arXiv:2505.24008v1 [cs.CR] 29 May 2025

HoneySat: A Network-based Satellite Honeypot Framework

Efrén L(’)pez—MoralesT,* Ulysse Planta® Gabriele Marra®, Carlos Gonzalez®,
Jacob HopkinsT, Majid Garoosi®, Elias Obrequeq[, Carlos Rubio-Medrano®, Ali Abbasi®

TTexas A&M University—Corpus Christi

®CISPA Helmholtz Center for Information Security

SGerman Aerospace Center (DLR)
tDepartamento de Ingenieria Informdtica, Universidad de Santiago de Chile
TUniversidad de Chile

Abstract

Satellites are the backbone of several mission-critical services,
such as GPS that enable our modern society to function. For
many years, satellites were assumed to be secure because
of their indecipherable architectures and the reliance on se-
curity by obscurity. However, technological advancements
have made these assumptions obsolete, paving the way for
potential attacks, and sparking a renewed interest in satellite
security. Unfortunately, to this day, there is no efficient way
to collect data on adversarial techniques for satellites, which
severely hurts the generation of security intelligence.

In this paper, we present HoneySat, the first high-
interaction satellite honeypot framework, which is fully capa-
ble of convincingly simulating a real-world CubeSat, a type
of Small Satellite (SmallSat) widely used in practice. To pro-
vide evidence of the effectiveness of HoneySat, we surveyed
experienced SmallSat operators currently in charge of active
in-orbit satellite missions.

Results revealed that the majority of satellite operators
(71.4%) agreed that HoneySat provides realistic and engaging
simulations of CubeSat missions. Further experimental evalu-
ations also showed that HoneySat provides adversaries with
extensive interaction opportunities by supporting the majority
of adversarial techniques (86.8%) and tactics (100%) that
target satellites. Additionally, we also obtained a series of real
interactions from actual adversaries by deploying HoneySat
on the internet over several months, confirming that HoneySat
can operate covertly and efficiently while collecting highly
valuable interaction data.

1 Introduction

Artificial satellites are complex devices designed to with-
stand outer space conditions. They serve multiple purposes
or types of missions that include position and navigation,
e.g., the Global Positioning System (GPS) constellation [74],
Earth observation, e.g., the Sentinel constellation [19], and

*Both authors contributed equally to this work.

broadband internet service, e.g., the Starlink constellation. In
addition, Spacecraft can range from being as massive as thou-
sands of kilograms, such as the International Space Station
(ISS) to one kilogram CubeSats. As a result, the software and
hardware components that make up a specific spacecraft vary
greatly. Likewise, satellite missions’ vary a lot depending
on the owner’s budget. For example, university missions are
smaller as they have a limited budget. A cyberattack on a
satellite or satellite constellation (group of satellites) could
have disastrous consequences on a global scale, which is
difficult to comprehend. Such an attack could lead to the
cessation of air traffic and widespread communication black-
outs. It could also cause food shortages and the freezing of
financial transactions [11]. Furthermore, such an attack could
exacerbate the Kessler Syndrome [18], a scenario in which
collisions between satellites and debris in orbit create a cas-
cade effect, generating even more debris, jeopardizing future
satellite launches and operations.

In this increasingly vulnerable environment, the proba-
bility of a successful satellite cyberattack continues to rise.
This is driven by three key trends [28]: first, satellite deploy-
ments have increased at an unprecedented pace. For instance,
while an average of 82 launches took place between 2008
and 2017, as many as 197 launches occurred in 2023 alone,
each typically carrying multiple satellites [61]. This surge
is partly fueled by the rise of cheaper commercial off-the-
shelf (COTS) components and the availability of more Space
Launch Vehicles (SLVs), which makes access to orbit afford-
able for smaller institutions, such as universities [67]. Second,
ground station technology has become significantly more af-
fordable (and sometimes open source), greatly lowering the
communication barrier with satellites [10]. Thus, a broader
range of malicious actors can now communicate with satel-
lites. Third, satellite engineers and operators continue to rely
on protocol obscurity practices, such as hiding specialized
knowledge about the transmission protocol implemented on
satellites [81].

Although satellite security research has gained increased
attention [53, 60,79, 81], the relationship between outer space

https://arxiv.org/abs/2505.24008v1

and cyberspace remains poorly understood [52]. At the same
time, space-focused threat intelligence remains sparse, and
our current methods for identifying tactics, techniques, and
procedures (TTPs) used against these critical systems are lim-
ited. MITRE ATT&CK currently tracks 152 threat groups but
shows only one that targets satellites explicitly [71], highlight-
ing a significant data gap. Although the volume of reported
cyber incidents in the space sector has grown, these reports
rarely provide sufficient detail [11]. As a result, the secu-
rity community has limited visibility into adversarial activity
aimed at space infrastructure.

Honeypots’ ability to collect real-world cyberattack data
makes them an ideal solution to this problem [29]. A honey-
pot is a decoy computer system intended to lure and entice
malicious actors to interact with it [12]; all the while, the
honeypot logs all the interactions the attackers make. This log
data can later be analyzed to discover new and existing TTPs.

Since the release of the first honeypot, the Deception
Toolkit, in 1997 [13], a wide range of honeypots with ever-
increasing capabilities have been introduced. These honey-
pots are used by universities, companies, and nation-states
worldwide [8, 20, 27, 37, 62]. Honeypots are also used to
deter malicious actors from attacking different types of sys-
tems, from industrial control systems [37] to social media
platforms [3]. However, as of the time of writing, there is no
space-sector specific honeypot in the literature.

In this paper, we design, implement, and test the first satel-
lite honeypot, HoneySat to attract and analyze adversaries who
attack space infrastructures over the Internet, a commonly ob-
served threat vector [5, 7, 33, 80]. HoneySat is a modular,
high-interaction honeypot framework that realistically simu-
lates a complete satellite system (ground infrastructure and
Satellite). Specifically, HoneySat simulates Small Satellites
or SmallSats which are spacecraft with a mass of less than
180 kilograms [44]. CubeSats for example, are SmallSats.
Additionally, as part of HoneySat, we developed the Satel-
lite Simulator, a Python project to provide generic simulation
functionality for users to populate satellite honeypots with
believable data. This capability enables the creation of com-
plete testing environments for satellite software that integrate
a variety of simulated subsystems and sensors. For instance,
Satellite Simulator can simulate orbital mechanics (e.g., posi-
tion tracking, attitude adjustment) and electrical power sys-
tems (e.g., power generation, consumption, and distribution)
alongside other subsystems.

We leveraged our framework to create honeypots of real-
world CubeSat missions. Our results, backed by our survey of
satellite operators, show that HoneySat’s simulation is highly
realistic. Our framework is able to simulate an entire real
satellite mission, provides realistic telemetry, and supports
real telecommands.

In summary, this paper makes the following contributions:

* A novel framework, HoneySat, a high-interaction, exten-

sible honeypot for small satellites (Sec. 4).

* The Satellite Simulator, that simulates the physical pro-
cesses, sensors, and subsystems necessary for a realistic
satellite honeypot (Sec. 5).

* The results of a survey of experienced satellite operators
that provide valuable insights into how realistically our
honeypot performs, as well as experimental evidence
demonstrating that the HoneySat framework can simu-
late small satellites, collect rich real-world interaction
data, and be customized for multiple satellites (Sec. 0).

2 Background

This section lays out key background concepts that are rel-
evant to satellite honeypots. For honeypots: a description
of the different existing types (Sec. 2.1), as well as the cur-
rent state-of-the-art (Sec. 2.2). For satellites: their opera-
tion (Sec. 2.3), their architecture (Sec. 2.4), existing Protocol
Ecosystems (Sec. 2.5), and tactics, techniques, and procedures
(TTPs, Sec. 2.6).

2.1 Types of Honeypots

Honeypots are categorized by interaction levels according
to the interaction opportunities they provide. The two main
types of honeypots are low-interaction and high-interaction.

Low-Interaction Honeypots. These honeypots offer min-
imal interaction, simulating real systems through scripts or
finite-state machines. Their advantages are ease of setup and
maintenance due to low resource consumption, and a reduced
risk of adversarial takeover. However, they provide limited
interaction opportunities to adversaries which limits the inter-
action data they provide. Low-interaction honeypot examples
include Conpot [78] and Honeyd [54].

High-Interaction Honeypots. These honeypots offer ex-
tensive interaction opportunities via emulation or advanced
simulations [54]. Their main advantage is providing adver-
saries with almost limitless interactions, enabling them to
provide extensive interaction data. However, they pose a high
risk of adversarial takeover as adversaries have more opportu-
nities to hijack the honeypot [39]. High-interaction honeypot
examples include Cowrie [50] and HoneyPLC [37].

2.2 Honeypot’s State of the Art

The literature on honeypots includes hundreds of implementa-
tions that simulate a diverse set of computer systems [30,48].
From classic implementations that simulate a host’s TCP/IP
stack, such as Honeyd [54], to modern approaches that in-
tegrate social media applications, such as HoneyTweet [3].
However, there is no satellite honeypot in the literature. In the
absence of a satellite honeypot, we now examine the honey-
pot approaches most related to satellites: Industrial Control

Table 1: Comparison of Existing Honeypots and HoneySat.

Keys: v’ = Supported; x = Not Supported.

Honeypot/ Interaction Included Physics Extensi-
Feature Level Protocols Sims bility

Conpot [78] Low 9 0 v’
HoneyPLC [37] High 3 0 v’
ICSPot [14] High 4 1 X
HoneyICS [38] High 2 1 v’
HoneyDrone [16] Medium 4 1 X
HoneySat High 4 6 v’
Addressed 4.4, 4.3, 4.4, 6.5
in Section 43 5.2.1 5.1 o

Systems (ICS) [35,36] and Unmanned Aerial Vehicles (UAV),
a.k.a., drones summarized in Table 1.

Satellite systems like ICS must be aware of some physical
process, e.g., its position, the sun’s position, etc, via sensors
to acquire data about the physical world. Several ICS honey-
pots have simulated these physical processes. For example,
ICSnet [58] and HoneyICS [38] simulate several components
such as programmable logic controllers (PLCs), and actuators
such as water valves.

HoneyDrone [16] is a UAV honeypot that integrates differ-
ent simulations, e.g., Ardupilot, to recreate multiple attack sce-
narios, including the UAV ground control station. Although
UAV honeypots share some similarities with satellites [75],
satellite honeypots require additional physical simulations
and involve a more complex operation environment, which
we discuss in Sec. 2.3.

2.3 Anatomy of a Satellite Mission

We now describe the components of a satellite mission. Due
to satellite missions’ complexity, we explain each component
and match it with one of the numbers in Fig. 1. Every satellite
mission includes the ground segment from which satellite
operators control the satellite and the space segment which
includes the satellite itself.

Ground Segment (1). The Ground Segment (GS) covers
the terrestrial supporting infrastructure required for a suc-
cessful satellite operation. It consists of a ground station,
responsible for exchanging data with the spacecraft, the com-
putational and network infrastructure required for commu-
nication, but also the systems to operate the satellites, e.g.,
servers, databases, and user interfaces [81]. Several ground
stations can be connected in a network and coordinated as part
of one GS. The GS includes the Ground Segment Software
(GSS) that helps operators schedule and send commands and
visualize data that is sent back in response.

Space Segment @ The space segment comprises a satel-
lite or a constellation of satellites. A satellite is launched into

Segment

Payload

Platform

! Operations
Center

Figure 1: The components commonly found in a satellite
mission in the context of the space and ground segments.

orbit and then establishes communications with the ground
segment. During regular operations, satellites may communi-
cate through one or multiple ground stations [81].

Telecommands (TC) @ and Telemetry (TM) @ The ba-
sic data flow between the space and ground segments are TC
and TM [69]. TM is the data the satellite sends to the ground
station which may contain the satellite’s status, responses to
previous commands, or payload data [69]. TCs are used to
operate the satellite and are transmitted and encapsulated in
a space protocol (see Sec. 2.5). The design and implementa-
tion of TCs varies depending on the satellite mission. From
a security perspective, TCs are particularly important as an
attacker that can send valid TCs to a satellite can fully take
over the mission [81].

Orbital Pass @ A satellite and its ground station can
communicate only during an orbital pass. An orbital pass, or
more commonly a pass, is when the satellite rises above a
ground station’s horizon and becomes available for communi-
cation. A pass’s duration and timing depend on the satellite’s
orbit characteristics and any obstructing objects between the
satellite and the ground station, e.g., mountains [82]. In some
cases, such as geostationary orbit (GEO), the satellite can be
above the horizon constantly. The occurrence of passes can be
calculated using the spacecraft’s orbital elements. A common
representation of the orbital elements is the two-line element
set (TLE) [77].

Satellite Mission Operations @ Satellite mission oper-
ations vary widely depending on the owning organization,
budget, and technology. Nevertheless, they share some com-
monalities, which we now describe.

A mission’s operation involves a team of operators that
use GSS to operate a satellite or a satellite constellation and
ensure the mission’s success [46]. Operations are carried
out in a Mission Operations Center (MOC), where satellite
operators sit at their workstations to manage TCs sent to the
satellite(s).

Satellite operators may also remotely operate satellites
(7) by connecting to the ground segment using tools such
as desktop sharing like VNC (Virtual Network Comput-
ing) [10], or even rely on autonomous or semi-autonomous
operations [26].

Satellite operations include two main activities: satellite
tracking and TC generation and scheduling. Satellite track-
ing calculates the satellite’s position in orbit and controls the
ground station(s)’ tracking antenna to establish communica-
tion between the ground and space segments. TC generation
and scheduling crafts command to be programmed and sent
to the satellite so it can perform different functions, e.g., read
systems status data, schedule orbital maneuvers, schedule
payload operations, and download payload data.

Ground (Segment) Software (GSS). GSS allows satellite
operators to carry out the satellite mission’s routine operations
as described in the previous paragraph. GSS are very diverse.
Some satellite missions develop their own GSS while others
use open-source [65] or buy proprietary GSS like GSWeb [23].
There are two main types of GSS: Mission Control Software
(MCS) and Ground Station Control Software (GSCS).

Mission control software (8) manages TCs and scripts to be
sent to the satellite and can display TM. For example, ESA’s
SCOS-2000 is an MCS that provides generic functionality
that can be customized for a specific mission to cover the
functions required for TM reception and processing and TC
verification [42]. Some satellite missions develop their own
MCS. For example, the SUCHAI mission team developed
their MCS application to send and receive TC/TM [65].

Ground station control software (GSCS) @ helps satellite
operators track and visualize the satellite’s orbit and provide
detailed information about each satellite’s pass. For example,
Gpredict is a popular open-source GSCS that performs real-
time satellite tracking and orbit prediction [15]. Gpredict can
also interface with and control the radio system and antenna
rotor during the satellite pass.

2.4 Satellite Architecture

Satellite architectures are varied and complex, however, here
we describe the most common terminology depicted in
Fig. 1’s space segment (2).

When referring to satellite architecture there is a distinction
between the platform that facilitates the successful operation
of the satellite’s day to day-to-day activities and the payload.
The platform provides the possibility to run a payload that ful-
fills the purpose of these missions. This payload differs based
on the goal of the mission and can range from instruments

to measure physical properties to communications systems
providing wireless connectivity.

Platform: The platform, or satellite bus, is a system com-
posed of custom-designed or off-the-shelf subsystems neces-
sary for critical satellite operations. These include, among oth-
ers, the Attitude Determination and Control System (ADCS)
to maintain the satellite’s orientation (i.e. attitude) and posi-
tion to keep the satellite pointed towards antennas or solar
panels illuminated; the Electrical Power Subsystem (EPS)
for managing power generation and distribution; the Commu-
nication Subsystem (COMM) and the Command and Data
Handling (C&DH) subsystems to facilitate communications
for receiving TC and sending TM and controlling the satellite
operations.

All of these subsystems are then controlled via TCs sent to
the satellite. TCs may be, depending on the protocol ecosys-
tem and complexity of the subsystem, interpreted by a central
C&DH System or merely forwarded to the recipient subsys-
tem for further processing [84]. This managerial duty is left
to Flight Software (FS) running on an embedded system of
differing complexity. Some examples include NASA’s Core
Flight System (cFS) [41] and F’ (F Prime) [6], KubOS [83],
the German Aerospace Center (DLR)’s OUTPOST [17], and
the University of Chile’s SUCHAI FS [24]. Attackers aim to
gain the ability to send Telecommands to the Flight Software,
as this typically grants control over all spacecraft subsystems.

Payload. The payload is the equipment that the satellite
employs to fulfill its mission. Due to satellites’ varied mis-
sions, payloads are heavily customized [70]. For example, if a
satellite’s mission is remote sensing, its payload may include
an infrared camera [45]. craft’s essential functions, acts on
TCs, and handles internal data transmitted to and from other
systems [84]. The CDHS is comprised of Flight Software
(FS) running on an OBC [81].

2.5 Small Satellite Protocol Ecosystems

SmallSat missions can often be categorized into the following
categories by the adoption of protocols and their correspond-
ing philosophies.

Cubesat Space Protocol. The Cubesat Space Protocol
(CSP) family of protocols is a one-stop solution for Small
missions [63]. There are not a lot of choices left to the op-
erator/developer and there are two vendors mainly offering
components using this protocol and some that offer compati-
bility solutions [23]. If a mission built on CSP is expanded
by a commercial subsystem it will plug in without issue after
configuration.

CSP is implemented as an open-source C library called
libCSP [63]. CSP follows the TCP/IP model, including trans-
port and routing protocols and multiple layer 2 interfaces
such as 12C (Inter-Integrated Circuit), CAN (Controller Area
Network), and ZeroMQ (ZMQ) for transmission on TCP/IP
networks [72].

In CSP the ground segment interfaces and satellite subsys-
tems are part of a CSP network. Sending TC is as simple as
sending a CSP packet with an address corresponding to a node
that is part of the satellite. The configured static routing tables
of the nodes on the network will then cause the packet to be
passed to the ground station and transmitted to the satellite
over RF where a system on board will route the packet to its
destination. In case the satellite is not currently doing a pass,
the packet is dropped.

The straightforwardness of CSP makes it particularly inter-
esting for the honeypot use case as the internal structures of
any CSP-based mission will look very similar, so distinguish-
ing two missions is difficult as they will use the protocols in
a very similar way.

There are also default services running on standardized
ports that are enabled by default when building libCSP [63],
for example for network diagnostic (ping) or basic operations
(rebooting).

In CSP missions, nodes on the network typically feature a
command-line-based interface for configuration and debug-
ging purposes [23]. This may allow someone with access to
it to interact with the current node and other nodes on the
network.

CCSDS Space Communication Protocols. The CCSDS
Space Communication protocols are a vast set of standardized
protocols used for different purposes in space communica-
tions. A major CCSDS protocol relevant for SmallSat TM and
TC is called spacepacket. This protocol is used in combination
with the ECSS Packet Utilization Standard (PUS) to define
how TCs and TM are encoded and transported. The PUS de-
fines services (and thus sets of TC/TM) for functionality that
satellite missions likely require, including large data trans-
fer or event reporting [59]. Moreover, mission designers can
tailor the PUS standard by selecting a subset of services and
sub-services relevant to their mission needs. Furthermore, it
is possible to define custom Services or implement numerous
custom functionalities.

Proprietary Protocols. In addition to these widespread
ecosystems, vendor-specific sets of protocols may be usable
on top of more standard protocols or transport higher-layer
packets of known protocols. Some basic small satellites may
also have entirely ad hoc protocols that are limited to use with
a single mission or a set of satellites by a specific institution.
These proprietary protocols are not ideal candidates for con-
structing honeypots as an ecosystem of one mission that is
unique to a small set of missions will look out of place for
other missions, preventing generalization.

The choice of ecosystem also influences the choice of GSS
as an MCS usually focuses on a single protocol stack. In
addition to the space protocol ecosystems above, satellite op-
erators use well-known network protocols to connect with the
mission’s ground segment services. These protocols include
Telnet, SSH, VNC, FTP, and HTTP. Telnet, SSH, and VNC
are used to remotely connect to the MOC workstations. HTTP

is used for web interfaces that operators use to visualize mis-
sion data, and FTP is used to download TM data from the
mission data repository. If an adversary were to compromise
any of these services, they could use it as a stepping stone to
target the satellite itself.

2.6 Space Systems’ Tactics, Techniques and
Procedures (TTPs)

Tactics, Techniques, and Procedures (TTPs) describe the be-
havior of a malicious actor in a structured scheme to un-
derstand how they might execute an attack [47,56]. Several
frameworks have been introduced to standardize space sys-
tems’ TTPs. There are two MITRE-style frameworks, the
SPARTA matrix [68] and the SPACE-SHIELD matrix [4].
These matrices list and describe space security-specific tac-
tics and techniques such as initial access and ground segment
compromise.

3 Threat Model

Following Fig. |, we assume an adversary willing to com-
promise a satellite can only interact with the space segment
simulation by sending TCs from the ground segment first. To
gain initial access to the ground segment, an adversary needs
to connect via one of exposed network protocols depicted in
Sec. 2.5, namely, VNC, Telnet, TCP/IP, etc., which correspond
with the operational protocols used in real satellite missions.

From there, an adversary may try to launch different com-
mands to take full control and/or compromise the services
offered by the satellite’s mission. Finally,

in this paper, the modeling of physical radio communica-
tion between the space and ground segments, which is com-
monly used in practice, is considered out of scope and left for
future work.

4 HoneySat Framework Design

In this section, we explain the objectives we aim to
achieve (Sec. 4.1), the design principles we follow to meet
such objectives (Sec. 4.2), and the overall design of our Space
(Sec. 4.4), and Ground (Sec. 4.3) segments.

4.1 HoneySat’s Design Objectives

Our design aims to achieve the following objectives:

DO-1 Capability to Capture Rich Interaction Data. As ex-
plained in Sec. 1, the number one objective of any hon-
eypot is to capture interaction data from which we can
derive knowledge on adversaries’ TTPs. As such, our
first objective for HoneySat is to have capability to cap-
ture rich interaction data.

Q0

Exposed Network Protocols N Raw
[wNC][Telnet |[web]|Packets
LY LY LY

ﬂ;round [Ground Segment Sims | Interactior\
Data
Confi- ¥ Ground Software >
guration
(3
| Radio Simulator | .
7y
[Space Segment Sims |
pace Segment Sims l Log
| Flight Software Runtime | Data
Satellite 3 Base
™ >
Per_so- | Flight Software Services |
nality t

\ | Satellite Simulator H /

Figure 2: HoneySat framework high-level architecture design.

DO-2 Provide Deception. As we discussed in Sec. 1, honey-
pots’ nature must remain covert to entice adversaries
into interacting with it. As such, our second objective
is for HoneySat’s nature to remain hidden from adver-
saries.

DO-3 Provide Extensibility and Customizability. A frame-
work’s main purpose is to provide generic functionality
that can be customized to meet the user’s needs, in Hon-
eySat’s case, we must be able to support multiple Small-
Sats. For example, a particular SmallSat may use CSP or
CCSDS ecosystems. Additionally, each SmallSat mis-
sion has a particular orbit that must be customizable.
As such, our third objective is for HoneySat to provide
extensibility and customizability.

4.2 HoneySat’s Design Principles

To meet our objectives, we selected the following principles:

DP-1 High-Interaction Simulation. As we described in
Sec. 2.1, high-interaction honeypots give adversaries
the same or almost identical interaction opportunities
as a real satellite. Thus, they can log many of the TTPs
discussed in 2.6. For these reasons, we selected high-
interaction simulation as our first design principle. This
design principle is based on design objective DO-1.

DP-2 Realistic Simulation. As we discussed in Sec. 2.2, satel-
lites keep track of their orbit location, the position of
the sun, among others. These details must be simulated
by our honeypot; otherwise, they may alert adversaries

Segment | Real Component | HoneySat Component

Ground Remote Operation Protocols VNC, Telnet
Ground Mission Control Software Modified MCS
Ground | Ground Station Control Software Gpredict
Ground Web Interface Web Interface
Ground Ground Station Radio Simulator
Space Flight Software E.S. Runtime + Services
Space On Board Computer Docker Container
Space Platform Satellite Simulator
Space Payload Satellite Simulator

Table 2: Correspondence between real satellite mission com-
ponents and HoneySat’s design components.

that they are interacting with a fake system. This design
principle is based on design objective DO-2.

DP-3 Modularity. As we explained in Sec. 2, satellites are
complex and diverse systems. There is no one-size-fits-
all solution. To tackle this problem, we designed Hon-
eySat to be modular. Modularity allows us to insert,
remove, or change any part of our honeypot framework
without implementing a new honeypot from scratch.
This design principle is based on our objective DO-3.

We now describe HoneySat’s architecture design and how
this architecture integrates the design principles described
above. At the highest level, our framework’s architecture,
depicted in Fig. 2, consists of two sets of simulations, the
space segment simulations and the ground segment simula-
tions. Table 2 illustrates how HoneySat’s simulation compo-
nents match the components of a real satellite mission.

4.3 Ground Segment Design

Following Sec. 2.3, the purpose of the HoneySat’s ground
segment is to simulate the ground segment assets, e.g., the
ground segment software. To accomplish this, our design
includes the following components: 1) the Exposed Network
Protocols, 2) the Ground Segment Software, 3) the Radio
Simulator, 4) the Ground Personality, and 5) the Logging
Repository.

1) Exposed Network Protocols. To provide adversaries
with feasible access to our honeypot, HoneySat exposes mul-
tiple means of interaction over a network such as the Internet.
We designed HoneySat to support four different interaction
methods using different protocols, namely VNC, Telnet, Web,
and Access to the ground station via raw packet transmitting
capability (following design principle DP-3).

2) Ground Software. As discussed in Sec. 2.3, the ground
software includes mission control software (MCS) and ground
station control software (GSCS). We leverage existing ground
software, allowing HoneySat to provide a high-interaction
simulation (DP-1).

3) Radio Simulator. As discussed in Sec. 2.3, communica-
tion between the satellite and the ground station is possible

only during a pass. The purpose of the Radio Simulator is to
control communication between the ground and space seg-
ment simulations to simulate real orbital passes. The Radio
Simulator design follows design principles DP-2 and DP-3.

4) Ground Configuration. The ground configuration is
a series of settings for the various ground segment-specific
configurations, e.g., the satellite mission logo in the Web
Interface.

5) Logging Repository. This repository logs data such as
the TM/TC traffic to and from the ground station software
and the logging attempts received in the web interface. We
designed the ground segment simulation logs to be catego-
rized and timestamped. The logging design follows design
principle DP-3.

4.4 Space Segment Design

The purpose of the HoneySat’s space segment is to mimic the
spacecraft, as discussed in Sec. 2.3. To accomplish this, our
design includes the following components: 1) the satellite’s
Flight Software Runtime, 2) the Satellite Simulator, 3) the
Flight Software Services, 4) the Satellite Personality, and
5) the Logging Repository.

1) Flight Software Runtime. As discussed in Sec. 2.4, the
satellite flight software manages all critical functions required
for the mission operation, such as interacting with hardware
peripherals, processing TCs, and sending TM. For this to work
we need an environment where services that handle TC in-
tended to run on flight software can be run. We reuse existing
compatibility or testing wrappers to run the relevant parts
of flight software for HoneySat to provide nearly identical
interactions to an adversary. This produces a high-interaction
honeypot simulation that follows design principle DP-1.

2) Satellite Simulator. One of the biggest challenges when
designing HoneySat was simulating all the physical processes,
e.g., attitude, that satellites need to know. The Satellite Sim-
ulator is designed to solve this problem. It simulates all the
necessary satellite subsystems, e.g., the Electrical Power Sys-
tem, and the sensors, e.g., a GPS receiver, that a satellite re-
quires to function. The purpose of the Satellite Simulator is to
abstract away the various hardware peripherals that communi-
cate with the flight software by simulating these peripheral’s
data. For example, suppose a particular flight software was
implemented to utilize a specific lithium-ion battery pack. In
that case, the Satellite Simulator’s power system simulation
simulation can simulate the basic behavior of the battery. We
designed the Satellite Simulator to be modular so that new
subsystems and sensors can be easily added, modified, or
disabled, following our DP-3.

3) Flight Software Services. The flight software services
that process TC and provide TM act as the bridge between
the Satellite Simulator and the rest of the Honeypot. In case
a service requires some data from a subsystem of the satel-

[Adversary's host

Flight Software
Runtime

Exposed
Network

Ground
Software

Satellite
Simulator

Figure 3: HoneySat’s Theory of Operation.

lite or a command is sent to a subsystem, it is passed to the
satellite simulator instead. The satellite state module routes
the service’s messages to and from the Satellite Simulator. It
uses a list of message IDs that can be customized based on
the protocol ecosystem and software architecture.

4) Satellite Personality. The satellite personality module
is designed to provide a central configuration location for
the space segment. It includes FS and Satellite Simulator
configuration values such as the satellite’s battery capacity.
The satellite personality allows our framework to be easily
customized.

5) Logging Repository. We designed each space segment
component to provide detailed logs. As shown in Fig. 5, all
Satellite Simulator modules can send their own logs.

4.5 Theory of Operation

In this section, we provide a brief overview of how the de-
signed framework components shown in Figure 2 interact by
following the numbers in Fig. 3.

An adversary gets initial access via one of the Exposed Net-
work Protocols (D). On interaction with the Simulated Ground
Segment, an attacker is presented with access to the Ground
Software (2). The configuration of this ground software is de-
fined by the Ground Configuration, which allows the ground
software to look like one of many different missions from
its protocol ecosystem to the attacker. The attacker can then
interact with the Ground Software, while their actions are re-
ported to the Log Database. They might want to try to gain
more privileges on the ground segment or try to send TC to
the space segment. Instead of deploying a ground station with
an RF transmitter and associated hardware, we employ the
Radio Simulator (3 to handle all simulated radio frequency
communications.

When an attacker uses the ground segment to send a valid
TC or raw packets, the Radio Simulator checks whether the
satellite configured in the Satellite Personality is currently
passing over the designated ground station location. If so, the
Radio Simulator forwards the TC to the Flight Software Run-
time @. When the Flight Software Runtime receives a com-

mand, it will run the corresponding Flight Software Service
to compute a response Q). In case it requires either changes to
an on-board system’s state or a sensor value to execute the TC,
it will invoke the Satellite Simulator for this (6). The Satellite
Personality contains the configuration used by the Satellite
Simulator. Once a TC is processed, the resulting TM is routed
back through the Radio Simulator to either the attacker or
the ground software used by the attacker (7)-(3, and is also
recorded in our Log Database.

S HoneySat’s Implementation

Having laid out HoneySat’s design we now explain how we
implemented the Satellite Simulator (Sec. 5.1), the generic
CSP mission honeypot (Sec. 5.2), the ground segment
(Sec. 5.2.1), and the space segment (Sec. 5.2.2).

5.1 Satellite Simulator Implementation

We implemented the Satellite Simulator as a Python object-
oriented programming application.

We implemented 11 sensors, 4 subsystems, 1 satellite state,
and 1 interface, based on our 6 simulations. These modules
are generic enough so that we do not have to heavily modified
them to support other satellites. Overall, satellite architectures,
subsystems, and sensors are varied, so modularity is necessary
when constructing a simulation framework. Many of the basic
simulations and corresponding sensors can be shared, espe-
cially in a honeypot where attackers lack detailed information
that would enable them to distinguish between small differ-
ences in sensor values. Further details on the simulations can
be found in A.2

5.2 Generic CSP Mission Honeypot

Following our design we implemented HoneySat to support
the CSP ecosystem. This implementation provides a generic
CSP-based mission honeypot that can be customized to simu-
late a specific CPS-based satellite missions.

5.2.1 Ground Segment Implementation

We now describe how we implemented the five ground seg-
ment simulations designed in Sec. 4.3. 1) the Exposed Entry
Points, 2) the Ground Software, 3) the Radio Proxy, 4) the
Ground Configuration, and 5) Logging Repository.

1) Exposed Network Protocols. We implemented four
exposed entry points. A VNC server, a Telnet server, a Web
server, and ZeroMQ-based access to the CSP Network. We
implemented the VNC server using TigerVNC [51] and used
PyZMQ [25] for the Raw Packet Access. The Telnet server
was implemented using Python to expose the command-line
interface of GSS on the network. The web interface allows
for the customization of text presented to the attacker through

A0S in 01:32:29

Figure 4: The view an attacker would see upon connection
to the VNC server. Ground Station Control Software (Red)
Ecosystem/Mission Specific MCS (Yellow).

configuration. Using the above entry points, adversaries can
interact with the GSS and the space segment simulations.
Among these, the web interface serves as a measure to attract
attackers and serves as an initial entry point for attackers. We
developed a simple yet convincing web application, presented
as an early version of a web interface currently under devel-
opment. After the login, the attacker would be welcomed by
a dashboard that displays information about the satellite and
the latest output of the Ground software command line in-
terface. Additionally, the web application provides access to
documentation and the VNC server (Fig. 4), facilitating the
attacker in finding the other entry points.

2) Ground Software. To implement the MCS software for
our CSP-based honeypot, we require an open-source MCS
for the CSP ecosystem. We leveraged the SUCHAI mission
control software (SUCHAI MCS). This software is a node
on the CSP network that has a command line-based interface
that allows basic MCS functionality like scheduling telecom-
mands or saving downlinked telemetry. This is a good choice
for the generic CSP MCS as it can be passed off as the CLI of
commercial ground segment appliances like the GomSpace
NanoCom MS100 [23]. In this generic honeypot, we can set
mission-specific parameters through the ground configuration.
Additionally, we provide a desktop environment accessible
via VNC, complete with supporting applications such as con-
figured Gpredict for the satellite mission. For certain deploy-
ments, this environment also includes a mission-specific GUI
tool, both of which appear as open windows on the desktop.

3) Radio Simulator. The Radio Simulator was imple-
mented as a ZMQ Hub. The ZMQ Hub functions as a router
for the CSP network. Simulating both the ground part of the
CSP network including the ground station and space segment.
Depending on whether the satellite is currently passing, pack-
ets to the space segment are forwarded to the Flight Software
Runtime. We decided to use ZeroMQ as it is the protocol to
use for transmitting CSP over TCP/IP [64].

4) Ground Configuration. We implemented the ground
configuration on each component, and the settings can be
modified through a Docker compose file explained in Ap-
pendix A.3.

5) Logging Repository. This implementation uses the
MongoDB database [43] to aggregate and store logs. The
web interface records login attempts, while the Telnet server
logs inputs on a per-connection basis. Additionally, network
traffic to and from the host running HoneySat is captured.

5.2.2 Space Segment Implementation

1) Flight Software Runtime Although most of the flight soft-
ware frameworks presented in Section 2.4 are open-source
projects, it is difficult to find a real satellite flight software im-
plementation that is available for study and modification [81].
For this reason, we use the University of Chile’s SUCHAI
Flight Software (SUCHAI FS) [24], which has been deployed
in four satellite missions [21]. The SUCHAI FS provides
Flight software based on the CSP ecosystem that already
features a mode where it can be run on a POSIX OS.

2) Flight Software Services. The SUCHAI FS uses libCSP
[63] and thus features the libCSP default services that present
a generic attack surface. Furthermore, there is a set of com-
mands commonly used in satellites as a basic set of tasks
to control common satellite operations such as communica-
tions. There are 96 of these commands and parameters that
are parsed from CSP packets using a text-based protocol.

3) Satellite Personality. The satellite personality was im-
plemented as a Python class that holds multiple variables
related to the space segment. The current implementation in-
cludes almost 50 configurable variables, such as the satellite’s
name, the battery’s nominal cell capacity, etc.

4) Logging Repository. Like the ground segment’s logging
repository (Sec 5.2.1), The Satellite Simulator and the FS are
connected to the MongoDB instance using a MongoDB client.

Each logged data entry is created with customized tagging
and a timestamp. The collected data is structured JSON [32]
format and stored in the MongoDB database.

Finally, we containerized and hardened this version of the
honeypot implementation for secure and easy deployment,
which we describe in Appendix A.3.

6 Evaluation

Having described HoneySat’s implementation in Sec. 5, we
now evaluate it. This section lists three experimental ques-
tions designed to test HoneySat’s alignment with our design
objectives. Next, we present four sets of experiments that
provide empirical evidence confirming that our design objec-
tives have been achieved within HoneySat. We describe each
experiment’s environment, methodologies, and results.

6.1 Experimental Questions

These questions aim to determine whether or not HoneySat’s
meets the design objectives outlined in Sec. 4.1.

Q-1 Can HoneySat offer extensive interaction opportuni-
ties to adversaries?
Since capturing data on varied techniques is the purpose
of any honeypot, we explore the capabilities of HoneySat,
as described in Sec. 4. This question is related to design
objective DO-1 and is addressed in Sec. 6.2 and 6.4.

Q-2 Can HoneySat simulate a SmallSat mission well
enough to deceive adversaries?
After enticing an adversary HoneySat must keep its true
nature hidden, we need to simulate the satellite’s commu-
nication and physics characteristics described in Sec. 2.4.
This question relates to design objective DO-2 and is an-
swered in Sec. 6.3.

Q-3 Can HoneySat simulate different SmallSat missions?
HoneySat’s customization is important because it would
allow users of our framework to implement their own
honeypots. This question relates to design objective DO-3,
and we answer it in Sec. 6.5.

To answer the above research questions we conducted four
experiments. First, in Sec. 6.2 we craft multiple attacks in a
controlled environment to quantify the level of interaction that
HoneySat provides. Second, in Sec. 6.3 we conduct a survey
with experienced satellite operators to evaluate HoneySat’s
realism. Third, in Sec. 6.4 we deploy HoneySat and expose
it to the Internet to test its deception capabilities. Fourth and
final, in Sec. 6.5 we add an additional protocol ecosystem to
HoneySat to test its extensibility potential.

6.2 TTP Interaction Experiment

This experiment seeks to answer Q-1 by quantifying the dif-
ferent interactions that HoneySat provides. To achieve this,
we leveraged the SPACE-SHIELD matrix (Version 2.0) [4]
discussed in Sec. 2.6. SPACE-SHIELD provides a collection
of adversary tactics and techniques for space systems. In this
experiment, we determined the number of tactics and tech-
niques that HoneySat supports. SPACE-SHIELD consists of
14 tactics and 62 techniques. However, not all of them are
applicable to a virtual, network-based honeypot such as Hon-
eySat. For example, the technique Compromise Hardware
Supply Chain involves “replacing a hardware component in
the supply chain with a custom or counterfeit part” which
is out of the scope of a virtual honeypot. Taking this into
consideration, 14 tactics, and 33 techniques are applicable to
HoneySat.

Experiment Description. Our experimental environment
included two hosts. One host running HoneySat and the ad-
versary host. The HoneySat host ran Ubuntu 23.10 and was

configured with the SUCHAI-2 satellite and ground personal-
ities. The adversary host ran a Telnet client. Both hosts were
connected to the same network.

Experiment Methodology. We designed one interaction
or exploit for each of the applicable 33 techniques for our hon-
eypot. The interactions involved ground segment simulations
such as the web interface. The exploits were simple, using
one TC, or complex with multiple TCs involved.

Experiment Results. We crafted 16 exploits and 17 in-
teractions following the above methodology. For example,
the technique T1007 - System Service Discovery’s descrip-
tion reads “Adversaries may try to gather information about
registered local system services. Adversaries may obtain infor-
mation about services using tools and OS utility commands.
Adversaries may use the information from System Service
Discovery during automated discovery to shape follow-on be-
haviors, including whether or not the adversary fully infects
the target and/or attempts specific actions.”

Based on this description, we designed the following ex-

ploit to capture information about the satellite’s running pro-
cesses:

TC-1: 1:
TC-2: 1:

obc_system ps -aux > ps.log
tm_send_file 10 ps.log

Similarly, technique 72014 - Backdoor Installation reads
“An attacker can interfere with the hardware or the software,
integrating or modifying the existing software, hardware con-
figuration, or the transponder configuration to permit himself
future access to the resource”. Therefore, we designed the
following exploit to upload a malicious script to the satellite
software:

TC-1: tm_send_file backdoor.sh 1
TC-2: 1: obc_system ./recv_files/backdoor.
sh

Due to space limitations, we do not describe all the exploits
and interactions here. However, the complete exploit and
interaction list is available in Table 6 in Appendix A. The
overall results for this experiment are depicted in Table 3. The
key findings of our experiment are shown below, providing
strong evidence for answering question Q-1 in the affirmative
and design objective DO-1 as achieved.

Key findings Q-1]
* HoneySat supports 86.8% of the SPACE-SHIELD

matrix techniques possible in a virtual satellite hon-

eypot.
* HoneySat supports 100% of the SPACE-SHIELD ma-

trix tactics.

10

SPACE-SHIELD HoneySat
Tactics Techniques Supported
(Applicable to Virtual Honeypots) — Techniques
Reconnaissance 2 2
Resource Development 2 2
Initial Access 2 2
Execution 2 2
Persistence 2 2
Privilege Escalation 2 1
Defense Evasion 4 4
Credential Access 3 3
Discovery 2 2
Lateral Movement 4 1
Collection 2 2
Command & Control 2 2
Exfiltration 2 1
Impact 7 7
Total 38 33

Table 3: Tactics and techniques supported by HoneySat com-
pared to the ones included in the SPACE-SHIELD matrix that
are applicable to virtual honeypots.

6.3 SmallSat Operators Survey

Evaluating the realism of a satellite honeypot is challenging
for two main reasons. First, as we discussed in Sec. 1, satel-
lites, including SmallSats are very diverse. Second, there is no
established metric or tool, such as Nmap’s OS detection [49],
to quantify the level of realism of our honeypot.

To evaluate the realism and deception capabilities of Hon-
eySat, we surveyed experienced, real-world SmallSat oper-
ators. Because operators interact with real-world SmallSat
missions on a daily basis they are experts and thus are the
best population to rigorously evaluate HoneySat.

6.3.1 Survey Structure

We divided our survey into five sections. The first section
collected essential background information about the partic-
ipants, while the second part focused on their professional
experience. In this second section, participants were asked
whether they worked in industry, government, or academia
and to self-report their cybersecurity skills as well as satellite-
related skills (e.g., satellite hardware engineering). The third
section of the survey probed participants’ satellite operation

Satellite Operation | Evaluated Component | No. Qts.
Telecommand Scheduling Mission Control SW 6
Pass Prediction Ground Station Control SW 6
Antenna Positioning Ground Station Control SW 6
EPS Telemetry Satellite Simulator 6
Temperature Telemetry Satellite Simulator 6
ADCS Telemetry Satellite Simulator 6
RGB Camera Telecommand Satellite Simulator 6
Ping Test Radio Simulator 6

Table 4: Summary of questions in Section 6.3, satellite hon-
eypot operation tasks of the survey (48 total).

experience, including how many missions they had operated
and which tools they used.

The largest section of the survey included 48 questions
about satellite honeypot operation tasks. Participants watched
eight 1-2 minute recordings of HoneySat ’s VNC view
(Fig. 4), each showcasing the ground and satellite personality
of a real CSP-based CubeSat mission (based on the SUCHAI-
2 CubeSat [34]). Every recording highlighted a different fea-
ture of HoneySat by replicating a real-world satellite mission
operation, as discussed in Section 2. After each recording, par-
ticipants answered questions designed to assess how realistic
they found that particular aspect of the honeypot. Table 4 lists
all of the satellite operations demonstrated in these recordings.
Finally, once participants had seen multiple elements of our
honeypot, the survey concluded with an overall evaluation
section. Both the honeypot operation tasks and the overall
evaluation used 5-point Likert scale [55] questions to measure
participants’ positive or negative reactions.

6.3.2 Participants

We conducted the survey via Qualtrics and distributed the
survey directly to active SmallSat mission operators from
previously identified missions. In total, we received responses
from 14 satellite operators who have between 1 and 5 years
of experience operating satellites and have operated between
2 and 7 unique missions. In terms of demographics, 21.4%
(3/14) of participants were female, 71.4% (10/14) male and
7.1% (1/14) preferred not to answer. 57.1% (8/14) belonged
to the 18-24 age group, 35.7% (5/14) to 25-34 and 7.1%
(1/14) to 35-44. 28.5% (4/14) of participants’ highest level of
education was high school, 35.7% (5/14) bachelor’s degree,
14.2% (2/14) master’s degree and 21.4% (3/14) Ph.D. In
regards to geographic location, 78.5% (11/14) of participants
were located in Europe, 14.2% (2/14) in North America and
7.1% (1/14) in South America.

Recruiting participants was challenging due to the rarity
and specialized nature of the required expertise. Over a span
of four months, we reached out to national and international
institutions, as well as private corporations involved in opera-
tional satellite missions to identify suitable participants.

6.3.3 Methodology and Key Results

In the survey, we aimed to evaluate three key aspects of our
honeypot. First, whether the ground segment simulations are
realistic; second, whether the space segment simulations are
realistic; and third, whether HoneySat, as a whole, provides a
convincing and realistic system.

Before describing the results it is important to emphasize
that the participants were informed that the recordings showed
a simulation of a satellite mission and not of a real mission.

Ground Segment Realism. To understand if HoneySat’s
ground segment is realistic we showed participants record-

11

ings of different satellite operations (discussed in Sec. 2.3)
performed with HoneySat, to showcase the ground segment
components listed in Table 4.

For example, one of the recordings shows the pass predic-
tion operation which involves calculating when and where a
satellite will be visible or within range of a specific ground
station. This operation is performed using the ground station
control software. After the participants watched a recording of
this operation, we asked them to rate their perceived level of
realism. 85.7% of participants agreed or strongly agreed that
the pass prediction operation done in HoneySat resembles
that of a real mission.

Another relevant operation is the telecommand scheduling
operation which involves the planning and organization of the
commands to be sent to the satellite during a pass. 42.8% of
participants strongly agreed that the telecommand scheduling
operation performed in HoneySat resembles that of a real mis-
sion mentioning the use of a terminal-based mission control
software. Interestingly, 35.7% of participants neither agreed
nor disagreed, citing that they do not use a command line
tool but instead a GUI. These results indicate that some of
the surveyed operators use a command line-based mission
control software while others use a GUI-based confirming the
diversity of means of operation in Sec. 2.3.

In summary, according to our survey, most participants per-
ceive the ground segment simulated by HoneySat as compara-
ble to that of a real satellite mission. While a few participants
mentioned that they expected to see a GUI-based mission
control software instead of a command line-based one, this
is something that we expected, as the means of satellite op-
erations vary greatly among missions. Nevertheless, thanks
to HoneySat’s modularity HoneySat can be extended to use a
GUI-based mission control software such as YAMCS [1].

Space Segment Realism. In a similar manner, to under-
stand if HoneySat’s space segment is realistic, we showed
participants recordings of different satellite operations that
make use of HoneySat’s space segment simulations (discussed
in Sec. 4.4) to showcase multiple components of the space
segment listed in Table 4. For example, one of the recordings
shows the EPS Telemetry operation which involves the collec-
tion of data from the Electrical Power Subsystem discussed in
Sec. 2.4. This operation is performed using the mission con-
trol software to send telecommands and download the latest
EPS telemetry. After the participants watched a recording of
this operation performed by HoneySat, we asked them to rate
their perceived level of realism of the telemetry output shown
during the operation. 57.1% of participants agreed or strongly
agreed that the telemetry shown in the EPS Telemetry oper-
ation resembles that of a real mission mentioning realistic
EPS values such as voltage, and temperature. 14.2% neither
agreed nor disagreed mentioning that the EPS temeletry was
presented in a different format. Finally, 28.5% disagreed or
strongly disagreed mentioning that the telemetry included less
values than the mission that they had operated. These results

indicate that the EPS telemetry generate by the Satellite Sim-
ulator is considered realistic by the majority of participants.

We also asked participants to asses the ping test operation.
This operation is a diagnostic procedure used to verify the
communication link between a ground station and the satel-
lite. It involves sending CSP packets between two CSP nodes,
namely the ground segment and the spacecraft. After the par-
ticipants watched a recording of this operation performed
on HoneySat, we asked them to rate their perceived level
of realism. 64.2% of participants agreed or strongly agreed
that the ping test operation resembles that of a real mission
citing the realistic response times. 21.4% of participants nei-
ther agreed nor disagreed stating that in their experience the
ping test also downloads additional telemetry. Finally, 14.2%
disagreed or strongly disagreed noting that in their mission
the ping command has a different name. The results of the
ping test operation indicate that HoneySat’s radio simula-
tor (which controls the communication between the ground
and space segments) is considered to realistically simulate
the communication of a real satellite mission by the major-
ity of participants. A significant key finding of our survey is
shown below. Overall, the results obtained provide convincing
evidence for answering question Q-2 in the affirmative and
design objective DO-2 as achieved.

Key finding Q-2]

71.4% of surveyed satellite operators agreed or
strongly agreed with the following statement: “If I did
not know this was a honeypot simulation of a Cube-
Sat satellite mission, I would have believed it to be an
actual CubeSat satellite mission.”

6.4 Internet Interaction Experiment

This experiment explores HoneySat’s capabilities to entice
external actors in the wild by deploying our honeypot over the
Internet. To accomplish this, we leveraged the Shodan search
engine. Shodan is a search engine for Internet-connected
devices that scans the whole Internet and indexes exposed
servers and their TCP ports. Shodan then reads the banner
information for each port. For example, it gathers the web
headers and Telnet login banners [40]. Additionally, Shodan
tags servers as honeypots if the servers have too many open
ports [37].

Experiment Description. We deployed and configured five
HoneySat instances over the Internet and exposed TCP port
24 for the Telnet server and 80 for the web interface so that
anybody can interact with it and allow Shodan to index our
server and its banners. We deployed four HoneySat instances
in total.

Experiment Results. Our honeypot servers were success-
fully indexed by Shodan. Both Telnet and web banners were
captured, and none of them were tagged as honeypots.

12

Source Cmds Engaged
Honeypot 1P Received Time
Honeypot 1 Egypt 4 2 hr
Honeypot 2 Sweden (Tor) 9 5 min
Honeypot 1 France (Tor) 6 4 min
Honeypot 3 USA 8 3 min

Table 5: Exposed Telnet interactions received.

Our honeypots successfully enticed external actors and cap-
tured 4 distinct sessions (show in Table 5) via the exposed
Telnet protocol discussed in Sec. 4.3. The exposed Telnet pro-
tocol was implemented so that a human had to type “activate”
in the terminal before sending commands. This feature was
implemented to filter out Internet Telnet bots. As such, the
commands that we describe below were sent by a human and
not a crawler or Internet bot.

We now describe the commands received in the first inter-
action session shown in Table 5.

1. help: Shows the ground software available commands.

2. Is: The Linux Is command is not a valid command in the
honeypot ground software.

3. fp_show: Prints the list of commands in the current flight
plan (The flight plan refers to a pre-programmed se-
quence of tasks, and commands that guide the satellite’s
operation).

4. com_debug: Prints the current CSP network configu-
ration including the current CSP node, interfaces and
routing table.

The commands fp_show and com_debug are flight software-
specific commands which suggests that the adversary was
successfully deceived by our honeypot and purposefully sent
flight software commands instead of haphazardly sending
unrelated commands. Another factor that indicates that the
adversary was deceived is that they engaged with our honey-
pot over a period of two hours indicating that they did not
immediately identified it as a honeypot.

In summary, these results provide strong evidence for an-
swering question Q-2 in the affirmative and design objective
DO-2 as achieved.

Key finding Q-2]

Human adversaries interacted with three of our
HoneySat-powered honeypots during four distinct Tel-
net sessions resulting in 16 satellite mission-specific
commands captured.

6.5 Case Study: Generic CCSDS Mission Hon-
eypot

In Sec. 5.2 we described how we implemented HoneySat us-
ing one SmallSat protocol ecosystem, namely, CSP. In this

case study we are interested in testing the extensibility capa-
bilities of HoneySat to support additional ecosystems (dis-
cussed in Sec. 2.5) by adding a second ecosystem to HoneySat,
namely the CCSDS ecosystem.

Experiment Description. We selected the CCSDS ecosys-
tem because it is a standard protocol suite used by other Small-
Sats [81]. To accomplish this, we leveraged an open-source
CCSDS ecosystem-based flight software framework, RAC-
COON OS [31], and YAMCS, an open-source Mission Con-
trol software framework with built-in support for PUS [1].

Methodology. Building upon our HoneySat framework
implementation, as detailed in Sec. 5, we enhanced the system
by integrating various components of the RACCOON OS and
the YAMCS framework.

Results. We successfully extended HoneySat to support the
CCSDS ecosystem. Regarding the ground segment we imple-
mented the exposed network protocol using YAMCS’ built-in
web interface (Fig. 7), for the mission control software we
used YAMCS’s built-in Mission Control Software [1], for the
radio simulator we used RACCOON’s communication appli-
cation and for the ground configuration and logging repository
we again used YAMCS built-in features.

Focusing on the space segment, we implemented the satel-
lite flight software runtime using the RACCOON framework,
and for the Flight Software Services, we configured the RAC-
COON framework to connect it to the YAMCS’s MCS on the
ground segment. The satellite personality and logging reposi-
tory were based on the existing HoneySat implementations.

The majority of the effort involved in extending HoneySat
to support the CCSDS ecosystem was dedicated to understand-
ing the ecosystem itself, including components such as PUS.
Additionally, we had to analyze the RACCOON flight soft-
ware code and the YAMCS framework documentation. The
only extra implementation that was required was the Flight
Software Services which we modified using Rust. Other than
that we reused several elements of HoneySat like the satellite
personality and the Satellite Simulator.

In summary, these results provide strong evidence for an-
swering question Q-3 in the affirmative and design objective
DO-3 as achieved.

Key findings Q-3 |

Out of the box HoneySat supports CSP and CCSDS,
the two most widely used standard space ecosystems,
and was evaluated by simulating 3 real-world Small-
Sats.

7 Discussion and Future Work

Limitations. Currently, the functionality of some subsystems
within HoneySat’s Satellite Simulator are constrained by the
quality of the data provided. For example, the resolution of
Earth’s images generated by our camera payload depends on

13

the resolution of its source data (USGS [76]). Consequently,
creating a honeypot for a satellite with a high-resolution cam-
era payload would not be feasible without addressing the
underlying issues of data source quality.

Broader Applications of HoneySat. While originally de-
signed as a honeypot, our framework offers the flexibility to
support a range of applications beyond its initial purpose. One
promising use case is the development of digital twins for
satellite systems, enabling the simulation of real-world satel-
lite subsystems and communication scenarios. Furthermore,
HoneySat can be integrated into cyber range environments
to enhance training programs and cybersecurity simulation
exercises. Lastly, HoneySat serves as an educational tool,
providing researchers, industry professionals, and security
enthusiasts with an opportunity to explore and learn about
satellite architecture and operations.

8 Conclusion

Although we have yet to witness a Stuxnet-like cyberattack on
space systems, security researchers and professionals need to
develop effective countermeasures to secure satellites. In this
paper, we introduced HoneySat, the first satellite honeypot
that provides a much-needed alternative source of empirical
data on attackers” TTPs. We created a satellite honeypot that
realistically simulates an entire satellite system, including its
sensors and subsystems.

We performed several experiments that provide strong evi-
dence that the framework can obtain rich interaction data, can
be extended and customized, and simulate a satellite to keep
its honeypot nature hidden from potential adversaries. Finally,
we hope that security researchers and professionals take ad-
vantage of HoneySat’s open-source implementation and use
it as a foundation not only for satellite honeypot deployments
but also for simulation, education, and training applications.

9 Ethical Considerations

In this paper we consider the ethical consequences and possi-
ble negative outcomes of two main elements of our research.
The satellite operator user study and the multiple deployments
of our satellite honeypot exposed to the Internet. We now dis-
cuss the stakeholders, potential risks and how we mitigated
those risks for each of these elements.

9.1 Satellite Operators User Study

Our user study adheres to the ethical guidelines outlined in
the USENIX Security ‘25 Ethics Policy. Prior to conducting
any research, the study plan, survey protocol, and associated
materials were submitted for review by our Institutional Re-
view Board (IRB), which evaluated the study’s potential risks
to participants. The protocol received "exempt status" from
the IRB, indicating that the research involves no more than
minimal risk. This status reflects our careful evaluation of
possible harms, which we discuss further below.

Stakeholder Identification. The primary stakeholders in
the survey are survey participants. Our study aims to gather
voluntary responses regarding the fidelity and realism of our
honeypot system. We carefully considered the potential risks
to both the participants of the survey.

Risk Mitigation.The main risk for the survey participants
is the breach of privacy. To mitigate this risk, we ensured
that no identifiable data (e.g., names, contact details) was
collected from survey participants and the survey responses
remain fully anonymous. Additionally, the survey itself in-
cludes an informed consent section that informs the respon-
dents about the voluntary participation, the survey’s purpose,
a description of the procedures, the risks involved, and contact
information and the option to opt out of the survey. Finally,
we provided participants the choice to skip questions using
the response options “Prefer not to say” and “I do not know”
to applicable questions. Due to the aforementioned risk mit-
igation strategies the stakeholders’ breach of privacy risk is
negligible.

9.2 Honeypot Deployment Experiment

Stakeholder Identification. The primary stakeholders in the
honeypot deployment are the external actors who interact
with our honeypot and the infrastructure owners on whose
infrastructure our honeypot is running. In the honeypot de-
ployment experiment we deployed HoneySat on server infras-
tructure owned by real-world institutions.

Risk Mitigation. The main risk for the infrastructure own-
ers is that one of the external actors will use our honeypot as an
stepping stone to breach their production infrastructure. For
the deployment on the premises of the institutions we worked
with the local IT infrastructure administrators to ensure that
we took all the necessary precautions to avoid any possibility

14

that the external actors could gain access to the infrastructure
via our honeypot. First, the infrastructure owners provided us
with a server with a clean OS installation that did not have any
production applications or sensitive data. Second, the server
was isolated on its own network segment. Third, we config-
ured a firewall to only allow the necessary ports. Fourth, the
VNC portion of the honeypot is configured so that external
actors cannot use it to host malicious services by denying
traffic forwarding. Fifth and final, we deployed our honeypot
using two sandboxing layers (Docker containers and Virtual
Machines (VMs) as we discussed in Appendix A.3. Due to
the aforementioned risk mitigation strategies the stakeholders’
breach of privacy risk is negligible.

The main risk for the external actors is the breach of their
privacy. However, it is generally accepted that trespassers
of a computer system do not have reasonable expectation
of privacy [66]. In order to mitigate this risk our honeypot
system gives notice and warning to any user connecting to
it indicating that "This computer system is for authorized
use only." Additionally, the web services of our honeypot are
protected by a username and password. This notice system
gives external actors a chance to avoid interaction, which
helps reduce the risk.

References

[1] Yamcs Mission Control. https://yamcs.org, 2025.
[Accessed 23-01-2025].

[2] Docker Inc. Docker: Accelerated container application
development, April 2024.

[3] B. Acharya, M. Saad, A. Emanuele Cina, L. Schon-
herr, H. Dai Nguyen, A. Oest, P. Vadrevu, and T. Holz.
Conning the crypto conman: End-to-end analysis of
cryptocurrency-based technical support scams. In 2024
IEEE Symposium on Security and Privacy (SP), Los
Alamitos, CA, USA, may 2024. IEEE Computer Soci-
ety.

[4] European Space Agency. ESA SPACE-SHIELD, 2023.

[5]1 Robin Bisping, Johannes Willbold, Martin Strohmeier,
and Vincent Lenders. Wireless signal injection attacks
on VSAT satellite modems. In 33rd USENIX Security
Symposium (USENIX Security 24), pages 6075-6091,
Philadelphia, PA, August 2024. USENIX Association.

Robert Bocchino, Timothy Canham, Garth Watney,
Leonard Reder, and Jeffrey Levison. F prime: An open-
source framework for small-scale flight software sys-
tems. In AIAA/USU Conference on Small Satellites,
Advanced Technologies 11, SSC-18-XI11-04, Logan, UT,
2018.

https://yamcs.org

[7] Nicold Boschetti, Nathaniel G Gordon, and Gregory
Falco. Space cybersecurity lessons learned from the
viasat cyberattack. In ASCEND 2022, page 4380. 2022.

[8] Matt Burgess. A clever honeypot tricked hackers into
revealing their secrets, August 2023.

[9] John Burkardt. Rk4 - runge-kutta 4th order ode solver,
October 2016.

[10] San Luis Obispo California Polytechnic State University.
Earth station - polysat, April 2024.

[11] Van Camp Charlotte and Peeters Walter. A world with-
out satellite data as a result of a global cyber-attack.
Space Policy, 59:101458, 2022.

[12] Fred Cohen. The use of deception techniques: Honey-
pots and decoys. Handbook of Information Security,

3(1):646-655, 2006.

[13] Frederick Cohen. Deception toolkit, March 1998.

[14] Mauro Conti, Francesco Trolese, and Federico Turrin.
Icspot: A high-interaction honeypot for industrial con-
trol systems. In 2022 International Symposium on Net-
works, Computers and Communications (ISNCC), pages

1-4,2022.

[15] Alexandru Csete. Gpredict: Free, real-time satellite

tracking and orbit prediction software, December 2023.

[16] Jorg Daubert, Dhanasekar Boopalan, Max Miihlhduser,
and Emmanouil Vasilomanolakis. Honeydrone: A
medium-interaction unmanned aerial vehicle honeypot.
In NOMS 2018 - 2018 IEEE/IFIP Network Operations

and Management Symposium, pages 1-6, 2018.

[17] DLR. Open modUlar sofTware PlatfOrm for SpacecrafT,

2022.

[18] Jakub Drmola and Tomas Hubik. Kessler syndrome:

System dynamics model. Space Policy, 44:29-39, 2018.

[19] European Union Agency for the Space Programme.
Copernicus | eu agency for the space programme, April

2024.

[20] Lorenzo Franceschi-Bicchierai. Thousands of new hon-
eypots deployed across israel to catch hackers, Novem-

ber 2023.

[21] Cristobal Garrido, Elias Obreque, Matias Vidal-
Valladares, Samuel Gutierrez, and Marcos Diaz Quezada.
The first chilean satellite swarm: Approach and lessons
learned. In ATAA/USU Conference on Small Satellites,
Year in Review - Research & Academia, SSC23-WVII-07,

Logan, UT, 2023.

15

(22]

(23]
[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

Steven B Giddings. Hawking radiation, the stefan—
boltzmann law, and unitarization. Physics Letters B,
754:39-42, 2016.

GomSpace. Nanocom ms100 datasheet, March 2021.

Carlos E. Gonzalez, Camilo J. Rojas, Alexandre Bergel,
and Marcos A. Diaz. An architecture-tracking approach
to evaluate a modular and extensible flight software for
cubesat nanosatellites. IEEE Access, 7:126409-126429,
2019.

Brian E. Granger and Min Ragan-Kelley. Pyzmq docu-
mentation, April 2024.

Jose Angel Gutierrez Ahumada, Kelsey Doerksen, and
Stefan Zeller. Automated fleet commissioning work-
flows at planet. In AIAA/USU Conference on Small
Satellites, Technical Session 12: Constellation Missions,
SSCI1-X1I-04, Logan, UT, 2021.

Stephen Hilt, Federico Maggi, Charles Perine, Lord Re-
morin, Martin Rosler, and Rainer Vosseler. Caught in
the act: Running a realistic factory honeypot to capture
real threats. Trend Micro Research, 2020.

Mark Holmes. The growing risk of a major satellite
cyber attack, May 2023.

Thorsten Holz and Frederic Raynal. Detecting honey-
pots and other suspicious environments. In Proceedings
from the sixth annual IEEE SMC information assurance
workshop, pages 29-36, West Point, NY, USA, 2005.
IEEE.

Niclas Ilg, Paul Duplys, Dominik Sisejkovic, and
Michael Menth. A survey of contemporary open-source
honeypots, frameworks, and tools. Journal of Network
and Computer Applications, 220:103737, 2023.

Phillip Wiistenberg José Manual Diez, Fabian Krech.
Raccoon os. https://gitlab.com/rcen. [Accessed
20-01-2025].

JSON. Json, April 2024.

Georgios Kavallieratos and Sokratis Katsikas. An ex-
ploratory analysis of the last frontier: A systematic litera-
ture review of cybersecurity in space. International Jour-
nal of Critical Infrastructure Protection, page 100640,
2023.

Erik Kulu. SUCHAI 2 @ Nanosats Database
— nanosats.eu. https://www.nanosats.eu/sat/

suchai-2, 2022. [Accessed 29-04-2024].

Efrén Lopez-Morales. Securing cyber-physical systems
via advanced cyber threat intelligence methods. CCS
’24, page 5119-5121, New York, NY, USA, 2024. Asso-
ciation for Computing Machinery.

https://gitlab.com/rccn
https://www.nanosats.eu/sat/suchai-2
https://www.nanosats.eu/sat/suchai-2

[36] Efrén Loépez-Morales, Ulysse Planta, Carlos Rubio-
Medrano, Ali Abbasi, and Alvaro A. Cardenas. SoK:
Security of programmable logic controllers. In
33rd USENIX Security Symposium (USENIX Security
24), pages 7103-7122, Philadelphia, PA, August 2024.
USENIX Association.

[37] Efrén Lopez-Morales, Carlos Rubio-Medrano, Adam
Doupé, Yan Shoshitaishvili, Ruoyu Wang, Tiffany Bao,
and Gail-Joon Ahn. Honeyplc: A next-generation hon-
eypot for industrial control systems. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, CCS °20, page 279-291,
New York, NY, USA, 2020. Association for Computing

Machinery.

[38] Marco Lucchese, Francesco Lupia, Massimo Merro,
Federica Paci, Nicola Zannone, and Angelo Furfaro.
Honeyics: A high-interaction physics-aware honeynet
for industrial control systems. In Proceedings of the
18th International Conference on Availability, Reliabil-
ity and Security, ARES ’23, New York, NY, USA, 2023.

Association for Computing Machinery.

[39] Gabriele Marra, Ulysse Planta, Philipp Wiistenberg, and
Ali Abbasi. On the feasibility of cubesats application
sandboxing for space missions. In Workshop on the Se-

curity of Space and Satellite Systems (SpaceSec), 2024.

[40] John Matherly. Complete guide to shodan. Shodan,

LLC (2016-02-25), 1, 2015.

[41] David McComas, Jonathan Wilmot, and Alan Cudmore.
The core flight system (cfs) community: Providing low
cost solutions for small spacecraft. In Annual AIAA/USU
Conference on Small Satellites, Logan, UT, 2016. Utah

State University, University Libraries.

[42] Mario Merri, Alessandro Ercolani, Damiano Guerrucci,
Vemund Reggestad, and David Verrier. Cutting the cost

of esa mission ground software, May 2007.

[43] MongoDB, Inc. Mongodb: The developer data platform

| mongodb, April 2024.
[44] NASA. What are smallsats and cubesats?

[45] NASA. What is remote sensing? | earthdata, August
2019.

[46] NASA Goddard Space Flight Center. Flight training:
Introduction.

[47] National Institute of Standards and Technology (NIST).
tactics, techniques, and procedures (ttp) - glossary, April
2024.

[48] Jose Nazario. paralax/awesome-honeypots: an awesome
list of honeypot resources, March 2024.

16

[49] Nmap. Os detection, January 2025.

[50] Michel Oosterhof. cowrie/cowrie: Cowrie ssh/telnet
honeypot https://cowrie.readthedocs.io, April 2024.

[51] Pierre Ossman. Tigervnc/tigervnc: High performance,
multi-platform vnc client and server, July 2024.

[52] James Pavur and Ivan Martinovic. Building a launch-
pad for satellite cyber-security research: lessons from
60 years of spaceflight. Journal of Cybersecurity,
8(1):tyac008, 2022.

[53] Ulysse Planta, Julian Rederlechner, Gabriele Marra, and
Ali Abbasi. Let me do it for you: On the feasibility of
inter-satellite friendly jamming. In 2024 Security for
Space Systems (3S), pages 1-6, 2024.

[54] Niels Provos and Thorsten Holz. Virtual honeypots:
from botnet tracking to intrusion detection. Pearson
Education, Boston, MA, USA, 2007.

[55] Qualtrics. What is a likert scale?, January 2025.

[56] Muhammad Raza. What are ttps? tactics, techniques &
procedures explained, April 2024.

[57] Brandon Rhodes. skyfielders/python-skyfield: Elegant
astronomy for python, April 2024.

[58] Luis Salazar, Efrén Lopez-Morales, Juan Lozano, Car-
los Rubio-Medrano, and Alvaro A. Cardenas. Icsnet:
A hybrid-interaction honeynet for industrial control
systems. In Proceedings of the Sixth Workshop on
CPS&IoT Security and Privacy, CPSIoTSec’24, page

68-79, New York, NY, USA, 2024. Association for Com-

puting Machinery.
[59] Mario Merri Sam Cooper. Ccsds mis-
sion operations. https://indico.

esa.int/event/62/contributions/
2797/attachments/2307/2667/1235_—_
mission-operation-services---future-trends_
Presentation.pdf. [Accessed 20-01-2025].

[60] Tobias Scharnowski, Felix Buchmann, Simon Woérner,
and Thorsten Holz. A case study on fuzzing satellite
firmware. In Workshop on the Security of Space and

Satellite Systems (SpaceSec), 2023.

[61] Mitch Semanik and Patrick Crotty. U.s. private space

launch industry is out of this world, November 2023.

[62] Shared Threat Intelligence for Network Gatekeeping
and Automated Response (STINGAR). About - stingar,

April 2024.

[63] Yasushi Shoji. libesp/libesp, February 2024.

https://indico.esa.int/event/62/contributions/2797/attachments/2307/2667/1235_-_mission-operation-services---future-trends_Presentation.pdf
https://indico.esa.int/event/62/contributions/2797/attachments/2307/2667/1235_-_mission-operation-services---future-trends_Presentation.pdf
https://indico.esa.int/event/62/contributions/2797/attachments/2307/2667/1235_-_mission-operation-services---future-trends_Presentation.pdf
https://indico.esa.int/event/62/contributions/2797/attachments/2307/2667/1235_-_mission-operation-services---future-trends_Presentation.pdf
https://indico.esa.int/event/62/contributions/2797/attachments/2307/2667/1235_-_mission-operation-services---future-trends_Presentation.pdf

[64] Yasushi Shoji. The Protocol Stack — Cubesat Space
Protocol, 2024.

[65] Space and Planetary Exploration Laboratory, University
of Chile. SPEL / SUCHAI-Flight-Software - GitLab,
February 2024.

[66] Lance Spitzner. Honeypots: tracking hackers. Addison-
Wesley Longman Publishing Co., Inc., 2002.

[67] Robert L Staehle, Brian Anderson, Bruce Betts, Diana
Blaney, Channing Chow, Louis Friedman, Hamid Hem-
mati, Dayton Jones, Andrew Klesh, Paulett Liewer, et al.
Interplanetary cubesats: opening the solar system to a
broad community at lower cost. Technical report, NASA,
2012.

[68] The Aerospace Corporation. Sparta, April 2024.

[69] The European Space Agency.
telecommand, March 2013.

Esa - telemetry &

[70] The European Space Agency. Esa - about payload sys-
tems, April 2024.

[71] The MITRE Corporation. Groups | mitre att&ck, April
2024.

[72] The ZeroMQ authors. ZeroMQ | get started, 2024.

[73] Clifford A Truesdell. A First Course in Rational Con-
tinuum Mechanics VI. Academic Press, 1992.

[74] United States Space Force. Global positioning system >
space operations command (spoc) > display, February
2023.

[75] U.S. Geological Survey. Uncrewed aerial systems | u.s.
geological survey, February 2004.

[76] U.S. Geological Survey. Earthexplorer | u.s. geological
survey, November 2022.

David A Vallado and Paul J Cefola. Two-line element
sets—practice and use. In 63rd International Astronauti-
cal Congress, pages 1-14, Naples, Italy, 2012. Interna-
tional Astronautical Federation.

[77]

[78] Johnny Vestergaard. mushorg/conpot: Ics/scada honey-

pot, March 2024.

[79] Johannes Willbold, Tobias Cloosters, Simon Worner,
Felix Buchmann, Moritz Schloegel, Lucas Davi, and
Thorsten Holz. Space RadSim: Binary-Agnostic Fault
Injection to Evaluate Cosmic Radiation Impact on Ex-
ploit Mitigation Techniques in Space . In 2025 IEEE
Symposium on Security and Privacy (SP), pages 1047—
1063, Los Alamitos, CA, USA, May 2025. IEEE Com-

puter Society.

17

[80] Johannes Willbold, Moritz Schloegel, Robin Bisping,
Martin Strohmeier, Thorsten Holz, and Vincent Lenders.
Vsaster: Uncovering inherent security issues in current
vsat system practices. In Proceedings of the 17th ACM
Conference on Security and Privacy in Wireless and
Mobile Networks, pages 288-299, 2024.

[81] Johannes Willbold, Moritz Schloegel, Manuel Vigele,
Maximilian Gerhardt, Thorsten Holz, and Ali Abbasi.
Space odyssey: An experimental software security anal-
ysis of satellites. In 2023 IEEE Symposium on Security

and Privacy (SP), pages 1-19, 2023.

[82] Lloyd Wood. Introduction to satellite constellations:
orbital types, uses and related facts, July 2006.

[83] Xplore, Inc. kubos/kubos, February 2024. original-date:
2018-01-18T14:55:147Z.

[84] Bruce D. Yost. Nasa ssri knowledge base | detailed
design and analysis > subsystem design > command and
data handling, June 2023.

A Appendix

A.1 Interaction Sequences and Exploits

Table 6 includes all the interaction sequences and exploits we
performed during the experiments in Sec. 6.2.

A.2 Satellite Simulator Design Details

As shown in Fig. 5, the Satellite Simulator includes five mod-
ule types: simulation modules (light orange), sensor modules
(light blue), subsystem state modules (light green), satellite
state modules (light gray) and interface modules (light yel-
low).

Simulation Modules. These modules are abstractions of
real-world processes required for a realistic satellite simula-
tion (DP-2). An example of these simulations is the orbital
simulation. This simulation uses orbital mechanics to calcu-
late data such as the satellite’s orbital position at any given
time.

These simulation modules can communicate with each
other to facilitate proper functionality. For example, the power
simulation module will query the orbital simulation for orbital
data to determine if the satellite is positioned properly in rela-
tion to the sun so that it can draw power from its solar panels.
The subsystems and the sensors of the Satellite Simulator are
designed around these simulations. The Satellite Simulator in-
cludes the orbital, rotation, power system, thermal, magnetic,
and payload simulations. Due to space restrictions and their
complex design, we explain each simulation in Appendix A.2.

Overall, these simulations provide the foundation for any
satellite operator to use our framework and implement their

Table 6: Tactics, Techniques and Procedures’ Interaction Experimental Exploits.

Tactic Technique ID Subsystem Exploit
Reconnaissance Active Scanning (RF/Optical) T2001 Threat Model Limitation N.A.
Reconnaissance Gather Victim Mission Information T2002 Web Interface Use the Web Interface to gather mission documentation.
Reconnaissance Gather Victim Org Information T1591 Web interface Use the Web Interface to gather mission documentation.
Reconnaissance In orbit proximity intelligence T2029 Threat Model Limitation N.A.
Reconnaissance Passive Interception (RF/Optical) T2004 Threat Model Limitation N.A.
Reconnaissance Phishing for Information T1598 Tangential N.A.
Resource Development Acquire or Build Infrastructure T1583 Telnet interface Acquire ground segment using the Telnet service.
Resource Development Compromise Account T2038 Tangential N.A.
Resource Development Compromise Infrastructure T1584 Threat Model Limitation N.A.
Resource Development Develop/Obtain Capabilities T2007 Gljound software. Exploit OS, libraries or ss)fl\xfare vulnarabilities.
Flight software. Deploy custom CSP application to forge TC/TM.
Initial Access Direct Attack to Space Communication Links T2008 1?1::::3(;3 3:;_‘:?‘" g;;ll(};; Cg;‘:;:: ZZOS‘;’W:;;I:(Z;:Q:/:;;;;; F,I;CC//';]KI/I
Initial Access Ground Segment Compromise T2030 Telnet mtexface, Use the telnet interface to access the ground software.
Ground software.
Initial Access Supply Chain Compromise T1195 Tangential N.A.
Initial Access Trusted Relationship T2039 Threat Model Limitation ~ N.A.
Initial Access Valid Credentials T2009 Tangential N.A.
Ground software. Upload a script to the satellite software:
Execution Modification of On Board Control Procedures modification T2010 .. - tm_send_file code.py 1
Flight software.
1: obc_system python recv_files/code.py
. . Ground software. Execute shell commands or delete system files:
Execution Native API T1106 Flight software. 1: obc_system <command>
: . 1: obc_rm -r SHOME
Execution Payload Exploitation to Execute Commands T2012 Tangential N.A.
Ground software. Upload a script to the satellite software:
Persistence Backdoor Installation T2014 Flight software : tm_send_file backdoor.sh 1
B 1: obc_system ./recv_files/backdoor.sh
Persistence Key Management Infrastructure Manipulation T2013 Tangential N.A.
Ground software. Use obc_system, obc_rm, obc_mkdir commands.
Persistence Pre-OS Boot T1542 . Upload/modify an OS configuration file.
Flight software. . .
Start/stop/schedule execution of services/daemons.
Persistence Valid Credentials T2009 Tangential N.A.
Privilege Escalation Become Avionics Bus Master T2031 Implementation limitation N.A.
Privilege Escalation Escape to Host T1611 Bi?'fl(:lr‘machinc. Escape the container/VM with previously crafted exploits.
. . Ground software. Send commands to change operation mode.
Defense Evasion Impair Defenses Ti562 Flight software. 1: drp_set_var_name obcgfoplljnode 0
Defense Evasion Indicator Removal on Host T1070 (?ljound software. Use commands to remove artifacts, logs, etc.:
Flight software. 1: obc_rm <path>
Ground software. Use commands to upload artifacts modify system settings:
Defense Evasion Masquerading T2040 .. tm_send_file articaft 1
Flight software.) . .
1: obc_mv artifact /etc/config/artifact
Ground software. Use obcfsysAlcm, obc_rm, obcfrn‘kdir commands.
Defense Evasion Pre-OS Boot T2041 .. Upload/modify an OS configuration file.
Flight software. N N
Start/stop/schedule execution of services/daemons.
Credential Access Adversary in the Middle T2042 fﬂg;‘:jgg&;’;‘e Deploy a CSP application to capture/inject CSP packets.
Credential Access Brute Force T2043 g’lg‘;)‘:‘:gf‘l’ggr‘;“ ey Sy parameters:
Credential Access Communication Link Sniffing T2044 Ground software. SD‘i;si;h: gg;,u:s;l?:;ﬁ:gelzrc:;ﬂ:f:/ﬁ:}zcrluéS‘;ps::(gs_
Credential Access Retrieve TT&C master/session keys T2015 Tangential N.A.
Discovery Key Management Policy Discovery T2032 Tangential N.A.
. s . Ground software. Send TC to redirect satellite logs to ground segment:
Discovery Spacecraft’s Components Discovery T2034 Flight software. 1: log_set 52 10
Ground software. Capture running processes information
Discovery System Service Discovery T1007 .. § . 1: obc_system ps -aux >ps.log
Flight software.
1: tm_send_file 10 ps.log
Discovery Trust Relationships Discovery T2033 Tangential
Lateral Movement Compromise a Payload after compromising the main satellite platform T2045 Implementation Limitation N.A.
Lateral Movement Compromise of satellite hypervisors T2017 Docker. Escape the container/VM with previously crafted exploits.
Virtual machine.
Lateral Movement Compromise the satellite platform starting from a compromised payload. T2046 Implementation Limitation N.A.
Lateral Movement Lateral Movement via common Avionics Bus. T2016 Implementation Limitation N.A.
Collection Adversary in the Middle T1557 G'.O““d software. Deploy a CSP application to capture/inject CSP packets.
Flight software.

. - . . Ground software. Scape the ground software or docker and run tcpdump.
Collection Data from link eavesdropping T2018 Flight software. Depr;oy a (%SP application to capture/inject CSPppackl;ts.
Command and Control Protocol Tunnelling T2047 Ground software. Deploy an malicious application that sends data over CSP

Flight software.
Command and Control Telecommand a Spacescraft T2019 Gfound software. Use the g.“’“"d software to send TC:
Flight software. 1: com_ping 1
Command and Control TT&C over ISL T2048 Threat Model Limitation N.A.
Exfiltration Exfiltration Over Payload Channel T2021 Implementation Limitation N.A.
- . S . Ground software.
Exfiltration Exfiltration Over TM Channel T2022 .. The atacker deploys a custom CSP node or a backdoor
Flight software.
Exfiltration Optical link modification T2037 Threat Model Limitation ~ N.A.
Exfiltration RF modification T2036 Threat Model Limitation =~ N.A.
Exfiltration Side-channel exfiltration T2035 Threat Model Limitation = N.A.
Send TC to modify/reset TM database:
. . Ground software. 1: drp_set_var_name drp_ack_ads 10000000
Impact Data Manipulation T2054 Flight software. 1: d:gfresetfpayload 1‘113010
1: drp_reset_status 1010
Impact Ground Segment Jamming T2050 Threat Model Limitation N.A.
Impact Loss of spacecraft telecommanding T2055 Ground software. Send TC to change communication paramters.
~~ Flight software. Modify network configuration in the ground station.
Impact Permanent loss to telecommand satellite T2027 Gfound sQﬂware, Send TC to destroy ﬁlesystem:
Flight software. 1: obc_system rm -rf —no-preserve-root /
Impact Resource damage T2028 Threat Model Limitation N.A.
N . Upload a script to the satellite software:
Impact Resource Hijacking T1496 G’.O“"d software. tm_send_file code.py 1
Flight software.)
1: obc_system python recv_files/code.py
Impact Saturation of Inter Satellite Links T2052 Threat Model Limitation N.A.
. . . . Ground software. Send TC to create a reset loop:
Impact Saturation/Exhaustion of Spacecraft Resources T2053 Flight software. 1: fp_set_cmd_dt 10 2147483647 10 obc_reset
. Ground software. Send TC to lauch a fork bomb or a reset loop
Impact Service Stop T1489 Flight software 1: obc_system :Of :1: & };:
N 1: fp_set_cmd_dt 10 2147483647 10 obc_reset
Impact Spacecraft Jamming T2049 Threat Model Limitation N.A.
Impact Temporary loss to telecommand satellite T2026]?I:Og:?il:gg::;im ?:eggCifyiﬁc?;azi:l;e3sﬁy538111 unresponsive
Impact Transmitted Data Manipulation T2024 Threat Model Limitation = N.A.

18

Flight Software
Services

\

Interface

‘.I‘_-’

Satellite
State
L3
_ v ¥ ¥ 12
Satellite Loqgi
Perso-||_,|| EPS ADCS Comm Payload | [[[-099'ng
nalit State State State State Data
[} [} [} [}
|_,| | Voltage Gyro Radio Camera | ||
Sensor Sensor Sensor Sensor
¥ $ $ $
Power Orientation(| f| Orbital Payload ||,
Simulation Simulation Simulation Simulation

Figure 5: High-level architecture of the Satellite Simulator.
Due to space limitations, we do not show all the available
sensors and simulations. Some sensors communicate with
multiple simulations. Although the flight software services
are not part of the Satellite Simulator we included it to depict
the Interface module’s data flow better.

honeypot using their satellite flight software. The Satellite
Simulator simulations are configured using the satellite per-
sonality, which we discuss below.

Sensor Modules. These modules are abstractions of the
hardware sensors used by a satellite, i.e., temperature sensor.
The sensor modules do not perform any computations, instead
they collect data directly from the simulation modules fol-
lowing DP-2. For example, the voltage sensor will query the
power simulation to collect data about the current state of the
battery.

Subsystem State Modules. These modules are abstractions
of the satellite subsystems discussed in Sec. 2.4. A given sub-
system state is made up of one or more sensors. For example,
in Fig. 5 the Payload State (light green) includes the Camera
Sensor (light blue). In this way, subsystem states serve two
purposes. They can get data from their sensors or can set a
specific configuration on their sensors.

Satellite State Module. This module is an abstraction of
an entire satellite. As depicted in Fig. 5 the Satellite State
(light gray) is made up of multiple subsystem states. Satellite
State module routes messages between the Satellite Simulator
and the modified flight software. For example, if the modified
flight software sends a message to the Satellite Simulator
requesting to provide the present voltage in the EPS, the
satellite state will route that message to the EPS State.

Interface Module. This module is an abstraction of the
communication protocol between the modified flight software
and the Satellite Simulator. As depicted in Fig. 5, the Interface
(light yellow) is the module that connects the flight software

19

services with the Satellite Simulator simulations.

This protocol must implement two basic message types,
requests and replies. However, to meet DO-3, the underlying
implementation of these messages is left open for the user to
decide based on their requirements.

To finish, the Satellite Simulator’s built-in modular design
allows subsystems, simulations, and sensor modules to be
mixed 'n matched to meet the requirements of most satellites
and their missions. Additionally, our flexible design allows
users to easily add additional simulations, sensors, or subsys-
tems as modules to the honeypot.

e Orbital Simulation. This simulation calculates and predicts
the satellite’s orbit. To achieve this, it uses the two-line ele-
ment set or TLE data configured in the satellite personality.
The TLE data contains the necessary orbital information re-
quired to calculate the location of a satellite given a point in
time [77]. We rely on the Skyfield python library to perform
advanced and precise calculations [57]. This simulation cal-
culates multiple orbital values which include the altitude
angle, latitude, longitude of the satellite among other values.
The payload, EPS, and magnetic simulations rely on data
from this simulation.

* Rotation Simulation. This simulation simulates the satellite
attitude changes to provide the satellite orientation. Deter-
mining and controlling the satellite orientation is relevant
for payloads such as cameras or communication systems
that require pointing to the earth surface or to other celestial
bodies. This simulation calculates the rotation kinematics of
the satellite using two reference frames: a reference frame
fixed to the satellite body and a non-rotational reference
frame. The relation between the two reference frames is
calculated using the conservation of angular momentum
and the rigid-body Euler equation [73]. To simulate the
satellite’s rotation, the initial instantaneous angular velocity
of the satellite, the current orientation in quaternions, and
the satellite’s inertia matrix must be defined. The simula-
tion uses the fourth-order Runge Kutta integration method
(RK4) [9] to perform these calculations to avoid diver-
gences in the simulation with time steps greater than 1
second.

* Power System Simulation. This simulation manages the
satellite’s power collection, consumption, and distribution.
It tracks the battery capacity, the power draw and simulates
battery charging whenever the orbital simulation tells it
that the satellite is exposed to sunlight. A battery pack is
modeled as a series or parallel configuration of smaller
battery packs. The simplest battery pack consists of a single
cell. A single cell is simulated to calculate the charge and
discharge curves, assuming that the cell’s current will not
change. This cell voltage is then used to calculate the pack’s
voltage. The electrical power system simulation uses the
pack’s voltage together with the input and output power

Container 1 Container 2 Container 3

Modified Flight
Software

Container 4 Container 5 Container 6

Ground
Software

Telnet
Server

Satellite Sim

ZQM/CSP
Hub

Docker Engine
Virtual Machine

Web App | | MongoDB | (no)VNC

iSupport Library| GSS Desktop

I
Virtual Machine)
Host Operating System |

Figure 6: Architecture of dockerized Generic CSP Honeypot

to calculate the battery current. In case the input or output
power of the power subsystem changes, a new cell current is
calculated, and the battery cell simulation is rerun to reflect
the change.

* Thermal Simulation. This simulation calculates the temper-
ature of the satellite. The simulation is based on two values:
the total thermal energy and a user-defined specific heat ca-
pacity. Together with emissivity, mass and surface area, the
temperature of a satellite can be approximated based on the
absorbed sunlight and the energy emitted through thermal
radiation. This simulation uses a radiation loss formula [22]
to calculate the thermal radiation emission.

* Magnetic Simulation. This simulation tracks and analyzes
the interactions between the Earth’s magnetic field and
the satellite’s own magnetic environment. It communicates
with the orbital and rotation simulations to determine the
satellite’s position and orientation in space so that it can
calculate the Earth’s magnetic field components (north, east,
vertical) and total intensity at the satellite’s current location.

* RGB Camera Simulation. This simulation replicates the
functionality of an RGB camera pointed at Earth. It uses
Earth observation satellite imagery from the EarthExplorer
database from the U.S. Geological Survey (USGS) [76]. If
a capture image command is issued, it will select an image
from one of two pools of images: daytime or nighttime.

This simulation communicates with the orbital simulation
to determine if satellite is in the presence of the sun.

A.3 Deployment and Security Hardening Im-
plementation

As we mentioned in Sec. 2.1, high-interaction honeypots such
as HoneySat present a high risk of adversary takeover. To
mitigate this risk, we implemented HoneySat with two sand-
boxing layers.

Virtual Machine. VMs provide the highest isolation level
among sandboxing techniques. We implemented HoneySat in
VM environments to leverage VMs’ robust security.

Containerization. After we completed HoneySat’s devel-
opment, we used Docker Compose [2] to containerize each
of our framework’s applications. Specifically, we created four

20

different containers depicted in Fig. 6. Containerizing Hon-
eySat provides two benefits. First, it creates another sandbox-
ing layer that prevents adversaries from using our honeypot
to access the underlying system [39]. Second, it proves a
convenient and flexible way to deploy HoneySat.

Y}’amcs satellite v Mission Control @ STORAGE e ADMIN AREA) ROOT

< /SERVICE-ADCS/ADCSMagTelemetry / 2025-01-22T07:26:09.2447 / 137019392 C EXPAND ALL X COLLAPSE ALL 2025-01-22 13:31:0(

Home . R
Loc Bits Entry Type Raw value Engineering value Hex view H
Links v /PUS/cesds EEEIREE 06000 082a cOAA BO1c 2085 BOGE 0760 001f 7622 . *
00160: fc12 3c65 c9f@ 5bdf cafs abbc 4261 asel e Ba
5 1 integer 42 42 0020: €319 27
Telemetry
18 14 integer 0 0
LENES ~ /PUS/pus-tm container
Parameters 56 8 integer 133 133
Displays 64 8 integer 0 0
72 16 integer 7 7
Algorithms
g 88 16 PUS/destination integer 0 0
Events 104 8 /PUS/time-type integer 31 31
12 32 /PUS/ob integer 2116221970 2116221970
e 144 24 /PUS/obf integer 3958217 3958217
o et v /SERVICE-ADCS/ADCSMagTelemetry container
168 32 SERVICE-ADCS/ADCS MAG X float -446.71826 -446.71826
Procedures 200 32 SERVICE-ADCS/ADCS_MAG Y float 9433588 94.33588
232 32 /SERVICE-ADCS/ADCS MAGZ float -129.65773 -129.65773

Mission database

Archive browser

Figure 7: Screenshot of the YAMCS web interface, displaying a TM packet, returned from the Generic CCSDS Mission Honeypot.

21

	Introduction
	Background
	Types of Honeypots
	Honeypot's State of the Art
	Anatomy of a Satellite Mission
	Satellite Architecture
	Small Satellite Protocol Ecosystems
	Space Systems' Tactics, Techniques and Procedures (TTPs)

	Threat Model
	HoneySat Framework Design
	HoneySat's Design Objectives
	HoneySat's Design Principles
	Ground Segment Design
	Space Segment Design
	Theory of Operation

	HoneySat's Implementation
	Satellite Simulator Implementation
	Generic CSP Mission Honeypot
	Ground Segment Implementation
	Space Segment Implementation

	Evaluation
	Experimental Questions
	TTP Interaction Experiment
	SmallSat Operators Survey
	Survey Structure
	Participants
	Methodology and Key Results

	Internet Interaction Experiment
	Case Study: Generic CCSDS Mission Honeypot

	Discussion and Future Work
	Conclusion
	Ethical Considerations
	Satellite Operators User Study
	Honeypot Deployment Experiment

	Appendix
	Interaction Sequences and Exploits
	Satellite Simulator Design Details
	Deployment and Security Hardening Implementation

