
128 GB RAM and 5TB HDD was used for executing the
Cuckoo Sandbox, performing preprocessing, and training
the deep learning model.

2) Windows 10 Environment:

o OS: Windows 10

o Hardware: A machine with a 5TB storage capacity,
128GB of RAM, an Intel i7 processor, and a 16GB
NVIDIA GPU was utilized to collect and analyze the
dynamic behavior of Cuckoo Sandbox reports.



3) Development Environment:

o Programming Language: Python Python 3.10.9 was
used to implement the complete pipeline from data ex-
traction to model evaluation.

o IDE: Spyder IDE facilitated efficient development, de-
bugging, and visualization.

TABLE I: Datasets used

’ S.No ‘ Types Test Sample | Train Sample | Total Sample
1 Adware 316 1670 1986
2 Backdoor 228 446 674
3 Downloader 500 1999 2499
4 Spyware 167 779 946
5 Trojan 675 2893 3568
6 Virus 464 1928 2392
7 Worms 305 1052 1357
8 Benign 1857 6777 8634
’ | Total 4512 17544 22056

4) Malware Samples:

o A dataset consisting of 22,056 samples [18] was used,
out of which 17,544 samples were utilized for training
and 4,512 samples for testing the classification model as
shown in Table 1.

This setup facilitated controlled experimentation to evaluate
the potential of converting API sequences into visual fea-
tures for improving malware classification performance. All
steps—from Cuckoo-based behavior capture to CNN-based
classification—were performed within this environment.

VI. RESULT ANALYSIS

In this section, we evaluate the performance of the pro-
posed malware classification model using a confusion matrix,
detailed performance metrics, and a visual comparison of
classification outcomes across various malware types.

A. Confusion Matrix Analysis

Figure 4 illustrates the confusion matrix, providing insight
into the model’s performance across eight malware types and
benign samples. The model performs exceptionally well for
the benign and downloader classes, achieving 1704 and 500
true positives, respectively, with almost negligible misclassifi-
cations. For the trojan class, the model correctly predicts 641
samples, but there are a few misclassifications into benign
and backdoor. Classes like adware and worm show moderate
confusion with other categories, highlighting areas where the
model can benefit from further optimization or additional
feature refinement.
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Fig. 4: Confusion Matrix of malware classification

TABLE II: Performance metrics for each malware type

’ No ‘ Malware Type ‘ Accuracy ‘ F1 Score ‘ Recall ‘ Precision ‘

1 Adware 98.00% 87.50% 78.60% 98.70%
2 Backdoor 99.20% 86.70% 84.40% 89.10%
3 Benign 96.00% 95.10% 98.70% 91.80%
4 Downloader 100.00% 100.00% | 100.00% | 100.00%
5 Spyware 99.20% 89.90% 84.70% 95.80%
6 Trojan 97.60% 92.30% 89.80% 95.00%
7 Virus 98.80% 94.60% 93.10% 96.10%
8 Worm 98.10% 85.80% 91.10% 81.00%

Performance Metrics for Each Malware Type
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= F1Score
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Fig. 5: Bar graph comparing Accuracy, F1 Score, Recall, and
Precision for each malware type



B. Performance Metrics Overview

As shown in Table II, the model performs with high
accuracy across all categories, with downloader achieving a
perfect 100% in all metrics. Benign and virus categories also
exhibit outstanding F1 scores and recall, indicating reliable
detection with minimal false negatives.

Figure 5 provides a visual summary of performance, con-
firming the consistent and balanced results. It is evident that
while adware, spyware, and backdoor show slightly lower
recall, their precision remains high, suggesting correct positive
detections when identified.
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Fig. 6: Loss and Accuracy measures for proposed model

TABLE III: Evaluation metrics of malware classification

’ S. No. ‘ Malware Type ‘ TP ‘ TN ‘ FP ‘ FN ‘

1 Adware 312 | 4011 4 85
2 Backdoor 114 | 4263 14 21
3 Benign 1704 | 2532 | 153 | 23
4 Downloader 500 3912 0 0
5 Spyware 160 | 4216 7 29
6 Trojan 641 3664 | 34 73
7 Virus 446 | 3915 18 33
8 Worm 247 | 4083 | 58 24

Figure 6 shows, our model exhibits effective learning dy-
namics. The training and validation loss steadily decrease
over epochs, indicating proper convergence. The accuracy plot
reveals a high training accuracy and a consistently stable val-
idation accuracy, suggesting that the model generalizes well.
Minimal oscillations in validation accuracy imply controlled
overfitting and good performance across unseen data.

C. True/False Positive-Negative Metrics

Table III summarizes the actual classification counts. Again,
downloader is the top-performing class with perfect TP and
TN and no FP or FN. Conversely, the benign class shows the
highest false positive count (153), which may indicate that
some benign samples resemble malware patterns.

In summary, the proposed CNN-based approach demon-
strates strong classification performance, especially for key
classes like virus, downloader, and benign. While minor recall
dips are noted for a few malware types, the overall results
confirm the model’s effectiveness for real-world malware
classification.

VII. COMPARISON OF OUR WORK WITH PRESENT
STATE-OF-THE-ART TECHNIQUES

Our proposed approach focuses on classifying malware
through dynamic analysis by converting API call sequences
into grayscale images and leveraging a Convolutional Neural
Network (CNN) for classification. While our dataset and
image-generation method are unique, and hence, direct com-
parison is limited, we present a comparative discussion with
existing deep learning-based techniques to highlight the effec-
tiveness and distinctiveness of our method in Table IV.

Sweety et al. [9] developed a multi-view CNN framework
that analyzes malware from several behavioral perspectives.
Their approach effectively classified and generated malware
signatures, leveraging dynamic execution features collected
from sandbox environments. Although comprehensive in be-
havior analysis, their architecture is relatively more complex
compared to our single-view grayscale image approach.

Divya [10] introduced Mal Class, a CNN-based deep learn-
ing method for classifying malware images. Their system
used RGB and monochrome images converted from malware
binaries. While the approach is similar in using image inputs,
our work differs by utilizing behavioral API sequences rather
than static binaries, thereby improving robustness against
polymorphism.

Musaev et al. [6] proposed an ensemble of custom CNN
and fine-tuned MobileNetV2 for image-based malware clas-
sification. Their technique, optimized with epoch selection,
achieved 99.05% accuracy on the Malimg dataset. Our method,
while simpler in architecture, is tested on a much larger and
dynamically generated dataset, showcasing practical adaptabil-
1ty.

Wu et al. [7] developed MVC-RSN, a ResNet-based mal-
ware classification model with variant identification capabil-
ities. Their work excels in generalization across adversarial
malware, whereas our work emphasizes behavioral pattern
capture through visual encoding of API sequences.

Yuan et al. [8] focused on lightweight CNNs for IoT
malware detection. Their method achieved high accuracy
with minimal resource usage, targeting constrained devices.
Our method prioritizes robustness and behavioral coverage,
suitable for enterprise-level malware detection systems.

Darwish and Roy [11] presented a comparative evaluation
of federated learning, deep learning, and traditional models for



TABLE IV: Quantitative comparison of selected deep learning-based malware detection and classification techniques

’ No ‘ Author Image Type Deep Learning Model Dataset Used Dataset Size ‘ Detection ‘ Cls" ‘ Acc
1 Musaev et al. [6] Grayscale Custom CNN + MobileNetV2 Malimg [12] 9339 X v 99.05%
2 Wu et al. [7] Binary MVC-RSN (ResNet-based) Custom Not disclosed X v 98.6%
3 Yuan et al. [8] Markov Images Lightweight CNN VirusShare [16] | Not disclosed 4 X 99.36%
4 Sweety et al. [9] Feature Maps Multi-View CNN Custom 6000+ v v 98%
5 Divya [10] Grayscale / RGB CNN Malimg [12] Not disclosed X v 98.99%
6 Darwish and Roy [11] | Not Image-Based CNN / Federated Learning NetworkX 6500+ v v 95.27%
7 Proposed Work Greyscale CNN VirusShare [16] 22056 X v 98.36%

IoT malware detection. Their findings reinforce the strength of
CNNss in distributed environments, supporting the foundational
design of our image-based CNN model.

Our methodology stands apart due to its combination of run-
time API call sequence analysis, n-gram extraction, grayscale
image conversion, and CNN-based classification. We evaluated
our model on a dataset of 22,056 samples spanning seven
malware categories, capturing behavioral semantics through
visual data. This hybrid approach makes our system robust,
scalable, and suitable for deployment in dynamic cybersecurity
environments.

VIII. CONCLUSION AND FUTURE WORKS

In this research, we proposed a new malware classifica-
tion approach that transforms dynamically captured API call
sequences into grayscale images and classifies them using a
Convolutional Neural Network (CNN). By leveraging behav-
ioral data and visual pattern recognition, our model effectively
identified and classified seven major malware families across a
dataset comprising 22,056 samples. The results demonstrated
high classification performance, particularly for malware types
such as Downloader, Backdoor, Spyware, Worms, Adware,
Trojan, and Virus, with accuracy scores exceeding 97%. This
image-based behavioral modeling provides a scalable and
effective alternative to traditional static analysis methods, espe-
cially in handling obfuscation and evasive malware strategies.

Our study demonstrates the potential of integrating dy-
namic execution data with deep learning for robust malware
detection. By converting API sequence patterns into visual
representations, the model captures both structural and tem-
poral features, enabling it to generalize across varied malware
classes.

Below are some future directions to enhance this research:

o LLM-Assisted API Interpretation: Integrating Large
Language Models (LLMs) to semantically analyze API
arguments and contextual behaviors can enhance feature
richness and interpretability, especially for novel or evolv-
ing threats.

o Cross-Platform Compatibility: Extending this frame-
work to classify Android and Linux-based malware using

system call equivalents could broaden its applicability
across platforms.

o Model Compression: Exploring lightweight CNNs and
pruning techniques will be important for deploying the
model in resource-constrained environments like IoT
gateways or mobile endpoints.

e Advanced Similarity Learning: Incorporating Siamese
networks or triplet loss could provide a deeper un-
derstanding of intra-class and inter-class similarity in
malware behaviors.

o Temporal Sequencing: Combining CNN with temporal
models like LSTM or Transformer-based architectures
may improve understanding of long-range behavioral
dependencies in complex malware routines.

Through these future extensions, we aim to evolve our
malware classification system into a highly accurate, adaptive,
and lightweight solution capable of defending against next-
generation cyber threats in real-time.
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