arXiv:2505.23682v1 [cs.DS] 29 May 2025

Differentially Private Space-Efficient Algorithms for Counting
Distinct Elements in the Turnstile Model

Rachel Cummings* Alessandro Epasto Jieming Mao
Columbia University Google Research Google Research
rac2239@columbia.edu aepasto@google.com mao jm@google.com

Tamalika Mukherjee* Tingting Ou* Peilin Zhong
Columbia University Columbia University Google Research

tm3391Q@columbia.edu t023720@columbia. edu peilinz@google.com

June 12, 2025

Abstract

The turnstile continual release model of differential privacy captures scenarios where a privacy-
preserving real-time analysis is sought for a dataset evolving through additions and deletions.
In typical applications of real-time data analysis, both the length of the stream 7" and the size
of the universe || from which data come can be extremely large. This motivates the study of
private algorithms in the turnstile setting using space sublinear in both T" and |/|. In this paper,
we give the first sublinear space differentially private algorithms for the fundamental problem of
counting distinct elements in the turnstile streaming model. Our algorithm achieves, on arbitrary
streams, O, (T"/3) space and additive error, and a (14 n)-relative approximation for all 5 € (0,1).
Our result significantly improves upon the space requirements of the state-of-the-art algorithms
for this problem, which is linear, approaching the known Q(7''/4) additive error lower bound
for arbitrary streams. Moreover, when a bound W on the number of times an item appears
in the stream is known, our algorithm provides On(\/W) additive error, using On(\/W) space.
This additive error asymptotically matches that of prior work which required instead linear
space. Our results address an open question posed by [JKR™23] about designing low-memory
mechanisms for this problem. We complement these results with a space lower bound for this
problem, which shows that any algorithm that uses similar techniques must use space Q(T"/3)
on arbitrary streams.

1 Introduction

Data streaming applications in which one needs to track specific statistics over a period of time
occur in many real-world scenarios including digital advertising, network monitoring, and database
systems. Given the sheer volume of data collected and processed in these online settings, significant
work has been dedicated to the design of efficient algorithms to track and release useful statistics
about the data stream, at every timestep. A key goal in this area is the design of space-efficient
algorithms, i.e., algorithms that do not require storing the entire stream in memory.

*Supported in part by NSF grant CNS-1942772 and 2138834 (CAREER), a Google Cyber NYC Award, and the
Center for Smart Streetscapes, an NSF Engineering Research Center, under grant agreement EEC-2133516.

https://arxiv.org/abs/2505.23682v1

In many applications, the data being collected is not only massive, but also contains sensitive
and personal user information. In this case, formal privacy protections are often required to ensure
that the data released by the algorithm does not inadvertently leak protected information about
individual users. Differential privacy (DP) [DMNS06] has emerged as the de facto gold-standard in
privacy-preserving data analysis to address such concerns.

We focus on the turnstile model of continual release in differential privacy. In this model, we are
given a stream = = (z1,...,27), where each z; can be an insertion (4u) or deletion (—u) of some
data item w from a fixed universe U, or L (no update), and the goal is to release a statistic of interest
at every timestep ¢ € [T], in a differentially private manner. An algorithm A is (e, d)-differentially
private if for any neighboring input streams x ~ z’ and any output set O,

Pr[A(x) € O] < € Pr[A(z') € O] +6.

In the continual release model, the output A(x) refers to the entire output history of the algorithm
A over stream x at every timestep. We consider event-level privacy, i.e., the input streams z ~ x’
are neighboring if they differ in at most one timestep.

In this paper, we study the fundamental problem of counting distinct elements in the turnstile
model under continual release. Starting from the seminal works of [FMS85 [AMS99], there is a rich
literature of low space algorithms for the problem of counting distinct elements in the non-DP
streaming world (e.g., see references within [Mut05]).

While space-efficient DP algorithms for this problem have been recently studied in the (1) one-
shot model (where the algorithm produces an output once at the end of the stream) [PS21] [WPS22]
DTT22, [HTC23|, [SST20L SNY17, BMWZ23, BGMZ23|, and (2) insertion-only continual release
model (where the algorithm outputs at every timestep, but no deletions are allowed) [EMM™23,
DNPRI0, [CSST1l, BFM ™13, [GKNM23], the existence of a private space-efficient algorithm in the
more general turnstile model under continual release has been largely unexplored. Notably, even
without any space constraints, recent work [JKRT23| has shown that designing DP algorithms for
this problem in the general turnstile model is more challenging and can incur significantly more
additive error, i.e., polynomial in 7" in the turnstile model vs. polylogarithmic in T in the insertion-
only model. Understanding whether this fundamental problem can be solved in the turnstile model
under continual release with reasonable accuracy and efficiency is an open problem. We address this
gap by presenting the first sublinear space algorithm (sublinear in 7" and |U|) for counting distinct
elements.

For counting distinct elements in an input stream x under continual release, one strategy used
by prior work [EMMT™23, . JKR'23| is to approximately track the summation over the stream
sp € {—1,0,1}7 with the binary tree mechanism [CSS11, DNPRI0], where s, (t) is the difference
in the number of distinct elements at timestep ¢ — 1 and ¢. Note that) ., s,(i) precisely gives
the number of distinct elements at timestep ¢. In the insertion-only setting, it is easy to observe
that the sensitivity of the summation stream s, is bounded by a constant [EMM™23, BEM™13|. In
the turnstile model, [JKR™23| observed that a change in the stream x can cause Q(7T') changes to
the corresponding summation stream s,. In particular, the sensitivity of the summation stream
sz in the turnstile model depends on the number of times an input stream item switches between
being present to absent or vice versa — this property is called the flippancy of the item. [JKR™23]
designed DP algorithms for counting distinct elements where the additive error scales with the
flippancy of the stream, denoted w, (i.e., maximum flippancy over all items in the universe for
a fixed stream). More specifically, the algorithm imposes a (provable) bound on the maximum
flippancy of the stream.

However, flippancy is ill-suited to design low-space algorithms due to its inherently stateful
nature (i.e., whether an element flips at time ¢ depends on all prior events of that element). For
this reason, we introduce the related, but stateless, notion of occurrency (see Definition |1)) which
measures the maximum number of times an item appears in the stream. Using this occurrency
measure, we design space-efficient DP algorithms for counting distinct elements with error and space
that scales with the maximum occurrency.

Definition 1 (Occurrency). Given a stream x and an element u € U, the occurrency of u in x,
denoted occur(u, x), is the number of times an element u appears (either as insertion or as deletion)
in the stream x. The occurrency of the stream x, denoted W, is max,ey occur(u, x).

We remark that for any stream x of size T', W, < T'; however, in many instances, the occurrency
is much smaller, and can be as low as 7' / [U|. For example, consider the case of an online learning
platform that wants to estimate the number of activities being actively performed at the moment
by users. A user can begin one activity (e.g., initiating an homework assignment for a course)
and then terminate it when they are done (e.g., completing the assignment)ﬂ Each event in this
example stream represents initiations/terminations of a given activity (where +u is an initiation
of an activity u, and —u is a termination). In this case, occurrency can be bounded by twice the
maximum number of students in a class, which is clearly < T' (total number of events).

In this paper, we first design a DP algorithm for counting distinct elements that, when provided
with a stream promised to have occurrency bounded by W, has an error and space that scales as
a function of the promised bound W. When a bound on occurrency is known, as in the example
above, this first algorithm can be used as is and will satisfy DP guarantees. However, in many cases
an occurrency bound may not be known. For this reason, we also design a more general algorithm
that for an arbitrary stream of unknown occurrency, imposes a bound on occurrency for a subset
of the stream. Combining these results, we prove our main result: a low-space algorithm with
unconditional DP guarantees for arbitrary streams — i.e., the algorithm is truly private in the sense
of [JKR™23]. Finally, we give a matching space lower bound showing that any algorithm using a
technique based on bounding occurrency (or flippancy) cannot hope to achieve better space bounds.

1.1 Owur Contributions

The main result of our paper is the design of the first sublinear space DP algorithms for the problem
of counting distinct elements in the turnstile model under continual release. Before presenting our
results, we first define some useful notation and terminology. We say v is an («, §)-approximation
of a function f on input stream zx if (1/a)f(z) — < v < af(z)+ .

We first present a DP algorithm for the problem of counting distinct elements, where the input
stream has a promised upper bound on its occurrency. In such cases, our DP algorithm achieves
space and error guarantees that only have a sublinear dependency on occurrency as stated belowE|

This algorithm utilizes a low-space dictionary data structure called k-set (denoted KSET), which
was introduced by [Gan07] to estimate the number of distinct elements in the non-DP turnstile
streaming setting. KSET supports the insertion and deletion of data items and returns (with high
probability) the set of items S present in the dictionary as long as |S| < k. If the number of elements

In this simple example, for clarity, we assume a user can only participate in the activity once. Our algorithms
make no such assumption.

2We present our informal results in terms of (e, §)-DP, however our formal theorems are stated in terms of p-zCDP.
We can use Theorem [5|to convert p-zCDP to (g, §)-DP.

exceeds k or there is a collision where two elements are assigned the same cell in the KSET, then it
“fails” by outputting NIL.

Theorem 1 (Informal, Corollary . For alle,n >0 and 6 € (0,1) and streams of length T € N,
gwen a promised occurrency bound of Wy, there exists an (€,0)-DP algorithm in the turnstile model
under continual release that outputs a (1 + 1, O s,(/Wy))-approzimation to the number of distinct

elements in the stream, using space Og 5,(vV/Wy).

We remark that in this result, DP is guaranteed only when the input streams do not violate the
promised occurrency upper bound. Our next result allows us to remove this assumption and provide
a DP algorithm for streams with unbounded occurrency by creating a blocklist of high occurrency
items to effectively ignore them in future timesteps. Before presenting our main result, we first
define the problem of blocklisting high occurrency items and show a near optimal space algorithm
for this problem.

Let blocklistoec(W) be the problem of outputting 0 at timestep ¢ when the current input
element has occurrency < W (up to the step before), and 1 otherwise. An algorithm for solving
blocklistecc (W) reports a false negative if the element at timestep ¢ has occurrency > W but the
algorithm outputs 0, and similarly reports a false positive if the element at timestep ¢ has occurrency
< W but the algorithm outputs 1.

Theorem 2 (Informal, Corollary and Theorem . There exists an algorithm that, with high
probability, has no false negatives and bounded false positives for blocklistocec (W) and uses space
O(T/W). Moreover, for any W > 0, any algorithm that solves blocklisteee(W) with the same
false positive bound (and no false negatives) needs space Q(T/W).

Note that this space lower bound applies to any algorithm (even exponential time ones) and
implies that the space bounds achieved by our final algorithms are optimal up to log factors (among
algorithms using the blocklisting approach).

Finally, our main result gives a DP algorithm for counting distinct elements with no assumptions
on the occurrency of the input stream. Our algorithm uses the blocklisting technique described
above with the optimal choice of occurrency W, =T 2/3 combined with the KSET data strucure to
achieve sublinear space while obtaining non-trivial additive error.

Theorem 3 (Main (Informal), Corollary [§). For all e, > 0 and 6 € (0,1) and streams of length
T €N, there exists an (€,0)-DP algorithm in the turnstile model under continual release that outputs
a(l+mn, Oe,gm(Tl/S))—approximation to the number of distinct elements in the stream, using space

087(5,77 (Tl/s) .

Comparison to prior work We observe that our results are the first to address the open question
posed by [JKR™23| regarding the existence of accurate, private, and low-memory mechanism for
counting distinct elements in turnstile streams.

When the stream has a promised flippancy bound w, rather than a promised occurrency bound,
the informal Theorem [1| (and the formal counterpart Corollary 7)) can be restated equally in terms
of the flippancy of the stream. More precisely, our algorithm provides a 1 4+ n multiplicative
approximation with Og,g,n(\/@)) additive error, using space 05757,7(\/171)

Notice that this additive error matches (neglecting lower order terms) the additive error
O, (min(y/wy, T"/3)) in the algorithm of [JKR+23] which is achieved however with Q(7") space.

3We omit the proof for simplicity as it is follows the same steps as our proof in terms of occurrency.
“Notice that sublinear space requires as well a multiplicative approximation factor in our algorithm

(This is because for the regime of w, > T2/3 one can use the unbounded occurrency algorithm in
our paper to obtain additive error O~E757n (T1/3)).

When flippancy is unbounded, instead, our additive error is always Oagm(Tl/ 3). This is close to
the lower bound of Q. (T/4) from [JKRT23] for private algorithms for the problem in streams of
arbitrary large flippancy. Closing this gap is an interesting open problem.

1.2 Related Work

Our work on designing space-efficient turnstile streaming algorithms in the DP continual release
setting is related to several topics in the areas of (non-private) space-efficient streaming algorithms,
DP continual release, and DP streaming algorithms.

Space-efficient streaming algorithms. The streaming model of computation [FMS85] is
a well-known abstraction for efficient computation on large-scale data. In this model, data are
received one input at a time, and the algorithm designer seeks to design algorithms that compute
a solution on-the-fly while using limited space and time. In the area of non-private computation,
a vast literature has been developed over the past decades [Mor78, [FM85, FFGM12, [AMS96] for
addressing a variety of problems ranging from classical streaming computations (such as heavy
hitters and frequency moments) [FM85, [FFGM12, [DF03], [CMO05], MG82], to solving combinatorial
optimization problems [MV18] [HP19, [COP03|. Two key questions in the literature are whether it
is possible to obtain space sublinear in the number of updates [FEGM12] and whether it is possible
to handle increasingly more dynamic updates (i.e., insertions-only, sliding window [DGIM02], and
fully-dynamic streams [MV1§]). In the (non-private) streaming literature, there is a well-developed
theoretical understanding for interplay between the dynamicity of the stream, the accuracy achievable,
and space bounds required, for a vast array of algorithmic problems [Woo04].

DP continual release algorithms. Differential privacy (DP) [DMNS06] has become the de
facto standard of private computation in algorithm design. In the context of streaming algorithms,
the standard DP model is the continual release model, first introduced by [DNPR10, [CSS11]. In
this model, algorithms should preserve privacy of the input, even if a solution is observed at each
timestep (as opposed to the one-shot model where the adversary can obtain only one solution at
the end of the stream). Celebrated results in the continual release model include the well-known
binary mechanism for releasing sum statistics in a binary data stream with O(s~!log?(T')) additive
error [DNPRI0, [CSS11]. Significant work has expanded on this foundational result in various
directions, including handling non-binary streams [TS13, [FHO21], sliding windows [BEM™13], and
improving the space/utility tradeoffs [DMP'24]. The latter work also provided algorithms for
counting distinct elements with additive error of O(log’3(T)) in insertion-only streams. Later
work [GKNM23] also focused on counting distinct elements in the sliding window model, achieving
polylogarithmic additive error in the window size. For insertion-only streams, [EMM™23] gave
the first DP algorithms with space O(polylog(T')) and a (1 + n)-multiplicative and O(poly log(T"))
additive error for counting distinct elements and frequency moment estimation in the insertion-only
and sliding window model under continual release.

DP one-shot streaming algorithms. A more restricted setting is the one-shot streaming
model, where the analyst only seeks to output a solution at the end of the stream. In the one-
shot setting, [DLB19] showed membership inference attacks for a large class of non-DP sketching
algorithms for counting distinct elements, implying that they do not preserve any reasonable notion
of privacy. In the private sphere and for a related problem, designing low-space DP algorithms for
the general frequency moment estimation problem has been well-explored [SST20, [PS21, BBDS12,

DTT22, [HTC23]. Specifically [WPS22] showed that a well-known streaming algorithm called the F,,
sketch preserves DP as is. [BGMZ23] gave a black-box transformation for turning non-DP streaming
algorithms into DP streaming algorithms while still preserving sublinear space and accuracy
guarantees. These problems have also been explored in the pan-privacy streaming model, where DP
is preserved even if the internal memory of the algorithm is compromised [DNPR10, MMNWTI].

DP turnstile model. All previously mentioned work does not consider the fully dynamic
streaming setting, where items can also be removed from the stream. The DP turnstile continual
release model is the private equivalent of the fully-dynamic streaming model, and has received
substantially less attention in the literature. Counting distinct elements in the turnstile continual
release model was only recently studied for the first time by [JKRT23|. For a stream with flippancy
bound w, they give an (g,)-DP mechanism with additive error O(e~!\/w poly log(T)+/log(1/6))
and space Q(T). They also show a lower bound of Q(min(w,T'/*)) on the additive error for any
DP mechanism for this problem. In a concurrent work, [HSS23| also studied this problem under a
restricted variant of the turnstile model where items are guaranteed to be present with cardinality at
most 1 at any time (i.e., multiple insertions of the same element are ignored). For this setting, they
give an (g,0)-DP algorithm with additive error O(y/z=1K log(T)), where K is the total number of
insertions and deletions, and a nearly matching lower bound. Contrary to the non-private literature,
theoretical understanding of space efficiency in private dynamic streaming algorithms is very limited.
No prior work has designed differentially private sublinear-space algorithms for the foundational
problem of counting distinct elements in the turnstile continual release model.

2 Preliminaries

We consider an input stream zi,...,z7 of length T, coming from universe U, such that each
x; € U U{L}. We assume that |U| = poly(T), as is standard in streaming literature [Chal2]. This
assumption allows for simplified lower bound on space, since storing a single item from the universe
requires O(log(|U|)) = log(T)) bits.

First, we recall the definition of differential privacy (DP) on streams. Neighboring streams x
and 7/, denoted x ~ z/, differ in the stream elements at most one timestep.

Definition 2 (Differential privacy [DMNS06]). Given privacy parameters e > 0 and 6 € [0,1), an
algorithm A is (¢,0)-DP if for any neighboring streams x ~ x' and any output set O,

Pr[A(z) € O] < e Pr[A(2') € O] + 4.

When 0 = 0, this is known as pure DP, when § > 0 and it is known as approximate DP. In the
continual release setting, the output of A(z) is the entire T-length output over the stream z at
every timestep.

Our privacy analysis will primarily use zero-concentrated differential privacy (zCDP), which is a
slight variant of the standard DP definition. We present the definition of zCDP, its composition
properties, and its relationship to (¢,d)-DP in the one-shot setting, where the entire stream is
processed and only one output is released at the end of the stream.

Definition 3 (zero-concentrated differential privacy (zCDP) [BS16]). Given a privacy parameter
p >0, a randomized algorithm A satisfies p-zCDP if for all pairs of neighboring streams x ~ =’ and
all e > 1,

Da(A(2)[lA(2")) < pa,

where Dy (P||Q) = ﬁ log <Epr [%D is the Renyi divergence of order a between probability
distributions P and Q).

There is also a relaxation of zCDP, known as approximate zCDP, which is analogous to the
relaxation between pure DP and approximate DP.

Definition 4 (Approximate zCDP [BS16]). Given privacy parameters p > 0 and § € (0,1), a
randomized algorithm A satisfies d-approzimate p-zCDP if for all pairs of neighboring streams
x ~ ', there exist events E (which depends on A(z)) and E' (which depends on A(x")) such that
Pr[E] >1—-0, Pr[E]| > 1 -4, and for all a € (1,00),

Do (A(z)|gllA(")|2) < pa V Da(A(2)|p[lA(2)|) < pa,
where A(x)|g denotes the distribution of A(x) conditioned on the event E.

The privacy parameters of zCDP compose, similar to the composition guarantees of DP. Addi-
tionally, it is possible to translate between the guarantees of zCDP and DP.

Theorem 4 (Composition [BS16]). Let A be a §-approzimate p-zCDP algorithm and A’ be a §'-
approzimate p'-2CDP algorithm. Then the composition A" (z) = (A(zx), A'(x)) satisfies (§+0"—§-0")-
approzimate (p + p')-2CDP.

Theorem 5 (Relationship to DP [BS16]). For all p,d > 0:
1. If algorithm A is p-zCDP then A is (p + QW, 0)-DP. Conversely, if A is e-DP then
A is (¢2/2)-2CDP.
2. If algorithm A is d-approzimate p-zCDP then A is (g,6 + (1 — 6)d")-DP for all € > p, where
§' = exp(—(e — p)?/4p) - min{1, /7 p, 1+6_1p)/2p, 1+52;pp+\/(2 — }. Conversely, if A is

L+ 2+
(¢,0)-DP then A is §-approzimate (¢2/2)-zCDP.

Finally, we present a simple mechanism that satisfies both DP and zCDP. The Gaussian
Mechanism privately answers vector-valued queries by adding Gaussian noise to the true query
answer. The noise is proportional to the fo-sensitivity of the function, which is the maximum change
in the function’s fo-norm from changing a single element in the data.

Definition 5 (Sensitivity [DMNS06]). Let f : X — R* be a function. Its lo-sensitivity is defined as
max_ | f(z) — f(2')]2

' eX

Theorem 6 (Gaussian mechanism [DR14]). Let f : X™ — R be a function with {3-sensitivity at

most Ao. Let A be an algorithm that on input y, releases a sample from N'(f(y),o?). Then A is
(A2/(20%))-2CDP.

3 Estimating the Number of Distinct Elements

In this section, we first present our DP algorithm (Algorithm [1)) in Section which outputs an
approximation of the number of distinct elements in the stream in a continual release manner. We
then present our main results for this algorithm in Section namely its privacy, accuracy, and
space guarantees, will details of the analysis deferred to Section [4. Finally, we present the main
tools used in our analysis — the KSET data structure in Section and the DP mechanism for
counting in Section

3.1 Algorithm and Description

Our algorithm CountDistinct (Algorithm [1)) for counting the number of distinct elements in a stream
uses three main ingredients: (1) a KSET data structure which we use to store distinct elements from
the stream = with low space, (2) a binary-tree mechanism BinaryMechanism-CD for estimating the
summation stream s;(t) € {—1,0,1}7 which we obtain by comparing the cardinality of the distinct
element set returned by the KSET data structure at timesteps ¢ — 1 and ¢, and (3) a blocklist B
which with high probability, stores all items whose occurrency is too large.

At a high-level, CountDistinct executes the following process on different subsamples. At each
timestep t € [T, if the data element x; is non-empty, then the COUNTING-KSET subroutine updates
the KSET data structure with z;, and obtains the current set of distinct elements from the KSET (if
the KSET does not fail; we discuss later how to deal with failures in the KSET as this case requires
more care). If the item corresponding to x; is present in the blocklist B, then the COUNTING-KSET
subroutine does not update the KSET data structure with x;. Next, the algorithm computes s, ()
to be the difference in counts between the current distinct elements set and the previously stored set,
and feeds s,(t) into BinaryMechanism-CD, which produces a differentially privat count of the number
of distinct elements §,(t). Finally §,(t) is compared to a fixed threshold 7. If §,(t) is greater than
7, then COUNTING-KSET returns TOO-HIGH, otherwise it returns $,(¢) to the main algorithm.
The algorithm then performs the blocklisting step, which adds the current item to the blocklist
B with probability p — this ensures that the elements with high occurrency are not likely to be
considered by our algorithm in future iterations. This process is executed in log(T") parallel instances
of COUNTING-KSET with different sampling rates using a hash function, in order to ensure that at
least one sampling rate yields a good approximation to the number of distinct elements.

More concretely, Algorithm [1| takes in a boolean flag ob as input, indicating whether there is a
promised bound on the occurrency of the stream — if ob is true, the algorithm will operate under
the assumption that the input stream has an occurrency upper bounded by W, and thus does
not employ the blocklisting technique. If ob is false, the algorithm imposes an internal bound of
W = T?/3 and executes the blocklisting procedure, in which it fixes a sampling probability p (in
Line , and every time an element occurs, the element is sampled with probability p to be stored
in a blocklist B.

Algorithm 1] uses a hash function to generate multiple parallel substreams i € [L] of the input
stream (see Line [7]) where L = [log(T")], all subsampled with different sampling rates. The different
sampling rates ensure that at least one sampling rate will yield a good approximation of the number
of distinct elements in the original stream.

For each instance, i € L, Algorithm (1| initializes the DP subroutine COUNTING-KSET; (Algo-
rithm , which uses two key subroutines:

1. KSET (Algorithm : The k-set structure is a dictionary data structure that supports insertion
and deletion of data items and either returns, with high probability, the set of items S that
are present in the dictionary if |S| < k, or returns NIL (failure condition). Additional details
are deferred to Section [3.3

2. BinaryMechanism-CD (Algorithm : This subroutine is used to privately count the sum of the
difference in the count of distinct elements between consecutive timesteps. The mechanism is
an extension of the Binary Mechanism [CSS11, [DNPR10]; however, the major differences are
that it uses Gaussian noise (similar to [JKR¥23|) and the input is {—1,0,1}* (as opposed to
{0,1}7 in the original). Although the BinaryMechanism-CD algorithm is similar to prior work,

Algorithm 1 CountDistinct

Input: Stream z1,...,x7p € U, relative error n € (0,0.5), privacy parameter p, failure probability
B, boolean ob that signals if we have an occurrency bound on elements, occurrency bound W
Let L « [log(T)], A <+ 2log(40L/3)

if ob is true then
4(W+1)(log T+1)3 log(10(log T+1)/B)
p

else
= \/4(T2/3+1)(10gT+1);’ log(10(log T+1)/8) | g71/3 log(T1/3 Nog T1/8)
end if
Let g : U — [L] be a A\-wise independent hash function; for every a € U, i € [L], Pr[g(a) = i] =
27% Pr[g(a) =1] = 27T
Initialize empty streams S1, ..., St > S; is the stream of noisy distinct counts and TOO-HIGHs
9: Initialize COUNTING-KSET, ..., COUNTING-KSET, with occurrency bound W if ob = true
or occurrency bound T2/3 if ob = false
10: Initialize blocklist B = ()
11: for update z; do
122 for i e [L] do

®

13: if x; #.1 and g(x;) = i then

14: Si[t] = COUNTING-KSET;.Update(z¢, B) > see Algorithm
15: if x; ¢ B and ob is false then

16: Add z; to B with probability p = 2ET2L/0)

17 end if

18: else

19: Si[t] = COUNTING-KSET,.Update(L, B) > see Algorithm
20: end if

21: end for

22 Output: S;[t] - 2¢ for the largest i € [L] such that S;[t] is not TOO-HIGH and S;[t] >
max{vy/n,32\/n*}. (If such i does not exist, output 0.)

23: end for

its privacy analysis needs to be handled carefully in our use-case, as it is closely tied to the
failure behavior of the KSET. Additional details are deferred to Section [3.4l

COUNTING-KSET; (Algorithm [2]) takes as input x; and updates the KSET data structure with z;
(as long as x; is not in blocklist B or equal to L). If the KSET; does not fail, then COUNTING-KSET;
updates BinaryMechanism-CD; with the difference of the distinct sample size at time ¢ and the
distinct sample size at the last timestep before t;,5; < ¢ (Line that the KSET did not fail. Then
BinaryMechanism-CD; outputs the noisy count of distinct elements, denoted §;. If the KSET does
fail, i.e., S; = NIL, then COUNTING-KSET; skips to Line 28 which returns TOO-HIGH if the KSET
fails, or §; exceeds the threshold k. Note that this step is crucial for proving that COUNTING-KSET,;
is DP, which is presented in more detail in Section We note that COUNTING-KSET; does not
take as input the flag ob, because if ob = true, then B = () in Algorithm (1, so taking B as input is
sufficient.

Finally, Algorithm [I] maintains a stream of noisy distinct counts or TOO-HIGHs, denoted S;,
for each of the logT instances of COUNTING-KSET; instance. These streams are used to output

Algorithm 2 COUNTING-KSET
Input: Stream update z1,...,xp € U, relative error n € (0,0.5), privacy parameter p, failure
probability 3, substream index ¢, occurrency bound W on elements, blocklist B

3/2
1: Initialize 7 = 16 max{~y/n, 32\/n?} + Zﬂ(logﬂ_l) \/W\/l;g(QOT“OgTVB)

O, 3/ O, O,
2: Initialize k = 16 max{vy/n, 32\/n*} + 1,21 gT+1)° 2\/W\/lﬁg(20T“ eT1/8)

3: Initialize BinaryMechanism-CD; with parameters: privacy parameter p/L and occurrency bound
W

4: Initialize KSET; data structure with parameters: capacity k and failure probability 5/(2TL)
5: Initialize Fi,last =0, tjgst =0
6: Update(xy, B):
7. for update x; do
8

9

if z; #1 and x4 ¢ B then
KSET,;.Update(x:)

10: end if

11: Let S; + KSET;.ReturnSet > Only keep the elements but not their counts
12 if §; # NIL then

13: tditf = T — Llast

14: diff = |Sl’ — Fi,last

15: for j =1 to |diff| do

16: if diff > 0 then

17: §; <—BinaryMechanism-CD;.Update(1)
18: else if diff < 0 then

19: §; <—BinaryMechanism-CD;.Update(—1)
20: end if

21: end for

22: for j =1 to tqi — |diff| do

23: §; <—BinaryMechanism-CD;.Update(0)

24: end for

25: Save Fi,last — |SZ‘

26: tlast = 1

27: end if

28: if §; > 7 or S; =NIL then
29: Return TOO-HIGH

30: else

31: Return §;
32: end if

33: end for

Si[t] - 2¢ such that S;[t] is not TOO-HIGH in Line [22, which is the private count of distinct elements
in the i-th stream at time ¢, normalized by (the inverse of) that stream’s sampling rate. This final
count is output for all times ¢ € [T7].

10

3.2 Main Results

In this subsection, we present our main results: Corollary [7| and Corollary [8| which summarize
our main results on the privacy (Theorem E[), accuracy (Theorem , and space (Theorem of
Algorithm [I} These results are all presented in greater detail in Section

Corollary [7] summarizes our main results for when there is a promised upper bound on the
occurrency of the input stream.

Corollary 7. For alln >0 and B € (0,1), and a stream of length T, universe size |U| = poly(T),
and promised occurrency < W, there exists a B-approximate p-zCDP algorithm in the turnstile
model under continual release that, with probability 1 —28, outputs a (1+£n, max{O(y/n), O(\/n?)})-
approzimation to the number of distinct elements using space O(vW - polylog(T/B)) - poly(~) where

=0 (W(logT)?)log(logT//B)) and \ = O(log(log(T)/B)).

1
pn

p

The next result (Corollary [8) summarizes our theoretical guarantees when the stream has
unbounded occurrency.

Corollary 8. For all p > 0 and f € (0,1), and a stream of length T and universe size
|U| = poly(T), there exists a 2B-approximate p-zCDP algorithm in the turnstile model under
continual release that, with probability at least 1 — 28 outputs a (1 & n,max{O(v/n), O(\/n?)})-
approzimation to the number of distinct elements using space O(T/3 - polylog(T/B)) -poly(%) where

=0 (/0TI)\ = O{1og(los(T)/9).

3.3 KSET data structure

In this subsection, we present the KSET data structure, first introduced in [Gan07]. In the non-DP
turnstile setting, one key strategy for solving a variety of problems including estimating the number
of distinct elements in sublinear space is to use space-efficient and dynamic distinct sample data
structures. A distinct sample of a stream with sampling probability p is a set of items such that each
of the distinct items in the stream has an equal and independent probability of p of being included
in the set. |[Gan07] introduced the KSET data structure for this problem, which can be used to
(non-privately) give a (1 + a)-approximation of the number of distinct elements in a stream using
roughly O(ﬁ(log(T) + log(jU|) log(|U])) space. Our implementation of KSET is largely similar to
the original version in [Gan07], with one small change that is necessary for our privacy analysis.

Our primary reason for using the KSET data structure in the DP setting is that it allows us to
maintain a distinct sample. This in turn helps us add a smaller amount of noise (proportional to
the bounded occurrency of data items) to the final distinct elements estimate released through a
binary mechanism. However, the privacy analysis for the output of the KSET is quite involved and
discussed in Section [4.1] To the best of our knowledge, a distinct sample data structure has not
previously been used in the DP setting.

The k-set structure (which we denote as KSET and is formally described in Algorithm [3)) is
a dictionary data structure that supports insertion and deletion of data items and, with high
probability, either returns the set of items S present in the dictionary as long as |S| < k, or otherwise
returns NIL. The structure is represented as a 2D array H[R x B] which consists of R hash tables,
each containing B buckets, where R = [log %} and B = 2k. For each r € [R],b € [B], the bucket

11

H{r,b] contains a TESTSINGLETON data structure, which tests whether or not the bucket H|r, b]
contains a single universe element. Details on the implementation of the TESTSINGLETON data
structure are deferred to Appendix [Bl The r-th hash table in H[R x B] uses a pairwise independent
hash function h, : Y — [B]. Upon the arrival of an update z;, the KSET structure contains two
main operations:

1. The Update(x;) operation first increments (resp., decrements) the total number m of data
items in the structure (which is initialized to zero) if the update is an insertion (resp., deletion)
of an item. Next, for every hash table r € [R], we update the corresponding TESTSINGLETON
structure in the bucket H|r, h,(z4)].

2. The ReturnSet() operation, for every r € [R], iterates over the buckets b € [B], and checks
whether the entry in the hash table H[r,b] is a SINGLETON. If so, then it retrieves the data
item along with its frequency and keeps track of the set of elements (5) as well as the total
sum of frequencies of items (ms) in S. If ms = m and |S| < k, then it returns S. Otherwise,
the function returns NIL. We note that the latter check for |S| < k is not included in the
original version of KSET from [Gan07], but it is crucial for our privacy analysis. We include
this check to ensure that the KSET returns NIL with probability 1 in the event that there are
more than k elements.

Next, we state some simple properties regarding the accuracy of the KSET structure in Lemma
that are used in the analysis of Algorithm

Lemma 1 (KSET properties). Consider a KSET data structure with capacity k and failure probability
B. Then, the following holds:

1. If strictly more than k distict elements are present in the KSET, then with probability 1,
KSET.ReturnSet = NIL.

2. If less than or equal to k distict elements are present in the KSET then with probability > 1—j3,
KSET.ReturnSet = S where S is the entire set of items present in the KSET.

3. The space complexity of KSET is O(k(logT + log |U|) log %)

Proof. For Item |1} from [Gan07], we have that if ms = m then the set of retrieved items S is exactly
the set of distinct elements with probability 1. Observe that if there are more than k£ elements, then
either mg # m, or the number of distinct elements returned is |S| > k. In both cases, the condition
in Algorithm [3] fails and the output is NIL.

The proofs for Item 2| and Item [3| are identical to the one given in [Gan07]. O

3.4 Binary Mechanism for the Count Distinct Problem

In this subsection, we present a subroutine for COUNTING-KSET (Algorithm [2)) that is a modified
Binary Mechanism called BinaryMechanism-CD (see Algorithm [4)). This subroutine is used to
compute the summation stream s, € {—1,0,1}7 representing the difference in the number of
distinct elements at timesteps ¢t — 1 and ¢ which is computed from the output of the KSET in Line
of Algorithm [2 The algorithm BinaryMechanism-CD injects Gaussian noise (similar to [JKR23]) —
as opposed to Laplace noise used in the original versions of the Binary Mechanism |[CSS11, [DNPR10]
— proportional to the sensitivity of the summation stream.

12

Algorithm 3 KSET data structure |Gan07]
Input: Capacity parameter k, failure probability £
1: Initialize 2D array H[log% x 2k]
R« [log &1, B+ 2k
Let h, : U — [B] be a pairwise independent function for r =1,..., R
Initialize m =0
Update(z;): > Process update x;
if x; is an insertion then
m<—m+1
else if x; is a deletion then
m+<m-—1
end if
: for r € [R] do
Hir, hy(z;)]. TSUPDATE(z¢) > see Algorithm [6]
: end for
: ReturnSet():
: Initialize set S = {}, ms =0
: for r € [R] do
for b € [B] do
if H[r,b]. TSCARD()[0] == SINGLETON then
(x,c¢) < HIr,b. TSCARD()[1], H[r,b]. TSCARD()[2] > see Algorithm [6]
Insert (z, fz) to S
ms <— Mg + fz
end if
end for
: end for
. if mg =m and |S| < k then
Return S
: else
Return NIL
: end if

OON RN NN NN NN e e e
© P NPT DD PO eSO

We first note that if the input to BinaryMechanism-CD represented the exact difference in the
number of distinct elements over consecutive timesteps, then the sensitivity of the summation stream
in terms of occurrency can be calculated in a straightforward manner using arguments similar
to [JKR™23|. However, in for our use of BinaryMechanism-CD in the algorithm COUNTING-KSET,
BinaryMechanism-CD receives as input the difference in the number of distinct elements from the
output of the KSET. Importantly, the failure behavior of the KSET needs to be accounted for
when arguing about the sensitivity of the resulting summation stream computed from the KSET
output (when it does not fail). In order to do this, we use a coupling argument to show that the
output stream of the algorithm COUNTING-KSET is close to the output stream of an algorithm that
exactly computes the number of distinct elements and feeds the difference over consecutive timesteps
to BinaryMechanism-CD as input. The privacy analysis for BinaryMechanism-CD in the latter
algorithm is similar to [JKR™23| and is given in Lemmam The privacy guarantee of our application

13

Algorithm 4 BinaryMechanism-CD

Input: Count distinct summation stream yi,y2,...,yr € {—1,0, 1}T, privacy parameter p > 0,
occurrency W > 0
Initialize each a; = 0 and ¢; =0
Let 0" = siremliosron
Update(y;):
for every update 1; do
Express ¢ in binary from: ¢ =}, Bin;(¢)2/ '
Let ¢ = min{j : Bin;(t) = 1} be the least significant binary digit, and set o; = Z};%) aj + Y
for 7=0,1,...,¢i—1do
Set aj =0 and & =0
end for
Set &; = a; + N(0,1/p")
Return B(t) = >, gin, (=1 %
: end for

_ = =
Y =2

of BinaryMechanism-CD inside COUNTING-KSET is implicitly derived in the privacy analysis of
COUNTING-KSET via the coupling argument of Lemma [2| and the claim that COUNTING-KSET is
DP in Corollary

The accuracy guarantee of BinaryMechanism-CD follows from Lemma [11]in which we consider the
overall accuracy of L instances of BinaryMechanism-CD as instantiated in Line [3]of COUNTING-KSET.
Finally, the space complexity of BinaryMechanism-CD is O(log(T")) and this follows from [CSS11].

4 Analysis of CountDistinct

This section presents details of the privacy (Theorem @D, accuracy (Theorem and space (Theo-
rem guarantees of Algorithm (1 Omitted proofs can be found in Appendix

4.1 Privacy

First we present the privacy analysis, showing that CountDistinct (Algorithm (1] is differentially
private. One key challenge in the privacy analysis is to ensure that the output of the KSET data
structure does not leak privacy, even in the event of its failure (i.e., if more than & distinct elements
are stored). Note that if the KSET never failed, then one could simply sum up the difference in
the output sizes of the KSET over consecutive timesteps, i.e., the stream s, € {—1,0,1}7 using
BinaryMechanism-CD. Assuming no failures, the sensitivity of s, can be bounded in terms of the
maximum occurrency W, since in this case the KSET returns exact counts. However, the failure
of KSET cannot be avoided or absorbed into the § parameter because the KSET will fail with
probability 1 when its capacity exceeds k (see Lemma [1)).

We address this challenge by modifying the original KSET algorithm to have well-behaved
failures. More precisely, we introduce a thresholding step where our algorithm returns TOO-HIGH
if the KSET fails or approaches a regime where failing is a likely event. The latter can be estimated
privately by verifying whether the binary tree output is too large, 5, > 7, and returning TOO-HIGH
if so (see COUNTING-KSET, Algorithm [2)).

14

By doing so, we can make a coupling argument between our algorithm and a much simpler
algorithm (COUNTING-DICT, Algorithm [5) that simply stores the exact counts of elements and
computes §, via BinaryMechanism-CD and has the same thresholding step: if §, > 7, return TOO-
HIGH. Note that COUNTING-DICT is not space-efficient, and we only introduce it for analysis
purposes. In COUNTING-DICT, the sensitivity of s, can be bounded in terms of the maximum
occurrency W for all timesteps. We then use the coupling argument to bound the sensitivity of
sz in COUNTING-KSET for all timesteps (barring specific bad events whose failure probability is
negligible and absorbed into the DP failure probability).

Algorithm 5 COUNTING-DICT
Input: Stream xz1,...,zp € U, relative error n € (0,0.5), privacy parameter p, failure probability
B, occurrency bound W on elements, substream index i, list of blocklisted elements B

/
1: Let 3; = 0 and 7 = 16 max{vy/n, 32\/n?} + 2\/§(logT+1)3 2\/W\/1;g(20ﬂlogﬂ/6)

Initialize BinaryMechanism-CD,; with parameters: privacy parameter p/L and occurrency bound

w

&

3: Initialize DICT; dictionary data structure of size |U| x T
4: Initialize Fj 1450 = 0

5. Update(xy, B):

6: for update z; do

7. if xy #1 and z; € B then

8: if x; is an insertion then

9: D|CT,[$,§Ht] = DlCTZ[iCt] [t — 1] +1
10: else

11: DICT;[z][t] = DICT;[z,][t — 1] — 1
12: end if

13: Let si <= >_ycu 1picT;[u)[)>0

14: §; <—BinaryMechanism-CD;.Update(s; — F; jqst)
15: Save Fj st < i

16: else

17: §; <BinaryMechanism-CD;.Update(0)
18: end if

19: if §; > 7 then

20: Return TOO-HIGH

21: else

22: Return 3;

23: end if

24: end for

We present the main theorem of the privacy guarantee below. The proof requires showing
that the output stream published by COUNTING-KSET; is DP (see Corollary [10), which is argued
by showing that the outputs of COUNTING-KSET; and COUNTING-DICT; are identical except
with probability at most 5 (see Lemma . Since all the operations after calling the subroutine
COUNTING-KSET,; in Lines [I4] and [I9] of Algorithm [I]is post-processing, we will have shown that
CountDistinct is approximate zCDP (see Definition [4]) in Theorem @

Theorem 9. CountDistinct (Algorithm (1)) is

15

1. B-approximate p-zCDP if ob = true,
2. 2B-approximate p-zCDP if ob = false.

To prove Theorem [9] we first establish that the outputs of COUNTING-KSET; and COUNTING-
DICT; are identical with high probability (Lemma proven in Appendix . Define CountDistinct’
as a variant of CountDistinct that replaces calls to COUNTING-KSET; (Algorithm [2) in Line [9)
Line Line [19| with calls to COUNTING-DICT; (Algorithm [5)) for ¢ € [L].

Lemma 2. Fiz the randomness used across runs of CountDistinct and CountDistinct’. Fiz i € [L],
and let K and E denote the output distributions of COUNTING-KSET; and COUNTING-DICT;

respectively. If k> 17+ O (M), then the total variation distance of the two distributions,
dry(K,E) < B/L.

To prove that COUNTING-KSET,; is differentially private (Corollary , we first show that
COUNTING-DICT; satisfies differential privacy (Lemma [3).

Lemma 3. COUNTING-DICT; (Algorithm[5) is
1. p/L-zCDP; if ob = true.
2. B/L-approximate p/L-zCDP, if ob = false.

The full proof of Lemma [3]is in Appendix we provide a proof sketch here to highlight the
key ideas. Recall that COUNTING-DICT; uses a dictionary data structure DICT to store the counts
of the elements seen in the stream, and the difference in the number of distinct elements is exactly
computed from DICT and fed as input to BM-Count-Distinct;, which outputs a noisy distinct element
count §;. Thus, in order to prove the privacy guarantee of COUNTING-DICT;, we need to show that
BM-Count-Distinct; is DP. Then the output of COUNTING-DICT; will simply be post-processing on
the DP output of BM-Count-Distinct; (either §; or TOO-HIGH), so it will also be DP. Hence, we
prove that BM-Count-Distinct; when used in COUNTING-DICT; is 3/ L-approximate p/L-zCDP (in
Lemma [7)), which implies Lemma

We next sketch the proof of Lemma that COUNTING-DICT; is p/L-zCDP. On a high-level, we
need to argue that if x and 2’ are neighboring streams, then the resulting streams (after hashing
and blocklisting, see Definition that are fed as input to BM-Count-Distinct; can differ in at most
W +1 positions with probability 1 — 3/L, for occurrency bound W = T2%/3 (see Lemma@). Opening
up the analysis of the binary tree mechanism in BM-Count-Distinct;, we show that the sensitivity
of the nodes over all levels of the binary tree is at most 2,/(W + 1)(log(T) + 1). Thus adding
Gaussian noise proportional to this quantity to each node of the binary tree preserves p/L-zCDP
with probability /L.

We emphasize that the privacy argument for the BM-Count-Distinct; instance in COUNTING-
DICT; cannot be directly applied to the BM-Count-Distinct; instance in COUNTING-KSET,. This
is because in COUNTING-KSET;, the output of the KSET is used to compute the input stream
to BM-Count-Distinct;, and failures of the KSET can lead to a large difference in the outputs
of BM-Count-Distinct; on neighboring streams. Thus the failure behavior of the KSET must be
handled carefully in the privacy analysis. Corollary [10| gives the resulting privacy guarantee for
COUNTING-KSET,;.

16

Corollary 10. COUNTING-KSET; (Algorithm[9) is (1) (B/L)-approzimate (p/L)-2CDP if ob = true,
and (2) (28/L)-approximate (p/L)-zCDP if ob = false.

Proof. From Lemmawe know that COUNTING-DICT; is 8/ L-approximate p/L-zCDP. In particular,
for ob = true, COUNTING-DICT; is p/L-zCDP. From Lemma[2| we know that the output distribution
of COUNTING-DICT; and COUNTING-KSET; is identical except with probability 5/L. The claims
for when ob = true vs ob = false follows. O

We are finally ready to prove Theorem [9]

Proof of Theorem[9. We first argue about the case when ob = false as this is the more general
case.

The randomness of CountDistinct can be viewed as a joint probability distribution Rgp =
Ry x Rpr, X Rgc, X ... X Rgc, where R, denotes the randomness from picking hash function g
(in Line [7| of Algorithm , Rpr denotes the randomness associated with sampling an element to
add to blocklist B (in Line [16), and Rk, denotes the randomness from the subroutine COUNTING-
KSET; for i € [L]. Similarly, the randomness of CountDistinct’ can be viewed as a joint probability
distribution Repr = Ry x Rer X Rec, X ... X Rgc, where R, denotes the randomness from
picking a hash function g, Ry, denotes the randomness associated with sampling an element to add
to blocklist B and Rpgc, denotes the randomness from the subroutine COUNTING-DICT; for ¢ € [L].

We first define an identity coupling over the randomness R, of picking the hash function and
the randomness R g1, of blocklisting between CountDistinct and CountDistinct’. In other words, we
fix the same hash function g and the same sampling rate to blocklist an item for CountDistinct
and CountDistinct’. Applying Lemma [2] we have that the outputs of COUNTING-KSET,; and
COUNTING-DICT; are identical except with probability 5/L. In particular, from Corollary we
have that COUNTING-KSET,; is 23/ L-approximate p/L-zCDP. Since we have a total of L substreams,
using a union bound argument, the entire CountDistinct algorithm is 23-approximate p-zCDP by
basic composition of zCDP (Theorem E]

In the case when ob = true, note that we only have to consider the identity coupling of over
hashing items using hash function g in CountDistinct and CountDistinct’. The claim that the outputs
are identical except with probability §/L follows from Lemma |2 But now, from Corollary we
have that COUNTING-KSET; is 3/L-approximate p/L-zCDP, and the rest of the argument follows

from a union bound and composition. O

4.2 Accuracy

We present our main accuracy theorem in Theorem Note that our accuracy theorem is also
parameterized by the value of the boolean flag 0b and gives different error/space trade-offs according
to whether ob is true or false. In particular if ob is true, meaning our algorithm is promised that
the occurrency of input streams is bounded by W, then we get additive error only that has vV
dependency. If ob is false, then our algorithm makes no assumption on the occurrency of the input
stream and therefore incurs a higher additive error.

Theorem 11 (Accuracy of Algorithm . Let F(t) be the correct number of distinct elements of the
stream at time t and let A = 21og(40[log(T)]/5).

®Note that Theorem [4] gives an even tighter guarantee, but we we use this slightly weaker composition for a cleaner
presentation.

17

1. When ob is true, let v = \/4(W+1)(logTH)BF)IOg(lO(IOgTH)/ﬁ), and

2. when ob is false, let v = \/4(T2/3+1)(logT+1); log(10(og T+1)/B) | 371/3 log(T'/3[log T/).

For a fized timestep t € [T'], with probability at least 1 —2[3, the output of Algom'thm at time t is a
(1 4 4n, 32 max{vy/n, 32\/n?})-approxvimation of F(t) for any n € (0,0.5).

To prove Theorem [I1], we use three helper lemmas, all proved in Appendix Lemma
bounds the number of elements in the substream after hashing. Lemma [11] proves the accuracy of
BinaryMechanism-CD algorithm. Lemma [12] bounds the size of the blocklist when ob is false. With
the help of these lemmas, we can show the accuracy of COUNTING-DICT, as an intermediate step
in the analysis. The proof of Theorem [12]is deferred to Appendix

Theorem 12. Let F(t) be the correct number of distinct elements of the stream at time t and let
A = 2log(40[log(T")]/B). When ob is true, let v = \/4(W+1)(10gT+1)310g(10(10gT+1)/6) and when ob is

p
false, let v = \/ (T2/3+1)(10gT+1)3log(lo(logTﬂ)/ﬁ) + 3T/310g(TY3[log T/B). For a fized timestep
t € [T, with probability at least 1 — B, the output of Algomthml 1| at time t with COUNTING-DICT,;
as the subroutine is a (1 £ 47, 32 max{y/n, 32\/n?})-approzimation of F(t) for any n € (0,0.5).

With this result, we can finally prove Theorem |11} by showing that substituting COUNTING-KSET
in place of COUNTING-DICT still allows high accuracy of Algorithm

Proof of Theorem 11 We apply a union bound argument that combines Lemma [2] and Theorem
By Lemma [2] we can link the accuracy of COUNTING-DICT; to that of COUNTING-KSET,; and
with probability at least 1 — 3, the output distributions of all the L instances of COUNTING-DICT;
and COUNTING-KSET; used in Algorithm [I| are the same. Furthermore, we have argued that we
have the desired accuracy with probability at least 1 — 3 for Algorithm [1] with COUNTING-DICT; in
Theorem Thus, by a union bound over the two events that (1) the output of COUNTING-DICT;
matches the output of COUNTING-KSET; for i € [L] and (2) COUNTING-DICT; is accurate, we
have proven our claim.]

4.3 Space complexity

Finally, we prove the space guarantees of our algorithm below. As with the privacy and accuracy
result, Theorem [13|is parameterized by the value of the boolean flag ob. When 0b is true and the
input stream is promised to have occurrency bounded by W, the space is only polynomial in W.
When ob is false, the algorithm allows general input streams, and internally enforces a bound T2/3
on the stream’s occurrency using blocklisting, which requires more space.

Theorem 13. With probability at least 1 — /3, assuming the universe size |U| = poly(T'):
1. If ob is true, the space complexity of Algom'thm is O(VW - polylog(T/B)) - poly(%).

2. If ob is false, the space complexity of Algom'thm is O(T/3 - polylog(T/B)) - poly(p—ln).

Proof. We condition on all the high-probability events used in the proof of Theorem these events
occur with probability 1 — 8 as shown in the proof of Theorem The space usage comes from
(1) the KSET data structure in COUNTING-KSET, (2) BinaryMechanism-CD, and (3) the blocklist
(when ob is false).

18

e From Lemma the L instantiations of COUNTING-KSET together have space com-
plexity L - O(k(logT + log|U|)log(k/B)) = O (logT -k - (logT + log |U|)log(k/B)) where

= 2log(40[log(T)]/B) and k = 16 max{y/n, 32)\/n?} + 4\/§(IOgT+1)3/2\/W\/l;g(%ﬂlogﬂ/ﬁ)

(here W = T?/3 when ob is false). We make the standard assumption that the universe size ||
is poly(T'), so we can represent an item in poly(7") bits. This means that the space complexity
simplifies to O(k - polylog(T)) - log(k/3)).

e As shown in [CSS11], one instance of BinaryMechanism-CD uses O(log(T')) space, and therefore
the L copies of the BinaryMechanism-CD use space O(L - log(T)) = O(log*(T)).

e The blocklist when ob is false has size O(T"/31og(T/B)) when conditioned on the high-
probability events.

The dominating term is the one from the KSET data structures, which is O(k-polylog(T')-log(k/5))
for k = 16 max{~y/n, 32\/n?} + 4ﬂ(l°gT+1)3/2\/W\/lgg@OTﬂOgTVﬁ)_

If ob is true, v = \/ 4<W+1>(logT+1>3p10g(10(logT+1)/ﬁ)
plexity simplifies to O(vW - polylog(T/3)) - poly(%); otherwise, when ob is false, v =
\/4(T2/3+1)(logT+1);’ log(10(log T+1)/8) | 371/3 log(5TY/3[log T]/8), in which case the space complexity

simplifies to O(T"'/3 - polylog(T/)) - POIY(ﬁ)' -

in which case the space com-

5 Blocklisting Problem: Space Upper and Lower Bounds

In this section, we formally define the problems of blocklisting items with high flippancy (and high
occurrency) and prove a space lower bound for both problems. Our lower bound is information
theoretic and applies to any algorithm for blocklisting (flippancy or occurrency), including exponen-
tial time algorithms and non-private algorithms. Then, we show that the problem of blocklisting
occurrency has an almost-matching space upper bound that is tight up to log factors, given by
Algorithm

Recall that the flippancy of an item is defined in [JKRT23| as the number of timesteps where
the item switches between being present to absent or vice versa, while occurrency is defined by the
number of timesteps where an item appears in the stream (with any sign).

Informally, we define the blocklistgip (W) (resp., blocklistoec(W)) problem to be the problem
of identifying, for each timestep of a turnstile stream, whether the current element of the stream
has flipped < W times (resp., occurred < W times) before this timestep. More formally, let U be a
universe of items and let = (x1,...,27), be a turnstile stream where for each time ¢ € [T, the
stream element x; is either an insertion (4u) or deletion (—u) for some u € U, or x; =1 indicating
an empty update.

Definition 6 (The blocklistgip(W) (resp., blocklistocc(W)) problem). For the turnstile stream
x = (21,...,27), define the ground truth for x as the binary stream of outputs o*(z) = (o7, ..., 0k)
where for each t € [T], of =0 if x; has flippancy < W (resp., occurrency < W) in the prefiz stream
(x1,...,24-1) orifxy =L, and of =1 otherwise. Let o(x) = (01,...,0r) be the output provided by
an algorithm on the stream x. The algorithm has a false negative at time t if o =0 and of =1,
and has a false positive when oy =1 and oj = 0.

19

Notice that algorithms using flippancy blocklisting such as [JKR™23], or occurrency blocklisting
like our algorithm are required to have no false negatives with high probability. This is because the
max flippancy (and occurrency) bound is used to upper bound the sensitivity of the binary tree
mechanism and thus needs to hold with probability at least (1 —) to achieve (g,0)-DP.

While false negatives affect the privacy of the algorithm, false positives must also be bounded to
ensure accuracy. For this reason, we ask if it is possible to design low-space blocklisting algorithms (for
flippancy or occurrency) that guarantee (with high probability) no false negatives, while bounding
the number of false positives. In Section we prove a lower bound on the space of any algorithm
that bounds flippancy or occurrency. Then in Section we give a near-matching upper bound by
showing that Algorithm [I] solves the low-space occurrency blocklisting problem using space that
matches the lower bound up to log-factors.

5.1 Lower bound

We first show that any algorithm (including non-private and exponential-time algorithms) for
blocklistg;, (W) and blocklistecc(W), with no false negatives and with bounded false positives
must have a space that depends on the number of false positives allowed. This space lower bound
also extends to any algorithm for count distinct estimation that uses blocklisting methods to control
flippancy or occurrency, such as [JKR23| or our work.

Theorem 14. For any even integer W > 0, and any integer v > 0, let Ay, (resp., Aocc) be an
algorithm for blocklistgip(W) (resp., blocklistocc(W)) such that, given an arbitrary stream x of
length T, with probability at least 1 — B, has no false negatives and has at most r false positives.
Then algorithm A, and Aoee use space at least:

wT)

T
(1-25)- <log(1 -) + ngm

We provide a proof sketch here, and a full proof is deferred to Appendix Our lower bound
proceeds by describing a random process defining a stream distribution that is hard for the problems
of blocklistg;,(W) and blocklistoec(W). For the element universe U = [T'/2], the main idea is to
define a distribution of problem instances as follows. First, generate X C U/ as a uniformly random
set of size T'/2W. Then define a stream (X) where for the first 7'/2 timesteps, each element u € X
appears in W updates, alternating /2 times between one insertion and one deletion of w. This
results in W flippancy and W occurrency for all elements of X at the end of the first half of the
stream. In the second T'/2 timesteps of the stream, all elements in U are inserted once. Thus the
correct output for this stream for both the blocklistg;p(W) and blocklist,cc(W) problems is to
always output 0 in the first half, and to output 1 in the second half only for elements in X.

We then use an information theory argument to show a space lower bound for any algorithm
A1;p that satisfies the conditions of no false negatives and at most r false positives, with probability
at least 1 — 8 over this distribution of problem instances.

5.2 Upper bound for occurrency blocklisting

We now present an upper bound (Corollary based on Algorithm [1| for the space required to solve
the occurrency blocklisting problem with r false positives.

20

Corollary 15. With probability 1—25 and when |U| = poly(T'), Algom'thm with ob=false reports no
false negatives and r = 2T/3 log(T/3[log(T)]/B) false positives for the problem blocklistece(W)
for W = T?3 while using space O(T'/> - polylog(T/B)) -poly(%)).

Note that plugging r = 27/3log(T"/3log(T)]/8) and W = T?/3 into the lower bound of
Theorem [14] gives an near-matching space lower bound that is tight up to log factors.

The proofs for no false negatives and the space complexity follow from Lemmal§|in Appendix
which gives a high probability bound on the maximum occurrency of the stream after blocklisting,
and from Theorem which bounds the space used by Algorithm [1 The proof for the bounded
number of false positives follows from a concentration bound the probability of blocklisting an
element too early. The full proof is deferred to Appendix

6 Conclusions

In this paper we designed the first space-efficient differentially private algorithms for the count
distinct element problem in the turnstile model. This result addresses an open question of [JKR™23],
showing that it is possible to design a low memory DP algorithm for this problem in the turnstile
setting. While we show that any algorithm that uses blocklisting techniques cannot do any better
in terms of space, an interesting open question is to prove unconditional space bounds for any DP
continual release algorithm addressing the problem (regardless of the techniques used). Currently the
theoretical understanding of space lower bounds in the DP streaming setting is very limited. Only
recently [DSWZ23| provided the first space DP lower bound for any problem, under cryptographic
assumptions; any future progress in this direction would be interesting.

References

[AMS96] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating
the frequency moments. In Proceedings of the 28th ACM Symposium on Theory of
Computing, STOC ‘96, pages 20—29, 1996.

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating
the frequency moments. Journal of Computer and System Sciences, 58(1):137-147,
1999.

[BBDS12] Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. The Johnson-
Lindenstrauss Transform Itself Preserves Differential Privacy. In 53rd Annual IEEE
Symposium on Foundations of Computer Science, FOCS ‘12, pages 410-419, 2012.

[BFM*13] Jean Bolot, Nadia Fawaz, S. Muthukrishnan, Aleksandar Nikolov, and Nina Taft.
Private decayed predicate sums on streams. In Proceedings of the 16th International
Conference on Database Theory, ICDT ‘13, pages 284-295, 2013.

[BGMZ23] Jeremiah Blocki, Elena Grigorescu, Tamalika Mukherjee, and Samson Zhou. How
to make your approximation algorithm private: A black-box differentially-private
transformation for tunable approximation algorithms of functions with low lensitivity.

In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2023, volume 275 of LIPIcs, pages 59:1-59:24, 2023.

21

[BMWZ23)

[BR94]

[BS16]

[Chal2]

[CMO5]

[COPO03]

[CSS11]

[DF03]

[DGIMO02]

[DLB19]

[DMNS06]

[DMP+24]

[DNPR10]

[DR14]

Vladimir Braverman, Joel Manning, Zhiwei Steven Wu, and Samson Zhou. Private
Data Stream Analysis for Universal Symmetric Norm Estimation. In Approrima-
tion, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2023, volume 275 of LIPIcs, pages 45:1-45:24, 2023.

M. Bellare and J. Rompel. Randomness-efficient oblivious sampling. In Proceedings of
the 35th Annual Symposium on Foundations of Computer Science, FOCS ‘94, pages
276-287, 1994.

Mark Bun and Thomas Steinke. Concentrated differential privacy: simplifications,
extensions, and lower bounds. In Proceedings of the 14th International Conference on
Theory of Cryptography, TCC ‘16, pages 635—658, 2016.

Amit Chakrabarti. Lecture notes on data stream algorithms, 2012. Available at
https://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf.

Graham Cormode and Shan Muthukrishnan. An improved data stream summary: The
count-min sketch and its applications. Journal of Algorithms, 55(1):58-75, 2005.

Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy. Better streaming algorithms
for clustering problems. In Proceedings of the 35th Annual ACM Symposium on Theory
of Computing, STOC ‘03, pages 30-39, 2003.

T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of
statistics. ACM Transactions on Information and System Security, 14(3), 2011.

Marianne Durand and Philippe Flajolet. Loglog counting of large cardinalities. In
Proceedings of the European Symposium on Algorithms, ESA ‘03, pages 605-617, 2003.

Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream
statistics over sliding windows. SIAM Journal on Computing, 31(6):1794-1813, 2002.

Damien Desfontaines, Andreas Lochbihler, and David A. Basin. Cardinality estimators

do not preserve privacy. In Proceedings on Privacy Enhancing Technologies, volume
2019 of PETS ‘19, 2019.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise
to sensitivity in private data analysis. In Proceedings of 3rd Theory of Cryptography
Conference, TCC ’06, pages 265—284, 2006.

Krishnamurthy Dvijotham, H Brendan McMahan, Krishna Pillutla, Thomas Steinke,
and Abhradeep Thakurta. Efficient and near-optimal noise generation for streaming

differential privacy. In 65th IEEE Symposium on Foundations of Computer Science,
FOCS ‘24, 2024.

Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum. Differential
privacy under continual observation. In Proceedings of the 42nd ACM Symposium on
Theory of Computing, STOC ‘10, pages 715-724, 2010.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy.
Foundations and Trends in Theoretical Computer Science, 9(3-4):211-407, 2014.

22

https://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf

[DSWZ23]

[DTT22]

[EMM™*23]

[FFGM12]

[FHO21]

[FMS8S5]

[Gan07]

[GKNM23]

[HP19]

[HSS23]

[HTC23]

[JTKR*23]

Itai Dinur, Uri Stemmer, David P. Woodruff, and Samson Zhou. On differential privacy
and adaptive data analysis with bounded space. In Proceedings of the 42nd Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
EUROCRYPT ‘23, pages 35-65, 2023.

Charlie Dickens, Justin Thaler, and Daniel Ting. Order-invariant cardinality estimators
are differentially private. In Advances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Processing Systems, NeurIPS ‘22, 2022.

Alessandro Epasto, Jieming Mao, Andres Munioz Medina, Vahab Mirrokni, Sergei
Vassilvitskii, and Peilin Zhong. Differentially private continual releases of streaming
frequency moment estimations. In 14th Innovations in Theoretical Computer Science
Conference, volume 251 of ITCS ‘23, pages 48:1-48:24, 2023.

Philippe Flajolet, Eric Fusy, Olivier Gandouet, and Frédéric Meunier. Hyperloglog:
the analysis of a near-optimal cardinality estimation algorithm. Discrete Mathematics
& Theoretical Computer Science, 2012.

Hendrik Fichtenberger, Monika Henzinger, and Lara Ost. Differentially private algo-
rithms for graphs under continual observation. In 29th Annual Furopean Symposium
on Algorithms, ESA, volume 204 of LIPIcs, pages 42:1-42:16. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2021.

Philippe Flajolet and G Nigel Martin. Probabilistic counting algorithms for data base
applications. Journal of computer and system sciences, 31(2):182-209, 1985.

Sumit Ganguly. Counting distinct items over update streams. Theoretical Computer
Science, 378(3):211-222, 2007.

Badih Ghazi, Ravi Kumar, Jelani Nelson, and Pasin Manurangsi. Private counting of
distinct and k-occurring items in time windows. In 14th Innovations in Theoretical
Computer Science Conference, ITCS ‘23, pages 55:1-55:24, 2023.

Zengfeng Huang and Pan Peng. Dynamic graph stream algorithms in o(n) space.
Algorithmica, 81(5):1965-1987, 2019.

Monika Henzinger, A. R. Sricharan, and Teresa Anna Steiner. Differentially private
data structures under continual observation for histograms and related queries, 2023.
arXiv pre-print 2302.11341.

Jonathan Hehir, Daniel Ting, and Graham Cormode. Sketch-Flip-Merge: Mergeable
sketches for private distinct counting. In Proceedings of the International Conference
on Machine Learning, 2023.

Palak Jain, Iden Kalemaj, Sofya Raskhodnikova, Satchit Sivakumar, and Adam D.
Smith. Counting distinct elements in the turnstile model with differential privacy
under continual observation. In Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Processing Systems, NeurIPS ‘23, 2023.

23

[MG82]

[MMNW11]

[Mor78]

[MU17]

[Mut05)]

[MV18]

[PS21]

[SNY17]

[SST20]

[TS13]

[Woo04]

[WPS22]

Jayadev Misra and David Gries. Finding repeated elements. Science of Computer
Programming, 2(2):143-152, 1982.

Darakhshan J. Mir, S. Muthukrishnan, Aleksandar Nikolov, and Rebecca N. Wright.
Pan-private algorithms via statistics on sketches. In Proceedings of the 30th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS
‘11, pages 37—48, 2011.

Robert Morris. Counting large numbers of events in small registers. Communications
of the ACM, 21(10):840-842, 1978.

Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomization and
probabilistic techniques in algorithms and data analysis. Cambridge university press,
2017.

Shanmugavelayutham Muthukrishnan. Data streams: Algorithms and applications.
Foundations and Trends in Theoretical Computer Science, 1(2):117-236, 2005.

Andrew McGregor and Sofya Vorotnikova. A simple, space-efficient, streaming algo-
rithm for matchings in low arboricity graphs. In Proceedings of 1st Symposium on
Simplicity in Algorithms, SOSA ‘18, 2018.

Rasmus Pagh and Nina Mesing Stausholm. Efficient differentially private F(y linear
sketching. In Proceedings of the 24th International Conference on Database Theory,
ICDT ‘21, pages 18:1-18:19, 2021.

Rade Stanojevic, Mohamed Nabeel, and Ting Yu. Distributed cardinality estimation
of set operations with differential privacy. In Proceedings of the IEEE Symposium on
Privacy-Aware Computing, PAC ‘17, pages 3748, 2017.

Adam D. Smith, Shuang Song, and Abhradeep Thakurta. The Flajolet-Martin sketch
itself preserves differential privacy: Private counting with minimal space. In Advances
in Neural Information Processing Systems 33, NeurIPS ‘20, pages 19561-19572, 2020.

Abhradeep Guha Thakurta and Adam Smith. (Nearly) optimal algorithms for pri-
vate online learning in full-information and bandit settings. In Advances in Neural
Information Processing Systems 26, volume 26 of NeurlPS ‘13, 2013.

David P Woodruff. Optimal space lower bounds for all frequency moments. In
Proceedings of the 15th annual ACM-SIAM Symposium on Discrete Algorithms, SODA
‘04, pages 167175, 2004.

Lun Wang, losif Pinelis, and Dawn Song. Differentially private fractional frequency
moments estimation with polylogarithmic space. In Proceedings of the 10th International
Conference on Learning Representations, ICLR ‘22, 2022.

24

A Additional Tools

A.1 Concentration bounds
We provide some basic concentration inequalities that will be used in our analyses.

Lemma 4 ([BR94]). Let A\ > 4 be an even integer. Let X be the sum of n A-wise independent
random variables which take values in [0,1]. Let p = E[X]| and A > 0. Then,

AM+A2>*/2

Pr[|X,u]>A]§8< e

Theorem 16 (Multiplicative Chernoff Bound [MUIT]). Let X = > 7 | X; where each X; is a
Bernoulli variable which takes value 1 with probability p; and value O with probability 1 — p;. Let
pw=E[X]=>"pi. Then,

1. Upper Tail: Pr[X > (14 1) - p] <exp (—772—“) for alln > 0;

2. Lower Tail: Pr[X < (1—1n)-pu] <exp (—"%“) forall0 <n < 1.

Lemma 5 (Chernoff Bound of Gaussian Random Variable). For X ~ N(0,02), Pr(|X| > t) <
2exp(—t2/20?).

A.2 Information theory basics

We provide some basic information theory definitions and facts that are used in Section [5| In this
paper, we use log to refer to the base 2 logarithm.

Definition 7. The entropy of a random variable X, denoted by H(X), is defined as H(X) =
>, Pr[X = z]log(1/ Pr[X = z]).

Definition 8. The conditional entropy of random variable X conditioned on random variable Y is
defined as H(X|Y) =Ey[H(X|Y =y)] =3, Pr[Y =y] - HX[Y =y).

Definition 9. The mutual information between two random wvariables X and Y is defined as
I(X;Y)=H(X)-HX|Y)=H(Y)—-H(Y|X).

Definition 10. The conditional mutual information between X and Y given Z is defined as
I(X;Y]Z) = E[I(X;Y]Z = 2)]

Fact 1. Let X,Y, Z be three random variables.
1. HX|Y)> HX|Y, Z).

H(X) < log |supp(X)|.

I(X;Y|Z) < H(X|Z).

Data processing inequality: for a deterministic function f(X), I(X;Y|Z) > I(f(X);Y|Z).

GroB o e

I(X;Y|Z) > 0.

25

B

Additional details on KSET

We describe the TESTSINGLETON data structure (Algorithm [6)) which is a building block of the
KSET data structure in more detail.

Algorithm 6 TEST-SINGLETON data structure

Input: Input stream xi,xz2,..., 27

1:

—= e = s e e
BTl oali

Initialize m — 0,U — 0,V — 0
: TSUPDATE(x,):

. if x4 is an insertion of item 7 then

mem+1,U—=U+1i,V =V +i?

else if z; is a deletion then

m<m—1U—=U—i,V =V -

end if
: TSCARD():
. if m =0 then

Return EMPTY

. else if U2 =m -V then

Return (SINGLETON, U/m, m)

. else

Return COLLISION

. end if

The TESTSINGLETON data structure supports the following operations:

1. An update operation, TSUPDATE(z;), which updates three counters — mpg, U, and V (all

initialized to zero) preserving the following invariants throughout the stream:

mrs =Y foo U= fara, V=) fa-d®

acU acl acU

More precisely, for an non-empty update x; corresponding to data item a, TSUPDATE(x;)
performs the following update:

mps:=mprs+1, U=U+a, V=V +d?
(for an addition)
mrg:=mrs—1, U=U—a, V=V —d?

(for a deletion).

. A check operation, TSCARD(), which determines whether the TESTSINGLETON data structure:

(1) is empty, (2) contains a single element, or (3) has more than a single element. The
function returns, in each case respectively: (1) EMPTY (this happens if mrs = 0); (2) the
triplet SINGLETON, the element, and its frequency (this happens if U2 = mpg - V); or (3)
COLLISION (if the last two checks fail). It is easy to see that the unique item returned (in
the SINGLETON case) has identity mLTS and has frequency mrg.

26

C Omitted Proofs from Section 4

For ease of analysis, we define the streams produced after applying the hash function and the
blocklisting procedure (in the case when ob = false) as follows. These streams will be used as
intermediate steps in the analysis of CountDistinct to separately reason about the hashing and
blocklisting procedures, and their impact on sensitivity of the resulting streams.

Definition 11. Define S; ; as the substream of x after applying hash function g. That is, let a be
the item contained in the update x;. Then S; 4[t] =z if g(a) =i and S; 4[t] = L otherwise.

Definition 12. Define S; g as the stream of updates produced from S; 4 after checking whether the
item corresponding to the update x; is in the blocklist B before time t or not. That is, if the item
corresponding to x¢ is in B before time t, then S; g[t] = L, otherwise S; g[t] = S; 4[t].

C.1 Proof of Lemma |2 and Helper Lemma

Lemma 2. Fiz the randomness used across runs of CountDistinct and CountDistinct’. Fiz i € [L],
and let K and E denote the output distributions of COUNTING-KSET; and COUNTING-DICT;

respectively. If k > 7+ O (M), then the total variation distance of the two distributions,
dry(K,E) < 3/L.

Proof. We start with the case when ob = false, which is the more involved case. Consider the
randomness of COUNTING-KSET; and COUNTING-DICT,;. Observe that because of the fixed
randomness of both hashing and blocklisting, the resulting streams S; p (see Definition that
are respectively used to update the KSET (in the case of COUNTING-KSET);) and the DICT data
structure (in the case of COUNTING-DICT;) are identical.

Next, define the randomness of COUNTING-KSET,; as Rxc, = Ris; X Rpm, where Ris,
denotes the randomness from the KSET (Algorithm [3)) and Rpas, denotes the randomness from
BinaryMechanism-CD (Algorithm. On the other hand, the only randomness in COUNTING-DICT; is
due to the randomness of BinaryMechanism-CD, i.e., Rgc, = Rpu;. We emphasize that because the
randomness from adding items to the blocklist has been fixed across CountDistinct and CountDistinct’,
the blocklist B passed to both COUNTING-KSET,; and COUNTING-DICT; are identical.

We now want to argue that the outputs of COUNTING-KSET; and COUNTING-DICT; are
the same except with probability 5. Let the BinaryMechanism-CD instance in COUNTING-KSET;
be denoted as BinaryMechanism-CDg ¢, and the BinaryMechanism-CD instance in COUNTING-
DICT; as BinaryMechanism-CDg¢,, and fix the randomness used in BinaryMechanism-CDg ¢, and
BinaryMechanism-CDgc; .

We claim that there are two bad events for which the outputs of COUNTING-KSET; and
COUNTING-DICT; may differ.

e E;: There exists a timestep where the true count < k and the KSET outputs NIL.

e E,: There exists a timestep where the true count is > k£ and the noisy count of COUNTING-
DICT; < k.

By setting k > 74+ O (W), we argue that both events happen with probability at

most f.

27

For the event E1, the probability of the KSET outputting NIL happens with probability at most
B/2TL for one timestep. This is because, in Line [4f of COUNTING-KSET;, we set k as the capacity
of the KSET and /2T'L as the failure probability. So by Item [2| in Lemma (1| and union bound over
all timesteps, this event happens with probability at most §/2L.

For the event Es, Lemma @] (below) bounds the probability of E9 as 3/2L over all timesteps for
our choice of k.

Now, conditioned on bad events E; and Eo not occurring over all timesteps, we argue that the
outputs of COUNTING-KSET,; and COUNTING-DICT,; are identical. Let t; be the first timestep
that the true count is > k. Let 5 > t1 be the next timestep that the true count is < k. We next
consider the outputs of the two algorithms by cases across timesteps.

e Case 1: 1 < t < t;. Conditioned on event E; not occurring, the KSET does not
output NIL during this time epoch, which means that the inputs to BinaryMechanism-
CDgkc, and BinaryMechanism-CDpc, are identical, since both BinaryMechanism-CDg ¢, and
BinaryMechanism-CD ¢, will be updated with only the update from the previous timestep. In
this case, the resulting noisy outputs will be the same under the fixed randomness, and the
output of COUNTING-KSET; and COUNTING-DICT; after the thresholding step (comparison
to 7) is identical.

e Case 2: t; <t < ty. For timesteps in this epoch, both COUNTING-KSET; and COUNTING-
DICT; will output TOO-HIGH. Since the true count is > k for all ¢t <t < t9, and conditioned
on Es not occurring, the output of COUNTING-DICT; must be TOO-HIGH. Also by Item [I}in
Lemma [I] the KSET outputs NIL for this time period with probability 1, which means that
the output of COUNTING-KSET; is also TOO-HIGH.

e Case 3: t = to. Next we argue about the output of COUNTING-DICT; and COUNTING-KSET;
at timestep to when the true count < k. Conditioning on event E; not occurring, the KSET
does not output NIL at timestep t5 because the true count < k. Moreover, observe that
BinaryMechanism-CD k¢, is not updated over ¢; < t < ty and is only updated at timestep ¢
because the KSET does not output NIL. Also, by construction of COUNTING-KSET;, we claim
that BinaryMechanism-CD g, is fed a sequence of inputs (+1,—1,0) at timestep ¢2 that result
in the same sum and the same length as in BinaryMechanism-CDg¢, over t2 — t1 timesteps.
This is because by definition, diff is the difference in the number of distinct elements between
times ¢t; — 1 and to, and |[diff| < tgf, as there can only be < tgi many distinct elements
added (or removed) over ¢ — ¢;. Since the length and sum of the sequence of inputs to both
BinaryMechanism-CD k¢, and BinaryMechanism-CD g, at timestep ¢, is the same, the outputs
of both COUNTING-KSET; and COUNTING-DICT; are the same at timestep to under the fixed
randomness.

This argument can be extended over all timesteps by iteratively considering the next timestep
when the true count is > k and the following timestep when the true count is < k. Thus
when ob = true, except with probability /L corresponding to the events E; and Eg occurring,
COUNTING-KSET; and COUNTING-DICT; will produce identical outputs at each timestep. That
is, the distributions of COUNTING-KSET; and COUNTING-DICT;, denoted K and E respectively,
will agree on all outcomes except a subset of probability mass /L, which implies that that
dry (K, E) < B/L.

For the case when ob = true, the blocklisting step is not needed. Then the fixed randomness
between CountDistinct and CountDistinct’ means that the randomness of the hash functions of

28

both algorithms will be the same, so the resulting stream S; ; (see Definition that is used to
update the KSET (in the case of COUNTING-KSET;) and the DICT data structure (in the case of
COUNTING-DICT;) is identical. The rest of the argument follows symmetrically to the case when
ob = false. O

C.1.1 Helper Lemma

Lemma 6. Let Ep)s be the event that there exists a timestep where the noisy count of
BinaryMechanism-CDpgc, is greater than k when the true count is less than T, or the noisy count of
BinaryMechanism-CDgc; is less than T when the true count is greater than k. The probability of

Epyy is at most B/2L over all timesteps when k > T + Qﬂ(logﬂ_l)gm\/W\/l;g(éLTﬂog(Tﬂ/ﬂ).
Proof. For notational convenience, let A = k — 7. From Algorithm [4, we know that the noise that
we apply to the true count is a summation of at most m < logT 4+ 1 Gaussian random variables,
each sampled from N (0,4W (logT +1)L/p). (Recall that the input privacy parameter to the binary
mechanism is p/L). Thus the overall noise added is N(0,4mW (logT + 1)L/p). Now we want
to bound the probability that |N(0,4mW (logT + 1)L/p)| > A, which is an upper bound on the
probability of Epjs occurring at a single timestep.

Applying a Chernoff bound (Lemma [5) yields:

A2p
8mW (logT + 1)L

Pr(IN(0,4mW (logT + 1)L/p)| > A) < 2exp(—)

We wish to bound the above term on the right by 5/2TL, so that then by a union bound, the
probability of Egjs over all timesteps is bounded by £/2L. This requires:
AZp
8mW L(logT + 1)

< log(8/4T'L)

\@\/mWL(logT—i- 1)log(4TL/B)
VP
Recall that our goal is to set the value of A = k — 7 such that the above inequality always holds,
and we want to set A to be the upper bound of the right hand side. Since m < logT 4 1 and
O / O, O,
L = [logT] <logT + 1, then, choosing k >t + 2\/5(1 g TH1)%/2 /W log(4T [log(T)]/5)

N
A is a valid upper bound, and hence that the probability of Egs over all timesteps is bounded by
B/2L. O

<— A>2

will ensure that

C.2 Proof of Lemma |3| and Helper Lemmas
Lemma 3. COUNTING-DICT; (Algorithm[5) is

1. p/L-zCDP, if ob = true.

2. B/L-approximate p/L-zCDP, if ob = false.

Proof. We will prove the privacy claim for the more general case when ob = false. Note that when
ob = true, we do not need to deal with the failure event associated with blocklisting (Lemma

and thus § = 0 and COUNTING-DICT; (Algorithm [5)) is p/L-zCDP.

29

The key point we must show is that when neighboring streams are input to COUNTING-DICT;,
then the internal streams passed to BinaryMechanism-CD; inside of COUNTING-DICT; will remain
neighboring. Once this is shown, then we can directly apply Lemma [7] which shows that this
instance of BinaryMechanism-CD; inside COUNTING-DICT; is differentially private. Thus we must
show that even after applying the hashing and blocklisting operations to the original neighboring
input streams, the resulting processed streams remain neighboring.

The randomness of CountDistinct’ can be viewed as a joint probability distribution Reopr =
Rg X Rpr X REc, X ... X Rgc, where R, denotes the randomness from picking a hash function
g (in Line [7] of Algorithm [1)), Rz, denotes the randomness from blocklisting, and Rgc, denotes
the randomness from the subroutine COUNTING-DICT; for i € [L]. Let x and 2’ be neighboring
streams that differ only at timestep t*, in which the update (either deletion or addition) in x is for
item u, and in 2’ is L, and fix the randomness used in CountDistinct’ across runs on z and z’.

Let S; 4 and 52{79 be the substreams of z and 2z’ produced from the hash function g (see
Definition) Then with the fixed randomness, S; ; and S’ are neighboring. To see this, observe
that for all updates except those inserting or deleting u, SZ g and S are exactly the same. For
updates regarding item wu, if v is hashed into substream ¢, then S; 4 and S! i o will differ only in time
t*. Otherwise S; 4 and Sl’g will be identical. Thus, S;, and 81’7 will be neighboring streams for all
i€ [L].

Let S; g and S B be the substreams of z and 2’ produced after blocklisting (see Definition .
Under the fixed randomness the timesteps at which items are first blocklisted are the same for the
neighboring streams, except (possibly) for item w. Since the updates from substreams S; p and 51(7 B
are stored exactly as-is in DICT, and then fed to BM-Count-Distinct as input, the input streams to
BinaryMechanism-CD; are indeed neighboring.

By Lemma [7} the output §; of BinaryMechanism-CD; is j3/L-approximate p/L-zCDP. The
remainders of the operations in COUNTING-DICT; — including the thresholding step to output either
the numerical value of §; or TOO-HIGH — are simply postprocessing on the private outputs §; of
BinaryMechanism-CD;, which will retain the same privacy guarantee. Thus, COUNTING-DICT; is
3/ L-approximate p/L-zCDP as well. O

C.2.1 Helper Lemmas
Lemma 7. The BinaryMechanism-CD instance in COUNTING-DICT; is 3/ L-approzimate p/L-zCDP.

Proof. Consider the binary tree produced by BM-Count-Distinct; with log(7") levels. We define a
vector Gy, of length T'/2" for each level h € [log(T)] of the binary tree as

Gnlil = silj - 2" — sil(j — 1) - 2"

for all j € [T/2"] and s;[t] = Y,y 1picT, (>0 as defined in Algorithm |5 of COUNTING-DICT;.
Let G = (Go, - -, Glog(r))- To prove the claim, we will bound the sensitivity of the counts stored
in the binary tree represented by G, and then show that sufficient noise is added to each count
to satisfy differential privacy. Similar to the original binary tree mechanism of [CSS11, DNPRI0],
the output of BM-Count-Distinct; at timestep ¢ can be obtained from G by considering the dyadic
decomposition of the interval (0,¢] as a sum of the individual nodes composing the interval, and
this output will be private by postprocessingf_;]

6[JKR*23J used similar techniques to argue about the sensitivity of their binary tree mechanism. However, their
argument is more straightforward as it does not have to consider the randomness from hashing or blocklisting.

30

First, we claim that the binary tree described by G plus DP noise (which we will determine)
produces the output §;. To see this, first observe that §;[t] = s;[t] — s;[t — 1] + Z[t] where Z[t] is the
noise term. Also Go[j] = 8[j] — Z[j]. The claim follows by induction over h € [log(T)].

Let G and G’ be the binary tree representation of neighboring streams z and z’ respectively.
We will show that |G — G'[|2 < 24/(W + 1)(log(T) + 1) with probability 1 — 3/L.

Fix h € [log(T)] and j € [T/2"]. For ease of notation, let j; = (j — 1) - 2" and jo = j - 2". Then

\Grlj] — GLlill = |silde] — silj1] — silje] + silii]| < 2, (1)

where the inequality is due to the fact that s; and s can differ by at most 1 at both timesteps j;
and jo.

Next, observe that for a fixed h, the intervals (ji,j2] are disjoint, by definition. Also, for
j € [T/2", Gpnlj] # G} [j] are different in at most W + 1 intervals with probability 1 — 3 (by
Lemma [9) where W = T?%/3,

Thus, with probability 1 — 3/L, the (squared) fo-sensitivity of G is bounded:

AN <|G=Gl3="> > (Guli)—Gli? < (logT + 1)(W +1) - 27 (2)
hellog(1)] je[T/2"]

By Theorem|§|, adding Gaussian noise sampled N(0, 02) for 02 =
node of the binary tree represented by G will satisify p/L-zCDP with probability 1 — /L. Plugging

2 _ (10gT+l)(W+1) -L In

in the bound on A3 it is sufficient to add Gaussian noise with variance o
Algorlthml, 5, the Blnaryl\/lechamsm CD subroutine is instantiated with privacy parameter p/ L, Wthh
adjusts for the extra factor of L.

Finally, since the output of BinaryMechanism-CD can be obtained by postprocessing the noisy

nodes of G, the output is p/L-zCDP with probability 1 — 3/L. O

Lemma 8. Suppose ob = false. With probability at least 1 — /L, the mazimum occurrency of the
stream produced from the blocklisting procedure (Deﬁmtwnn) is bounded by T?/3.

Proof. Recall that the probability of blocklisting any element after an appearance in the stream is
_ log(T1/3L/B)
- T2/3 .

For any element x € U, we can bound the failure probability of the blocklist to catch an element

after the maximum number of occurrences:

log(TY3L/B) .72/
T2/3)
2 log(T1/3

_72/3.1 g(TT2/3L/5)

Pr[z ¢ B after T?/3 appearances] = (1 —

<e

— o log(T'/3L/B)

B
T3]

The inequality in the second step comes from the fact that (1 —a) < e ¢ for all a € R.
At most T/ T2%/3 = T3 clements can appear > T2%/3 times in a stream of length 7. Taking a
union bound the probability that any of these elements is not blocklisted after T2/3 appearances is

at most T1/3L T3 = B/L. O

31

Lemma 9. Suppose ob = false. Let x and x' be neighboring input streams and fix the randomness
of CountDistinct’ across runs on x and =’'. For any i € [L], S; p and S/B differ in at most T?/3 + 1
positions with probability 1 — /L.

Proof. Let neighboring streams x and 2’ differ only at timestep ¢*, in which the update (either
deletion or addition) in z is for item w, and in 2" is L, and fix the randomness used in CountDistinct’
across runs on z and 2. As shown in the proof of Lemma (3| the substreams S;, and S; , are
neighboring and thus will also differ at timestep t* with respect to item u. Thus under the fixed
randomness, for all timesteps ¢ # t*, the same items are blocklisted in S; and S..

Let Eg be the bad event that there exists an item v that appears in the hashed substream at
some timestep ¢ # t* and is not blocklisted after T2/3 occurrences. By Lemma [8] the probability of
Ey is bounded by §/L. We will condition on the event Ey not occurring for the remainder of the
proof. Note that if the items in &; , and Sz{,g do not appear more than 7%/3 times for all i € [L],
then naturally E¢ does not occur.

Recall that the item u appears in exactly the same timesteps in S; ; and Sf’ g for t # t*. Suppose
that the number of appearances of u in those steps is > T2/3. The resulting blocklisted streams
Sip and S! B can differ in at most T%/3 + 1 timesteps because the item u may be blocklisted before

it appears T2/ 3 times, but conditioned on Eg not occurring, it must be blocklisted after the T 2/3_th

appearance. Since S; 4 has an extra occurrence of u (at timestep t*) relative to S; g this means that

S! B can differ from S/ p in at most T2/3 41 timesteps, after which both S;p and S g will have 0’s
for all future occurrences of item wu. O

C.3 Proof of Theorem (12| (Accuracy)
We restate Theorem [[2] below for convenience.

Theorem 12. Let F(t) be the correct number of distinct elements of the stream at time t and let
A = 2log(40[log(T")]/5). When ob is true, let v = \/4(W+1)(1ogT+1)3bg(lo(logTﬂ)/ﬁ) and when ob is

)
false, let v = \/ (T2/3+1)(10gT+1)3log(lo(logTﬂ)/ﬂ) + 3T/31og(T"/3[log T /B). For a fized timestep
t € [T, with probability at least 1 — B, the output of Algomthml at time t with COUNTING-DICT;
as the subroutine is a (1 & 4n, 32 max{y/n, 32\/n?})-approzvimation of F(t) for any n € (0,0.5).

Proof of Theorem[14. When ob is true: The proof relies on the following lemmas, which ensure
that for a specific timestep ¢, the good events occur with high probability:

1. In all substreams i € [L], the correct number of distinct elements in the substream ¢ by hashing,
denoted Fj(t), is also a good estimator for the number of distinct elements in the entire stream
at timestep ¢, denoted F(t) (Lemma [10). That is, for all i € [L], the following two conditions
hold at the same time for any specific timestep ¢ with probability at least 1 — /5 for any

€ (0,0.5):
(a) Vi € [L] with F(t) > 2 4, we have (1 —)3 < Fi(t) < (1+)5
(b) Vi € [L] with F(t) < 2"+ 2}, we have 5 — 2 < F(t) < £ 4 2

2. BinaryMechanism-CD (Algorithm [4)) is accurate (Lemma [L1)). That is, for all i € [L], we have

|Fi(t) — &(0)| <y = \/4(W+1)(10gTH)SplOg(lO(logTH)/B) with probability 1 — 3/5.

32

3. For any stream i, if the correct number of distinct elements in the subtream ¢ is below a
certain threshold then COUNTING-DICT; will not output TOO-HIGH (Lemma [6). Plug-
ging in /5L into Lemma |§| yields that if F;(t) < 16 max{vy/n,32\/n*}, then COUNTING-
DICT; will not output TOO-HIGH, i.e. the noisy count §; < 7 = 16 max{y/n, 32\/n?} +

/
Qﬁ(log T+ 2\/W\/1§g(20ﬂlog TVE), with probability at least 1 — 3/5.

To prove the desired accuracy claim, we will condition on all three high-probability events listed
above occurring at timestep ¢. Note that each of the three events occur with probability 1 — /5.
Thus all three events will happen with probability at least 1 — % 8 >1— [by a union bound.

We consider two cases for the number of distinct elements of the stream at time ¢ denoted by
F(t): (1) F(t) > 8 max(vy/n,32\/n?), for which we show that the resulting approximation satisfies
a multiplicative error of (1 & 4n), and (2) F(t) < 8 max(vy/n,32\/n?), for which we show that the
resulting approximation has an additive error of 32 max(vy/n,32A/n%). We now separately consider
the two cases. .

Case (1). F(t) > 8max(y/n,32\/n?). Let i* € [L] be the largest i s.t. 255) >

4max(y/n,32\/n?). Note that by Lemma (1-m) ggf) < F-(t) < (1 + n)l;(f) Therefore

by the definition of i*, Fj«(t) < 2% < 2-8max(y/n,32\/n?) = 16 max(y/n, 32A/n?). Since in this
case the noisy count §;+ at timestep ¢ would not exceed 7 by Lemma [6 so COUNTING-DICT ;« will
not output TOO-HIGH in the stream i*. Then Si+[t] = 8;-(t)), and by Lemma[L1] BinaryMechanism-
CD will be accurate and S;«[t] > Fj«(t) — . Since Fj«(t) > (1 —n) I;Sf) > 2max(y/n,32\/n?) by
Lemma [L0] and using the fact that n < 0.5:

Si=[t] = 2max(v/n, 32)/n°) — v > max(v/n, 32A/n°). (3)

Above we showed that Fj«(t) < 16 max(y/n,32\/n?). Then by Lemma@, the noisy count from

(0} 3/2 O, (0}
i* will not exceed 7 = 16 max{vy/n,32\/n%} + 2\/5(1 gT+1) \/W\/lﬁg(zoﬂl gTVﬁ), so COUNTING-

DICT;= will not output TOO-HIGH. The only concern now is that the output from ¢* may not
be output if the noisy count is smaller than max(y/n,32\/n?) (see Line 22 of Algorithm , but
by Inequality (3)), this is impossible because S« [t] > max(y/n, 32X/n?). Therefore, Algorithm
with COUNTING-DICT; as the subroutine will produce a non-zero output, i.e. it will output some
Sy[t] - 2% for some i’ > i* instead of 0.

We now proceed in two steps: first, we derive a lower bound on the true count Fjy (¢) in substream
1’; then, we bound the ratio between Algorithm s output Sy[t] - 2 and the true count F (t), using
F;(t) as an intermediate quantity.

We start with the lower bound on Fj(t):

Fu(t) > Sult] —~ by Lemma
> (1 —n)Syt] because v < nS;[t]
> 16\ /n? because 32\ < 7?Sy[t] and 0 < 7 < 0.5

Next we bound the ratio between Sy[t] - 2 and F(t). According to Lemma (1—mn)

33

Fu(t) < (14 n)f;gf) Then,

Sylt] < Fu(t) +~ by Lemma
Fy
= Si[t] < . ®) because v < nS;/[t]
-n

< 1+ F@ by Lemma

1—n 20

F

< (1+4n) 2(;) because 0 < 1 < 0.5

To see the second inequality, we use the fact that v < nS;[t], and plug this into Sy [t] < Fy(t) +

to get Sy[t] < Fy(t) + nSy[t]. Rearranging gives that S;[t] < P}%(nt) The third inequality is from

Lemma , which gives that Fy(t) < (1 + n)F(.t) whenever F(t) > 27 . %. We now show that

2¢'
because we are in Case 1 where F(t) > 8max(y/n,32\/n?), then it must always be the case
that F(t)/2" > %‘. Assume towards a contradiction that F(t)/2" < 4\/n?. Then by Lemma

Fy(t) < F(t)/2" 4+ 4\/n. By the lower bound above Fy (t) > 16A/n%. Combining these gives that,
16X/n% < Fy(t) < F(t)/2" + 4\ /n < A\ /n* + 4\ /n < 8\/n?,

where the second to last step is from the assumption that F(t)/ 2" < 4)\/n? and the last step is
because 1 € (0,0.5). Clearly this is a contraction, so it must be that F(t)/2" > %‘.
By symmetric arguments,

F(t)

Solt] > Fu(t) 4= B L L=n F() il)

“14n =" 1+4n 27

> (1 —4n)

Thus in the case when F(t) > 8max(y/n,32\/n?), Algorithm [I| produces a numerical output
Sy [t] - 2" for some i’ > 0, which will achieve a multiplicative error of 1 = 47 with respect to the true
count F'(t).

Case (2). F(t) < 8max(y/n,32\/n?), in which case again F;(t) < 16 max(y/n, 32)/n?) for all 4,
so the noisy count would not exceed 7 by Lemma 6} so COUNTING-DICT; will not output TOO-HIGH.
Then, Algorithm |1| either outputs 0, which will result in additive error at most 8 max(y/n,32\/n?)),
or it outputs Sy [t] - 27 for some ', such that Sy [t] > max(y/n, 32X/n?). In this latter case, by the
same argument as in Case (1),

Folt) > Solt] — 7 > (1—n)Sult] > 163/

Having established a lower bound for Fj/(t), we now turn to derive an upper bound for the

algorithm’s output Sy[t] - 2. By Lemma E we know that if I;Ef) > f?é\ then Fy(t) < 21;9;), and
otherwise, if igf) < 2—5\, then 16\ /n < 167\ /n? < Fu(t) < % + % which implies that Z;Ef) > 120 /1.

F(t)

5 as well, since F(t)/2" > 12\/n. Hence under both

Thus in this case Fy(t) < % +4X/n <2

34

conditions,

Silt] - 28 < (Fy(t) +7) - 2° by Lemma
Fy(t o
< 1Z ® 2! because v < nSy[t]
-7
F(t -/ F(t
<2-2 2(1.,) -2 because Fy (t) < 2 2(1.,) and 0 <n <1/2
=4F(t)
< 32max(y/n,32)/n%) by Case 2 condition

Therefore, in this case Algorithm (1| achieves an additive error of at most 32 max(vy/n, 32\/n?).

When ob is false: This proof is very similar to the case where ob is true. The main difference
is that we need one extra lemma about the size of the blocklist. There is also an additional error
caused by the blocklist, which can be treated as part of the error from the binary mechanism. The
majority of the analysis stays the same; the only difference is that we will have a larger error in this
case because of the blocklist.

We will use the three same key lemmas as in the case where ob=true, and an additional lemma
bounding the size of the blocklist. These four lemmas will ensure that at a fixed timestep ¢, the
desired good events will happen with high probability:

1. In all substreams ¢ € [L], the correct number of distinct elements in the substream ¢ by hashing,
denoted Fj(t), is also a good estimator for the number of distinct elements in the entire stream
at timestep t, denoted F(¢) (LemmalL0)). That is, for all ¢ € [L], the following two conditions
hold at the same time for any specific timestep ¢ with probability at least 1 — /5 for any

€ (0,0.5):
(a) Vi € [L] with F(t) > 2°- ff‘ we have (1 — n)F2(f) < Fi(t) < +n)
(b) Vi € L) with F(t) < 2'- 43, D <py <P+ %

2. BinaryMechanism-CD (Algorithm [4)) is accurate (Lemma[L1)). That is, for all i € [L], we have
|Fi(t) — 5(t)] <~v= \/4(W+1)(1°gT+1)3log(w(bgTH)/ﬂ) with probability at least 1 — /5.

p

3. For any stream i, if the correct number of distinct elements in the subtream ¢ is below
a certain threshold then COUNTING-DICT; will not output TOO-HIGH (Lemma [f). We
plug 8/5L into Lemma@ to obtain that, if F;(t) < 16 max{v/n,32\/n*}, then COUNTING-
DICT; will not output TOO-HIGH, i.e. the noisy count §; < 7 = 16 max{vy/n,32\/n?} +

(log T+1)3/2/W log(20T [log T1/B)
2v2 7 :

4. The blocklist has bounded size (Lemma[12)). With probability at least 1 — 3/5, the size of the
blocklist is bounded by 37/3 log(T"/3[log T/).

Conditioned on these good events and plugging in W = T%/3, by Lemmas [11] and for each
instance of BinaryMechanism-CD, the overall additive error stemming from the binary mechanism

and blocklisting is v = \/4(T2/3+1)(logT+1); log(10(og TH1)/B) | 3771/3 log(T"?[log T'/B).

35

To prove the desired accuracy claim, we will condition on all four high-probability events
described above occurring at timestep t. Note that each of the four events occur with probability
1 — /5. Thus all four events will happen with probability at least 1 — % 6> 1— [by a union bound.

From here, we can again treat separately two cases based on F'(t), the number of distinct elements
of the stream at time t: (1) F(t) > 8 max(vy/n,32A/n?) and (2) F(t) < 8 max(y/n, 32)/n?). Asin the
case where ob=true, we show in Case (1), the resulting approximation satisfies a multiplicative error
of (1+4n), and in Case (2), the resulting approximation has an additive error of 32 max(vy/n, 32\/n?).
The analysis in both cases is identical to when ob=true as presented above, with the correspondingly
larger value of 7, and so is not repeated here. O

C.4 Proofs of Helper Lemmas for Theorem

Lemma 10| bounds the number of elements in the substream after hashing. Lemma [11]| proves the
accuracy of BinaryMechanism-CD algorithm. Lemma [12| bounds the size of the blocklist when ob
is false. With the help of these lemmas, we can show the accuracy of COUNTING-DICT, as an
intermediate step in the analysis.

Lemma 10 (Substream concentration bound). Let F(t) be the number of distinct elements of the

stream at time t, and let F;(t) be the number of distinct elements of substream S; 4 (Definition
for any i € [L]. If F(t) > 2" %—3\, then Pr[|F;(t) — 2<it)| >n- 2(:/)] < 5% Otherwise, if F(t) < 2'- i—;\,
then Pr[|F;(t) — %| > %] < % This implies that the following two conditions hold at the same
time with probability at least 1 — 3/5:

1. i € [L] with F(t) > 21+ 2, we have (1—n)E < Fi(t) < (1 +n)EY

2. Vi € [L] withF(t)<2i-i‘]—é‘, wehave@—%ﬁﬂ(t)ﬁ%—l—%.

Proof. We start with the case of F(t) > 2. i—é. Applying Lemma [4| to the F;(t) as a sum of F(t)

A-wise independent Bernoulli(2~%) random variables, and with p = %, A=n- % yields the
following:

_F(t) A/2
. ,E(t)_m|>n.w] <8(M+A2>

7 2 F
2 2 n? - (%)2

\)\2 A/2
2 F() + UQ(F(t))Q

21

A)\2 A2
=® < 2P n2<4A/n2>2>

where the third step is because of the case F(t) > 2 - f]—é‘, and the fourth step simplifies terms.

36

We now wish to bound the right hand side by 5%; solving this inequality for A yields the following
bound:

2/2
) < B/40L

g(1/4 +n%/16) < log(3/40L)
2log(8/40L)

~ log(1/4 +n?/16)

\> 21og(40L/p)

~ log(7zmp7m)

(4
Ao
2
A>

[

The last step comes from multiplying both the numerator and denominator by —1, and — log(x) =
log(1/x).
Since 1 < 0.5, then the denominator can be bounded by: log(m) > log(64/17) > 1. Since

Algorithm I sets A = 2log(40L/), the above inequality will be satisfied.
Next we con51der the second case, where F(t) < 2. f]/\ Applying Lemma {4| again to the Fj(t),

now with A = 22 yields the following:
F(t) |, y2\ 2
F(t) 4\ A 5 T+ A
Pr ||F;(t) — o | >] < 8 <(4A)2
n
g (AN a2
16A2/n?
1 772 A2
=° <4 * m) ’
where the second step is because of the case F(t) < 2Z , and the third step simplifies terms.

We again wish to bound the right hand side by 2L and by the same steps as in the first case,

21og(40L/B)

the desired inequality holds if and only if A > o and using the requirement that n < 0.5,

g(1/4+n2/16)’

Algorithm Is choice of A\ = 2log(40L /) will satisfy the desired inequality. O

Lemma 11 (Binary mechanism accuracy). Fiz a timestep t € [T], and recall that $;(t)
is the mnoisy count of F;(t) produced by BinaryMechanism-CD;. Then |Fi(t) — 8(t)] <

\/4(W+1)(log T+1)3 log(10(log T+1)/8)
P

simultaneously for all i € [L] with probability 1 — 3/5.

Proof. We will show that for a specific substream ¢ € [L], the error |F;(t) — $;(t)| is bounded by the
desired term with probability 1 — 5/5L, and the lemma will follow by a union bound over all i € [L].

Now consider the error of substream 7 at timestep ¢. Algorithm 4| (BinaryMechanism-CD) adds
a total of Bin;(¢) independent Gaussian noise terms, where Binj(t) is the number of ones in the
binary representation of ¢. Hence, the error |F;(t) — §;(t)| is a sum of at most log 7"+ 1 independent

37

Gaussian random variables each distributed as N (0,2L(W +1)(log T+ 1)/p), and so the error itself
2L(W+1)(log T+1)2

is also Gaussian with mean 0 and variance at most p
Applying a Chernoff bound (Lemma [5)) to this random variable, gives that for any v > 0,

2
N —p
Pr(|Fi(t) — 8i()] >] < 2exp <4L(W+ o 1)2> |
We wish to bound this probability by S/5L. Solving this inequality for ~ yields v >
\/4L(W+1)(IOgT:1)2log(IOL/ﬁ). Since L = [log7T] < logT + 1, then choosing v =
\/ 4W+1)(0g T+1)* log(10(log T+1)/B) 571 satisfy the inequality.]
p

Lemma 12 (Bounded blocklist size). Suppose ob = false. Fiz a timestep t € [T]. With probability
at least 1 — /5, the size of the blocklist B is bounded by 3T/*log(T'/3L/B), where L = [log T].

Proof. The size of the blocklist is non-decreasing since elements are never removed, so it is sufficient
to upper bound the final size of the blocklist after T" timesteps.

Define the random variable Y; to be 1 if the j-th arrival in the stream is blocklisted and 0 if
otherwise. Then Y = EZT: ;Yj is an upper bound on the size of the blocklist (because the arrivals

: copin o i o log(T/3L/B)
may be updates of the same element). The sampling rate for blocklisting is p = =, SO
Y ~ Bern(log(:;;#) and E[Y] = %W = T'/310g(T"/3L /). Applying a multiplicative

Chernoff bound (Theorem with n = 2 yields:
Pr [Y > 371/3 1og(T1/3L/ﬁ)] < exp (—T1/3 log(Tl/?’L/ﬁ))

e would like to bound this probability by 8/5, which occurs when og(—3—) = log(3). 18
W 1d like to bound this probability by 3/5, which hen T1/31 Tlg’L log(%). Thi
inequality will clearly hold if TV/3L = T'/3[log T'] > 5, which is true for 7' > 8. O

D Omitted Proofs from Section [5

D.1 Proof of Theorem [14]

Theorem 14. For any even integer W > 0, and any integer v > 0, let Ay (resp., Aoec) be an
algorithm for blocklistgi;p(W) (resp., blocklistocc(W)) such that, given an arbitrary stream x of
length T', with probability at least 1 — B, has no false negatives and has at most r false positives.
Then algorithm A, and Aoee use space at least:

T wT
(1-5)- <log(1 —-B)+ ﬁlog w))

Proof. We now define a random process defining a stream distribution that is simultaneously hard
for the the problem of blocklistg;p(W) and for blocklistocc(W). For notational convenience, set
n="T/2, and m =n/W = T/(2W). For simplicity, we assume T, W such that n, m are integers.

Let the element universe be U = [n], over which we assume there is a total order. We define a
distribution of problem instances with the following process:

e A uniformly random set X C U of size m is sampled.

38

e Generate the first n = T'/2 timesteps ensuring that all elements in X have W flippancy and
W occurrency.

e Then generate the second n = T'/2 timesteps ensuring that all elements in ¢/ are inserted once.

Define a stream z(X) to be a deterministic function of X as follows. For the first half, all
updates related to each element in X appear consecutively and in the total order. Each element
u € X has exactly W updates, alternating W/2 times between one insertion and one deletion of
u; this results in both W flippancy and W occurrency for all u € X at the end of the first half of
the stream. Then, the second half of the stream has one insertion of each element in U, appearing
according to the total order.

It is easy to see that the correct output for this stream in both the blocklistgp (W) and
blocklistocc (W) problems is to always output 0 in the first half, and to output 1 in the second half
only for elements in X: o*(x(X)); =0 for t <n and o*(2(X))s =1iff 2 € X and t > n + 1.

We want to show a space lower bound for an algorithm Ay, (resp., Aqe.) that will satisfy the
conditions of no false negatives, and at most r false positives, with probability at least 1 — 8 over
this distribution, for the blocklistgip(W) (resp., blocklistoec(W)) problem. The proof proceeds
identically for both problems, so we prove it only for A ;).

Without loss of generality, we assume Ay, is deterministic, since for any randomized algorithm,
there will exist a random seed to achieve no worse guarantee on the considered input distribution.

We prove this space lower bound via an information theory argument (see Section for
information theory basics) by considering three random variables in addition to X:

e S: A random variable representing the memory state of algorithm Ay, after observing the
first n = T'/2 timesteps.

e Y: The set of elements with an output 1 in the second half of the stream by algorithm A;,.

e P: An indicator variable that is 1 if Ay, has no false negatives and at most r false positives,
and 0 otherwise. By definition we know Pr[P =1] > 1 — §.

Since the algorithm Ay, is deterministic, then S,Y, P are all deterministic functions of X,
since the stream itself is a deterministic function of X. Since algorithm Aj;;, does not learn new
information in the second half of the stream — since the second half of the stream is the same for all
streams — then Y is a deterministic function of S.

To start, the maximum size of S can be lower bounded by its entropy H(S). Then H(S) can
be further lower bounded by the mutual information between the input secret X and the random
variable Y, which is part of algorithm Ay;,’s output, conditioned on P. This can be seen using
inequalities from Fact

S| = H(S) = H(S|P) = I(X; 5|P) = I(X;Y|P).

Next, we apply the definitions of condition mutual information and mutual information:

I(X;Y|P)=Pr[P=1]-I(X;Y|P=1)+Pr[P =0]- I(X;Y|P =0)
>Pr[P=1]-I(X;Y|P =1)
=Pr[P=1]-(HX|P=1)— H(X|P=1,Y)).

39

For H(X|P = 1), since Ay is deterministic and Pr[P = 1] > 1 — 3, we know that X|P =1 is
distributed uniformly across at least (1 — 3) - (Z) sets of universe elementsﬂ7 and therefore,

H(X|P=1)>log ((1 - B)- (;)) -

Next we analyze H(X|P = 1,Y). Conditioned on P = 1, by the no false negatives requirement,
we know X CY, and by at most r false positives, we know |Y| < m + r. Therefore, for any y such
that Pr[Y = y|P = 1] > 0, it must be that |y| < m + r and that conditioned on P =1 and Y =y,
X is a subset of y of size m. Therefore X can take at most (m+r) different values. By Fact |l

H(X|P=1Y =y) < log (m”)
m

and
m-+r
H(X|P=1Y) PrlY =y|lP=1]- HX|P=1,Y =y) <l .
(X : CE[Y =y |- H(X]| : y)_0g< m>
yCn]

Putting everything together:
|S| > H(S) > I[(X;Y|P)>Pr[P=1]-(HX|P=1)—H(X|P=1,Y))

ex0-- () ("))

-
Elog) + log (mn+ ><T)(7>L< —(WIL) er_ f) (: _TZ J(rrll 1))
-

1 1 n
0} +m0
g g r

T WT)

1 - -
og(1 oW 8 T oy

D.2 Proof of Corollary

Corollary 15. With probability 1 —25 and when |U| = poly(T), Algorz'thm with ob=false reports no
false negatives and r = 2T/3 log(T/?[log(T)1/B) false positives for the problem blocklistece(W)
for W = T?/3, while using space O(T*/3 - polylog(T/B)) -poly(%)).

Proof. For the space complexity of Algorithm (1, Theorem [13| says that when || = poly(T") and
ob=false, then with probability at least 1— /3, Algorithrnuses space O(T'/3.polylog(T/3)) -poly (-)
For the claim that Algorithm [I] has no false negatives with high probability, Lemma
Appendix shows that when ob = false, with probability at least 1 — /L, the maximum
occurrency of the stream produced from the blocklisting is at most T2/3. Since Algorithm [1 I uses
W = T?/3, then with probability at least 1 — 3 /L, Algorithm I will have no false negatives, since it

"To see this, first observe that P(X) = 1 partitions the input space according to the event that .Af;, has no false
negatives and at most r false positives. Let R denote the size of the support for X|P = 1. Then, since X is uniformly

chosen, Pr[P(X) = 1] > 1 — 8 means that % > 1— (3, and therefore R > (1 —3)- (")

40

will never allow elements with occurrency larger than W = T%/3 to persist without being blocklisted.
Plugging in the value of L = [log(7T)], note that 3/[log(T")] < /2, therefore with probability
1 — /2, Algorithm (1] will have no false negatives.

To see the false positive bound, let X; be an indicator random variable where X; = 1 if
the element at timestep ¢ is a false positive in Algorithm , and let X = Z?:l X;. Recall
that Algorithm (1| samples elements for the blocklist with probability p = bg(]%é# at each
occurrence. Note that Pr[X; = 1] = Pr[(z; € B) N (x; < W)] < Pr[(z; € B)] = p, so then
E[X] =37 Pr[X; =1 < T-p=TY3log(T"/3L/B). Applying a multiplicative Chernoff bound
(Theorem with n = 1 yields:

T/3/3
Pr[X > 2T 3log(TY3L/B)] < exp(—(T"/3/3) log(T'/L/B)) = (Tl’fgL> < B/2.

T1/3/3
To see the last inequality, we first plug in L = [log(T')], so we wish to show ()
We observe numerically that this holds for T" > 8.
Taking a union bound over the failure probability from the space complexity, false positive, and

false negative bounds, then with probability 1 — 23, Algorithm [I|solves the blocklist,..(1¥) for the
desired r and space conditions. O

< B/2.

B
T1/3[log(T)]

41

	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Estimating the Number of Distinct Elements
	Algorithm and Description
	Main Results
	KSET data structure
	Binary Mechanism for the Count Distinct Problem

	Analysis of CountDistinct
	Privacy
	Accuracy
	Space complexity

	Blocklisting Problem: Space Upper and Lower Bounds
	Lower bound
	Upper bound for occurrency blocklisting

	Conclusions
	Additional Tools
	Concentration bounds
	Information theory basics

	Additional details on KSET
	Omitted Proofs from Section 4
	Proof of Lemma 2 and Helper Lemma
	Helper Lemma

	Proof of Lemma 3 and Helper Lemmas
	Helper Lemmas

	Proof of Theorem 12 (Accuracy)
	Proofs of Helper Lemmas for Theorem 12

	Omitted Proofs from Section 5
	Proof of Theorem 14
	Proof of Corollary 15

