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KGMark: A Diffusion Watermark for Knowledge Graphs
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Abstract
Knowledge graphs (KGs) are ubiquitous in nu-
merous real-world applications, and watermark-
ing facilitates protecting intellectual property and
preventing potential harm from AI-generated con-
tent. Existing watermarking methods mainly fo-
cus on static plain text or image data, while they
can hardly be applied to dynamic graphs due to
spatial and temporal variations of structured data.
This motivates us to propose KGMark, the first
graph watermarking framework that aims to gen-
erate robust, detectable, and transparent diffusion
fingerprints for dynamic KG data. Specifically,
we propose a novel clustering-based alignment
method to adapt the watermark to spatial varia-
tions. Meanwhile, we present a redundant embed-
ding strategy to harden the diffusion watermark
against various attacks, facilitating the robustness
of the watermark to the temporal variations. Ad-
ditionally, we introduce a novel learnable mask
matrix to improve the transparency of diffusion
fingerprints. By doing so, our KGMark properly
tackles the variation challenges of structured data.
Experiments on various public benchmarks show
the effectiveness of our proposed KGMark.

1. Introduction
The growing adoption of generative models has signifi-
cantly expanded the creation and utilization of synthetic
data (Bauer et al., 2024), including structured formats such
as time-series data (Das et al., 2024), tabular data (Vero
et al., 2024), and graphs (Han et al., 2025; Wang et al.,
2023). Among these, Knowledge graphs (KGs) (Ji et al.,
2022) are especially crucial due to their ability to repre-
sent complex relationships and semantic hierarchies (An
et al., 2025), making them indispensable for applications
such as semantic search (Chen et al., 2024), question an-
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Figure 1. Overview of our KGMark. KGMark implements a KGE
watermarking scheme that preserves transparency, enables reliable
detection, and remains robust against various post-editing attacks.

swering (Yin et al., 2024; Zhou et al., 2024), and recom-
mendation systems (Fan et al., 2019; Wang et al., 2019).
Deep learning-based models such as GraphRNN (You et al.,
2018), GraphVAE (Simonovsky & Komodakis, 2018), Mol-
GAN (Cao & Kipf, 2022), and DiGress (Vignac et al., 2023)
have emerged as powerful tools for generating high-quality
synthetic graphs, supporting applications such as graph clas-
sification, molecular design, and structure-preserving data
augmentation in machine learning pipelines.

However, existing synthetic graph generation methods may
inadvertently embed biases (Shomer et al., 2023; Dong et al.,
2022) or misleading (Yang et al., 2024a) information and are
vulnerable to malicious alterations by attackers (Zhang et al.,
2019), potentially introducing harmful content that compro-
mises analyses or even facilitates the exploitation of real-
world systems (Jiang et al., 2024; Wang et al., 2025). Fur-
thermore, presenting synthetic graphs as original research
can violate intellectual property rights, undermining trust in
academic and commercial environments (Smits & Borghuis,
2022; Zhu et al., 2024b). Ensuring traceability, integrity,
and copyright protection of synthetic counterparts causes a
significant amount of compute and memory footprints due
to the notorious designs (LIANG et al., 2024; Charpenay &
Schockaert, 2025), which even unnerves large corporations,
let alone individual researchers.

Watermarking techniques (Radford et al., 2021; Podell et al.,
2023) have proven to be effective in ensuring the authentic-
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ity of synthetic data in image and text generation (Wen et al.,
2023; Zhao et al., 2023a). However, off-the-shelf water-
marking algorithms (Liu et al., 2024) appear to lag behind
in the era of graph structures, despite their increasing impor-
tance in various domains. This gap makes watermarking for
KGs an unsolved and looming challenge.

The core challenges of graph watermarking lie in achieving
robustness against spatial-temporal variations and maintain-
ing transparency. Embedded watermarks must preserve KG
semantics while resisting structural perturbations caused
by dynamic node/edge updates (e.g., temporal evolution in
recommendation systems (Wang et al., 2019)) and graph
isomorphism (e.g., node relabeling or spatial rearrange-
ments (Bouritsas et al., 2023)). Conventional watermarking
methods (Bouritsas et al., 2023), designed for static and
unstructured data, often exhibit limited robustness under the
spatial-temporal variations of dynamic KGs, posing chal-
lenges in mitigating risks of AI-generated KG misuse (Liu
et al., 2025). The inherent heterogeneity of knowledge
graphs further necessitates embedding watermarks at the
knowledge graph embedding (KGE) level to reconcile se-
mantic fidelity with detection resilience (Le et al., 2024).

To address these challenges, we propose KGMark, the first
watermarking scheme specifically designed for knowledge
graphs, based on diffusion models. KGMark employs graph
alignment with a learnable mask matrix to spatially adapt
watermarks to structural variations, ensuring seamless inte-
gration between topology and embedded signals. For tem-
poral robustness, we design redundant embedding strategies
coupled with likelihood estimation, enabling resilient extrac-
tion despite incremental graph updates. KGMark requires
no prior assumptions about graph stability or isomorphism,
making it agnostic to node ordering and scalable to evolv-
ing KGs. The watermark is detectable exclusively through
secure keys, ensuring resistance to adversarial attacks while
preserving KG utility (Nandi et al., 2024).

Through rigorous testing, we demonstrate that KGMark
achieves: ❶ high detectability, with a watermark detection
AUC up to 0.99; ❷ maintaining KG quality and limiting
downstream task performance loss to within the range of
0.02% ∼ 9.7%; and ❸ high robustness, retaining an AUC
of around 0.95 against various post-editing attacks.

Briefly, our key contributions are summarized as follows:
➠ We introduce KGMark, the first watermarking scheme de-

signed for KGE, embedding robust and transparent water-
marks into graph structures to protect intellectual property
and ensure data integrity.

➠ We propose effective solutions to key challenges, in-
cluding redundancy-based embedding and the Learnable
Adaptive Watermark Matrix, which significantly enhance
the performance of KGMark.

➠ We demonstrate through rigorous experiments the supe-

rior performance of KGMark, showing its robustness,
transparency, and high detectability across various post-
editing attack scenarios.

2. Related Work
2.1. Watermarking AI-generated Content
As AI technologies continue to evolve and generate increas-
ingly sophisticated content, the necessity for robust wa-
termarking solutions for AI-generated content has gained
prominence (Zhao et al., 2023b; Zhu et al., 2024a). This
technique serves a critical role in addressing issues such
as copyright infringement (Zhang et al., 2024b), misinfor-
mation, and the ethical implications surrounding the use of
AI in creative processes. In particular, watermarking helps
to distinguish AI-generated work from human-created con-
tent (Asnani et al., 2024), thereby enhancing credibility in
the digital landscape (Barman et al., 2024).

2.2. Watermarking Synthetic Unstructured Data
Watermarking synthetic unstructured data, such as plain
text (Dathathri et al., 2024) and images (Zhang et al., 2024a;
Wen et al., 2024), is crucial for ensuring data integrity, pro-
tecting intellectual property, and preventing misuse. Com-
mon methods include pre-applying watermarks to train-
ing datasets, enabling models to generate inherently wa-
termarked data (Yu et al., 2021; Zhao et al., 2023c), or
modifying the sampling process in large language models
to subtly alter output word distributions and encode water-
marks (Kirchenbauer et al., 2023). A widely used approach
in diffusion models involves embedding watermarks into the
initial noise vector or latent space without retraining (Wen
et al., 2024; Yang et al., 2024b; Yang, 2024), ensuring trans-
parency and robustness through reversibility. In this work,
we conduct the first systematic exploration of adaptively
incorporating this method into knowledge graphs.

3. Proposed Method: KGMark
3.1. Preliminary of Latent Diffusion Model
The core idea of the Diffusion Model can be summarized in
two phases: the forward diffusion process and the reverse
diffusion process (Chang et al., 2023; Rombach et al., 2021).
In the forward diffusion process, the latent representation
Z0 is progressively corrupted by Gaussian noise over T
steps, resulting in:

q(Zt|Zt−1) = N (Zt;
√

1− βtZt−1, βtI) (1)

As t→ T , ZT converges to an approximate standard Gaus-
sian distribution. The reverse diffusion process starting from
noise ZT , the model denoises it step-by-step to recover Z0:

pθ(Zt−1|Zt) = N (Zt−1;µθ(Zt, t),Σθ(Zt, t)) (2)

Our method employs a latent diffusion model (LDM) with
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Figure 2. Pipeline of the proposed KGMark. The target KGE undergoes community detection and alignment before watermark embedding,
enabling robust watermark extraction under attacks (Relation Alteration, Subgraph Deletion, and Isomorphic Variation).

DDIM (Song et al., 2022) for sampling. DDIM’s determin-
istic inversion process allows efficient recovery of the initial
noise vector Z INV

T , which is then used for watermark embed-
ding, ensuring imperceptibility and integrity preservation
in the latent space. The precise control offered by DDIM’s
reverse diffusion process is key to balancing watermark
robustness and reconstruction fidelity.

3.2. Overview of KGMark
The proposed watermarking framework embeds a water-
mark into a KGE G = (V, E). The process begins by encod-
ing G into a latent representation Z0 using a graph encoder,
trained under a VAE framework.

Watermark Embedding: A signature S is embedded into
designated latent subspaces:

∆ = F(Z INV
T ) · (1−M)+F(S) ·M,M ∈ {0, 1}m×n, (3)

where F(·) denotes the Fourier transform, and M is a mask
matrix defining embedding regions for S . The watermarked
latent vector is then derived via inverse Fourier transform:

Zw
T = F−1(∆), S ∼ N (0, σ2I), (4)

Where σ2 determines the variance of the normal distribution.
Zw

T undergoes reverse diffusion, yielding Zw
0 , which is

decoded to reconstruct the watermarked graph Gw.

Attack Modeling: We define the attack intensity by the
total perturbation δ applied to the graph G, where δ =∑

k δk, and each δk denotes the perturbation (e.g., post-
editing operations) applied to a subgraph Gsub.

The adversary aims to invalidate the watermark by reducing
the similarity between the extracted watermark and the orig-
inal signature S. Let T (·) denote the watermark extraction

function. The attack objective is then formulated as:

min
δ

sim(T (Gw + δ),S) + γ ·
∑
k

∥δk∥q, (5)

where sim(·, ·) denotes a similarity measure, and γ is a
trade-off parameter that controls the allowed perturbation
budget. A successful attack reduces the similarity score
while maintaining the semantic validity of subgraphs.

As illustrated in Figure 2, isomorphic variations preserve
local subgraph structure, while stronger perturbations com-
promise the global topology. This highlights another unique
characteristic of graph-based watermarking: the adversary
can strategically degrade global structural fidelity while
preserving local usability.

Watermark Extraction: For watermark extraction, Gw is
encoded and inverted to approximate Z INV

T . The Fourier
transform of Z INV

T is computed as:

Y = F(ZINV
T ), s.t. E[Yi] = µi, Var[Yi] = σ2

i , (6)

A test statistic T is computed by comparing Y with (S,M).
The P-value is evaluated using a noncentral χ2 distribution,
and the watermark is detected if the P-value is below a
predefined significance level.

To fulfill the three essential properties of a watermarking
transparency during embedding, robustness against ad-
versarial perturbations, and detectability upon extraction,
KGMark introduces three dedicated designs across the em-
bedding, extraction, and attack resilience stages.

Specifically, we present: (1) a Learnable Adaptive Water-
mark Mask Matrix (Sec. 3.3) to ensure transparent water-
mark embedding, (2) a Defending Against Isomorphism and
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Structural Variations module (Sec. 3.5) to enhance water-
mark robustness under perturbations, and (3) a Likelihood-
Based Watermark Verification mechanism (Sec. 3.4) validate
the embedded watermark.

3.3. Learnable Adaptive Watermark Mask Matrix
Principle 3.1 (Latent Space Equilibrium). To preserve the
latent space equilibrium during watermark embedding, we
decompose the total perturbation into two parts: (1) the
inherent noise from DDIM inversion, and (2) the additional
distortion from watermark embedding. Let Z INV

T −kj
be the

kj step latent from DDIM inversion, ẐT −kj the latent from
DDIM without watermark, and Zw

T −kj
the latent with wa-

termark. The total deviation satisfies:
T∑

j=1

∥∥∥ẐT −kj −Z INV
T −kj

∥∥∥2︸ ︷︷ ︸
DDIM sampling loss

+
∥∥∥Zw

T −kj
− ẐT −kj

∥∥∥2︸ ︷︷ ︸
Watermark embedding loss

≤ ϵ.

(7)
This formulation isolates the unavoidable sampling error
from the controllable embedding distortion, guiding water-
mark design to minimize overall latent drift.

To operationalize Latent Space Equilibrium, we design
a learnable masking mechanism that controls how water-
mark signals are injected into the latent space. Watermark
embedding inevitably introduces reconstruction loss L for
G, quantified by the discrepancy between the Z INV

T and
Zw

T (Fridrich et al., 2002). Specifically, we introduce a
learnable, adaptive mask matrix M, optimized for the struc-
ture of G. M is trained to minimize L in Equation (8), which
quantifies the discrepancy between the Z INV

T and Zw
T .

L =
∑

j∈[1,T ]

∥∥∥Z INV
T −kj

− f
kj

DDIM

(
fw(Z INV

T ,S,M), T
)∥∥∥2 ,

(8)
where T denotes the total diffusion steps, and kj satisfies
0 < kj < T . The function fw represents the watermark em-
bedding function, while f

kj

DDIM denotes the DDIM sampling
process at time step kj .

To further refining, we adopt a ”sample-then-embed” strat-
egy with a correction term αS·M (α is a tunable coefficient),
ensuring better alignment in the latent space.

L =
∑

j∈[1,T ]

∥∥∥Z INV
T −kj

−

[
fw

(
f
kj

DDIM(Z INV
T , T ),S,M

)
+ αS ·M

]∥∥∥2 . (9)

As L shown in Equation (9), S ∼ N (0, I) represents a noise
vector sampled from a standard normal distribution, where
I is the identity matrix. The adaptive nature of M ensures
that it is specific to each graph G, making the watermark
embedding robust to structural variations.

To characterize the sparsity of the learnable mask matrix M,
we define its density as:

Density(M) =

∑m
i=1

∑n
j=1 Mij

m× n
, (10)

where m×n is the total number of elements in M. This met-
ric quantifies the proportion of nonzero entries, balancing
watermark imperceptibility and robustness against attacks.

During watermark extraction, we evaluate all candidate M.
The decision rule is formulated as Equation (11):

Gclassified =

{
⊤, ∃M s.t. d

(
fex(M,G),S

)
≤ δ,

⊥, ∀M, d
(
fex(M,G),S

)
> δ,

(11)

where fex(M,G) denotes the extracted signature from G
using matrix M, d(·, ·) is the distance metric quantifying
the difference between signatures, and δ is the threshold
determining signature validity.

3.4. Likelihood-Based Watermark Verification
In KGMark, watermark detection utilizes a likelihood ratio
test, where the null hypothesisH0 assumes the noise vector
Y follows a Gaussian distribution N (0, σ2IC). Under the
alternative hypothesisH1, the graph contains a watermark,
introducing a detectable deviation from this distribution.

To integrate the distance metric d(·, ·) and the signature
extraction function fex, we define the residual vector R
as the difference between the extracted signature and the
optimal reference signature K∗ ∈ S:

R = fex(M,G)−K∗. (12)

The distance metric d(·, ·) thus measures the magnitude of
R, which quantifies the deviation between the extracted sig-
nature and the expected reference signature. The likelihood
of observingR underH0 is given by Equation (13):

L(R|H0) =
∏
i∈M

1√
2πσ2

exp

(
−|Ri|2

2σ2

)
, (13)

where σ2 = 1
|M|

∑
i∈M |Ri|2 is the estimated variance of

the residual vector, computed as the mean squared deviation
of the residuals within the mask region M.

The likelihood ratio test statistic λ is defined as the logarith-
mic ratio of the likelihoods underH0 andH1:

λ = −2 log
supH0

L(R|H0)

supH1
L(R|H1)

. (14)

For watermark detection, we employ a simplified test statis-
tic T̂ , defined in Equation (15), which directly quantifies
the deviation ofR from the expected values underH0:

T̂ =
1

σ2

∑
i∈M
|Ri|2. (15)
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UnderH0, T̂ follows a noncentral chi-squared distribution
with degrees of freedom |M| and noncentrality parameter
λ = 1

σ2

∑
i |K∗

i |2 (Patnaik, 1949). The p-value for wa-
termark detection is then calculated using the cumulative
distribution function (CDF) of this distribution (Glasserman,
2004), as shown in Equation (16):

p = Pr
(
χ2
|M|,λ ≤ T̂ | H0

)
=

∫ T̂

0

1

Γ
(

|M|
2

) (x
2

) |M|
2 −1

exp

(
−x+ λ

2

)
dx.

(16)

If the p is below a significance level α, G is considered wa-
termarked; otherwise, the null hypothesisH0 is not rejected.

3.5. Defending Isomorphism and Structural Variations
Real-world graph applications encounter isomorphism and
structural variations, which are unique to graph-structured
data and can be exploited for attacks (Yu et al., 2023).
Isomorphism refers to graphs that preserve their overall
structural connectivity but differ in node ordering or node-
specific properties. Structural variations involve more sub-
stantial modifications that can alter the graph’s topology or
the relationship between nodes. See Appendix A for details.

Isomorphism Variations: Graph isomorphism (Yan &
Han, 2002) transformations alter the latent space represen-
tation z0 of a graph, despite preserving its inherent proper-
ties (Bouritsas et al., 2023). To address this, we ensure z0
remains invariant under adjacency matrix reorderings via
a graph alignment procedure. Let V (G) denote the set of
vertices, and A the adjacency matrix. Vertices are reordered
by degree deg(vi) and clustering coefficient C(vi):

deg(vi) > deg(vj) =⇒ i < j,

deg(vi) = deg(vj) =⇒ C(vi) ≥ C(vj).
(17)

Graph attributes (vertex features, edge weights, adjacency
matrix) are adjusted to the new vertex order, preserving
structural consistency.

Structural Variations: Let ∆A ∈ {0, 1}n×n denote the
perturbation matrix, where ∥∆A∥0 = δ quantifies the attack
intensity as the number of edge modifications. Structural
variations introduce perturbations at multiple scales of graph
topology, formalized by the divergence metric:

D(G, G̃) = ∥A− Ã∥F︸ ︷︷ ︸
local perturbations

+α ∥L† − L̃†∥2︸ ︷︷ ︸
global spectral shifts

, (18)

where L† is the pseudoinverse of the graph Laplacian L,
and α balances local and global contributions. This diver-
gence aligns with the attacker’s objective in Equation (5),
where the constraint ∥∆A∥0 ≤ δ limits the attack inten-
sity, and sim(T (Gw + ∆A),S) measures degradation of
the extracted watermark.

The local term ∥A − Ã∥F captures edge-level modifica-
tions, including Gaussian noise, Relation Alteration, and
Triple Deletion. The global term ∥L† − L̃†∥2 reflects low-
frequency structural changes often introduced by smoothing
attacks that diffuse information across the graph (Table 1).

Principle 3.2 (Information-Theoretic Robustness). The
watermark embeddingW must ensure that the mutual infor-
mation I(S;T (Gw+∆A)) between the original watermark
S and the extracted signature under attack satisfies:

inf
∥∆A∥0≤δ

I(S;T (Gw +∆A)) ≥ β, (19)

where β > 0 is a lower bound guaranteeing detectable
information retention. This is achieved by enforcing that
the watermark encodingW(G) maximizes the effective in-
formation capacity C(W) under adversarial constraints:

C(W) = min
∆A

[H(S)−H(S | T (Gw +∆A))] , (20)

where H(·) denotes entropy. The principle mandates that
critical graph substructures (e.g., high-centrality commu-
nities) encode S with minimal entropy loss H(S | T (·)),
ensuring robustness against D(G, G̃).

To satisfy Principle 3.2, we partition G into l communi-
ties {Ci}li=1with vertices ranked by centrality η(v). The
watermark is embedded as:

W(G) =
l⋃

i=1

Φ(Ci) ∪
⋃
v∈Ci

Ψ(v), (21)

where Φ(Ci) injects S into the community’s spectral profile
(resilient to ∥L† − L̃†∥2), and Ψ(v) encodes S via edge-
weight distributions around high-centrality vertices (resis-
tant to ∥A− Ã∥F ). This dual encoding maximizes C(W)
by distributing S across both low-frequency (global) and
high-frequency (local) structural invariants.

4. Experiments
The experimental evaluation of KGMark assesses its effec-
tiveness in terms of watermark transparency, detectability,
and robustness across various attack scenarios and datasets.

4.1. Experiment setup
Datasets. We evaluate our approach using three public
datasets representing diverse real-world scenarios: Last-FM
(music) (Çano et al., 2017), MIND (news) (Wu et al., 2020),
and Alibaba-iFashion (e-commerce) (Chen et al., 2019).
Table 2 provides a summary of these datasets.

Variants. Since KGMark is the first watermarking scheme
for Knowledge Graph Embedding (KGE), we explored mul-
tiple variants in the experiments. ❶ W/O LAWMM: Using
a fixed watermark mask matrix with the same density, in-
stead of applying the Learnable Adaptive Watermark Mask
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Table 1. Watermark Detectability & Robustness (Relation Alteration, Triple Deletion, two adversarial attacks (L2 Metric, NEA), Isomor-
phism Variation (IsoVar)). We evaluate the detectability of the watermark under clean samples and its robustness under editing attacks
with structural and isomorphism variations. Includes four baselines and three variants compared with KGMark.

Datasets Method Clean Relation Alteration Triple Deletion Adversarial IsoVar Avg
10% 30% 50% 10% 30% 50% L2 Metric NEA

AliF

DwtDct 0.9837 0.9730 0.8813 0.8371 0.9457 0.8577 0.7724 0.9577 0.9638 0.6039 0.8776
DctQim 0.9749 0.9548 0.8623 0.8139 0.9121 0.8049 0.7073 0.9203 0.9278 0.5867 0.8465
TreeRing 0.9814 0.9207 0.8321 0.7392 0.9442 0.8599 0.8091 0.9621 0.9584 0.6257 0.8632
GaussianShading 0.9882 0.9481 0.8745 0.7998 0.9217 0.8846 0.7850 0.9364 0.9512 0.6094 0.8699
W/O LAWMM 0.9980 0.9623 0.9352 0.9147 0.9795 0.9592 0.9341 0.9817 0.9706 0.9895 0.9625
Only CL 0.9942 0.9537 0.9216 0.8864 0.9214 0.8745 0.8063 0.9426 0.9535 0.9635 0.9218
Only VL 0.9828 0.9765 0.9433 0.9172 0.9670 0.9148 0.8592 0.9521 0.9676 0.9787 0.9459
KGMark 0.9991 0.9810 0.9564 0.9207 0.9829 0.9669 0.9320 0.9841 0.9809 0.9933 0.9697

MIND

DwtDct 0.9793 0.9563 0.8827 0.8161 0.9334 0.8413 0.7610 0.9358 0.9291 0.6348 0.8669
DctQim 0.9785 0.9542 0.8703 0.8269 0.9046 0.8071 0.6993 0.9209 0.9198 0.5708 0.8452
TreeRing 0.9862 0.9128 0.8554 0.8171 0.9704 0.8617 0.7831 0.9682 0.9543 0.5763 0.8685
GaussianShading 0.9903 0.9076 0.8455 0.7930 0.9334 0.8746 0.8284 0.9767 0.9681 0.5845 0.8702
W/O LAWMM 0.9984 0.9896 0.9743 0.9335 0.9895 0.9609 0.9328 0.9915 0.9864 0.9705 0.9727
Only CL 0.9973 0.9792 0.9515 0.9287 0.9624 0.9074 0.8449 0.9697 0.9713 0.9846 0.9497
Only VL 0.9956 0.9814 0.9658 0.9346 0.9647 0.9154 0.8804 0.9683 0.9618 0.9861 0.9554
KGMark 0.9987 0.9907 0.9751 0.9314 0.9781 0.9726 0.9576 0.9849 0.9883 0.9842 0.9762

Last-FM

DwtDct 0.9801 0.9636 0.8834 0.8229 0.9570 0.8353 0.7415 0.9596 0.9678 0.6407 0.8752
DctQim 0.9842 0.9527 0.8773 0.8062 0.9083 0.7972 0.7125 0.9144 0.9161 0.5938 0.8463
TreeRing 0.9879 0.9167 0.8353 0.7982 0.9316 0.9024 0.8519 0.9553 0.9487 0.6109 0.8738
GaussianShading 0.9795 0.9356 0.8658 0.8303 0.9519 0.9145 0.8667 0.9638 0.9594 0.6551 0.8922
W/O LAWMM 0.9982 0.9929 0.9857 0.9468 0.9785 0.9420 0.9057 0.9794 0.9852 0.9970 0.9711
Only CL 0.9962 0.9893 0.9367 0.9073 0.9773 0.9206 0.8737 0.9156 0.9205 0.9901 0.9427
Only VL 0.9929 0.9726 0.9308 0.9034 0.9824 0.9275 0.8661 0.9053 0.9112 0.9912 0.9383
KGMark 0.9976 0.9973 0.9844 0.9421 0.9796 0.9350 0.9031 0.9886 0.9814 0.9977 0.9707

Table 2. We use three KG datasets from different domains.
Name Entities Relations Triples

Alibaba-iFashion (AliF) 59,156 51 279,155
MIND 24,733 512 148,568

Last-FM 58,266 9 464,567

Matrix (LAWMM). ❷ Only CL: Applying the watermark
exclusively in the Community Layer, selecting specific ver-
tices or vertex groups within each community. ❸ Only VL:
Applying the watermark exclusively in the Vertex Layer,
selecting multiple vertices or vertex groups within a specific
community. ❹ W/O Watermark (Control): Reconstruct-
ing the knowledge graph without any watermark.

Baselines. As the first watermarking framework designed
for diffusion KGE, we introduce four additional baselines
to validate KGMark’s effectiveness. TreeRing (Wen et al.,
2023) and GaussianShading (Yang et al., 2024b) are node-
level watermarking methods designed for diffusion models
(Images), embedding watermarks by replacing 5% of nodes
in the graph. DwtDct (Cox et al., 2007) and DctQim (Chen
& Wornell, 2001) are classical watermarking techniques that
modify transformed coefficients to balance imperceptibility
and robustness.

Implementation details. We first employ the RotatE (Sun
et al., 2019) model to embed the knowledge graph, with an
embedding dimension of 4096. Our watermarking method
is applied to the above-processed datasets, and a subsequent

series of related experiments is carried out. All experiments
are conducted on a single NVIDIA A800.

4.2. Detectability
To evaluate the detectability of KGMark, we calculate the
false positive rate (FPR), true positive rate (TPR), and their
corresponding average AUC values, as summarized in Ta-
ble 1. The evaluations are conducted under a configuration
where the DDIM inference steps are set to 75, and the pre-
defined significance level is fixed at 5×10−5. To further ex-
amine the impact of significance levels and DDIM inference
steps on watermark detectability, we perform controlled
experiments by varying these parameters.

Table 1 summarizes the detection performance of KGMark
under various attack scenarios. Across all settings, KGMark
consistently maintains high detectability. We also evalu-
ate an ablated variant (W/O LAWMM) that removes the
Learnable Adaptive Watermark Mask, which is designed
to preserve transparency while balancing embedding de-
tectability. Interestingly, this variant exhibits slightly higher
detectability in some cases, likely due to stronger watermark
signal strength without the masking constraint. However,
the full KGMark still achieves comparable or superior per-
formance overall. This result also highlights the effective-
ness of LAWMM in achieving a favorable trade-off between
watermark detectability and semantic transparency.
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Table 3. Watermark Transparency. We evaluate the transparency of watermarking from two dimensions: the similarity of knowledge
graph embedding before and after watermarking and the quality of watermarked knowledge graph. We mark the best transparency score
only for the four baselines and two KGMark variants, as the original KG and W/O Watermark serve as control groups.

Datasets Method Cosine Similarity ↑ KG Quality Metric @ 75 Steps
50 Steps 65 Steps 75 Steps GMR ↓ HMR ↓ AMR ↓ Hits@10 ↑

AliF

Original KG - - - 1.828 1.162 135.459 0.8980
W/O Watermark 0.7971 0.8797 0.9674 3.026 1.579 141.412 0.8318
DwtDct 0.7215 0.7928 0.8251 5.096 1.699 157.036 0.6933
DctQim 0.7509 0.7633 0.7653 5.104 1.654 161.142 0.7385
TreeRing 0.7761 0.8431 0.9071 3.928 1.618 152.634 0.8017
GaussianShading 0.2879 0.3226 0.3538 6.641 1.798 172.813 0.5137
W/O LAWMM 0.7662 0.7838 0.8643 3.457 1.624 147.305 0.7871
KGMark 0.7839 0.8309 0.9482 3.046 1.580 141.904 0.8296

MIND

Original KG - - - 7.197 1.975 155.656 0.6649
W/O Watermark 0.7345 0.8290 0.9579 9.853 2.215 168.906 0.5734
DwtDct 0.7831 0.8244 0.8312 11.328 2.328 188.992 0.5216
DctQim 0.7549 0.7574 0.7703 12.037 2.753 205.483 0.4835
TreeRing 0.7976 0.8108 0.8581 11.102 2.297 182.925 0.5108
GaussianShading 0.2843 0.3196 0.3728 14.523 3.312 234.064 0.3940
W/O LAWMM 0.7469 0.8235 0.8902 10.819 2.238 173.194 0.5332
KGMark 0.8083 0.8533 0.9397 10.508 2.226 169.305 0.5683

Last-FM

Original KG - - - 3.571 1.202 1711.695 0.8436
W/O Watermark 0.8293 0.9157 0.9410 4.455 1.452 1715.907 0.8431
DwtDct 0.7215 0.7928 0.8433 4.519 1.502 1734.823 0.8221
DctQim 0.7509 0.7633 0.7679 5.139 1.704 2043.249 0.7264
TreeRing 0.7262 0.7896 0.8364 4.733 1.652 1772.961 0.8149
GaussianShading 0.3252 0.3649 0.4184 6.349 2.016 2192.492 0.6463
W/O LAWMM 0.7628 0.8809 0.8948 4.456 1.452 1716.828 0.8430
KGMark 0.8876 0.9051 0.9161 4.455 1.452 1716.365 0.8430

Obs.❶ KGMark’s detectability remains consistently
high with optimal DDIM steps and significance levels.
Figure 3a illustrates the impact of significance levels and
DDIM inference steps on the AUC values. Within the signif-
icance level range of 1e− 5 ∼ 1e− 4, increasing the DDIM
steps significantly enhances detection performance by re-
ducing watermark information loss. Meanwhile, the AUC
values remain exceptionally stable, approaching 1 for con-
figurations with higher steps, highlighting KGMark’s robust
and consistent performance under suitable conditions.

However, for higher significance levels 1e−3 ∼ 1e−2, the
AUC values drop more sharply. This decline is attributed
to higher inference steps reducing p-values for negative
samples, thereby increasing the false positive rate (FPR)
and accelerating the drop in detection accuracy.

Obs.❷ Increasing detection-stage DDIM steps boosts
detectability, while stage alignment further enhances
performance. Results in Figure 3b demonstrate that higher
DDIM steps in the detection stage yield marginal improve-
ments in AUC, with values consistently exceeding 0.996
across most configurations. For example, as detection steps
increase from lower to higher ranges, the AUC improves
slightly, showcasing the positive impact of precise parameter
tuning during detection.

However, inconsistencies between embedding and detec-
tion steps introduce minor declines in performance, as seen
in higher-step configurations where AUC decreases from
0.99785 ∼ 0.9967. This highlights the critical importance
of alignment between the two stages. Notably, the detec-
tion stage exerts a more significant influence on watermark
retrieval accuracy, reinforcing the need for fine-grained con-
trol at this stage to achieve optimal detectability.

4.3. Transparency
We evaluate the transparency of KGMark, which measures
the extent to which the watermark preserves the structural
and functional integrity of the original KGE.

Obs.❸ KGMark achieves strong transparency by mini-
mally impacting KG structure and usability. As shown
in Table 3, KGMark achieves high cosine similarity scores
(e.g., 0.9482 for AliF at 75 steps) compared to the non-
watermarked version, indicating that the watermark does not
significantly distort the KG’s inherent relationships. This
demonstrates that the watermark is seamlessly integrated
without disrupting the KG’s core structure.

To further evaluate the KG’s quality post-watermarking,
we measure forecast task performance using GMR, HMR,
AMR, and Hits@10 metrics. KGMark’s results are nearly
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Figure 3. Ablation. (a) AUC under varying significance levels and DDIM inference steps. (b) Different DDIM inference steps during
embedding and detection. (c) Effect of watermark mask density on all datasets, with DDIM steps set to 75 and significance level 5e−5.

on par with the original KG and the non-watermarked ver-
sion. For example, in AliF, KGMark achieves a Hits@10
score of 0.8296, slightly lower than the non-watermarked
score of 0.8318. Similar trends are observed across MIND
and Last-FM, where KGMark consistently outperforms the
version without LAWMM. These findings confirm that KG-
Mark preserves the KG’s utility for downstream tasks, en-
suring the watermarked KG remains functional and reliable.

Experimental results in Figure 3c show that the density
of the watermark mask matrix also influences watermark
transparency. Higher density causes a slight increase in de-
tectability. However, this comes at the cost of transparency,
as cosine similarity (LAWMM cosine) drops from 0.933 to
0.671, reflecting degradation in KG integrity. This trade-
off underscores the need to balance density for optimal
detectability and transparency.

4.4. Robustness
We next assess the robustness of KGMark, focusing on its
ability to withstand a wide range of post-editing attacks
without compromising watermark integrity. To evaluate
the robustness of our watermarking scheme, we systemati-
cally analyze its performance under five post-editing attacks
with varying intensities: Gaussian noise injection, Gaus-
sian smoothing(Hu et al., 2024), relation alteration, triple
deletion, and graph isomorphism variation. Attack inten-
sity is quantified by the proportion of affected entities or
triples, ranging from 10% to 50%, simulating real-world
adversarial scenarios. We further incorporate two stronger
adversarial attacks into our evaluation: NEA (Bojchevski
& Günnemann, 2019), a graph poisoning attack targeting
node embeddings, and the L2 Metric attack (Bhardwaj et al.,
2021), which perturbs embeddings via instance attribution
analysis. These attacks introduce fine-grained and targeted
perturbations, enabling rigorous robustness evaluation under
realistic and challenging adversarial settings.

Obs.❹ KGMark’s hierarchical embedding ensures ro-
bustness by mitigating both local perturbations and

Table 4. Watermark Detectability & Robustness (Gaussian Noise
& Smoothing). We impose two common attacks against images
on KGE and evaluate the robustness of these two attacks under
different attack intensities.

Datasets Method Gaussian Noise Smoothing
10% 30% 50% 10% 30% 50%

AliF

DwtDct 0.98 0.89 0.86 0.94 0.90 0.81
DwtQim 0.93 0.84 0.69 0.90 0.82 0.77
TR 0.92 0.86 0.81 0.92 0.86 0.78
GaussianShading 0.94 0.91 0.89 0.90 0.83 0.79
W/O LAWMM 0.98 0.95 0.92 0.95 0.91 0.88
Only CL 0.98 0.94 0.90 0.93 0.90 0.84
Only VL 0.96 0.92 0.87 0.91 0.87 0.82
KGMark 0.98 0.96 0.91 0.94 0.92 0.89

MIND

DwtDct 0.96 0.90 0.83 0.96 0.87 0.81
DwtQim 0.93 0.81 0.72 0.94 0.85 0.79
TR 0.91 0.86 0.77 0.94 0.91 0.83
GaussianShading 0.94 0.89 0.85 0.90 0.86 0.83
W/O LAWMM 0.98 0.95 0.91 0.95 0.92 0.89
Only CL 0.98 0.93 0.90 0.96 0.92 0.87
Only VL 0.94 0.93 0.91 0.95 0.91 0.89
KGMark 0.99 0.96 0.92 0.96 0.93 0.90

Last-FM

DwtDct 0.96 0.90 0.85 0.95 0.85 0.77
DwtQim 0.95 0.84 0.74 0.95 0.92 0.82
TR 0.93 0.89 0.86 0.92 0.89 0.85
GaussianShading 0.96 0.92 0.89 0.92 0.89 0.86
W/O LAWMM 0.99 0.96 0.93 0.95 0.93 0.91
Only CL 0.97 0.96 0.92 0.93 0.91 0.89
Only VL 0.98 0.96 0.93 0.94 0.90 0.86
KGMark 0.99 0.97 0.93 0.95 0.93 0.91

structural disruptions. As shown in Table 4 and Table 1,
the robustness of the watermark varies significantly across
method variants. The standalone Community Layer (Only
CL) and Vertex Layer (Only VL) exhibit weaker resilience
compared to the full KGMark. For instance, under triple
deletion attacks on AliF at 50% intensity, Only CL and
Only VL achieve AUC scores of 0.8063 and 0.8592, respec-
tively, while KGMark maintains a robust score of 0.9320.
This underscores the necessity of combining coarse-grained
(Community Layer) and fine-grained (Vertex Layer) embed-
ding strategies. Notably, the variant without LAWMM (W/O
LAWMM) demonstrates comparable robustness to KGMark,
as LAWMM is primarily designed for transparency and does
not compromise robustness.
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Our analysis reveals that KGMark is particularly sensitive
to triple deletion and high-intensity smoothing attacks while
maintaining strong robustness against other attack types.
Under triple deletion attacks on AliF, the AUC drops from
0.9829 at 10% intensity to 0.9320 at 50% intensity, reflect-
ing a significant but manageable decline. Similarly, under
smoothing attacks, the AUC decreases from 0.94 at 10%
intensity to 0.89 at 50% intensity on AliF. In contrast, KG-
Mark demonstrates exceptional resilience to Gaussian noise
and relation alteration, achieving an AUC of 0.93 at 50%
intensity under Gaussian noise attacks on Last-FM. These
results validate that KGMark effectively balances robustness
and usability, even under aggressive post-editing attacks.

4.5. Case Study
We conduct a case study on the downstream task of news
recommendation using the MIND dataset, comparing the
performance of knowledge graph embeddings with and
without the proposed watermark. The experiments are car-
ried out using the Deep Knowledge-Aware Network (DKN)
model (Wang et al., 2018), which has been trained for 10
epochs on the MIND dataset. To simulate a controlled user
profile, we restrict the user’s click history by focusing on a
strong interest in sports news. Additionally, we randomly
sample 5 news items from the model’s output for evaluation.

• Football : Dantonio scoffs at dumb question 
about Michigan State's offensive staff

KG based News Recommendation KG based News Recommendation(KGMark)

• Football : Rockets guard Gerald Green 
reportedly has broken foot

Orginal KG KG (KGMark) 

• Football : Texans sign DL Javier Edwards to 
practice squad

• NBA : Lakers' Alex Caruso spawns 
Internet memes, but has real game

• NBA : Doncic received stitches but didn't 
suffer concussion vs. Lakers

• Football : Pac-12 power rankings: 
Defeats of ranked opponents...

Football

Lakers

Michigan

NBA

…… 
EntitiesEntities ProtraitPortrait

DKN DKN

Figure 4. Case Study. Workflow and representative results.

The results, shown in Figure 4, highlight that the content and
subcategories of targeted recommendations remain consis-
tent with and without watermarking. Despite the watermark,
the recommendation system focuses on sports news and
identifies trending topics, such as the ”Pac-12 power rank-
ings.” Entity recognition remains stable, with consistent
identification of sports figures, teams, and locations across
both versions. Additionally, the recommendation logic and
hot topic recommendations remain unchanged, indicating
no impact from the watermarking process.

5. Discussion
5.1. Variational Autoencoder
KGMark’s implementation employed a VAE based on the
Relational Graph Attention Network (RGAT) (Busbridge
et al., 2019), which extends GAT (Veličković et al., 2018)
by incorporating relational dependencies. Given a KG G =

(V, E ,R), RGAT updates node representations as:

h(l+1)
v = σ

∑
r∈R

∑
u∈Nr(v)

αr
vuW

rh(l)
u

 , (22)

where Nr(v) denotes neighbors connected via relation r,
Wr is a relation-specific transformation, and αr

vu is the
learned attention weight.

Relational graph neural networks (Schlichtkrull et al., 2017)
(e.g., RGAT, RGCN) better enhance the expressiveness of
the latent space z ∼ qϕ(z|G)by capturing structural depen-
dencies. However, our experiments show that relation-based
models are vulnerable to adversarial attacks, which disrupt
attention weights and cause representation shifts:

∥h̃v −hv∥22 ≈
∑
r∈R

 ∑
u∈Nr(v)\Ñr(v)

(αr
vuW

rhu)
2

 (23)

where Ñr(v) is the modified neighborhood. This degrada-
tion also impacts VAE reconstruction, reducing watermark
detectability. Using non-relational models such as GCN
or GAT mitigates this vulnerability but lowers latent space
expressiveness, leading to suboptimal reconstruction:

DKL(qϕ(z|G)∥p(z)) ↑, Eqϕ(z|G)[log pθ(G|z)] ↓ . (24)

Thus, relational modeling improves representation quality
but increases attack susceptibility, requiring a balance be-
tween robustness and expressiveness.

5.2. Embedding Dimensions and DDIM Generality
The dimensionality of embeddings affects watermark de-
tectability and robustness, requiring a balance with task per-
formance. While DDIM inversion is central to our method,
compatibility with advanced samplers remains an open prob-
lem. Future work will explore conditional sampling to im-
prove reconstruction quality and watermark transparency.

6. Conclusion
In this paper, we introduce KGMark, a novel watermarking
scheme for knowledge graphs, leveraging diffusion models
to ensure robustness, transparency, and detectability. Our
method addresses key challenges in graph integrity, offering
a secure solution that maintains semantic fidelity even in
dynamic environments. KGMark provides a foundation for
securing the integrity and ownership of synthetic knowl-
edge graphs, with potential applications spanning academic
research to commercial deployments in fields like recom-
mendation systems and GraphRAG.
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Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò,
P., and Bengio, Y. Graph attention networks, 2018.
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A. Defending Against Isomorphism and Structural Variations

Algorithm 1 Graph Alignment

Require: Input graph G = (V,E) with vertex attributes and adjacency matrix A
Ensure: Normalized graph Ĝ

1: For each v ∈ V :
2: d[v]← deg(v), c[v]← c(v) Compute the degree and clustering coefficient for each vertex
3: Vo ← Sort(V, d, c) Sort V first by degree d[v] and then by clustering coefficient c[v] in ascending order
4: A′ ← Reorder(A, Vo) Reorder rows and columns of A according to the order in Vo

5: Ĝ← ∅
6: for vi ∈ Vo do
7: Ĝ← Ĝ ∪ {vi} Add vertex vi to Ĝ
8: end for
9: for (vi, vj) ∈ E do

10: Ĝ← Ĝ ∪ {(vi, vj)} Add edge (vi, vj) to Ĝ
11: end for
12: for vi ∈ Vo do
13: RearrangeAttributes(vi, Ĝ) Rearrange or update attributes of vi based on the new order in Ĝ
14: end for
15: return Ĝ

Symbol Definitions:

• d[v]: The degree of vertex v, i.e., the number of edges incident to v.

• c[v]: The clustering coefficient of vertex v measures the degree to which vertices in a graph tend to cluster together.

• Ĝ: The normalized graph after vertex and edge processing.

• RearrangeAttributes(vi, Ĝ): A function to reorder or update the attributes of vertex vi in the normalized graph Ĝ based
on the sorted vertex list Vo.

Algorithm 1 outlines a graph alignment process designed to enhance the robustness of a graph against isomorphism and
structural variations, which are common forms of attack. The process begins by calculating the degree and clustering
coefficient for each node. These attributes reflect the node’s connectivity and the density of its neighbors, which are crucial
for determining the node’s importance within the graph.

Next, the nodes are sorted based on these attributes, first by degree and then by clustering coefficient. This sorting ensures
that nodes with lower connectivity are processed first, while more central nodes appear later. Following the sorting, the
graph’s adjacency matrix is reordered to match the new node order, preserving the graph’s original relationships.

A new graph, Ĝ, is created by adding nodes in the sorted order. As each node is added, its attributes are updated according
to the new structure, ensuring consistency. Finally, the edges are added to the new graph based on the original connections,
but aligned with the new node ordering.

The output is a normalized graph that is less susceptible to structural perturbations. This process helps improve the graph’s
resilience to attacks that alter its structure, making it more stable for applications like watermarking, where the goal is to
embed and extract watermarks while maintaining robustness against manipulation.

Algorithm 2 describes a process for redundantly embedding a watermark into a graph based on its subgraphs. The aim is to
enhance the robustness of the watermark against structural modifications and attacks by embedding it in multiple subgraph
communities.

The process starts by computing the number of communities l based on the graph’s total number of vertices |V | and a
predefined smallest embedded size s. The graph G is then partitioned into l non-overlapping communities C1, C2, . . . , Cl,
ensuring that every vertex in the graph is assigned to exactly one community, and the communities do not overlap.
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Algorithm 2 Redundant Embedding Based on Subgraphs

1: Input: Graph G = (V,E), Smallest embedded size s, Watermark W
2: Output: Watermarked graph G′

3: l← ⌊|V |/s⌋ Compute the number of communities
4: C ← {C1, C2, . . . , Cl}
5: when

⋃l
i=1 Ci = V and Ci ∩ Cj = ∅,∀i ̸= j Partition G into l non-overlapping communities

6: for each community c ∈ C do
7: VCi

← {v | v ∈ Ci, selected based on a predefined strategy}
8: cnorm ← GraphNormalization(c, Ac) Normalize the graph structure
9: for each vertex v ∈ Vc do

10: EmbedWatermark(v, W ) Embed watermark into selected vertices
11: end for
12: end for
13:
14: return G′

Next, for each community c ∈ C, the algorithm selects a subset of vertices, VCi , based on a predefined strategy, which could
be influenced by factors such as node importance or connectivity. The subgraph corresponding to each community, c, is then
normalized using the ‘GraphNormalization‘ function. This step ensures that the internal structure of each community is
standardized, making the watermark embedding more robust to structural variations.

After normalizing the graph structure, the watermark is embedded into selected vertices of each community using the
‘EmbedWatermark‘ function. This embedding process is repeated for each vertex in every community. By embedding
the watermark redundantly across different communities of the graph, the method increases the likelihood of watermark
retention even if parts of the graph undergo modification or attack.

Finally, the watermarked graph G′ is returned, which contains the embedded watermark in a redundant and robust manner,
ensuring better resilience to structural changes or adversarial perturbations. This approach is particularly useful for
applications that require high security, such as digital watermarking in graphs, where the goal is to protect the integrity of
the watermark despite potential attacks.

B. Case Study in Embedding Space
To further demonstrate the effectiveness of our proposed watermarking method, a case study is conducted on the dataset
AliF related to customer behavior analysis. We select 2400 entity embeddings from five communities (A-E) from AliF for
watermark embedding and visualize the embedding vectors before and after processing by dimensionality reduction. The
case background is presented in Table 5, the result of the visualization is shown in Figure 5

Table 5. Case Background.
Number of Entities total Dimensions of Embeddings DDIM Inference Steps Density of Mask Cosine Similarity

A B C D E
524 507 524 420 425 2400 4096 75 0.015 0.9535

For visualization purposes, we used the t-SNE technique to reduce the dimensionality of the embedding vectors from 4096 to
3. This technique is particularly suitable for mapping data from high-dimensional to two-dimensional or three-dimensional
space while preserving local structural relationships between data points.

The similarity between points xi and xj in a high-dimensional space is defined by the conditional probability pj|i as follows,
where ∥xi − xj∥2 represents the squared Euclidean distance. σi is a parameter that controls the width of the neighborhood
of the point xi.

pj|i =
exp

(
−∥xi − xj∥2/2σ2

i

)∑
k ̸=i exp (−∥xi − xk∥2/2σ2

i )
(25)
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Figure 5. Ablation study of the density of the watermark mask matrix on all datasets. Each subfigure corresponds to a different method.

To symmetrize the similarity, the joint probability is defined as follows, where n is the total number of data points.

pij =
pj|i + pi|j

2n
(26)

In a low-dimensional space, the similarity between the points yi and yj is defined by the t-distribution as:

qij =

(
1 + ∥yi − yj∥2

)−1∑
k ̸=l (1 + ∥yk − yl∥2)−1 (27)

t-SNE uses Kullback-Leibler (KL) divergence as a dissimilarity measure between a high-dimensional distribution pijand a
low-dimensional distribution qij . The goal is to minimize the following loss function:

L =
∑
i ̸=j

pij log
pij
qij

(28)

t-SNE optimizes the loss function L using Stochastic Gradient Descent (SGD). During the optimization, the position
of the low-dimensional embedding yi is gradually adjusted, so that the low-dimensional similarity qij is closer to the
high-dimensional similarity pij .

In Figure 5, it can be found that the color gradient and position distribution of the points in the figure almost remain
unchanged before and after the embedding of the watermark, indicating that the embedding of the watermark does not
significantly change the geometric structure of the original embedding. In addition, both images show a spherical distribution
that gradually diffuses from the center to the outside, and the density of the points remains the same, indicating that
the characteristics of the original vector embedding are well preserved after embedding the watermark. The watermark
embedding may introduce only slight perturbations in some local details or some dimensions, but these perturbations are not
sufficient to cause significant effects on the overall distribution.

Then, we carry out watermark detection on the watermarked knowledge graph, and we select the significance level as 5e-5.
We report their P-values to check whether the watermark is detected. In summary, our watermarking method performs well
in terms of transparency. It neither destroys nor enhances the distribution characteristics of the original embeddings, but also
achieves certain robustness and detectability.
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Table 6. Case Result.
Community P-value Is Detected

A 8.29e− 27 ✓
B 1.52e− 26 ✓
C 4.20e− 19 ✓
D 1.88e− 15 ✓
E 3.27e− 34 ✓

C. Latent Diffusion Model
C.1. Variational Autoencoder

To effectively capture the intricate structure of graph data, we employ a Variational Autoencoder (VAE). This advanced model
maps the entity embeddings of the knowledge graph into a latent space, where the underlying patterns and relationships
can be more efficiently represented and analyzed. To ensure that we can adequately and accurately capture the complex
patterns inherent in the graph structure, we utilize multiple Relational Graph Attention (RGAT) modules. These modules
are specifically designed to handle the relational nature of the graph data, allowing the model to focus on different types
of relationships and entities within the graph. By leveraging the power of multiple RGAT modules, we can produce
higher-quality latent representations that better encapsulate the essential characteristics of the graph structure. These
embeddings are then sampled using the reparameterization trick. This technique enables us to introduce stochasticity in a
differentiable manner, which is crucial for the training process of the VAE. Finally, the sampled embeddings are decoded
back into the reconstructed entity embeddings, allowing us to evaluate the quality of the learned representations and the
model’s overall performance in capturing and reconstructing the graph data.

C.2. Diffusion, DDIM and Inversion

Denoising Diffusion Implicit Models (DDIM) provide an efficient alternative to standard diffusion-based generative models
by leveraging a non-Markovian forward and reverse process. This section introduces the DDIM sampling process, its
inversion, and the necessary mathematical formulation and derivation.

Forward Diffusion Process:

The forward process in DDIM maps a data point Z0 ∈ Rd to a noisy latent variable ZT over T timesteps. It is defined as:

Zt =
√
αtZ0 +

√
1− αtϵ, ϵ ∼ N (0, I), (29)

where αt is a scheduling parameter that controls the noise variance at timestep t.

Reverse Diffusion Process:

The reverse process reconstructs Z0 from ZT by iteratively denoising the latent variable. DDIM modifies the reverse process
to make it deterministic, defined as:

Zt−1 =
√
αt−1Ẑ0 +

√
1− αt−1ϵt, (30)

where Ẑ0 is the predicted clean data at timestep t and is obtained via:

Ẑ0 =
Zt −

√
1− αtϵt√
αt

. (31)

The noise ϵt is predicted using a pre-trained noise estimation model, typically parameterized as ϵθ(Zt, t).

DDIM Sampling:

DDIM employs a deterministic sampling strategy by reparameterizing the reverse process. Specifically, the update step
becomes:

Zt−1 =
√
αt−1Ẑ0 +

√
1− αt−1 · η · ϵt, (32)
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where η ∈ [0, 1] controls the stochasticity of the process. Setting η = 0 results in a fully deterministic process, while η > 0
introduces controlled randomness.

Inversion Process:

DDIM supports exact inversion, enabling the recovery of Zt from Zt−1. By rearranging Eq. (32), the inversion is expressed
as:

Zt =
√
αtẐ0 +

√
1− αt · η · ϵt. (33)

This exact inversion capability is crucial for tasks such as embedding watermarks or debugging generative processes.

D. Watermark Embedding in Frequency Domain

57.22  -22.22 ……  -8.93 -22.22
31.17   82.95 …… 32.58 -14.51
 …              ……
 …              ……
32.17 -1.25 …… 

0.05  0.38  ……   0.42    0.33
 0.13  0.37  ……  -0.14  -1.36
 …              ……
 …              ……
-1.03 0.25 …… 

0.05  0.37  ……   0.43    0.32
 0.15  0.36  ……  -0.14  -1.35
 …              ……
 …              ……
-1.05 0.25 …… 

ZT

0 1 0 0 …… 0 0 0 
0 1 1 0 …… 0 0 1 
 …        ……         
 …        ……         
 1 0 0 1 …… 0 1 0      

Mask Matrix

FFT IFFT

Zw

T

Figure 6. Watermark Embedding in Frequency Domain.

The theoretical basis of watermark embedding in the frequency domain is mainly based on the frequency domain transfor-
mation technology in signal processing. The essence of the Fourier transform we employ is to separate the time domain
and frequency domain characteristics, and the Fourier transform decomposes the time domain signal into frequency do-
main components; that is, the signal is represented as a superposition of sine waves with different frequencies. In the
frequency domain, Low-frequency components usually contain the main energy of the signal (such as the overall structure
or low-resolution features). High-frequency components: Describe rapid changes in the signal (such as detail or texture
information). The watermark is embedded in some specific frequency components of the frequency domain (such as middle
frequency or high frequency), which can not only hide the watermark but also reduce the impact on the data’s original
structure. The frequency domain properties after the Fourier transform are robust to certain linear operations such as
compression, smoothing, rotation, and cropping: for example, the rotation operation only causes a phase change in the
frequency domain, while the amplitude spectrum remains stable. This makes the method of embedding the watermark in the
frequency domain highly robust to these transformations.

Our method uses the energy distribution characteristics, perceptual sensitivity, and frequency domain stability of the Fourier
transform frequency domain to embed the watermark into the frequency domain, and then realizes the flexible and adaptive
selection of the frequency region through our LAWMM to achieve the goal of invisibility, robustness, and detectability of
the embedded watermark. These theoretical foundations provide a solid foundation for frequency domain watermarking
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technology and also explain its advantages in the face of common attacks such as compression, geometric transformation,
and smoothing.

E. Metrics
E.1. Detectability and Robustness

We use the AUC as an authoritative indicator for evaluating the detectability and robustness of our watermarking methods.

• Area Under Curve (AUC): AUC refers to the area under the Receiver Operating Characteristic (ROC) curve, a widely
used metric for evaluating classification models. The AUC score ranges from 0 to 1, with a value closer to 1 indicating
better model performance. It represents the probability that a randomly chosen positive sample will be ranked higher
than a randomly chosen negative sample. Mathematically, AUC can be expressed as:

AUC =
1

NpNn

Np∑
i=1

Nn∑
j=1

I(yi > yj) (34)

where Np and Nn are the numbers of positive and negative samples, respectively, yi and yj are the predicted scores of
the positive and negative samples, and I(yi > yj) is the indicator function that is 1 if yi > yj , and 0 otherwise.

E.2. Transparency

We evaluate the transparency of watermarking from two dimensions: the similarity of knowledge graph embedding before
and after watermarking and the quality of watermarked knowledge graph. Therefore, we used the following two categories
of evaluation metrics.

We use cosine similarity to evaluate the similarity of knowledge graphs.

• Cosine Similarity: Cosine similarity is a similarity measure between two non-zero vectors in an inner product space.
It is widely used in many fields, including information retrieval, natural language processing, and machine learning.
The cosine similarity between two vectors A and B is defined as:

cosine similarity(A,B) =
A ·B
∥A∥∥B∥

(35)

For quality, we use the following four metrics. Given a set of test triples T = {(h, r, t)} in a knowledge graph G, let r(h, t)
denote the rank of the correct entity t (or h) among all candidates in a ranking task.

• Geometric Mean Rank (GMR): GMR captures the overall ranking tendency in a multiplicative rather than additive
manner, making it particularly suitable for datasets where ranking distributions exhibit heavy tails. It provides insights
into the overall ranking distribution, making it useful for comprehensive model evaluation. The GMR is defined as
follows:

GMR =

 ∏
(h,r,t)∈T

r(h, t)

 1
|T |

. (36)

• Harmonic Mean Rank (HMR): HMR mitigates the influence of extremely high ranks, ensuring that poor predictions
do not disproportionately impact the evaluation. Moreover, HMR is expressed directly in rank space, making it more
interpretable while still benefiting from reciprocal weighting.

HMR =
|T |∑

(h,r,t)∈T
1

r(h,t)

. (37)

• Arithmetic Mean Rank (AMR): AMR directly reflects the average rank of correct entities, making it easy to understand
and compare across models. A major limitation of AMR is that it is heavily influenced by extremely high-rank values,
which can distort performance evaluation.

AMR =
1

|T |
∑

(h,r,t)∈T

r(h, t). (38)

19



KGMark: A Diffusion Watermark for Knowledge Graphs

• Hits@k: Hits@k provides a direct measure of retrieval success within a fixed rank cutoff, making it useful for
real-world applications requiring top-k recommendations.

Hits@k =
1

|T |
∑

(h,r,t)∈T

I[r(h, t) ≤ k], (39)

where I[·] is the indicator function that returns 1 if the condition holds and 0 otherwise. This metric evaluates whether
the correct entity appears within the top-k ranks.

F. Notations and Definitions

Table 7. Notations and Definitions
Notation Definition
F (·) Fourier Transform
M Watermark mask matrix
S Watermark signature
σ2 Variance of the watermark signature
Zw
T Watermarked latent representation

ZINV
T Initial noise vector recovered via DDIM inversion

L Loss function in watermark embedding
ϵ Threshold for latent space equilibrium
δ Total perturbation in an attack
δk Perturbation applied to each subgraph Gk

q Norm type in the attack objective
Y Fourier transform result during watermark extraction
µi Mean of Y
σ2
i Variance of Y

T Test statistic for watermark detection
λ Likelihood ratio test statistic
T̂ Simplified test statistic
p P-value for watermark detection
α Significance level for watermark detection
ρ Density of the watermark mask matrix
Φ(Ci) Watermark embedding in the community layer
Ψ(v) Watermark embedding in the vertex layer
C(W ) Effective information capacity of watermark encoding
H(·) Entropy
D(G, G̃) Divergence metric between graphs G and G̃
L† Pseudoinverse of the graph Laplacian
∆A Perturbation matrix for the graph
η(v) Centrality of vertex v

Ẑ0 Predicted clean data in DDIM inversion
η Stochasticity control parameter in DDIM sampling
ϵt Predicted noise in DDIM reverse process
αt Scheduling parameter in DDIM forward diffusion process
σi Parameter controlling neighborhood width in t-SNE
pij Joint probability in high-dimensional space
qij t-distribution similarity in low-dimensional space
L Loss function in t-SNE optimization
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