
Anamorphic Cryptography with Elliptic Curve
Methods

William J. Buchanan 1

Blockpass ID Lab, Edinburgh Napier University, Edinburgh.

Abstract. In 2022, Persianom, Phan and Yung outlined the creation
of Anamorphic Cryptography. With this, we can create a public key to
encrypt data, and then have two secret keys. These secret keys are used
to decrypt the cipher into different messages. So, one secret key is given
to the Dictator (who must be able to decrypt all the messages), and
the other is given to Alice. Alice can then decrypt the ciphertext to a
secret message that the Dictator cannot see. This paper outlines the im-
plementation of Anamorphic Cryptography using ECC (Elliptic Curve
Cryptography), such as with the secp256k1 curve. This gives consider-
able performance improvements over discrete logarithm-based methods.
Overall, it outlines how the secret message sent to Alice is hidden within
the random nonce value, which is used within the encryption process,
and which is cancelled out when the Dictator decrypts the ciphertext.

1 Introduction

In cybersecurity, we can use anamorphic cryptography to change the viewpoint
of a cipher [1]. With this, we assume that we have a dictator who will read all of
our encrypted data, and will thus have a secret key of sk. The dictator (Mallory)
will arrest anyone who sends secret messages that they cannot read. For this,
Bob could create two secret keys: sk0 and sk1. He sends sk0 to Mallory and sk1
to Alice (the person to whom Bob wants to send a secret message). As far as
Mallory knows, he has the only key for the ciphertext. Dodis et al [2] liken this
this approach to the adding of backdoors into semantically secure schemes is
pointless, and where entities might be asked to hand-over their decryption keys.

2 Background

With anamorphic encryption, we can have a public key of pk and two private
keys of sk0 and sk1. Bob then can have two messages of:

m0 = ”I love the Dictator” (1)

m1 = ”I hate the Dictator” (2)

Bob then encrypts the two messages with the public key:

ar
X

iv
:2

50
5.

23
77

2v
1 

 [
cs

.C
R

] 
 2

1 
A

pr
 2

02
5

https://orcid.org/0000-0003-0809-3523


CT = Enc(pk,m0,msg1) (3)

The Dictator will then decrypt with sk0 and reveal the first message:

Dec(sk0, CT ) → m0 (4)

Alice will decrypt with her key and reveal the second message:

Dec(sk1, CT ) → m1 (5)

And, so, the Dictator thinks that they can decrypt the message, and gets, “I
love the Dictator”. Alice, though, is able to decrypt the ciphertext to a different
message of “I hate the Dictator”.

Carnemolla et al. [3] have outlined that there are certain schemes which are
Anamorphic Resistant and that, in some cases, anamorphic encryption is similar
to substitution attacks. The methods that support anamorphic encryption in-
clude RSA-OAEP, Pailler, Goldwasser-Micali, ElGamal schemes, Cramer-Shoup,
and Smooth Projective Hash-based systems.

In this case, we will use the ElGamal method [4]. An implementation of the
ElGamal method for anamorphic cryptography is given in [5]. While discrete
logarithm methods have been used to implement Anamorphic Cryptography [6],
they tend to be slow in their operation. This paper outlines the integration of
ElGamal methods with ECC for the implementation of Anamorphic Encryption.

3 ElGamal encryption

With ElGamal encryption using elliptic curves [7], Alice generates a private key
(x) and a public key of:

Y = x.G (6)

and where G is the base point on the curve. She can share this public key
(Y ) with Bob. When Bob wants to encrypt something for Alice, he generates a
random value (r) and the message value (M) and then computes:

C1 = r.G (7)

C2 = r.Y +M (8)

To decrypt, Alice takes her private key (x) and computes:

M = C2 − x.C1 (9)

This works because:

M = C2 − y.C1 = r.x.G+M − x.r.G = M (10)

Figure 1 outlines how Bob can encrypt data for Alice.



Fig. 1. ElGamal encryption with ECC

4 Anamorphic Encryption with ECC

First, we pick a curve, such as secp256k1, which has a base point of G. Bob can
then pick a secret key for the Dictator of skDictator. The public key is then:

pk = skDictator.G (11)

Bob then generates a random scalar value of t and takes the secret message
of cm, and produces:

r = cm+ t (12)

The value of t will be Alice’s secret key. To encrypt the message of m, Bob
uses:

rY = r.pk (13)

rG = r.G (14)

rY val = Int(rY ) (15)

c0 := rY val +M (16)

c1 := rG (17)

(18)

The cipher is the (c0, c1). To decrypt by the Dictator:



yC = skDictator.c1 (19)

yCval = Int(yC) (20)

resDictator = c0 − yCval (21)

(22)

Alice can then decrypt with her key (t):

tc = t.G (23)

resAlice = c1 − tc (24)

Alice will then search through the possible values of resAlice to find the value
of cm that matches the elliptic curve point. This works because:

resAlice = c1 − tc = r.G− t.G = r.G− (r − cm).G = cm.G (25)

Some sample code and a test run are given in the appendix.

5 Appendix

Some sample code is [8]:

package main

import (

crand "crypto/rand"

"fmt"

"math/big"

"math/rand"

"os"

"strconv"

"time"

"github.com/coinbase/kryptology/pkg/core/curves"

)

func main() {

rand.Seed(time.Now().UnixNano())

argCount := len(os.Args[1:])

x := 5

cm:=99



if argCount > 0 {

x, _ = strconv.Atoi(os.Args[1])

}

if argCount > 1 {

cm, _ = strconv.Atoi(os.Args[2])

}

rand.Seed(time.Now().UnixNano())

curve := curves.K256()

G := curve.Point.Generator()

sk_Dictator := curve.Scalar.Random(crand.Reader)

pk := G.Mul(sk_Dictator)

t:=curve.Scalar.Random(crand.Reader)

r := curve.Scalar.New(cm).Add(t)

fmt.Printf("\n\nDictator␣key:␣%d\n",sk_Dictator.BigInt())

fmt.Printf("Alice␣key:␣%d\n\n",t.BigInt())

// Encrypt

rY := pk.Mul(r)

rG := G.Mul(r)

rYval := new(big.Int).SetBytes(rY.ToAffineUncompressed())

c0 := new(big.Int).Add(rYval, big.NewInt(int64(x)))

c1 := rG

fmt.Printf("Encrypted␣(c0):␣%s\n",c0)

fmt.Printf("Encrypted␣(c1):␣%x\n\n",c1.ToAffineUncompressed())

// Decrypt by Dictator

yC := c1.Mul(sk_Dictator)

yCval := new(big.Int).SetBytes(yC.ToAffineUncompressed())

res_Dictator := new(big.Int).Sub(c0, yCval)

fmt.Printf("Dictator␣message:␣%d\n",x)

fmt.Printf("Dictator␣recovered:␣%d\n",res_Dictator)

// Decrypt by Alice

tc1 := G.Mul(t)

res_Alice := c1.Sub(tc1)



for i:=0;i<=1000;i++ {

res:=G.Mul(curve.Scalar.New(i))

if (res_Alice.Equal(res)==true) {

fmt.Printf("Alice␣message:␣%d\n",cm)

fmt.Printf("Alice␣recovered:␣%d\n",i)

break

}

}

}

A sample run which a message of 6 for the Dictator and a message of 20 for
Alice, is:

Dictator key: 4943740139441239174205314912092041934903506

2359019713146018308740398325630561

Alice key: 377340532826187077325935517076113677691202962871734897107

90302858004991636924

Encrypted (c0): 55563164817718419919868920306927066318894666197272261307

89262842153481756082556801797346653416320499802923457710

4809798477077805759840884748908002510518326

Encrypted (c1): 0456281d59ee248ad030b49d86b1a9d45652c72669b05e914d22931b

fbdca6bc0601fedf56ced690a5cf0aa15901458e427f1b9055b16175

60ce210495b9e78cf1

Dictator message: 6

Dictator recovered: 6

Alice message: 20

Alice recovered: 20

6 Conclusions

While RSA-OAEP, Pailler, Goldwasser-Micali, ElGamal schemes, Cramer-Shoup,
and Smooth Projective Hash-based systems all support anamorphic cryptogra-
phy, the usage of elliptic curve methods provides an opportunity to enhances the
overall performance of the methods implemented for the ElGamal technique.

References

1. G. Persiano, D. H. Phan, and M. Yung, “Anamorphic encryption: private commu-
nication against a dictator,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2022, pp. 34–63.



2. Y. Dodis and E. Goldin, “Anamorphic-resistant encryption; or why the encryption
debate is still alive,” Cryptology ePrint Archive, 2025.

3. D. Carnemolla, D. Catalano, E. Giunta, and F. Migliaro, “Anamorphic resistant
encryption: the good, the bad and the ugly,” Cryptology ePrint Archive, 2025.

4. T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete
logarithms,” IEEE transactions on information theory, vol. 31, no. 4, pp. 469–472,
1985.

5. F. Banfi, K. Gegier, M. Hirt, U. Maurer, and G. Rito, “Anamorphic encryption,
revisited,” in Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2024, pp. 3–32.

6. fbanfi90, “robust-anamorphic-encryption/elgamal.py at main · fbanfi90/robust-
anamorphic-encryption — github.com,” https://github.com/fbanfi90/
robust-anamorphic-encryption/blob/main/elgamal.py, [Accessed 21-04-2025].

7. W. J. Buchanan, “Elgamal ecc encryption (using message string),” https://
asecuritysite.com/elgamal/elgamal02 str, Asecuritysite.com, 2025, accessed: April
21, 2025. [Online]. Available: https://asecuritysite.com/elgamal/elgamal02 str

8. ——, “Anamorphic cryptography with elliptic curve cryptography,” https:
//asecuritysite.com/principles pub/ana2, Asecuritysite.com, 2025, accessed: April
21, 2025. [Online]. Available: https://asecuritysite.com/principles pub/ana2

https://github.com/fbanfi90/robust-anamorphic-encryption/blob/main/elgamal.py
https://github.com/fbanfi90/robust-anamorphic-encryption/blob/main/elgamal.py
https://asecuritysite.com/elgamal/elgamal02_str
https://asecuritysite.com/elgamal/elgamal02_str
https://asecuritysite.com/elgamal/elgamal02_str
https://asecuritysite.com/principles_pub/ana2
https://asecuritysite.com/principles_pub/ana2
https://asecuritysite.com/principles_pub/ana2

	Anamorphic Cryptography with Elliptic Curve Methods

