
ar
X

iv
:2

50
5.

23
26

6v
1 

 [
cs

.C
R

] 
 2

9 
M

ay
 2

02
5

1

Disrupting Vision-Language Model-Driven
Navigation Services via Adversarial Object

Fusion
Chunlong Xie, Jialing He, IEEE Member, Shangwei Guo, IEEE Member, Jiacheng Wang, IEEE Member,

Shudong Zhang, Tianwei Zhang, IEEE Member, Tao Xiang, IEEE Senior Member,

Abstract—We present Adversarial Object Fusion (AdvOF), a novel attack framework targeting vision-and-language navigation (VLN)
agents in service-oriented environments by generating adversarial 3D objects. While foundational models like Large Language Models
(LLMs) and Vision Language Models (VLMs) have enhanced service-oriented navigation systems through improved perception and
decision-making, their integration introduces vulnerabilities in mission-critical service workflows. Existing adversarial attacks fail to
address service computing contexts, where reliability and quality-of-service (QoS) are paramount. We utilize AdvOF to investigate and
explore the impact of adversarial environments on the VLM-based perception module of VLN agents. In particular, AdvOF first
precisely aggregates and aligns the victim object positions in both 2D and 3D space, defining and rendering adversarial objects. Then,
we collaboratively optimize the adversarial object with regularization between the adversarial and victim object across physical
properties and VLM perceptions. Through assigning importance weights to varying views, the optimization is processed stably and
multi-viewedly by iterative fusions from local updates and justifications. Our extensive evaluations demonstrate AdvOF can effectively
degrade agent performance under adversarial conditions while maintaining minimal interference with normal navigation tasks. This
work advances the understanding of service security in VLM-powered navigation systems, providing computational foundations for
robust service composition in physical-world deployments.

Index Terms—Vision-and-Language Navigation, Adversarial Attack, Vision-Language Model
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1 INTRODUCTION

Service computing has advanced intelligent automation
across cloud [1], edge [2], and IoT platforms [3], with
Vision-and-Language Navigation (VLN) [4] emerging as a
critical component in real-world applications such as smart
cities, autonomous delivery, and assistive robotics. VLN
agents interpret human instructions and visually perceive
environments to navigate unfamiliar environments. Typical
VLN approaches rely on representation learning [5], rein-
forcement learning [6] and imitation learning [7], yet they
often struggle with generalization in complex environments
due to limited data and task-specific training. Recent ad-
vancements and applications in foundational models, par-
ticularly Large Language Models (LLMs) [8]–[10] and Vision
Language Models (VLMs) [11]–[15], have addressed these
limitations by significantly enhancing generalization capa-
bilities of VLN agents [16]–[19]. By integrating foundation
models into core VLN modules [20], [21], agents can better
understand natural language instructions and perceive com-
plex visual environments. Specifically, LLMs facilitate high-
level interaction and task planning [18], [22], while VLMs
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“There's a fire!  Quickly grab the fire extinguisher!”
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User fire 
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Fig. 1. Attacking a VLN agent with the adversarial object. The VLN
Agent misidentifies the adversarial object (original “chair”) as the fire
extinguisher.

enhance low-level perception through improved feature ex-
traction [11] and scene recognition [23]. The integration of
foundation models is gradually shaping a new deployment
paradigm for VLN agents.
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However, this integration of foundation models could
raise new security risks for VLN agents, particularly ad-
versarial attacks [24]–[28]. Existing research has revealed
robustness problems in foundation models through adver-
sarial attacks. For example, attackers can manipulate LLMs
to respond with unintended or harmful contents using
adversarial suffix [29], [30] or jailbreak prompting [31], [32].
Similarly, adversarial perturbations added to input images
can mislead VLMs into generating specified outputs [33],
[34]. Building on these vulnerabilities, recent studies have
identified robustness issues in the interaction and plan-
ning modules of LLM-powered agents [25], [26]. Such at-
tacks typically exploit inherent flaws in LLMs by crafting
malicious prompts that induce harmful agent behaviors.
For instance, [25] proposed a GCG-like [29] optimization
strategy to generate adversarial prompt suffix that mis-
leads the planning module, evaluating the robustness of
LLM-powered agents. [26] similarly optimized adversarial
suffixes appended to harmful instructions, which jailbreak
LLM-powered agents into producing executable harmful
policies.

Adversarial attacks targeting VLM-powered agents pri-
marily focus on misleading the perception module. As il-
lustrated in Fig. 1, attackers can generate a 3D adversarial
object in the environment, which misleads object percep-
tion (e.g., causing a “chair” to be misclassified as a “fire
extinguisher”). Consequently, human instructions are incor-
rectly executed, leading to erratic agent behaviors. Thus,
evaluating the robustness of VLM-powered VLN agents is
critical. However, existing 2D adversarial attacks towards
VLMs and 3D adversarial attacks on VLN agents face the
following challenges for such evaluations. 1 2D attacks
suffer from attack misalignment: Traditional 2D adversarial at-
tacks typically introduce pixel-wise perturbations or patch-
based modifications to images. However, VLN agents op-
erate in a 3D environment and perceive their surround-
ings through dynamic 2D images. This discrepancy leads
to a fundamental misalignment: adversarial perturbations
and patches designed for 2D perception may not align
well with real-world 3D spatial constraints, limiting their
effectiveness in practical scenarios. Therefore, adversarial
objects must be constructed to align with physical properties
while retaining attack efficacy. 2 2D attacks exhibit multi-
view inefficiency: 2D attacks that inject 2D-space adversarial
perturbations into images, render them effective only under
specific, fixed views. Since VLN agents perceive objects in
a 3D environment from diverse and unseen views, these
adversarial perturbations effective in a static 2D image may
become ineffective when the agent observes the same scene
from a different angle or under varying lighting conditions.
Consequently, it is crucial to generate the adversarial object
can consistently attack VLN agents, adapting to multiple
views across varying navigation scenarios. 3 3D attacks
face cross-modal inefficiency: Traditional 3D attacks [35], [36]
against VLN agents primarily target vision models like
VGG [37], R-CNN [38], and ResNet [39]. These attacks,
tailored for traditional visual models, face challenges when
applied to VLM-powered agents due to the heterogeneity
across different modalities [33], [34].

To address the aforementioned challenges, we propose
a novel attack, Adversarial Object Fusion (AdvOF), which

generates adversarial objects capable of deceiving VLM-
powered VLN agents. AdvOF consists of three compo-
nents, 1) Aligned Object Rendering: To solve the misalign-
ment between 3D adversarial manipulation and 2D scene
perception, we firstly aggregate object locations in 2D space
using object detection and segmentation models. We then
align these locations in 3D space to recognize isolated
objects, enabling object-specific rendering from 3D space
to 2D images; 2) Adversarial Collaborative Optimization: To
realize the cross-modal attack consistency, we design a col-
laborative optimization that captures universal adversarial
features by constraining the similarity between visual and
textual embeddings. Additionally, we combine an object-
aware regularization term to preserve the physical plausi-
bility of adversarial objects; 3) Adversarial Object Fusion: To
achieve reliable attack across varying and unseen views, we
optimize the adversarial object across multiple views based
on their importance weights and incorporate an iterative
updating procedure to ensure stability in the optimization.
This fusion guarantees the attack effectiveness across differ-
ent VLN tasks and enhances the attack transferability across
diverse VLN environments.

Compared to existing 2D attacks (MF [34] and Adv-
CLIP [33]) and 3D attacks (ST [35] and TT3D [36]), AdvOF
can achieve SOTA attack performance across four VLN
agents (Vlmaps [16], Cows [17], CF [19], ORION [18]). Our
main contributions are summarized as follows:

• We formulate a new problem that generates adver-
sarial objects towards VLN agents.

• We develop a novel attack, AdvOF, successfully
generating the adversarial object that can multi-
viewedly fool agents to percept it with the adversar-
ial label. This adversarial object in the environment
obstructs the execution of the user instruction.

• We conduct empirical validation of AdvOF’s per-
formance across multiple VLN agents and datasets,
demonstrating its superiority in attacking effective-
ness and multi-view robustness.

2 RELATED WORK

2.1 VLN Agents With Foundation Models

Existing foundation models have demonstrated exceptional
capabilities across several dimensions, including in-context
learning [8], reasoning [40], and multi-modal process-
ing [11]. VLN agents leveraging these models have similarly
advanced, adopting novel implementation paradigms and
achieving substantial performance gains.
Large Language Models for VLN Agents. LLMs have
shown promising capabilities in navigation, allowing VLN
agents to follow interactive instructions and execute com-
plex planning tasks. LEO [41] leveraged extensive knowl-
edge from LLMs to excel in 3D perception, reasoning, and
action tasks, training on large-scale 3D datasets and demon-
strating remarkable proficiency across diverse real-world
applications. LLM-Planner [42] introduced a hierarchical
framework, where high-level plans composed of sub-goals
are generated and subsequently refined into detailed actions
by a low-level planner, enabling more adaptable and goal-
oriented navigation strategies. NaviLLM [43] transformed
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embodied navigation tasks into structured generation prob-
lems via schema-based instructions, enabling generalization
across diverse navigation scenarios with enhanced flexibil-
ity and consistency.
Vision Language Models for VLN agents. With ad-
vancements in multi-modal representation learning, VLMs
have shown remarkable performance in scene perception
and map construction for VLN agents, achieving impres-
sive zero-shot capability across diverse navigation tasks.
Cows [17] investigated language-driven zero-shot object
navigation, adapting open-vocabulary models to enable
robots to locate objects specified through language with-
out task-specific training. CF [19] introduced an open-set,
multi-modal 3D scene representation that integrates pixel-
aligned features from pre-trained foundation models into
3D maps via SLAM, enabling zero-shot spatial reasoning
across diverse queries. ZSON [44] utilized the vision en-
coder of CLIP [11] to encode target images, trained via a
reinforcement learning framework. Vlmaps [16] developed
a spatial map representation that combines VLM features
with 3D reconstructions, allowing robots to autonomously
build maps from video feeds and support complex natural
language navigation goals. ONION [18] leveraged multiple
foundation models, enabling robots to navigate to per-
sonalized objects in unknown environments through user
interaction.

2.2 Adversarial Attack

2D Adversarial Attacks. Adversarial attacks on foundation
models have been extensively studied, revealing strategies
to exploit model vulnerabilities. Textual adversarial attacks
can mislead models into generating incorrect outputs or
classifications [45], [46]. Common techniques include token
manipulation [47], gradient-based optimization [29], and
jailbreak prompting [31]. Visual adversarial attacks typically
involve perturbing images to induce harmful content gen-
eration, often enhanced via proxy models [48] or model
ensembles [49]. For example, AdvClip [33] designed a uni-
versal adversarial patch targeting pre-trained VLMs, capa-
ble of compromising diverse downstream models. Similarly,
MF [34] introduced targeted adversarial examples against
VLMs by leveraging transfer attacks with black-box queries.

In particular, some adversarial attacks have focused on
LLM-powered agents. EIRAD [25] developed an embodied
attack dataset for robustness evaluation, generated via the
GCG algorithm [29] with novel prompt suffix initialization.
Similarly, NPS [28] constructed an adversarial suffix attack
targeting outdoor navigation agents, misleading them into
navigating in incorrect directions. POEX [26] designed a
policy-executable red-teaming framework capable of inject-
ing universal and transferable adversarial suffixes into plan-
ning modules, inducing embodied AI systems to execute
harmful policies.
3D Adversarial Attacks. 3D adversarial attacks introduce
physical perturbations to disrupt the inference of DNN-
based models [50]. Current 3D attacks are mainly im-
plemented through gradient-based optimization [51], [52],
model-based generation [53], [54], and mesh-based transfor-
mations [55], [56]. For example, [51] proposed robust ad-
versarial objects against point cloud models in the physical

world. [54] designed an arbitrary-target attack framework
using a label-guided adversarial network based on graph
patch GAN architecture [57]. [56] generated universal ad-
versarial camouflage through neural texture rendering, in-
corporating stealthiness and naturalness constraints. ST [35]
introduced 3D spatiotemporal perturbations that exploit
temporal interaction history and spatial object properties,
enhancing attack efficacy through a trajectory attention
module. TT3D [36] produced transferable targeted 3D ad-
versarial examples by reconstructing textured meshes and
leveraging dual NeRF-space optimization to improve black-
box transferability and visual naturalness.

However, these 2D and 3D adversarial attacks encounter
limitations in generating adversarial objects for VLN agents.
2D adversarial attacks cannot perturb 3D space and exhibit
limited effectiveness when executing attacks from multi-
ple or unseen views. 3D adversarial attacks primarily tar-
get point cloud networks (e.g., PointNet [58] and Point-
Net++ [59]) and traditional detection models (e.g., Fast R-
CNN [60] and YOLO [61]), which struggle to adapt to VLMs
with cross-modal features and complex architectures. Moti-
vated by these problems, this paper focuses on designing a
novel attack framework, capable of generating effective and
multi-view adversarial objects targeting VLN agents.

3 PROBLEM STATEMENT

This section describes the system model of VLN agents and
outlines the threat model associated with an adversarial
environment that contains adversarial objects. We then for-
malize the definition of adversarial objects targeting VLN
agents.

3.1 System Model
We consider a VLN agent operating in a continuous envi-
ronment [62], equipped with LLMs and VLMs. The agent
executes primitive actions (e.g., move forward, turn left)
to navigate toward a specified goal with a physical space,
guided by natural language instructions. A VLN agent pri-
marily comprises modules for scene perception, instruction
interaction, object localization and goal action. The system
architecture is illustrated in Fig. 2.
Instruction Interaction. The VLN agent employs an inter-
action module based on LLMs to interpret user instructions,
extracting object landmarks and associated actions. The user
instruction is denoted as L = ⟨t0, t1, . . . , tL⟩, where ti
represents a single word token. Through querying the LLM,
the agent identifies object landmarks ⟨o1, o2, . . . , om⟩ from
L. For each landmark oi, the LLM generates a corresponding
action αi, guiding the agent to the target landmark.
Scene Perception. The VLN agent constructs a point cloud
using RGB and depth images to model its environment.
Using these RGB-D images and the point cloud, the agent
incrementally builds a semantic map that incorporates vi-
sual features extracted via VLMs. This map is represented
as M ∈ RH×W×C , where H and W denote the height
and width of the map, and C corresponds to the feature
dimensionality of the VLM.
Object Localization. After extracting object landmarks from
the interaction module, the agent locates their correspond-
ing positions in the scene. It maintains a grounding label
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Fig. 2. Vision-and-Language navigation agents with adversarial environment.

list and computes the grounding label feature using the
VLM’s text encoder. The agent calculates similarity scores
between each grounding label and the current semantic map
M, determining the target object location by selecting the
highest-score map grid.
Goal Action. The agent executes goal-directed actions based
on the identified object location and associated action within
the predefined action space A, including rotate, move, and
stop. If the target landmark is not detected within the cur-
rent camera view, the agent initiates scene exploration [63].
Using the provided distance and angle information, the
agent executes each action and, after each step, calculates its
proximity to the object to determine whether it has reached
the target location.

3.2 Threat Model

Attack Scenario. While recent works have applied foun-
dation models to enhance VLN agent performance under
normal conditions [17], [18], studies reveal that these mod-
els remain highly sensitive to even minor input perturba-
tions [64]. As illustrated in Fig. 2, we examine an adversarial
scenario targeting the scene perception module to disrupt
instruction execution. Specifically, an adversary could intro-
duce specially crafted objects to create an adversarial envi-
ronment. When deployed in such an environment, the VLN
agent misclassifies these adversarial objects into attacker-
defined labels, leading to erroneous scene perception. Con-
sequently, these errors propagate to the object localization
and goal-oriented action modules, ultimately resulting in
failed task execution.
Attack Goals. The attack targets scene perception modules
powered by VLMs by introducing adversarial objects. The
adversarial objects are designed to mislead the VLM into
mislabeling them, distorting the semantic map and prevent-
ing accurate localization of target objects. As a result, the
agent fails to reach the target object, thereby disrupting task
completion. The following objectives outline a successful
adversarial attack towards VLM-powered VLN agents:

• Object-Specific Control: The attack must target specific
objects without affecting others in the environment.
The adversary can select any object as a target, ensur-
ing that the impact is contained within the targeted
object area.

• 3D-2D Consistency: The adversarial object, positioned
in 3D space, should maintain its deceptive effect from
different 2D views captured by the agent’s camera.

This ensures the attack consistently impacts both
the agent’s 3D understanding and 2D perception,
leading to misinterpretation of the adversary object’s
identity.

• Multi-View Robustness: The adversarial object should
deceive the agent from multiple views, ensuring
adaptability to various user tasks and instructions.

Adversary’s Capabilities. The adversary’s capabilities can
be categorized as: 1) Environment Manipulation: The adver-
sary has access to the system environment and can collect
environmental data to support the attack. They can modify
target objects (e.g., Painting [65], 3D printing [66]) to create
adversarial counterparts, aligning with standard environ-
ment modeling and scene perception processes. 2) Agent
Access: Attacks can be carried out in either a white-box or
black-box setting. In the white-box scenario, the adversary
has access to the VLM of the VLN agent. In the black-box
scenario, the adversary lacks knowledge of the agent’s VLM
and uses proxy agents to craft the attack, transferring it to
the target agent.

3.3 Problem Formulation
Definition 1 (Adversarial Object Against VLN Agents).
Given a victim object O with the label T v in 3D space,
the goal is to generate a corresponding adversarial object
Oadv such that the VLN agent perceives Oadv with an
adversarial label T t when observed from multiple views V .
The process of generating adversarial objects is formulated
as an optimization problem:

arg min
Oadv
L3D(Oadv, O) + Ev∈VL2D(Oadv

v , T t, θ), (1)

where θ presents the parameters of the VLM employed by
the VLN agent; L3D denotes a loss function that enforces
similarity in physical property between O and Oadv in 3D
space, ensuring that Oadv resembles O in appearance; L2D

denotes a loss function that encourages the VLM to perceive
Oadv

v as the adversarial label T t in each 2D view v.

This optimization minimizes physical differences be-
tween O and Oadv while maximizing the misclassifications
of Oadv to T t across multiple views V .

4 METHODOLOGY

4.1 Motivation
Designing an effective adversarial object against VLN
agents within 3D environments presents unique challenges
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Fig. 3. Pipeline for generating adversarial environment towards VLN agents: It optimizes the adversarial object, transforming a normal environment
into an adversarial one. Aligned object rendering aligns the victim object in both 2D and 3D locations, rendering 2d images across different views.
Collaborative optimization jointly matches features between the adversarial and victim objects across 2D and 3D spaces. Adversarial object fusion
assigns importance weights to different views, contributing to generate adaptable adversarial object.

due to the integration with foundation models. We identify
three main challenges:

1) Aligning Adversarial Objects Across 3D and 2D
Spaces. VLN agents perceive their environment through
2D images while navigating in 3D space, resulting in a
spatial misalignment between 3D adversarial manipulations
and the agent’s 2D perception. Traditional 2D adversarial
attacks on VLMs, often using pixel-level noise or patch-
based perturbations [33], do not address this misalignment.

2) Ensuring Attack Robustness Across Views and
Tasks. VLN agents frequently operate under varying user
instructions, requiring adversarial objects to maintain effec-
tiveness across different views and tasks. This adaptability
is challenging due to the dynamic nature of foundation
models, which process varying visual perspectives and in-
struction sets.

3) Maintaining Attack Effectiveness Among Different
Modalities. Compared to typical 3D adversarial attacks
tailored for visual models, attacks targeting VLMs need to
maintain the attack effectiveness between visual and textual
modalities.
Pipeline. To solve these challenges, we propose a novel
adversarial attack framework AdvOF (Adversarial Object
generation based on view Fusion), targeting VLN agents
powered by VLMs. Our method consists of three core
components: Aligned Object Rendering, Adversarial Col-
laborative Optimization, and Adversarial Object Fusion. We
provide the attacking pipeline in Fig. 3.

4.2 Aligned Object Rendering
Building on Definition 1, generating a successful adversar-
ial object requires first identifying the victim object O and
subsequently constructing the initial adversarial object Oadv

within the environment.
Victim Object Alignment. To detect the victim object, we
leverage a VLM model for rapid open-set object detection,
querying whether the victim object O with the label T v is
present in a given scene Si:

Sv ← {Si|I(V LM(Si, T
v) = 1, Si ∈ S}, (2)

where S denotes the set of all environment scenes. We then
apply Grounding DINO [67] for precise object detection and
SAM [23] for object segmentation:

(MASK,SCORE)← {SAM(GD(Sj , T
v)), Sj ∈ Sv},

(3)
where MASK captures the spatial locations of victim ob-
jects, and SCORE represents the segmentation confidence.
To consolidate fragmented detections into discrete objects,
we back-project MASK into 3D space and cluster locations
using DBSCAN [68].

MASK3D
back−project←−−−−−−−−−MASK,

O
select←−−−− DBSCAN(MASK3D). (4)

A randomly selected cluster from the output is designated
as the victim object O in 3D space for the adversarial attack.
Adversarial Object Render. Since VLN agents with VLMs
process only 2D observations, we create the adversarial ob-
ject Oadv by defining a 3D perturbation δadv and rendering
adversarial 2D images based on this perturbation.

Definition 2 (3D Perturbation for Adversarial Object
Generation). Given a victim object O, a 3D perturbation
δadv is point cloud-wise noise with same shape as O.
The adversarial object is generated by adding δadv to O:
Oadv ← O + δadv . The perturbation is constrained by an
upper bound, ||δadv||p ≤ ϵ.

We then render the adversarial object into 2D space.
Assuming the environment camera has an intrinsic matrix
kint and an extrinsic matrix kext, the rendering function
R : Ov ← R(O, v) projects the object on to a specific view
v:

PC = kext ·O,

Ov = z−1 · PC ·Kint, (5)

where z is the depth value for view v, and Ov is the
rendered 2D projection. The optimization problem based on
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the rendering function is formulated as:

argmin
δadv
L3D(Oadv, O) + Ev∈VL2D(Ov + δadvv , T t, θ),

s.t. δadvv ← R(δadv, v). (6)

The 2D adversarial perturbation δadvv is derived via the same
rendering process R. The resulting adversarial image in 2D
space is defined as Ov + δadvv .

4.3 Adversarial Collaborative Optimization
This section explains the design of L3D and L2D in the
above optimization problem, based on the adversarial col-
laborative optimization. This approach optimizes regular-
ization across 3D and 2D spaces, capturing joint visual and
textual modalities within the VLM.
Geometric Feature Regularization. The purpose of L3D is
to maintain the physical property similarity between the
adversarial object Oadv and the victim object O. First, we
constrain the RGB values to maintain color similarity:

Lcolor(O
adv, O) = ||Oadv −O||2. (7)

For geometric shape similarity, we utilize Chamfer distance
to align the 3D structure:

LCD(Oadv, O) =
∑

x∈Oadv

min
y∈O
||x− y||2

+
∑
y∈O

min
x∈Oadv

||y − x||2. (8)

Consequently, these components define the 3D loss:

L3D(Oadv, O) = Lcolor(O
adv, O) + LCD(Oadv, O) (9)

Masked VLM Feature Regularization. The objective of L2D

is to mislead the VLM into misclassifying the adversarial
object. Untargeted attacks involve preventing the VLM from
identifying the adversarial object as the original victim ob-
ject. A naive optimization approach minimizes the similarity
between visual features of rendered adversarial and victim
object images:

LI2I
θ (Ov, δ

adv
v ) = F(θ(Ov + δadvv ), θ(Ov)), (10)

where F is the cosine similarity function and θ represents
VLM parameters. However, whole-image optimization is
overly sparse, failing to focus on adversarial object regions.
Instead, we propose optimizing within the adversarial ob-
ject mask. To extract region-specific features, we introduce a
masked feature operatorM:

Mθ(Ov,mask) = Flat(θ(Ov)⊙mask), (11)

where Flat flattens features and ⊙ denotes element-wise
multiplication. This reformulate LI2I :

LI2I
θ (Ov,δ

adv
v ,mask) =

F(Mθ(Ov + δadvv ,mask),Mθ(Ov,mask)). (12)

To enhance cross-modal attack efficacy, we regularize the
alignment between adversarial visual features and victim
object text embeddings T v :

LI2T
θ (Ov,δ

adv
v ,mask, T v)

= F(Mθ(Ov + δadvv ,mask), θ(T v)) (13)

Empirically, constraining only the masked region disturbs
background predictions (Fig. 4(d)). To preserve background
consistency, we add a regularization term:

LB2B
θ (Ov,δ

adv
v ,mask)

= F(Mθ(Ov + δadvv ,mask),Mθ(Ov,mask))
(14)

Thus, the 2D loss function of the untargeted attack in view
v is then represented as:

LUT
2D = LI2I

θ (Ov, δ
adv
v ,mask)

+ α · LI2T
θ (Ov, δ

adv
v ,mask, T v)

− β · LB2B
θ (Ov, δ

adv
v ,mask) (15)

where α and β are balancing coefficients.
For targeted attacks, the goal is to misclasify O as adver-

sarial label T t. To achieve this, we retain a target image It,
with maskt for attack target T t. Thus, the loss function of
LI2I
θ for target attacks is revised as:

LI2I
θ (Ov,δ

adv
v ,mask, It,maskt) =

F(Mθ(Ov + δadvv ,mask),Mθ(It,maskt)). (16)

Similarly, LI2I
θ aligns adversarial features with T t:

LI2T
θ (Ov,δ

adv
v ,mask, T t)

= F(Mθ(Ov + δadvv ,mask), θ(T t)) (17)

Consequently, the 2D loss function of the targeted attack in
view v is represented as :

LT
2D = −LI2I

θ (Ov, δ
adv
v ,mask, It,maskt)

− α · LI2T
θ (Ov, δ

adv
v ,mask, T t)

− β · LB2B
θ (Ov, δ

adv
v ,mask) (18)

Exemplary Illustration. Fig. 4 demonstrates the optimiza-
tion outcomes of targeted attacks using different regulariza-
tion components. Notably, our proposed formulation LT

2D

effectively shifts adversarial object predictions from the
victim label to the target label while preserving perceptual
consistency in background regions.

4.4 Adversarial Object Fusion

In practical applications, adversarial objects must maintain
effectiveness across diverse views. Definition 1 formalizes
this requirement as a uniform update across all views
V . However, views have varying levels of importance for
the adversarial object. For example, incomplete or distant
views are given lower weights, while complete or close-
up views are assigned higher importance. Additionally,
adjacent views frequently overlap when observing the same
adversarial object. Therefore, a view-aware collaborative
optimization strategy becomes critical.

We utilize SCORE of the grounding model to represent
the importance weight for each scene view. Besides, we
also compute the pixel count N of the adversarial object
to indicate the importance weight wv :

wv =
w∑

v∈V w
,where w = scorev +Nv/N (19)
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Fig. 4. Visualization of optimization results under different regularization terms for the target attack (table → alarm).

Algorithm 1: Adversarial Object Fusion.
Input : T,V,R,Max
Output: Cadv

1 (MASK, SCORE)← Object segmentation via Eq. 3
2 O ← Object alignment via Eq. 4
3 δadv ← Initialize the 3D adversarial perturbation
4 for v ∈ V do
5 wv

v←−W,maskv
v←−MASK

6 for k in Max do
7 // Local Update
8 Render: δadvv ← R(δadv, v)
9 Optimize: collaborative optimization via Eq.

18
10 Update: δadv wv←−− δadvv

11 // Consistency Determination
12 Judge the update for v − 1 with wv

13 // Fusion Determination
14 Judge the perception for v − 1
15 Oadv ← O + δadv

16 return Cadv

TABLE 1
The setups of different VLN agents.

Agent Publication Simulator Dataset VLM

Vlmaps [16] ICRA’23 Habitat MP3D [69] Lseg [70]
Cow [17] CVPR’23 Habitat MP3D [69] Clip [11]
CF [19] RSS’23 Habitat HM3D [71] Clip [11]
ORION [18] ICRA’24 Habitat HM3D [71] Lseg [70]

This weighted approach modifies the optimization problem
as follows:

argmin
δadv
L3D(Oadv, O) + Ev∈V wv · L2D(Ov + δadvv , T t, θ).

(20)

To ensure stable multi-view updates, we propose an adver-
sarial object fusion process that iteratively fuses the adver-
sarial object across views, where a global perturbation δadv

is refined through iterative updates from local perturbations
for individual views.

The detailed algorithm of adversarial object fusion is
presented in Algorithm 1. In each iteration, the algorithm
renders a 2D perturbation δadvv from a 3D perturbation δadv

(line 8). The 2D perturbation δadvv is then optimized through
the collaborative optimization method described in Sec 4.3
(Line 9). Next, consistency is evaluated with the prior view

(a) MP3D, ID=5LpN3gDmAk7 (b) HM3D, ID=QaLdnwvtxbs

Fig. 5. The scene displayed on the habitat simulator.

TABLE 2
The instruction samples of different VLN agents.

Agents Instruction

Vlmaps
Go to the closest cushion first, then go to a chair nearby,
after that, go to a counter and in the end, navigate to a
table.

Cow Find a house plant near a coffee table.
CF A comfy place to sit and watch tv.

ORION Can you find a blue tower for me? It’s hanging on the
bar in the bathroom.

v−1 (Line 12). If the distance between the new perturbations
δadvv−1 and prior local perturbations δadv

′

v−1 is larger than a
consistency threshold µ1:

MSE(δadv
′

v−1 , δ
adv
v−1)) ≥ µ1, (21)

the local update is rejected, and the importance weight is
reduced before reattempting the collaborative optimization.
Following this, a fusion determination step assesses whether
the local perception aligns with the previous view’s fusion
(Line 14). If the discrepancy of these perceptions exceeds a
fusion threshold µ2:

|L2d(δ
adv′

v−1 )− L2d(δ
adv
v−1)| ≥ µ2, (22)

this local update is discarded, and the perturbation bound
is reduced before re-rendering. If the view fails to meet
these conditions within Max iterations, the fusion is rejected
for that view. By iterating through all views, the algorithm
robustly fuses local perturbations into a cohesive adversarial
object across views.

5 EXPERIMENTS

In this section, we first present the primary attack results
against various VLN agents compared to 2D and 3D base-
line attacks (Section 5.2). Next, we demonstrate the trans-
ferability of AdvOF across diverse image encoders, scene
datasets, and model architectures (Section 5.3). We then
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TABLE 3
The overall attacking performance of different methods on various VLN agents.The upper and bottom parts respectively show the performance

with and without attack objects.

Environment Method
Vlmaps Cow CF ORION

KPA ↓ SPL ↑ SR ↓ KPA ↓ SPL ↑ SR ↓ KPA ↓ SPL ↑ SR ↓ KPA ↓ SPL ↑ SR ↓

Attacked

Base 0.560 49.0 0.297 0.208 12.6 0.158 0.275 17.2 0.198 0.215 9.8 0.147
MF [34] 0.504 53.9 0.267 0.187 13.9 0.142 0.252 18.9 0.178 0.190 10.8 0.135
AdvCLIP [33] 0.448 58.5 0.240 0.165 14.9 0.127 0.225 20.3 0.162 0.171 11.7 0.115
ST [35] 0.392 64.0 0.208 0.148 16.2 0.109 0.193 22.0 0.138 0.149 12.7 0.105
TT3D [36] 0.331 67.8 0.184 0.125 17.7 0.096 0.163 24.2 0.117 0.125 13.8 0.087
AdvOF(Untargeted) 0.283 74.5 0.145 0.106 18.9 0.078 0.142 25.8 0.102 0.104 14.9 0.072
AdvOF(Targeted) 0.242 77.5 0.122 0.084 19.9 0.067 0.116 27.0 0.087 0.089 15.6 0.064

KPA ↑ SPL ↓ SR ↑ KPA ↑ SPL ↓ SR ↑ KPA ↑ SPL ↓ SR ↑ KPA ↑ SPL ↓ SR ↑

Normal

Base 0.480 58.0 0.218 0.192 17.3 0.114 0.251 21.2 0.157 0.204 11.7 0.121
MF [34] 0.404 67.1 0.187 0.161 20.0 0.099 0.217 24.1 0.131 0.176 13.4 0.104
AdvCLIP [33] 0.475 59.2 0.214 0.188 17.6 0.110 0.241 21.5 0.153 0.199 11.7 0.119
ST [35] 0.442 61.9 0.209 0.177 18.4 0.107 0.235 22.8 0.145 0.195 12.3 0.113
TT3D [36] 0.437 61.7 0.205 0.174 18.4 0.103 0.232 22.7 0.144 0.187 12.7 0.112
AdvOF(UnTargeted) 0.472 58.2 0.213 0.189 17.4 0.112 0.248 21.8 0.152 0.197 11.9 0.120
AdvOF(Targeted) 0.480 58.0 0.218 0.190 17.1 0.115 0.251 21.2 0.156 0.202 11.6 0.122

(a) No attack
(chair=0.44)

(b) MF (chair=0.41) (c) AdvCLIP
(chair=0.13)

(d) ST (table=0.33) (e) TT3D (table=0.54) (f) AdvOF (table=0.81)

Fig. 6. The adversarial examples visualization of different attacks (chair
→ table).

assess the robustness of the attack under potential defensive
mechanisms (Section 5.4). Finally, we perform parameter
analysis to evaluate the impact of critical modules and
hyperparameters (Section 5.5).

5.1 Environmental Setup
VLN Agents. We adopted four typical navigation agents us-
ing foundation models. 1) Vlmaps [16]: integrates language
grounding with visual observations through a spatial map
that fuses pre-trained visual-language features [70] with
a 3D reconstruction of the physical world; 2) Cow [17]:
introduces the PASTURE benchmark for language-driven
zero-shot object navigation, adapting zero-shot models to
a VLN task; 3) CF [19]: constructs an implicit scene model
based on clip [11] to strengthen instance identification and
semantic segmentation; 4) ORION [18]: proposes Zero-shot

TABLE 4
Attacking results towards perception modules across different VLN

agents.

Vlmaps Cow CF ORION

Acc Asr Acc Asr Acc Asr Acc Asr

Base 0.89 0.00 0.83 0.00 0.81 0.00 0.91 0.00
MF 0.71 0.15 0.74 0.06 0.69 0.12 0.83 0.08
AdvCLIP 0.56 0.34 0.60 0.32 0.61 0.35 0.68 0.26
ST 0.33 0.56 0.27 0.61 0.30 0.64 0.29 0.65
TT3D 0.29 0.70 0.21 0.76 0.20 0.78 0.26 0.71
AdvOF 0.04 0.92 0.05 0.91 0.02 0.93 0.05 0.94

Interactive Personalized Object Navigation, requiring robots
to navigate to personalized goal objects while engaging in
conversations with users.
Simulation Datasets and Environments. For each naviga-
tion agent, we followed the original simulator and dataset
settings as provided in the official repository. Table 1 details
the simulation environments, with dataset visualizations
presented in Fig. 5.

The simulator adopted in these navigation agents is
Habitat [72], enabling highly efficient photorealistic 3D sim-
ulation. The datasets used are Matterport3D (MP3D) [69]
and Habitat-Matterport 3D (HP3D) [71]. MP3D is an RGB-D
dataset with 90 building-scale scenes, and HM3D is a large-
scale dataset of 1,000 building-scale scenes.

For each navigation agent and dataset, we randomly
selected 20 scenes to construct the validation dataset. In each
scene, we randomly selected 10 objects as victim objects. For
each object, we randomly selected 10 different instructions.
The instructions collected in different navigation agents are
displayed in Table 2.
Baselines and Metrics. We adopted two SOTA adversarial
attacks to VLMs and two 3D adversarial attacks to tradi-
tional object detection models as the baselines. 1) MF [34]:
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Fig. 7. The adversarial object of different views. TV(black) → alarm(red).

evaluates the robustness of open-source large VLMs un-
der black-box conditions, where adversaries aim to mis-
lead the model into returning the targeted responses; 2)
AdvCLIP [33]: generates downstream-agnostic adversarial
examples based on cross-modal pre-trained encoders. 3)
ST [35]: studies adversarial attacks on embodied agents us-
ing spatiotemporal perturbations in dynamic environments.
4) TT3D [36]: creates transferable targeted 3D adversarial ex-
amples using NeRF-based optimization for improved black-
box transferability.

We evaluate task and attack performance using standard
object navigation metrics and adversarial attack measures:
1) Success Rate(SR): the fraction of episodes where the agent
executes STOP action within 1.0m of the target object; 2) Suc-
cess weighted by inverse path length (SPL): Success weighted by
the oracle shortest path length and normalized by the actual
path length. This metric points to the success efficiency of
the agent; 3) Key point accuracy (KPA): The KPA metric mea-
sures the percentage of correct decisions made at each sub-
goal; 4) Acc: The prediction accuracy of the scene perception
module; 5) Asr: The attack success rate in misleading the
perception module’s predictions.
Attack Implementations. In the implementation of the
attack, the VLM model utilized for rapid open-set object
detection is LLaVA [12]. The box threshold and the text
threshold for the grounding model are set to 0.40. We set
the balance coefficients α = 0.5 and β = 0.01, The upper
bound of adversarial perturbation is set to ϵ = 32/255. The
optimizer used is Adam, with the optimization iterations
set to 200. The parameters µ1 and µ2 in the adversarial
object fusion are set to 0.01 and 0.05, respectively. After
attacking the victim object, we replace the RGB-D data
associated with the victim object using the perturbed data
and regenerate the semantic map. The attack performance
is then evaluated in the new environment scene using the
collected validation dataset. For the two attacks targeting
VLMs, MF and AdvCLIP, we select RGB images containing
the victim object to be attacked. For the two 3D attacks,
ST and TT3D, we first implement the proposed process of
aligned object rendering and then proceed with the attack
as outlined in the original paper.

5.2 Overall Evaluation

Effectiveness. To comprehensively evaluate the impact of
adversarial objects, we construct a new validation dataset
without adversarial objects. We present the overall attack

TABLE 5
Results of transfer attack across different image encoders.

KPA ↓ SPL ↑ SR ↓

Lseg, ViT-L/16 → Lseg, ResNet101
0.242 77.5 0.122
0.287(18.6%) 73.2(5.6%) 0.147(20.5%)

Lseg, ResNet101 → Lseg, ViT-L/16
0.253 76.8 0.134
0.302(19.4%) 70.1(8.7%) 0.163(21.6%)

Clip, ViT-B/32 → Clip, ViT-L/16
0.084 19.9 0.067
0.105(25.0%) 19.0(4.5%) 0.076(13.4%)

Clip, ViT-L/16 → Clip, ViT-B/32
0.095 19.4 0.072
0.092(3.1%) 19.4(0.0%) 0.073(1.4%)

TABLE 6
Results of transfer attack across different datasets.

KPA ↓ SPL ↑ SR ↓

MP3D1 → MP3D2
0.242 77.5 0.122

0.254(5.0%) 75.8(2.2%) 0.128(4.9%)

MP3D2 → MP3D1
0.253 75.1 0.132

0.257(1.6%) 75.5(0.5%) 0.133(0.8%)

HM3D1 → HM3D2
0.089 15.6 0.064

0.096(7.9%) 15.1(3.3%) 0.069(7.8%)

HM3D2 → HM3D1
0.100 18.8 0.076

0.104(4.0%) 18.0(4.4%) 0.081(6.6%)

results (Table 3), with attack objects (denoted as “attacked”)
and without attack objects (denoted as “normal”) in a white-
box scenario against various navigation agents, including
non-interactive agents (Vlmaps [16], Cow [17], CF [19]) and
interactive agents (ORION [18]). Examples of the adversar-
ial objects are shown in Fig. 6.

In 2D adversarial attacks, the attack surface typically
consists of RGB images. As these attacks are not opti-
mized for 3D environments, their impact on navigation
agents remains limited. MF applies global noise affecting
the entire image, but its effect on specific adversarial targets
remains constrained. This limitation manifests in minimal
changes to the agent’s perceptual confidence, exemplified
in Fig. 6(b), where the ‘chair’ confidence score merely
decreases from 0.44 to 0.41. However, despite its limited
efficacy on adversarial objects, MF significantly degrades
navigation performance on normal datasets. By contrast,
AdvCLIP utilizes patch-based perturbations independently
optimized per view. As demonstrated in Fig. 6(c), AdvCLIP
achieves greater disruptive efficacy, reducing the ‘chair’
confidence score from 0.44 to 0.13 compared to MF’s modest
decrease (0.44 to 0.41). Nevertheless, since AdvCLIP op-
timizes patches for individual views, this approach intro-
duces cross-view inconsistencies. While effective for pre-
viously observed viewpoints, AdvCLIP cannot generalize
to novel perspectives. By concentrating perturbations on
victim object regions while minimizing effects on other el-
ements, AdvCLIP better preserves navigation performance
on normal datasets.

In 3D adversarial attacks, the attack surface operates in
3D space. While these methods consider the relationship
between 3D spatial attacks and 2D images, they are not
specifically optimized for VLMs, resulting in reduced effec-
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TABLE 7
Results of transfer attack across different models.

KPA ↓ SPL ↑ SR ↓

(Lseg) → (Clip)
0.084 19.9 0.067
0.125 17.7 0.096

0.131(4.8%) 17.2(2.9%) 0.097(1.0%)

(Clip)→ (Lseg)
0.242 77.5 0.122
0.331 67.8 0.184

0.313(5.4%) 71.9(6.0%) 0.159(13.4%)

TABLE 8
Results of physical noise against to adversarial objects.

KPA ↓ SPL ↑ SR ↓

Clean 0.560 49.0 0.297
AdvOF 0.242 77.5 0.122
with Shear 0.283 74.1 0.149
with Scaling 0.255 76.5 0.132
with Gaussian 0.289 72.1 0.150
with Brightness+ 0.243 75.2 0.138
with Brightness- 0.241 75.0 0.129

tiveness on 2D images. ST (Fig. 6(d)) optimizes adversarial
objects using trajectory historis, achieving success in scenar-
ios with similar trajectories. However, ST demonstrates poor
attack efficacy when following divergent instructions that
produce anomalous trajectories. TT3D (Fig. 6(e)) focuses
more on victim objects themselves, yielding stronger attack
performance. Nevertheless, its efficacy is constrained by
the complexity of VLMs employed in perception modules.
Additionally, both attacks exhibit non-negligible impacts on
the surroundings of adversarial objects, inducing perceptual
interference on other objects in normal datasets.

In contrast, AdvOF achieves a well-balanced attacking,
effectively disrupting navigation performance on attacked
datasets while preserving performance on normal datasets.
This balance is evident from Table 3, where AdvOF out-
performs both MF and AdvCLIP, demonstrating superior
adversarial efficacy without compromising normal task per-
formance. More importantly, Fig. 6-(d) demonstrates that
AdvOF can precisely manipulate the perception of the ad-
versarial object (chair:0.44→ table:0.81).
Perception Performance. To provide deeper insight into the
attack effectiveness and validate the root cause of navigation
failures, we conduct a targeted evaluation of the perception
module’s robustness. we sampled 20 images from diverse
new perspectives for each victim object in the validation
datasets and evaluated the performance of VLMs on these
images. The results are presented in Table 4. Results con-
sistent with those in Table 3 can be observed. The two 2D
attack methods fail to mislead the VLM’s predictions from
new perspectives. In contrast, the two 3D attack methods
demonstrate some attack efficacy, but their performance is
inconsistent and susceptible to environmental interference.
Conversely, AdvOF achieves stable attack efficacy from new
perspectives to a significant extent.
Multi-View Robustness. We validated the multi-view ro-
bustness in Fig. 7. Clearly, AdvOF can successfully generate
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Fig. 8. Attacking results of different upper bounds.

the adversarial object from a long-range view (view1) to a
close-up view (view4). Additionally, AdvOF can precisely
control the effectiveness of adversarial object within its own
region, without affecting the perception of other objects in
the environment. This object-specific control, combined with
multi-view robustness, provides a more powerful attack in
VLN tasks compared to baseline attacks.

5.3 Transferable Evaluation

In this section, we further examine the adversarial transfer-
ability of AdvOF across different scenarios.
Different Image Encoders. We utilized different image
encoder backbones to evaluate the transferability of adver-
sarial attacks across various model architectures. For the
Lseg model, we selected ViT-L/16 and ResNet101 as the
image encoder backbones, while for the Clip model, we
used ViT-B/32 and ViT-L/16. As shown in Table 5, where
in each category, the first row represents the performance of
attacks generated and tested on the same backbone, and the
second row represents the performance when transferred
to a different backbone, with the decline rate indicated in
red, our results demonstrate strong transferability of adver-
sarial attacks across different image encoders. Specifically,
the largest observed decline in performance is only 25.0%.
Furthermore, in both the Lseg and Clip models, the adver-
sarial attacks transfer effectively between different encoders,
exhibiting minimal degradation in performance.
Different Scene Datasets. We constructed different scene
datasets featuring the same victim objects to evaluate the
transferability of AdvOF across validation datasets. The
corresponding results are shown in Table 6, where AdvOF
demonstrates excellent transferability, with almost no degra-
dation in attack performance across datasets (the largest
decline is just 7.9%). In fact, different scene datasets for
the same adversarial object simply represent different views.
Thus, AdvOF, with its multi-view robustness, confirms its
effectiveness in such transferable settings.
Different Model Architectures. Furthermore, we evaluated
the transferability of our method across different navigation
agents that utilize various VLMs. This evaluation aligns
with the practical consideration of a black-box scenario.
The corresponding results are presented in Table 7. In each
category of the table, the first row shows the performance of
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attacks generated and tested on the same VLM. The second
row displays the best result from the baseline methods
for that VLM. The third row indicates the performance of
attacks when transferred to a different VLM. Compared to
the white-box attack scenario, the effectiveness of the attack
decreases significantly in the black-box setting. However,
our method still achieves performance comparable to that
of baseline attacks in a white-box scenario, demonstrating
its transferable capability in black-box conditions.

5.4 Possible Defense
In practice, the perception of an adversarial object is in-
fluenced by environmental factors such as camera pose,
light intensity, distance, and other noise. To evaluate the
robustness of AdvOF against physical noise defenses, we
utilized an image processing toolkit1 to perturb the adver-
sarial objects. Specifically, we applied five image processing
techniques: shearing, scaling, Gaussian noise, brightness
enhancement, and brightness reduction. The parameters for
these transformations were configured as follows: shear(-16,
16), scaling(0.8), Gaussian noise(0.1), brightness enhance-
ment(1.5), and brightness reduction(0.5). The results are
summarized in Table 8 and sample perturbed images are
illustrated in Fig. 9. It is evident that AdvOF exhibits re-
markable robustness across various types of image noise,
providing enhanced adaptability in real-world scenarios

1. https://github.com/aleju/imgaug

TABLE 9
Results of Ablation Study.

KPA ↓ SPL ↑ SR ↓

AdvOF 0.242 77.5 0.122
w/o Alignment 0.450 59.6 0.233
w/o L2d 0.512 53.5 0.267
w/o L3d 0.310 70.1 0.169
w/o Fusion 0.338 68.9 0.176

and under diverse environmental conditions. Moreover, the
noise types of shearing and Gaussian noise exert a greater
influence on adversarial objects, whereas brightness changes
have a lesser impact.

5.5 Parameter Analysis

Upper Bound Selection. We study the effect of different
adversarial upper bounds on the attack performance of
AdvOF. The corresponding results are shown in Fig. 8.
The attack performance gradually increases as the upper
bound increases, but satisfactory performance can generally
be achieved with a low bound (ϵ = 32).
Adversarial Object Selection. For a VLN task, a navigation
instruction often involves multiple object goals. Therefore,
we investigate how adversarial objects affect the navigation
of other object goals. As shown in Fig. 10 (sub-goal@i, where
i represents the goal order in the navigation instruction
or trajectory), we attacked victim objects with different
position orders. When the victim object positioned at the
front is attacked, it significantly impacts the navigation
performance of subsequent goals. This occurs because the
agent moves to a substantially different area, which is less
likely to contain other goals. In contrast, when the victim
object positioned last is attacked, the impact on navigation
performance is smaller, as the adversarial goal only disrupts
itself, leaving the preceding goals unaffected.
Ablation Study. We examined the contribution of each
component in the proposed attack framework. The corre-
sponding results are shown in Table 9. Alignment refers
to the aligned object rendering, which helps locate the 2D
and 3D positions of the victim object. We test AdvOF by
directly adopting the 2D positions recognized by SAM.
The results demonstrate that these identified positions are
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disordered and fail to reveal the true 3D positions of the
victim object. L2d defines the objective function in 2D space,
which directly influences the scene perception module of the
VLN agent and plays a crucial role in generating the adver-
sarial object. L3d constrains the perturbation in 3D space,
primarily helping to optimize the adversarial object with
respect to physical properties of the victim object. Fusion
refers to the adversarial object fusion, which helps integrate
the perturbation based on views with different importance
weights. It contributes to the stable convergence of the
optimization process and the generation of the optimized
adversarial object.

6 CONCLUSION

In this paper, we introduce a novel problem of adversarial
objects targeting VLN agents integrated with foundation
models. To tackle this problem, we propose AdvOF, which
leverages aligned object rendering, adversarial collabora-
tive optimization and adversarial object fusion. AdvOF
enables precise localization of the victim object, facilitating
alignment between 3D manipulations and 2D perceptions.
Furthermore, AdvOF can generate an effective adversarial
object through collaborative optimization. Additionally, Ad-
vOF enhances attack performance by incorporating multiple
views with importance weights. This proposed method
presents a significant threat to the evolving capabilities of
VLN agents empowered by foundation models.
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