
ar
X

iv
:2

50
5.

22
84

3v
1

 [
cs

.C
R

]
 2

8
M

ay
 2

02
5

Aurora: Are Android Malware Classifiers Reliable under
Distribution Shift?

Alexander Herzog∗
University College London and core64

London, United Kingdom
alexander.herzog.23@ucl.ac.uk

alex@core64.co.uk

Aliai Eusebi∗
University College London
London, United Kingdom
aliai.eusebi.16@ucl.ac.uk

Lorenzo Cavallaro
University College London
London, United Kingdom
l.cavallaro@ucl.ac.uk

ABSTRACT

The performance figures of modern drift-adaptive malware classi-
fiers appear promising, but does this translate to genuine opera-
tional reliability? The standard evaluation paradigm primarily fo-
cuses on baseline performance metrics, neglecting confidence-error
alignment and operational stability. While Tesseract established
the importance of temporal evaluation, we take a complementary
direction by investigating whether malware classifiers maintain re-
liable confidence estimates under distribution shifts and exploring
the tensions between scientific advancement and practical impacts
when they do not. We propose Aurora, a framework to evaluate
malware classifiers based on their confidence quality and opera-
tional resilience. Aurora subjects the confidence profile of a given
model to verification to assess the reliability of its estimates. Unre-
liable confidence estimates erode operational trust, waste valuable
annotation budget on non-informative samples for active learning,
and leave error-prone instances undetected in selective classifica-
tion. Aurora is further complemented by a set of metrics designed
to go beyond point-in-time performance, striving towards a more
holistic assessment of operational stability throughout temporal
evaluation periods. The fragility we observe in state-of-the-art
frameworks across datasets of varying drift severity suggests the
need for a return to the whiteboard.

CCS CONCEPTS

• Computing methodologies→ Uncertainty in AI; • Security
and privacy→ Robustness.

KEYWORDS

UQ Robustness, Selective Classification, Active Learning
ACM Reference Format:

Alexander Herzog, Aliai Eusebi, and Lorenzo Cavallaro. 2018. Aurora:
Are Android Malware Classifiers Reliable under Distribution Shift?. In Pro-
ceedings of Make sure to enter the correct conference title from your rights
confirmation email (Conference acronym ’XX). ACM, New York, NY, USA,
20 pages. https://doi.org/XXXXXXX.XXXXXXX

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Research contributions to malware classification under distribu-
tion drifts1 center on accuracy and novelty, while marginalizing
trustworthiness. As Goodhart famously stated, “When a measure
becomes a target, it ceases to be a good measure.” [16].

Malware classifiers experience performance degradation over
time due to concept drift, caused by adversarial adaptation, the nat-
ural evolution of legitimate software, or imprecise feature spaces.
This breaks the i.i.d. assumption upon which the manually engi-
neered or learned representations depend. Therefore, existing state-
of-the-art (SOTA) solutions to drift-adaptation aim to determine
which observations at test time have most likely drifted, enabling
targeted interventions to counteract performance degradation. Each
solution implements its own distinct detection criteria. CADE [43]
calculates the minimum class-centroid distance normalized by Me-
dian Absolute Deviation; Chen et al. [7] quantify embedding mis-
alignment via averaged pairwise contrastive losses between test
samples and nearest training neighbors; Transcendent [6] applies
conformal prediction theory to evaluate sample nonconformity
relative to calibration data of the predicted class.

Once drift has been detected, there are two possible response
pathways: (1) selective classification, where a rejection threshold is
applied to abstain from predicting on drifted observations [6], or (2)
active learning in a continual learning set-up where observations
are ranked by their “out-of-distribution (OOD) score” and routed to
human labeling for subsequent model retraining [7, 43]. The selec-
tion in active learning typically follows either a budget-constrained
method, where a predetermined number of top-ranked observations
(e.g., 50, 100, 200) receive human labels [7], or a threshold-based
method, where all observations exceeding a specified threshold
are selected for annotation [43]. Selective classification prioritizes
classification reliability at the cost of coverage (the proportion of
accepted predictions), while active learning considers drift signals
as informative for model adaptation.

These methods are typically evaluated using standard perfor-
mance metrics, with performance improvements treated as suffi-
cient evidence for model trustworthiness under realistic deploy-
ment conditions. Uncertainty calibration—the alignment between
a model’s confidence values and the true probability of correct de-
cisions—is a property often neglected or sidelined. A model may
perform well in terms of overall metrics, yet still exhibit poorly cali-
brated confidence estimates. This is problematic under distribution
shifts, where predictive uncertainty becomes most consequential

1Without any loss of generality, we will refer to distribution shift and drift, and concept
shift and drift, interchangeably throughout.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://arxiv.org/abs/2505.22843v1

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Alexander Herzog, Aliai Eusebi, and Lorenzo Cavallaro

[34]. Indeed, deep neural networks are known to assign high confi-
dence scores to incorrect predictions on OOD inputs [18].

Moreover, this form of gaming the metric obscures another criti-
cal flaw: OOD selection strategies themselves are rarely subjected
to direct assessment. The approach fails to differentiate whether
performance improvements result from optimal sample selection
or from a robust adaptation model compensating for suboptimal
selection. Performance gains are in fact often treated as an implicit
confirmation that the underlying selection strategy is working effec-
tively. This is an assumption that becomes even more questionable
when selective strategies are based on confidence estimates that
could be miscalibrated under distribution shift. This reliance on
proof by indirect inference, where downstream metrics are taken
to validate upstream decisions, has drawn increasing scrutiny in
applied domains such as computer vision [39]. In response, review-
ers require detailed ablation studies to isolate and quantify the
individual contributions within a given framework.2

In the spirit of calls for more rigorous and contextualized under-
standing of existing methods, we propose Aurora, a framework to
evaluate malware classifiers based on their confidence quality and
operational resilience. Aurora subjects the confidence profile of a
given model to verification using the Area Under the Risk Coverage
Curve (AURC) to measure the quality of its confidence ranking [14].
We define a model’s “confidence profile” as the behavior of both
its out-of-distribution scoring function and its vanilla confidence
function. In this way, we evaluate both the reliability of a classifier’s
out-of-distribution scoring function and its predictive uncertainty.
The AURC quantifies how effectively confidence scores rank in-
stances according to their actual probability of misclassification.
Intuitively, a prediction with higher out-of-distribution score or pre-
dictive uncertainty should be more likely to be incorrect. Therefore,
we expect performance to be monotonically non-decreasing when
observations are rejected in order of decreasing confidence. This
shows the model correctly quantifies both what samples fall outside
its training distribution and when it is likely to make mistakes. If
not, we are misdirecting limited annotation resources toward non-
informative samples while allowing error-prone instances to remain
undetected, relying on systems that do not know what they do not
know. Aurora is further complemented by a set of metrics designed
to move beyond point-in-time performance, enabling assessment
of operational stability across temporal evaluation periods.

We used our framework to evaluate SOTA models across three
different datasets with escalating drift severity. The brittleness we
find compels us to reconsider whether the field has truly progressed
as claimed. Our work aims to advance towards a more contextual-
ized evaluation methodology for examining the trustworthiness of
machine learning models under realistic deployment conditions.

2 MOTIVATION AND RELATEDWORK

Existing solutions in Androidmalware detection have primarily pro-
posed representations that improve performance under stationary
conditions [3, 17, 29] or enhance robustness against temporal drift
[6, 7, 33, 36, 42–44, 46]. Traditional methods leverage static or dy-
namic analysis to extract behavioral proxies from application code,

2For a comprehensive discussion on the role of ablation studies in model evaluation,
we refer the reader to Chapter 2.2 of [39].

operating on the premise that these features preserve sufficient
discriminative information. Drebin [3], a key contribution to the
field, extracts eight feature sets through static analysis to capture
hardware component access, permissions, app components, intents,
API calls, and network addresses, encoding them as sparse binary
vectors. Alternative approaches include APIGraph [44], which con-
structs and embeds relational API graphs to identify functionally
similar clusters, and MaMaDroid [29], which models package tran-
sitions through Markov chains, employing transition probabilities
as feature vectors. Emerging threats, however, introduce novel pat-
terns that manually engineered representations frequently fail to
capture due to inherent semantic limitations, driving research to-
ward more robust representation learning techniques using deep
neural networks [5, 17, 19, 25, 37].

Despite advances in representation learning [46], models usually
require periodic retraining to accommodate distribution shifts [6,
7, 35]. However, this retraining process is both difficult and costly
given the reliance on hard-to-obtain labels and the speed with
which malware and goodware are produced. On a daily basis, for
example, the AV-TEST institute identifies over 450,000 newmalware
samples and potentially unwanted applications [4], while Virus-
Total receives more than 1 million unique software submissions
[1]. This volume creates a fundamental bottleneck, as Miller et al.
[30] estimated that an average organization’s manual labeling ca-
pacity is limited to approximately 80 samples per day. In response
to performance decay and operational constraints, SOTA malware
detection frameworks adopt selective classification or continual
learning methods to ensure reliable classification with minimal
human intervention. 3

Selective classification, also known as classification with rejec-
tion or learning with rejection, is a framework aiming to prevent
misclassifications by providing an option not to make a prediction
[20, 45]. The same problem, with theoretical foundations estab-
lished by Chow in the early 1970s [8], is studied in the equivalent
terms of misclassification detection [21], failure prediction [9, 47],
and ordinal ranking [12, 31]. Key examples of malware detection
frameworks with a rejection component include Transcendent [6],
DroidEvolver [42], and CP-Reject. [27]. The main motivation un-
derlying selective classification is to minimize the expected mis-
classification cost (selective risk), while maximizing coverage (the
proportion of accepted predictions) [13]. Ideally, selective predic-
tion employs a classifier equipped with a “dial” to precisely control
the desired error rate while maximizing coverage [13]. This dial
functions via a confidence estimator that is thresholded to decide
whether a prediction is accepted.

Continual learning (CL) instead is the process of incrementally
learning new information from a non-stationary stream of data. As
the contents are provided incrementally over a lifetime, CL is also
referred to as incremental learning or lifelong learning in much of
the literature, without a strict distinction [41]. CL assumes abundant
availability of labeled data throughout the learning process, an
assumption that, as we mentioned earlier, rarely holds in practical
settings. This has led to active continual learning (ACL), which
performs active learning (AL) for CL. AL is used to select the most
3Note: There is conceptual and methodological overlap between selective classification
and continual learning, as observations that are selected for rejection in the former
can be valuable candidates for the latter.

Aurora: Are Android Malware Classifiers Reliable under Distribution Shift? Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

informative subset that, once labeled, should be the most valuable
for model learning [41]. The most popular AL query strategy is
uncertainty sampling, which selects the observation with the most
uncertain predictions, under the intuition that they are the most
relevant to adjust decision boundaries. A natural baseline is to
use the predicted probability of the underlying classifier, where
observations with probabilities close to the decision boundary (𝑝 ≈
0.5 in binary classification) fall into an “uncertainty region” where
the model lacks confidence in class assignment.

Existing work in AL for malware detection each define their own
“uncertainty” criteria to guide sample selection. The core idea is
to select samples the model is least confident about or those that
“deviate significantly from known data distribution.” CADE [43],
for example, computes the minimum normalized distance between
a test sample and all class centroids (calculated from training sam-
ples) in a contrastive latent space, where distances are scaled by
each class’s Median Absolute Deviation (MAD) to account for the
natural variation within classes. Instead of assessing whether the
sample fits in class A better than class B, the authors assess how
well the sample fits in class A compared to other training samples
in class A. Samples above an empirically set threshold are consid-
ered out-of-distribution and selected for re-training a binary SVM
classifier. Chen et al. (2023) [7] introduce a hierarchical contrastive
learning scheme paired with a pseudo loss for sample selection.
Their rationale is that contrastive learning maps similar samples
to nearby vectors in embedding space, making it well-suited for
security tasks where new malware or benign applications would
appear dissimilar to known samples. However, there is no existing
measure of uncertainty for a model trained with contrastive learn-
ing. The authors therefore use the classifier to predict the label of a
test sample, then construct many pairs of samples that include the
test sample and another training sample, compute the contrastive
loss on each pair, and average these losses. A higher average loss
value means the model is more uncertain about the test sample. We
provide a more formal treatment of the above-mentioned criteria
to detect uncertain observations in Appendix A.

While these confidence-based methods show promise, they rely
on a fundamental assumption that remains largely untested: that the
model’s confidence scores meaningfully correlate with true predic-
tive risk. In a well-calibrated system, instances assigned higher out-
of-distribution scores or greater predictive uncertainty should cor-
relate strongly with incorrect classifications, reflecting the model’s
ability to recognize when it operates beyond its training distribution
or lacks sufficient confidence. The reliability of confidence-based
sampling should, therefore, hinge on calibrated confidence quan-
tification. However, when this assumption fails—as is particularly
likely under distribution shift [18]—the consequences are signifi-
cant: selective classification will mistakenly allow high-confidence
errors to pass through while rejecting samples the model would
have classified correctly; similarly, AL will direct scarce human
annotation resources toward samples that appear uncertain but
provide minimal model improvement, while overlooking genuinely
informative instances because masked by overconfidence. To this
end, we propose Aurora to quantify how effectively a classifier’s
predictive uncertainty or OOD scoring function rank observations
according to their actual probability of misclassification. Further-
more, Aurora subjects classifiers and their associated confidence

functions to verification under simulated deployment conditions,
assessing resilience across temporal shifts and operational con-
straints.

3 AURORA

We now formalize Aurora as an evaluation framework that ex-
tends beyond traditional uncertainty-aware model assessment by
incorporating both uncertainty quantification and an operational
perspective. Specifically, it evaluates how models perform under
distributional drift when equipped with a reject option, offering
a comprehensive analysis of both predictive confidence and de-
ployment robustness. Our framework assesses confidence quality
quantitatively through RC curves and qualitatively through AURC
(3.1) while assessing operational stability via rejection rate vari-
ance (3.3.2), performance margin extremes (3.3.1), and normalized
consistency metrics (3.2).

In this context, we use 𝜏 to denote the label budget in AL envi-
ronments, which denotes the number of manually labeled samples
at each evaluation cycle. Likewise, 𝜏rej indicates the target number
of samples to be rejected per cycle, while 𝜏𝑟𝑒𝑎𝑙 represents the ac-
tual number of rejections when deploying a model with a target
rejection rate. The parameter 𝜃 is a threshold used for confidence
scores in selective classification, applicable in AL scenarios. Addi-
tionally, 𝜅 represents a model’s confidence in its predictions, which
may be derived from its predictive uncertainty or the OOD scoring
function.

3.1 Risk-Coverage Curve

Any classifier with an associated confidence function 𝜅 that can-
not reliably rank its predictions presents a fundamental problem:
while it overall may have high performance in terms of accuracy,
it fails to distinguish between correct and incorrect predictions.
This deficiency (1) prevents effective selective classification, where
low-confidence predictions are rejected to provide reliable classifi-
cation, and (2) compromises the AL paradigm, where the acquisition
functions depend on meaningful confidence rankings to identify
informative samples for annotation [31].

Thus, we present the use of the Risk-Coverage (RC) and the asso-
ciated Area Under the Risk Curve (AURC) metric [15] for verifying
confidence functions, aimed at determining if a classifier can effec-
tively gauge the trustworthiness of its predictions. In essence, we
assess whether a classifier can convey when it is uncertain about
its predictions or whether it "knows what it does not know".

The RC curve represents one of the most informative and prac-
tical representations of the overall uncertainty profile of a given
model [11]. Please refer to Appendix A in [11] for the mathemati-
cal evidence supporting this claim. The performance of a selective
classifier is quantified using coverage and risk. The former denotes
the percentage of the inputs processed by the model without hu-
man intervention, and the latter indicates the level of risk in the
corresponding predictions. Formally,

coverage =
|𝑋ℎ |
|𝑋 | (1)

risk = 𝐿(𝑌ℎ) (2)

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Alexander Herzog, Aliai Eusebi, and Lorenzo Cavallaro

Figure 1: Temporal results for models trained on the androzoo dataset with 𝜏 = 50 and for 𝜏rej. = 400. The top-row presents the

F1 score after rejection. The middle depicts the actual rejections on a monthly basis and in the bottom row is the improvement

in F1 after rejection vs. the baseline of no rejections as Δ F1. The latter highlights that rejections does not always lead to

improvements with respect to F1 scores for some methods.

where 𝐿 is used to measure prediction quality. In many binary
classification tasks, this is often represented as an "error" metric:

𝑒𝑟𝑟 =
1
𝑁

𝑁∑︁
𝑛=0
|𝑦𝑛 − 𝑦𝑛 | (3)

where 𝑦 denotes the predicted labels and 𝑦 the ground-truth
labels, with both taking values in 0, 1.

To assess how prediction confidence relates to error, the RC (Risk-
Coverage) curve is a valuable tool. It visualizes how the model’s
error evolves as we vary the coverage—that is, the proportion of
predictions retained based on confidence. For instance, see Fig. 4.
A derived metric, AURC (Area Under the Risk-Coverage Curve),
summarizes this behavior by integrating the RC curve, yielding a
single scalar that quantifies the model’s average selective risk [15].

A well-calibrated confidence function 𝜅 yields an RC curve that
increases smoothly with coverage. Ideally, as we admit less certain

predictions into consideration, the error rate also rises, forming a
curve that is flat at first and then gradually climbs.

Model confidence can be analyzed through both ordinal ranking
and calibration. One prominent calibration metric is the Expected
Calibration Error (ECE), which evaluates the alignment between
predicted confidence and actual accuracy. This is done by dividing
predictions into 𝑀 equal-sized confidence intervals and comparing
each bin’s average predicted confidence to its empirical accuracy
[32]. While calibration offers useful insights, our primary focus lies
in the more fundamental task of ranking uncertainties.

Indeed, calibration alone can be misleading as a proxy for predic-
tive confidence quality. Calibration performance does not always
reflect the model’s classification accuracy or ranking fidelity [26].

Selective prediction and confidence calibration are not

inherently correlated [11]. Consider two cases: (1) If all predic-
tions have identical confidence (e.g., 𝑟 = 0.5), and half are correct,

Aurora: Are Android Malware Classifiers Reliable under Distribution Shift? Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

calibration is perfect (ECE = 0), yet ranking is impossible, mak-
ing selective prediction useless. (2) In contrast, with predictions
grouped into 𝑟 ∈ 0.9, 1.0, if all 𝑟 = 1.0 predictions are correct and
all 𝑟 = 0.9 predictions are incorrect, selective prediction is optimal,
but calibration is poor (ECE = 0.9).

As discussed in [13], any confidence scoring function can be
converted into a selective classifier. This concept has also gained
attention in the security domain; for instance, Figure 1 in [6] illus-
trates several approaches to constructing alternative confidence
functions from an array of different models.

3.2 Coefficient of Variation

The Coefficient of Variation (𝐶𝑉) quantifies the relative dispersion
of a metric by calculating the ratio of its standard deviation to its
mean (𝐶𝑉 [M] = 𝜎𝑀/𝜇𝑀) [2]. A lower value implies better temporal
stability. Unlike standard deviation, 𝐶𝑉 normalizes variation rela-
tive to the mean, offering two operational advantages: (1) direct
comparison between models with different baseline performances,
and (2) proportional context for interpreting variation magnitude.
For operators, a 0.05 standard deviation in F1 score represents dra-
matically different reliability concerns when the mean F1 is 0.95
versus 0.45. 𝐶𝑉 [F1] quantifies the temporal stability of classifica-
tion effectiveness, while𝐶𝑉 [FPR] measures the consistency of error
rates across evaluation cycles – particularly useful in domains with
high false positive costs or regulatory constraints. These normal-
ized metrics enable operators to determine whether performance
fluctuations remain within acceptable operational thresholds.

3.3 Performance under Simulated Abstention

When deploying malware classifiers, operators may not always
prioritize high-fidelity uncertainty estimation across the full cover-
age spectrum. Instead, they often focus on optimizing operational
performance by abstaining from predictions on the most uncertain
cases—for instance, rejecting the top 20% based on model uncer-
tainty. These high-uncertainty observations are traditionally con-
sidered informative for AL, yet at inference time, abstaining from
them can enhance downstream performance. By excluding the least
confident predictions, the system yields more reliable classifications
on the retained subset, aligning better with production needs such
as those of malware detection APIs.

This dual-use of uncertainty—both for data acquisition and selec-
tive abstention—introduces a natural avenue for assessing classifiers
under deployment-relevant constraints.We formalize this through a
post-hoc rejection simulation framework, which allows evaluation
of abstention strategies after training and model selection, using
stored uncertainty scores. Specifically, this framework assesses how
classifiers would perform if they rejected exactly a proportion 𝜏rej
of test-time inputs based on their uncertainty estimates.

Unlike conventional risk-coverage analysis, which idealizes re-
jection in terms of sorted confidence without temporal considera-
tions, our method calibrates rejection thresholds over a rolling time
horizon. For each test month𝑀𝑖 ∈ Dtest, we simulate fixed-rate ab-
stention based on uncertainty distributions observed in preceding
months. This allows us to assess model robustness under realistic
deployment dynamics, including distributional drift.

We distinguish between class-conditional calibration, used for
softmax-derived uncertainties, and single-threshold calibration for
OOD scores. Details are provided in Appendix A, with algorithm
described in Alg. 1 and corresponding subprocedures (Alg. 2, 3).

Note that when this simulation is extended to new time win-
dows, deviations in the rejection rate may occur due to temporal
drift in the uncertainty distribution. Only when the test-time score
distribution aligns with that of previous calibration months will
the abstention rate precisely match the target 𝜏rej (see Fig. 1).

3.3.1 Performance Extrema. Inspired by financial risk analysis [28],
we introduce theMax Drawdown to capture the worst-case F1 score
degradation of a classifier over the entire evaluation period. This
metric provides operators with insight into how severely a classi-
fier’s F1 performance could deteriorate. We define deterioration as
the difference between pre- and post-rejection performance. See the
bottom plot in Fig. 1 for example–here rejection does not always
lead to performance improvements. In Month 7, for example, and
for the SVC’s confidence function, rejecting points actually leads
to a ∼ 40% drop in performance. While average metrics are use-
ful, awareness of performance floor events is essential, as isolated
failures can disproportionately damage confidence in systems with
strong average F1 metrics. For risk-averse operators, this metric is
particularly valuable, as operators may prefer trading off overall
or average F1 performance for reduced risk in terms of worst-case
scenarios.

3.3.2 Mean Absolute Percentage Deviation. The AURC quantifies
the quality of the confidence function under a single distribution,
but fails to capture its stability when subject to shift. Operators of
classifiers reject-option may set a threshold value 𝜃 that constrains
the model 𝑓 to make predictions only when𝜅 (𝑥,𝑦 |𝑓) > 𝜃 , i.e., when
the confidence exceeds the threshold. This approach ensures that
the model handles a desired percentage of the data (the coverage)
with high confidence. Notably, the performance of this confidence
threshold mechanism exhibits distribution dependence. A confi-
dence function 𝜅 with fixed threshold 𝜃 calibrated to reject a target
proportion of samples on one distribution may reject significantly
different proportions when deployed in production and faced with
temporal drift. Figure 7 in [6], for example, clearly illustrate this
fluctuation in the number of ‘quarantined’ observations across eval-
uation periods. For this reason, we propose the Mean Absolute
Percentage Deviation (MAPD), which acts as a stability metric to
quantify the confidence function’s consistency in maintaining the
target rejection rate across evaluation cycles. We compute this met-
ric by measuring the average relative difference between actual and
target rejection rates, expressed as a percentage of the target rate;
lower values indicate more consistent and accurate rejection be-
havior, while higher values reveal greater variability or systematic
bias from the intended rejection threshold.

TheMAPDmetric quantifies the average relative deviation of the
actual monthly rejection counts from the target rejection level. For
each target rejection rate 𝜏rej > 0 (we use 𝜏rej = {100, 200, . . . , 1500}
with increments of 100), and the corresponding actual rejection
rates, the MAPD is calculated as:

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Alexander Herzog, Aliai Eusebi, and Lorenzo Cavallaro

MAPD(𝜏rej) =
100
𝜏rej
· 1
𝑛

𝑛∑︁
𝑖=1

��𝜏real − 𝜏rej�� (4)

where 𝑛 is the total number of monthly values collected, and the
factor 100 is to lift the metric from a decimal.

Temporal variations in rejection rates are not inherently problem-
atic as some time periods might naturally contain more uncertain
observations that legitimately warrant higher rejection rates. A
well-functioning confidence function should accurately identify
these periods of increased uncertainty. All the confidence func-
tions in this study are evaluated under identical drift conditions;
therefore, we can isolate stability differences that are attributable
to the confidence functions themselves rather than to increased
magnitude of drift. This evaluation directly addresses the practical
question: “How much variance can I expect from deploying the
model 𝑋 with its confidence function 𝜅 using a reject option and a
rejection threshold of 𝜏rej?”

3.3.3 Adaptation of Metrics for Simulated Abstention. To assess
the impact of simulated abstention, we collect metrics such as
F1, FNR, and FPR for each model and each rejection level 𝜏rej ∈
{100, 200, . . . , 1500}. For each metric, we compute the mean across
all 𝜏rej values, yielding an aggregate that reflects the average im-
provement or degradation in retained performance due to absten-
tion. Importantly, performance does not necessarily improve with
increased rejection—poorly calibrated confidence functions may
exhibit the opposite trend. For example, in Fig. 5, the SVC’s F1
score declines as 𝜏rej increases. To ensure robustness, all metrics are
computed across multiple random seeds, with results concatenated
rather than averaged per seed, thereby preserving full variability
in the final aggregate.

4 𝜏-PROPORTIONAL SUBSAMPLING OF Dinit

While reflecting on the evaluation of classifiers across multiple
dimensions in Aurora, we observed a fundamental challenge in
the AL paradigm: the tension between historical knowledge re-
tention and adaptation to emerging patterns to confront temporal
drift. Note: See section 5.1 and 5.2 introducing the symbols and the
data. The canonical approach for AL methods for Android mal-
ware detection involves pretraining models using historical data,
Dinit, which may span varying time periods (commonly one year or
more), serving as the initial training dataset. Subsequently, during
each test period (monthly evaluation cycle), 𝜏 samples are selected
according to some confidence-based criteria for labeling and incor-
porated into the training process. This integration follows either: (1)
a cold-start approach, where after each set of 𝜏 samples is labeled,
the model is fully retrained from scratch using both Dinit and all
previously labeled samples; or (2) a warm-start approach, where the
model undergoes incremental updates using only the set of labeled
𝜏 samples.

In a cold-start scenario, we hypothesize that not all data points
fromDinit contribute equally to the learning objective. Our reason-
ing stems from the assumption that the 𝜏 samples identified during
each test period contain critical signals for adapting the model
to underlying data drift, yet their influence may be diminished
when overwhelmed by historical data. The gradient signal during
backpropagation may be dominated by this imbalance – where

the large reservoir of historical training samples overwhelms the
comparatively small set of recent labeled examples from Dtest.

To contextualize this imbalance, consider the dataset, proposed
by [6], which we will introduce more formally in Section 5.2. Tran-
scendent contains 57,740 samples in the first year: a monthly injec-
tion of 50 observations accounts for just 0.1% of the initial training
data, and grows to only 4.1% after 48 test periods. We question
whether this stark imbalance of 𝜏 ≪ |Dinit | leads to an impact on
performance, potentially limiting the model’s ability to adapt to
emerging patterns in malware evolution. Hence, we test how sub-
sampling ofDinit impacts the downstream performance of malware
classifiers. We experiment with two distinct subsampling strategies:
(1) stratified random sampling (StratK-Sampling), which maintains
the binary label distribution, and (2) uncertainty-based sampling
(Uncertainty-Sampling). The latter is motivated by the common
sampling procedure of malware classifiers under drift where ob-
servations with high uncertainty are prioritized because they are
informative to update the decision boundary.

We test various sample proportions of 𝜏init, with several values
directly inspired by prior literature [7, 43]. For context, our training
dataset spans a 12-month period, so 𝜏init = 12 corresponds to “1 se-
lected observation per month” in𝐷init, while 𝜏init = 4800 represents
“400 selected observations per month.” We evaluated label budgets
𝜏 = {50, 100, 200, 400}. We conduct this experiment using a neural
network model, DeepDrebin, with 30 training epochs. Section 5.1
provides a more detailed description of this model. Each configu-
ration of 𝜏init and 𝜏 was executed five times on the three distinct
datasets of different levels of drift. For Uncertainty-Sampling, we
split Dinit into 𝑘 = 6 folds, train DeepDrebin on 𝑘 − 1 and select
the top-𝜏init

𝑘
most uncertain points across every 𝑘’th split.

Figure 2 reports the results averaged across the five runs. The
rightmost points in each plot (at maximum 𝜏init) represent the F1
performance with no subsampling of 𝐷init. As shown, average per-
formance tends to increase as the label budget 𝜏 grows, with this
effect being more pronounced for the Androzoo and Transcendent
datasets compared to the APIGraph dataset. This illustrates the
varying task complexity across datasets, with the APIGraph dataset
being “easier” to learn as evidenced by its consistently high F1
scores even at low 𝜏 values. We find that for the APIGraph and
Transcendent datasets, performance reaches near-maximum levels
at relatively small 𝜏init values, with minimal improvements as the
sample size increases. In contrast, the Androzoo dataset exhibits
a distinct bell-shaped performance curve, peaking at 𝜏init ≈ 1k
and declining as the sample size increases further. In other words,
performance is maximized at moderate sampling levels, with dimin-
ishing returns observed at extremes of the sampling spectrum. As
evidenced by Figure 3, there is no performance benefit of perform-
ing Uncertainty-Sampling as a simple StratK-Sampling fully suffices.
Note that due to the prohibitive computational demands for CADE
and HCC, we were constrained to conducting the experiments
within this section with DeepDrebin.

Takeaway: (1) 𝜏-proportional subsampling of Dinit can im-
prove performance in terms of aggregate metrics such as F1.
(2) Stratified random sampling ofDinit performs equivalently
to uncertainty sampling on our datasets.

Aurora: Are Android Malware Classifiers Reliable under Distribution Shift? Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Figure 2: Results for Uncertainty-Sampling. Average Performance across 𝑛 = 5 trials with DeebDrebin on selected datasets. For

every 𝜏 (monthly label budget for Dtest) and 𝜏init (selected samples from Dinit) we run a full experiment on the all months in

Dtest and report the average monthly performance, excluding the first 6 months of the test-period as per standard-protocol

[7, 43].

Figure 3: Comparison of Uncertainty-Sampling and StratK-Sampling. Results are additionally averaged across all 𝜏 ’s to allow

for a direct comparison. We find that StratK-Sampling is on par with Uncertainty-Sampling.

5 EXPERIMENTAL SETUP

We introduce the reference frameworks under evaluation (Section
5.1) and a formal treatment of their associated confidence functions
(whose details are provided in Appendix A due to space constraints).
In Section 5.2, we detail the datasets adopted.

5.1 Reference Frameworks

We consider a number of high-profile malware classification frame-
works, some of which were originally designed for AL schemes.
We selected these methods because they represent a progression
of increasingly sophisticated representation learning paradigms in
malware classification. The first classifier is Drebin, a linear support
vector machine (SVM) on high-dimensional binary feature vectors
engineered with a lightweight static analysis [3]. The second classi-
fier is DeepDrebin, a fully-connected feedforward neural network
introduced [17] to mitigate adversarial attacks, later adopted for
malware classification by [44]. We ultimately consider two con-
trastive learning frameworks which were designed to support ac-
tive learning, CADE [43] and HCC [7]. CADE relies on contrastive
learning to perform a distance-based feature transformation which

results in more homogeneous class clusters relative to which out-
of-distribution observations are easier to detect. HCC implements
a hierarchical contrastive loss function that enforces similarity con-
straints in the embedding space based on family-level relationships.
For CADE, we use the version replicated and enhanced provided
by [7]. This improved version replaces the original SVM classifier
with a neural network classifier and uses the embeddings generated
by the contrastive encoder as input features rather than the raw
features used in the original implementation. All these methods
can be easily replicated using the authors’ publicly available code
and offer a stable baseline. Detailed hyperparameter settings for
each method are documented in Appendix C. To ensure reliability
and consistency of our results, each method has been executed 5
times with different random seeds, with all the reported results
representing the aggregated outcomes across runs.

We exclude DroidEvolver [42] as prior work [24] has demon-
strated high risks of self-poisoning due to poorly calibrated models.
Furthermore, DroidEvolver employs online learning mechanisms
(relying on pseudo-labels for retraining), which fall outside the
scope of our current research focus. We focus on approaches that
leverage drift detection to drive additional processes, specifically,
continual active learning [7] and explainability [43]. By contrast,

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Alexander Herzog, Aliai Eusebi, and Lorenzo Cavallaro

Transcendent [6] is a purely selective-classification method that
uses rejection to handle likely misclassifications but does not har-
ness drift to inform any subsequent tasks. While we were inspired
by Transcendent’s demonstration of low performance on rejected
data, we leave the investigation of purely drift-focused or selective-
classification approaches—and their robustness—outside the scope
of this paper and plan to address them in future work.

5.2 Datasets

The experiments are conducted on three datasets: APIGraph and
Androzoo from [7] and Transcendent from [6]. We selected these
datasets as they are used in SOTA research, are well-established in
the Android malware detection domain, and contain large sample
collections with timestamps to simulate natural temporal drift. For
the APIGraph dataset, the authors from [7] collected Android apps
using hashes from APIGraph [44], but extracted Drebin features
rather than using the feature space originally proposed in that
work. When we reference the APIGraph dataset, we are specifically
referring to the dataset introduced by Chen et al. [7]. The APIGraph
dataset contains Android apps from 2012-2018 with a 9:1 malware-
to-goodware ratio, while Androzoo spans 2019-2021 with the same
ratio. Transcendent includes apps from 2014-2018, also maintaining
the 9:1 ratio, as recommended by Pendlebury et al. [35]. We treat
the first year as an initial training buffer Dinit, where we assume
full label availability. As common practice [7], we use a monthly
evaluation- and retraining cycle which we denote as Dtest. As
in [7], we use the first 6 months from Dtest to select the best
hyperparameters for each method. The reported results exclude the
initial 6-month period of Dtest to avoid data snooping [10].

6 EXPERIMENTS

We begin by analyzing the risk-coverage trade-offs of all confidence
functions using risk-coverage plots in Section 6.1. Subsequently,
Section 6.2 presents the empirical performance of all evaluated
methods, using the metrics introduced in our Aurora framework.

6.1 Risk-Coverage Plots

Every time a prediction is made with low confidence, it might lead
to expensive actions, like requiring human assessment for labeling
or defaulting to more cautious decisions. The risk level for each cov-
erage point equates to the model’s selective risk when it dismisses
inputs not encompassed at that particular coverage level. In Figure
4 we report the RC curve for the selected datasets for 𝜏 = 50. The RC
plots illustrate how different confidence functions’ error rates cor-
relate with coverage. Ideally, the curve should be flat and monoton-
ically increasing as more uncertain observations are included. For
the Transcendent dataset, for example, one method has ∼40% risk at
low coverage, while others remain below ∼10%. On the APIGraph
dataset, peak risks translate to ∼10% and ∼12% at low coverage,
with most confidence functions stabilizing below 2%. CADE’s MSP
shows severe miscalibration in comparison, particularly evident at
low coverage (40% in Transcendent, 6% in Androzoo, and 12% in the
APIGraph datasets). This indicates CADE frequently assigns high
confidence to incorrect predictions. While CADE’s OOD scoring
functions (warm and cold setups) demonstrate increased reliabil-
ity, they remain erratic compared to other confidence functions.

DeepDrebin’s MSP confidence function is a very strong candidate
in terms of robustness, maintaining near-zero risk across most cov-
erage levels in the Transcendent and APIGraph datasets. SVC’s
confidence function shows complementary strengths, particularly
in the Androzoo dataset, where its 𝜏init = 4800 configuration main-
tains nearly 0% risk until 60% coverage (where it still outperforms
most confidence functions despite increased variability). Surpris-
ingly, SVC and DeepDrebin stand as the most trustworthy

options in terms of confidence calibration, with their consistent
performance across diverse datasets translating directly to reliable
risk estimation, beating SOTA approaches regarding their confi-
dence functions. Additionally, we find that subsampling of Dinit
often preserves or improves the quality of confidence across all
coverage levels, particularly at lower coverage thresholds where
uncertainty estimation is often most critical.

Takeaway: (1) Simple methods outperform complex archi-
tecture in terms of uncertainty calibration, with DeepDrebin
and SVC achieving low risk where others are mis-calibrated.
(2) subsampling training data improves calibration quality by
acting as a regularizer, particularly at critical low-coverage
thresholds. (3) OOD scoring functions might select mislead-
ing samples while missing informative edge cases that would
actually benefit model robustness against shift.

6.2 Numerical Results

Table 1 reports the performance comparison of our reference frame-
works and associated confidence functions across the three datasets
under various training configurations (𝜏 and 𝜏init). We report the
F1 score, the Coefficient of Variation (𝐶𝑉 [𝐹1]) and the AURC for
baseline performance; the adapted F1 score, and the MAPD for per-
formance under simulated abstention. Please refer to Section 3 for
a discussion on the metrics. Due to space constraints, the additional
metrics are provided in Appendix E with relevant findings incorpo-
rated into this discussion here. The AURC analysis is not necessary
under simulated abstention since evaluating performance under a
fixed rejection threshold would represent a segment of the full RC
curve corresponding to the non-rejected points, providing no addi-
tional insights beyond what is already contained in the standard
AURC analysis.

6.2.1 Baseline Performance. We observe no single method dom-
inating across all metrics and datasets. There exists a discernible
hierarchy concerning dataset difficulty. Methods trained on the
APIGraph dataset demonstrate the highest overall performance, fol-
lowed by the moderately challenging Transcendent dataset, while
the Androzoo dataset is identified as the toughest for drawing
inferences. Notably, the varying the 𝜏-parameter has the biggest
impact in terms of performance improvements for the Androzoo
dataset, where methods consistently show gradual improvements
with increasing 𝜏 . For the other datasets, the improvement in per-
formance is more marginal, especially the APIGraph dataset where
the increase is barely noticeable.

DeepDrebin with subsampling (𝜏init = 4800) demonstrates com-
petitive F1 performance compared toHCC (warm) across all datasets.
For the Androzoo dataset, HCC (warm) shows a notable advantage

Aurora: Are Android Malware Classifiers Reliable under Distribution Shift? Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Figure 4: Risk-Coverage Plots for selected datasets and for a label-budget 𝜏 = 50. The ideal curve has minimal error across the

coverage-spectrum and a higher coverage or acceptable uncertainty correlates with a higher error. The dashed line refers to

models trained with a sub-sampled initial data-set Dinit (with 𝜏init = 4800). See appendix D for results for 𝜏 ∈ {100, 200, 400}.

at lower 𝜏 values (75% vs 69% at 𝜏 = 50, a 6% difference; 77% vs
75% at 𝜏 = 100, a 2% difference), while DeepDrebin outperforms at
higher 𝜏 values (81% vs 78% at 𝜏 = 200, a 3% difference) and matches
HCC at 𝜏 = 400 (both 84%). On the APIGraph dataset, DeepDrebin
consistently achieves equal or better F1 scores across all 𝜏 settings
(90% vs 89% at 𝜏 = 50; 92% vs 90% at 𝜏 = 100; 92% vs 91% at 𝜏 = 200),
with a substantial 7% advantage at 𝜏 = 400 (93% vs 86%). On the
Transcendent dataset, HCC performs slightly better at 𝜏 = 50 (84%
vs 82%, a 2% difference), while DeepDrebin shows a slight edge at
higher 𝜏 values (86% vs 85% at 𝜏 = 100; 88% vs 87% at 𝜏 = 200; 90%
vs 89% at 𝜏 = 400), with differences of 1-2 percentage points.

For stability (measured by 𝐶𝑉 [F1]), HCC outperforms Deep-
Drebin on Androzoo at lower budgets, while on APIGraph, Deep-
Drebin maintains significantly better stability at 𝜏 = 400 (4) com-
pared to HCC (27) (please refer to Figure 8 in Appendix G), and
on Transcendent, both methods perform comparably, with HCC
slightly better at 𝜏 = 200.

Subsampling the training set with 𝜏init = 4800 observations
yields substantially better uncertainty calibration (as measured
by AURC) for DeepDrebin across all 𝜏 values on the Androzoo
dataset (63-76% improvement), while SVC shows mixed results
(improvement at 𝜏 = 50 but degradation at higher 𝜏 values); AURC
values remain comparable on APIGraph and Transcendent datasets
regardless of whether the methods were trained with subsampling
(𝜏init = 4800) or not.

The MSP response from DeepDrebin with 𝜏init = 4800 outper-
forms both HCC confidence functions in terms of reliability across

all 𝜏 values on both the Transcendent (AURC: 3-6 vs 8-12 for Soft-
max and 16-21 for Pseudo-Loss) and APIGraph (AURC: 10-17 vs
22-54 for Softmax and 28-41 for Pseudo-Loss) datasets. On the An-
drozoo dataset, its quality is comparable or slightly lower (AURC:
11-27 vs 16-23 for both confidence functions).

Takeaway: (1) No single methods dominates across all met-
rics and datasets, suggesting the importance of context-specific
evaluation and consideration. (2) Subsampling the training
dataset (𝜏init = 4800) either improves DeepDrebin perfor-
mance across all metrics or shows negligible impact com-
pared to 𝜏init = |Dinit |. (3) DeepDrebin, a simple feedforward
neural-network outperforms more complex frameworks in
terms of performance and confidence reliability, while re-
quiring only binary labels and minimal computational re-
sources. This evidence compels us to revisit established re-
search paradigms and priorities. (4) Even when simpler mod-
els show performance metrics slightly lower than or on par
with SOTA approaches, they frequently demonstrate supe-
rior results across other critical metrics, such as confidence
quality, highlighting that “better” extends beyond primary
performance indicators.

6.2.2 Performance under Simulated Abstention. While the AURC
metric evaluates confidence functions across the entire confidence
spectrum, operational deployment scenarios typically focus on the
top percentage of uncertain observations due to human labeling

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Alexander Herzog, Aliai Eusebi, and Lorenzo Cavallaro

Table 1: Results for both the baseline evaluation and under simulated abstention . For each dataset, we standardize the AURC

results column-wise by dividing them by the maximum AURC value and then multiplying by 100 to increase readability

and facilitate the comparison of methods across various 𝜏 values. All experiments with simulated abstention use 𝜏rej ∈
{100, 200, . . . , 1500}. A ↓ indicates that lower values are better. We perform all experiments with 5 random seeds. For additional

results, please refer to table 2 in appendix E.

Dataset

androzoo apigraph transcendent

𝜏 𝜏init Method F1↑ 𝐶𝑉 [F1]↓ AURC↓ F1↑ MAPD↓ F1↑ 𝐶𝑉 [F1]↓ AURC↓ F1↑ MAPD↓ F1↑ 𝐶𝑉 [F1]↓ AURC↓ F1↑ MAPD↓

50
|Dinit |

CADE (cold) - OOD 62% 37 89 74% 63 86% 6 46 64% 54 71% 20 24 69% 74
CADE (cold) - Softmax 62% 37 72 73% 87 86% 6 100 88% 71 71% 20 30 73% 120
CADE (warm) - OOD 66% 32 58 78% 53 84% 8 43 35% 73 60% 38 66 57% 91
CADE (warm) - Softmax 66% 32 60 78% 46 84% 8 100 86% 42 60% 38 100 45% 86
DeepDrebin (cold) - Softmax 54% 44 73 75% 50 90% 5 13 94% 36 84% 10 5 92% 66
HCC (warm) - Pseudo-Loss 75% 25 23 69% 58 89% 5 41 91% 60 84% 10 21 87% 53
HCC (warm) - Softmax 75% 25 23 70% 57 89% 5 31 91% 72 84% 10 12 85% 65
SVC 63% 35 26 57% 43 88% 5 15 93% 38 63% 24 14 55% 33

4800 DeepDrebin (cold) - Softmax 69% 34 27 80% 60 90% 5 17 94% 40 82% 14 6 89% 55
SVC 69% 30 18 45% 45 88% 5 15 92% 38 64% 23 13 60% 39

100
|Dinit |

CADE (cold) - OOD 63% 36 100 72% 65 87% 6 43 66% 56 73% 20 22 71% 70
CADE (cold) - Softmax 63% 36 80 72% 78 87% 6 86 90% 89 73% 20 22 69% 121
CADE (warm) - OOD 62% 38 72 72% 58 86% 7 42 21% 54 62% 37 31 62% 91
CADE (warm) - Softmax 62% 38 66 75% 45 86% 7 87 88% 47 62% 37 27 42% 104
DeepDrebin (cold) - Softmax 57% 42 71 75% 49 91% 4 11 94% 36 86% 10 4 92% 63
HCC (warm) - Pseudo-Loss 77% 25 19 73% 57 90% 5 33 93% 59 85% 9 21 87% 51
HCC (warm) - Softmax 77% 25 19 75% 57 90% 5 26 92% 74 85% 9 12 85% 63
SVC 68% 32 19 64% 43 88% 5 15 93% 38 69% 20 11 65% 41

4800 DeepDrebin (cold) - Softmax 75% 29 23 84% 54 92% 4 14 95% 41 86% 9 5 91% 52
SVC 66% 34 27 57% 49 89% 5 16 93% 39 69% 21 12 62% 40

200
|Dinit |

CADE (cold) - OOD 66% 36 73 73% 65 89% 5 37 70% 55 76% 16 21 75% 79
CADE (cold) - Softmax 66% 36 75 75% 83 89% 5 79 91% 105 76% 16 21 75% 146
CADE (warm) - OOD 63% 37 84 70% 59 87% 7 41 27% 67 52% 63 30 51% 74
CADE (warm) - Softmax 63% 37 70 77% 51 87% 7 78 90% 102 52% 63 28 35% 99
DeepDrebin (cold) - Softmax 59% 42 63 77% 50 92% 4 10 95% 33 87% 11 3 94% 65
HCC (warm) - Pseudo-Loss 78% 24 18 75% 58 91% 4 29 94% 61 87% 8 16 89% 45
HCC (warm) - Softmax 78% 24 18 76% 57 91% 4 22 94% 74 87% 8 9 88% 61
SVC 69% 30 18 68% 42 89% 4 16 94% 36 69% 22 12 61% 44

4800 DeepDrebin (cold) - Softmax 81% 21 15 91% 56 92% 4 10 95% 37 88% 9 4 93% 61
SVC 68% 34 26 65% 48 89% 4 14 93% 39 70% 21 13 65% 51

400
|Dinit |

CADE (cold) - OOD 77% 24 64 76% 71 89% 5 45 72% 54 79% 16 19 79% 74
CADE (cold) - Softmax 77% 24 67 80% 72 89% 5 90 91% 121 79% 16 16 81% 171
CADE (warm) - OOD 70% 32 67 72% 56 89% 5 33 40% 74 58% 53 28 59% 86
CADE (warm) - Softmax 70% 32 66 79% 53 89% 5 75 91% 124 58% 53 34 59% 147
DeepDrebin (cold) - Softmax 70% 34 45 84% 52 93% 4 9 95% 30 90% 8 2 95% 60
HCC (warm) - Pseudo-Loss 84% 13 16 77% 58 86% 27 28 94% 74 89% 8 17 90% 43
HCC (warm) - Softmax 84% 13 16 79% 59 86% 27 54 87% 76 89% 8 8 89% 63
SVC 72% 31 15 73% 43 89% 5 16 94% 35 72% 19 10 67% 54

4800 DeepDrebin (cold) - Softmax 84% 17 11 94% 52 93% 4 10 96% 37 90% 8 3 94% 53
SVC 71% 31 19 66% 45 89% 4 14 94% 37 71% 21 12 65% 54

capacity limitations and system up-time requirements, which mo-
tivates our design of post-hoc simulation experiments to assess
classifier performance under practical rejection constraints.

DeepDrebin MSP often yields superior F1 score compared to all
other methods (94% on Androzoo, 96% on APIGraph, and 94% on
Transcendent at 𝜏 = 400 with 𝜏init = 4800), with clear performance
scaling as label-budget increases (e.g., Androzoo: 80%→ 94%). The
advantage is the most pronounced for the Androzoo dataset, where
the F1 performance gap between DeepDrebin with 𝜏init = 4800 and
non-DeepDrebin methods is 14% (91% vs. 77% at 𝜏 = 200 and 94%
vs. 80% at 𝜏 = 400). DeepDrebin with 𝜏init = 4800 shows improved
temporal stability as budget increases (𝐶𝑉 [𝐹1] decreasing from 30

to 15 on Androzoo) and achieves strong 𝐶𝑉 [𝐹1] on Transcendent
(as low as 3 at 𝜏 = 400). However, we occasionally observe some
high Max Drawdown (F1) (34% at 𝜏 = 400 on Androzoo). Initializa-
tion with 𝜏init = 4800 significantly improves F1 scores (e.g., from
84% to 94% on Androzoo at 𝜏 = 400) without corresponding MAPD
improvements. MAPD performance is also dataset-specific: Deep-
Drebin with 𝜏init = |Dinit | achieves better MAPD on APIGraph
(30 vs. 37 at 𝜏 = 400) but trails behind SVC with 𝜏init = |Dinit | on
Androzoo (52 vs. 43 at 𝜏 = 400), while DeepDrebin with 𝜏init = 4800
performs better on Transcendent (53 vs. 54 at 𝜏 = 400) but still
worse than HCC (Pseudo-Loss) (43 at 𝜏 = 400).

Aurora: Are Android Malware Classifiers Reliable under Distribution Shift? Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Figure 5: Performance of classifiers after rejection, i.e. the performance of non-rejected test-points on the androzoo dataset.
F1 scores for a range of selected rejection-thresholds 𝜏rej. = {0, 100, 200, . . . , 1500}. The case of 𝜏rej. = 0 refers to the baseline of

performance without rejection. See Appendix F for results on the transcendent- and apigraph datasets.

Notably, DeepDrebin trained with 𝜏init = 4800 seems over-
proportionally performant regarding the aggregated F1 score of this
simulated abstention experiment, especially once contextualized
with the results of the RC plots (please refer to Figure 4) where
the corresponding RC curve is outperformed by HCC. This under-
scores a key point: even though the RC plot and AURC assess

the total error, they fail to reveal the error distribution across

classes, which is precisely where the F1 score shows sensitiv-

ity. Figure 5 and Figure 7 in Appendix F illustrate the underlying
data across the rejection thresholds of 𝜏rej ∈ {100, 200, . . . , 1500}.

SVC with 𝜏init = |Dinit | achieves the lowest MAPD score across
all label budgets (𝜏 = 50, 100, 200, 400) for the Androzoo dataset.
For the Transcendent dataset, SVC has the lowest MAPD score
for 𝜏 = 50, 𝜏 = 100, and 𝜏 = 200, but for 𝜏 = 400, HCC (warm) -
Pseudo-Loss outperforms it. For the APIGraph dataset, DeepDrebin
- Softmax consistently achieves lowerMAPD scores than SVC across
all label budgets.

Both HCC confidence functions exhibit very strong temporal
stability with𝐶𝑉 [𝐹1] values as low as 3-4 on the APIGraph dataset
at 𝜏 = 50-200, in stark contrast to CADE (warm) - OOD which
reaches 239 at 𝜏 = 200. However, this stability diminishes at 𝜏 =

400, where HCC (warm) - Softmax increases to 26. For rejection
capabilities, HCC (Pseudo-Loss) generally outperforms its Softmax
variant on MAPD metrics, particularly on Transcendent (43-53 vs.
61-65). While both HCC variants achieve strong F1 scores under
simulated abstention (69-79% on Androzoo, 87-94% on APIGraph,
and 85-90% on Transcendent), their Max Drawdown (F1) score
vary by dataset—relatively low on Transcendent (4-13%) but higher
on Androzoo (12-27%). Notably, HCC (Pseudo-Loss) consistently
outperforms both SVC and DeepDrebin variants on Transcendent
at 𝜏 = 400 in terms of MAPD (43 vs. 53-61).

CADE configurations demonstrate inconsistent performance
across datasets, with significant differences between cold and warm
set-ups. On Androzoo, CADE (warm) - Softmax achieves moderate
F1 scores (75%–79%), while exhibiting poor stability on Transcen-
dent with Max Draw scores of 78%–86%. CADE (warm) - OOD
shows the most severe performance instability, with high Max
Drawdown (F1) reaching 74%–91% on Transcendent, coupled with
particularly low F1 performance on APIGraph (dropping as low as
21% at 𝜏 = 100). In contrast, CADE (cold) variants perform better
than their warm counterparts on the Transcendent dataset, achiev-
ing higher F1 scores (69%–81% vs 35%–62%), but still demonstrate
concerning Max Draw values (32%–88%) and extremely high MAPD
(up to 171 for CADE (cold) - Softmax at 𝜏 = 400). Between rejec-
tion strategies, Softmax generally outperforms OOD for both cold
and warm CADE set-ups on Androzoo and APIGraph datasets in
terms of F1 scores. Performance improvements from increased 𝜏
are minimal across all CADE configurations, with worst-case sce-
narios remaining problematic even at the highest 𝜏 values of 400,
as evidenced by persistent high MAPD values and significant Max
Drawdown scores.

Takeaway: (1) While increased 𝜏 improve some methods
substantially in terms of F1 score, others plateau quickly, re-
vealing critical differences in resource utilization efficiency.
(2) Methods with the highest F1 score can demonstrate incon-
sistent rejection stability (3) Softmax-based methods achieve
higher F1 score but suffer from less stable rejection rates
over time compared to alternative confidence functions. (4)
Models with similar overall accuracy can have dramatically
different failure patterns when selectively refusing predic-
tions.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Alexander Herzog, Aliai Eusebi, and Lorenzo Cavallaro

Figure 5 reports the F1 performance of the confidence functions
within our reference frameworks when implementing selective
classification, showing how performance on non-rejected samples
changes as the rejection threshold increases. Ideally, the curve
should be monotonically non-decreasing.

The SVC classifier shows the most dramatic decline in perfor-
mance as rejection threshold increases, especially visible in all 𝜏
values. This suggests poor confidence calibration - SVC is likely
rejecting both correct and incorrect predictions indiscriminately.
DeepDrebin with 𝜏init = 4800 often demonstrates a superior con-
fidence calibration, particularly at 𝜏 = 200, 400 where it achieves
the highest F1 score with increasing rejection thresholds. The HCC
classifier demonstrates strong initial calibration but degrading reli-
ability as the rejection threshold increases beyond 500 observations.
This indicates that HCC maintains reliable confidence estimation
for its most certain predictions (around the first 500 rejected), but
beyond this point, its confidence scores become increasingly mis-
aligned with actual prediction accuracy.

Figure 1 shows how our reference frameworks perform over
time on the Androzoo dataset under simulated abstention. We use
𝜏 = 50 and 𝜏rej. = 400. All methods exhibit pronounced declines
in F1 scores in Month 7 and Month 13. DeepDrebin demonstrates
more robustness compared to the other methods in response to
these shifts. Different methods show varying recovery capabilities
after performance drops - some bounce back quickly while others
exhibit lingering effects. SVC performance starts declining with
temporal distance to the training set. Subsampling mitigates this
degradation.

In the middle chart, CADE variants frequently operate above
the target rejection threshold. The most dramatic spike occurs in
Month 3, where CADE retrained with observations derived from its
softmax in cold set-up rejects over 1500 samples, nearly 5 times the
target threshold of 𝜏rej. = 400. Rejection patterns generally stabilize
in later months, with fewer extreme spikes and better adherence to
the target threshold. The bottom chart (Δ F1) shows that rejecting
samples does not consistently improve performance. Somemethods,
especially SVC, actually see negative Δ F1 values in certain months,
meaning the rejection strategy decreased their effectiveness. Some
configurations appear to benefit more consistently from rejections,
with DeepDrebin showing more positive Δ F1 across the timeline.
SVC exhibits a massive performance spike in Month 12, reaching
over 50 % improvement.

Takeaway: (1) Rejections do not always lead to improve-
ments with respect to F1 score for some methods. (2) Sub-
sampling for DeepDrebin helps mitigating temporal shift.

7 LIMITATIONS

While we evaluated softmax alternatives for HCC and CADE, we did
not test them as AL selection criteria, instead using each method’s
original confidence function. We omitted the Area Under Time
(AUT) metric as it essentially duplicates average metrics. We ex-
cluded Population Stability Index (PSI) and Prediction Accuracy
Index (PAI) because they require separate development data splits
and lack intuitive interpretability compared to our selected metrics.
While the AURC provides valuable insights into confidence reliabil-
ity across our evaluation, we acknowledge that—like all metrics—it
comes with inherent tensions [40]. We view these not as limita-
tions but as considerations that researchers should explicitly factor
when evaluating their models. Our extensive multi-dimensional
approach ultimately aim to express precisely this philosophy: effec-
tive security evaluation demands a panoramic perspective of model
performance rather then the tunnel vision of traditional metrics.

8 CONCLUSION

Our results challenge the prevailing SOTA paradigm in machine
learning research for Android security: models are only as good
as the metrics used to evaluate them. No single method consis-
tently excels across all datasets and metrics, with each showing dis-
tinct trade-offs: DeepDrebin’s strong F1 performance and improved
AURC with subsampling, HCC’s apparent temporal stability–still
on par with if not challenged by a simpler DeepDrebin–at the cost
of expensive and hard-to-obtain family labels for HCC, and soldid
MAPD behavior of SVC. Crucially, simpler models often match or
outperform complex frameworks while requiring fewer computa-
tional resources. Beyond proposing additional metrics, we advo-
cate for a shift in security model evaluation that prioritizes multi-
dimensional assessment over single-metric optimization, with par-
ticular emphasis on confidence reliability under drift. This holistic
evaluation approach better reflects real-world security challenges
where threats continuously evolve and would lead to more robust,
deployable solutions than those optimized for accuracy under lab-
oratory conditions. Ultimately, most models rely on the Drebin
feature space [3], which may be approaching saturation, suggesting
future research should explore alternative feature representations
to break through current performance plateaus.

Aurora: Are Android Malware Classifiers Reliable under Distribution Shift? Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

REFERENCES

[1] 2025. VirusTotal. https://www.virustotal.com Accessed: 2025-03-04.
[2] Hervé Abdi. 2010. Coefficient of variation. Encyclopedia of research design 1, 5

(2010), 169–171.
[3] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad

Rieck. 2014. DREBIN: Effective and Explainable Detection of Android Mal-
ware in Your Pocket. In 21st Annual Network and Distributed System Security
Symposium, NDSS 2014, San Diego, California, USA, February 23-26, 2014. The
Internet Society. https://www.ndss-symposium.org/ndss2014/drebin-effective-
and-explainable-detection-android-malware-your-pocket

[4] AV-TEST. [n. d.]. Malware Statistics and Trends Report. https://www.av-test.org/
en/statistics/malware/ n.d..

[5] Amin Azmoodeh, Ali Dehghantanha, and Kim-Kwang Raymond Choo. 2018.
Robust malware detection for internet of (battlefield) things devices using deep
eigenspace learning. IEEE transactions on sustainable computing 4, 1 (2018),
88–95.

[6] Federico Barbero, Feargus Pendlebury, Fabio Pierazzi, and Lorenzo Cavallaro.
2022. Transcending Transcend: Revisiting Malware Classification in the Presence
of Concept Drift. In IEEE Symposium on Security and Privacy.

[7] Yizheng Chen, Zhoujie Ding, and David Wagner. 2023. Continuous Learning
for Android Malware Detection. In 32nd USENIX Security Symposium (USENIX
Security 23). USENIX Association, Anaheim, CA, 1127–1144. https://www.usenix.
org/conference/usenixsecurity23/presentation/chen-yizheng

[8] C Chow. 1970. On optimum recognition error and reject tradeoff. IEEE Transac-
tions on information theory 16, 1 (1970), 41–46.

[9] Charles Corbiere, Nicolas Thome, Antoine Saporta, Tuan-Hung Vu, Matthieu
Cord, and Patrick Perez. 2021. Confidence estimation via auxiliary models. IEEE
Transactions on Pattern Analysis andMachine Intelligence 44, 10 (2021), 6043–6055.

[10] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio
Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, and Konrad Rieck. 2021. Dos
and Don’ts of Machine Learning in Computer Security (2022 ed.). USENIX.

[11] Yukun Ding, Jinglan Liu, Jinjun Xiong, and Yiyu Shi. 2020. Revisiting the evalua-
tion of uncertainty estimation and its application to explore model complexity-
uncertainty trade-off. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops. 4–5.

[12] Ido Galil, Mohammed Dabbah, and Ran El-Yaniv. 2023. What can we learn from
the selective prediction and uncertainty estimation performance of 523 imagenet
classifiers. arXiv preprint arXiv:2302.11874 (2023).

[13] Yonatan Geifman and Ran El-Yaniv. 2017. Selective classification for deep neural
networks. Advances in neural information processing systems 30 (2017).

[14] Yonatan Geifman, Guy Uziel, and Ran El-Yaniv. 2018. Bias-reduced uncertainty
estimation for deep neural classifiers. arXiv preprint arXiv:1805.08206 (2018).

[15] Yonatan Geifman, Guy Uziel, and Ran El-Yaniv. 2019. Bias-Reduced Uncertainty
Estimation for Deep Neural Classifiers. In International Conference on Learning
Representations. https://openreview.net/forum?id=SJfb5jCqKm

[16] Charles A. E. Goodhart. 1975. Monetary relationships: A view from Threadneedle
Street. Papers in Monetary Economics 1 (1975).

[17] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and
Patrick McDaniel. 2017. Adversarial Examples for Malware Detection. In Com-
puter Security – ESORICS 2017, Simon N. Foley, Dieter Gollmann, and Einar
Snekkenes (Eds.). Springer International Publishing, Cham, 62–79.

[18] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. 2017. On calibration
of modern neural networks. In Proceedings of the 34th International Conference
on Machine Learning - Volume 70 (Sydney, NSW, Australia) (ICML’17). JMLR.org,
1321–1330.

[19] William Hardy, Lingwei Chen, Shifu Hou, Yanfang Ye, and Xin Li. 2016. DL4MD:
A deep learning framework for intelligent malware detection. In Proceedings of
the International Conference on Data Science (ICDATA). The Steering Committee
of The World Congress in Computer Science, Computer . . . , 61.

[20] Kilian Hendrickx, Lorenzo Perini, Dries Van der Plas, Wannes Meert, and Jesse
Davis. 2024. Machine learning with a reject option: A survey. Machine Learning
113, 5 (2024), 3073–3110.

[21] DanHendrycks and KevinGimpel. 2016. A baseline for detectingmisclassified and
out-of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136
(2016).

[22] Dan Hendrycks and Kevin Gimpel. 2017. A Baseline for Detecting Misclassified
and Out-of-Distribution Examples in Neural Networks. In International Confer-
ence on Learning Representations. https://openreview.net/forum?id=Hkg4TI9xl

[23] Roberto Jordaney, Kumar Sharad, Santanu K. Dash, Zhi Wang, Davide Papini, Ilia
Nouretdinov, and Lorenzo Cavallaro. 2017. Transcend: Detecting Concept Drift in
Malware Classification Models. In 26th USENIX Security Symposium. USENIX As-
sociation, Vancouver, BC. https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/jordaney USENIX Sec.

[24] Zeliang Kan, Feargus Pendlebury, Fabio Pierazzi, and Lorenzo Cavallaro. 2021.
Investigating labelless drift adaptation for malware detection. In Proceedings of
the 14th ACM Workshop on Artificial Intelligence and Security. 123–134.

[25] Bojan Kolosnjaji, Apostolis Zarras, George Webster, and Claudia Eckert. 2016.
Deep learning for classification of malware system call sequences. In AI 2016:

Advances in Artificial Intelligence: 29th Australasian Joint Conference, Hobart, TAS,
Australia, December 5-8, 2016, Proceedings 29. Springer, 137–149.

[26] Ananya Kumar, Percy S Liang, and Tengyu Ma. 2019. Verified uncertainty
calibration. Advances in neural information processing systems 32 (2019).

[27] Henrik Linusson, Ulf Johansson, Henrik Boström, and Tuve Löfström. 2018.
Classification with reject option using conformal prediction. In Advances in
Knowledge Discovery and Data Mining: 22nd Pacific-Asia Conference, PAKDD 2018,
Melbourne, VIC, Australia, June 3-6, 2018, Proceedings, Part I 22. Springer, 94–105.

[28] Malik Magdon-Ismail and Amir F Atiya. 2004. Maximum drawdown. Risk
Magazine 17, 10 (2004), 99–102.

[29] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristo-
faro, Gordon Ross, and Gianluca Stringhini. 2016. Mamadroid: Detecting an-
droid malware by building markov chains of behavioral models. arXiv preprint
arXiv:1612.04433 (2016).

[30] Brad Miller, Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Rekha Bach-
wani, Riyaz Faizullabhoy, Ling Huang, Vaishaal Shankar, Tony Wu, George Yiu,
et al. 2016. Reviewer integration and performance measurement for malware
detection. In Detection of Intrusions and Malware, and Vulnerability Assessment:
13th International Conference, DIMVA 2016, San Sebastián, Spain, July 7-8, 2016,
Proceedings 13. Springer, 122–141.

[31] Jooyoung Moon, Jihyo Kim, Younghak Shin, and Sangheum Hwang. 2020.
Confidence-aware learning for deep neural networks. In international conference
on machine learning. PMLR, 7034–7044.

[32] Mahdi PakdamanNaeini, Gregory Cooper, andMilos Hauskrecht. 2015. Obtaining
well calibrated probabilities using bayesian binning. In Proceedings of the AAAI
conference on artificial intelligence, Vol. 29.

[33] Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, and Yang Liu.
2017. Context-aware, adaptive and scalable android malware detection through
online learning (extended version). arXiv preprint arXiv:1706.00947 (2017).

[34] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian
Nowozin, Joshua Dillon, Balaji Lakshminarayanan, and Jasper Snoek. 2019. Can
you trust your model’s uncertainty? evaluating predictive uncertainty under
dataset shift. Advances in neural information processing systems 32 (2019).

[35] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and
Lorenzo Cavallaro. 2019. TESSERACT: Eliminating Experimental Bias in Mal-
ware Classification across Space and Time. In 28th USENIX Security Sympo-
sium (USENIX Security 19). USENIX Association, Santa Clara, CA, 729–746.
https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury

[36] Xingzhi Qian, Xinran Zheng, Yiling He, Shuo Yang, and Lorenzo Cavallaro. 2025.
LAMD: Context-driven AndroidMalware Detection and Classification with LLMs.
arXiv:2502.13055 [cs.CR] https://arxiv.org/abs/2502.13055

[37] Joshua Saxe and Konstantin Berlin. 2017. eXpose: A character-level convolutional
neural network with embeddings for detecting malicious URLs, file paths and
registry keys. arXiv preprint arXiv:1702.08568 (2017).

[38] Glenn Shafer and Vladimir Vovk. 2008. A Tutorial on Conformal Prediction. J.
Mach. Learn. Res. 9 (June 2008), 371–421.

[39] Sina Sheikholeslami. 2019. Ablation Programming for Machine Learning. Master’s
thesis. KTH, School of Electrical Engineering and Computer Science (EECS).

[40] Jeremias Traub, Till J Bungert, Carsten T Lüth, Michael Baumgartner, Klaus H
Maier-Hein, Lena Maier-Hein, and Paul F Jaeger. 2024. Overcoming com-
mon flaws in the evaluation of selective classification systems. arXiv preprint
arXiv:2407.01032 (2024).

[41] Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. 2024. A comprehensive
survey of continual learning: Theory, method and application. IEEE Transactions
on Pattern Analysis and Machine Intelligence (2024).

[42] Ke Xu, Yingjiu Li, Robert Deng, Kai Chen, and Jiayun Xu. 2019. Droidevolver: Self-
evolving android malware detection system. In 2019 IEEE European Symposium
on Security and Privacy (EuroS&P). IEEE, 47–62.

[43] Limin Yang, Wenbo Guo, Qingying Hao, Arridhana Ciptadi, Ali Ahmadzadeh,
Xinyu Xing, and Gang Wang. 2021. CADE: Detecting and Explaining Concept
Drift Samples for Security Applications. In 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, 2327–2344. https://www.usenix.org/
conference/usenixsecurity21/presentation/yang-limin

[44] Xiaohan Zhang, Yuan Zhang, Ming Zhong, Daizong Ding, Yinzhi Cao, Yukun
Zhang, Mi Zhang, and Min Yang. 2020. Enhancing State-of-the-art Classifiers
with API Semantics to Detect Evolved Android Malware. In Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications Security (Virtual
Event, USA) (CCS ’20). Association for Computing Machinery, New York, NY,
USA, 757–770. https://doi.org/10.1145/3372297.3417291

[45] Xu-Yao Zhang, Guo-Sen Xie, Xiuli Li, Tao Mei, and Cheng-Lin Liu. 2023. A survey
on learning to reject. Proc. IEEE 111, 2 (2023), 185–215.

[46] Xinran Zheng, Shuo Yang, Edith C. H. Ngai, Suman Jana, and Lorenzo Cav-
allaro. 2025. Learning Temporal Invariance in Android Malware Detectors.
arXiv:2502.05098 [cs.CR] https://arxiv.org/abs/2502.05098

[47] Fei Zhu, Zhen Cheng, Xu-Yao Zhang, and Cheng-Lin Liu. 2022. Rethinking
confidence calibration for failure prediction. In European conference on computer
vision. Springer, 518–536.

https://www.virustotal.com
https://www.ndss-symposium.org/ndss2014/drebin-effective-and-explainable-detection-android-malware-your-pocket
https://www.ndss-symposium.org/ndss2014/drebin-effective-and-explainable-detection-android-malware-your-pocket
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://www.usenix.org/conference/usenixsecurity23/presentation/chen-yizheng
https://www.usenix.org/conference/usenixsecurity23/presentation/chen-yizheng
https://openreview.net/forum?id=SJfb5jCqKm
https://openreview.net/forum?id=Hkg4TI9xl
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/jordaney
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/jordaney
https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury
https://arxiv.org/abs/2502.13055
https://arxiv.org/abs/2502.13055
https://www.usenix.org/conference/usenixsecurity21/presentation/yang-limin
https://www.usenix.org/conference/usenixsecurity21/presentation/yang-limin
https://doi.org/10.1145/3372297.3417291
https://arxiv.org/abs/2502.05098
https://arxiv.org/abs/2502.05098

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Alexander Herzog, Aliai Eusebi, and Lorenzo Cavallaro

A BACKGROUND ON CONFIDENCE

FUNCTIONS

For each model, we retrieve both its (1) native prediction confidence,
specifically the maximum softmax probability (MSP) for neural
network models and the distance to the hyperplane for SVC models,
and (2) the out-of-distribution detection confidence where available.
We refer to these as confidence functions (𝜅). As described in Section
2, each framework employs its own approach to detect out-of-
distribution observations. These confidence functions serve as the
foundation for the “uncertainty” criteria guiding the selection of
samples the model is least confident about or those that “deviate
significantly from the known data distribution.” Here, we provide a
more formal treatment of each criterion.

A.1 Softmax Uncertainty

For classification models with softmax at the last layer, the vanilla
confidence score is theMSP. The adoption ofMSP as a certaintymea-
sure is supported by findings in [22], where the authors demonstrate
that correctly classified examples tend to have higher maximum
softmax probabilities compared to misclassified or OOD examples.
Given an input sample 𝑥 , a neural network parameterized by 𝜃 out-
puts a vector of logits 𝑓𝜃 (𝑥) ∈ R𝐾 , where 𝐾 represents the number
of classes. In this work, we focus on the binary case where 𝐾 = 2.
The softmax function then transforms these logits into a probability
distribution across the classes:

𝑝𝑘 (𝑥) =
exp(𝑓𝜃,𝑘 (𝑥))∑
𝑗 exp(𝑓𝜃,𝑗 (𝑥))

, 𝑘 ∈ {1, . . . , 𝐾} (5)

The MSP, representing the model’s most confident class predic-
tion, is given by:

𝑝 (𝑥) = max
𝑘
𝑝𝑘 (𝑥) (6)

Instead of directly using 𝑝 (𝑥) as a confidence measure, we define
an uncertainty score that normalizes its deviation from 0.5 - the
decision boundary in binary classification problems. This results in
the following measure:

𝑈 (𝑥) = 1 − |𝑝 (𝑥) − 0.5|
0.5

(7)

Expressing uncertainty this way is analogous to NCMs in con-
formal prediction [6, 23, 38] where𝑈 (𝑥) = 1 expresses maximum
uncertainty in the case where the model assigns equal probability
to both classes, i.e. 𝑝 (𝑥) = 0.5.

A.2 Distance to the Hyperplane

For SVC, we use the geometric distance to its hyperplane as the
confidence measure. In a binary classification setting with hyper-
plane 𝑓 (𝑥) = w𝑇 x + 𝑏, the signed distance from a sample x to the
hyperplane is:

𝑑 (x) = 𝑓 (x)
| |w| | =

w𝑇 x + 𝑏
| |w| | (8)

The magnitude of this distance represents confidence—samples
further from the boundary are classified with higher certainty.

A.3 CADE OOD Score

The authors employ the Median Absolute Deviation (MAD) in
a contrastively learned latent space. First, they map all training
samples into the latent space using their encoder and calculate the
centroid for each class 𝑖 as 𝑐𝑖 (by taking the mean value across
each dimension in Euclidean space). For each class, they measure
the typical variation in distances between samples and their class
centroid by computing the median distance and the MAD, where
MAD𝑖 = 1.4826·median(|𝑑 (𝑗)

𝑖
−𝑑𝑖 |). For a test sample, they calculate

its score for each class as:

𝐴
(𝑘)
𝑖

=
|𝑑 (𝑘)
𝑖
− 𝑑𝑖 |

MAD𝑖
(9)

where 𝑑 (𝑘)
𝑖

is the distance to the class centroid, 𝑑𝑖 is the median
distance within that class. The minimum score across all classes
(𝐴(𝑘) = min𝑖 (𝐴(𝑘)𝑖

)) determines whether the sample is drifting;
if this minimum score exceeds an empirically set threshold of 3.5,
they classify the sample as OOD.

A.4 HCC OOD Score

The authors identify OOD samples using a pseudo-loss mechanism
adapted specifically for contrastive learning settings. Uncertainty
in contrastive learning is inherently relational, being determined
by a sample’s relative positioning within the embedding space
compared to other samples. For each test sample𝑥𝑖 , they compute its
embedding and find its 2𝑁 − 1 nearest neighbors in the training set.
They form a batch containing 𝑥𝑖 and these neighbors, then assign a
predicted binary label 𝑦𝑖 to 𝑥𝑖 as a pseudo label while using ground-
truth labels for the training samples. Using this configuration, they
define the pseudo-loss as:

𝐿̂ℎ𝑐 (𝑖) =
1

|𝑃 (𝑖, 𝑦𝑖) |

∑︁
𝑗∈𝑃 (𝑖,𝑦̂𝑖)

max(0, 𝑑𝑖 𝑗 −𝑚)+

1
|𝑁 (𝑖, 𝑦𝑖) |

∑︁
𝑗∈𝑁 (𝑖,𝑦̂𝑖)

max(0, 2𝑚 − 𝑑𝑖 𝑗)
(10)

The final uncertainty score combines this with a binary cross-
entropy pseudo-loss:

𝐿̂(𝑖) = 𝐿̂ℎ𝑐 (𝑖) + 𝜆𝐿̂𝑐𝑒 (𝑖) (2)
At test time, they calculate uncertainty scores for all test samples

using this equation, then prioritize those with the highest scores
for AL selection.

B ALGORITHM FOR POST-HOC SIMULATED
ABSTENTION

Algorithmic definitions of the Post-Hoc Rejection Simulation with
associated subroutines for the single-value and class-specific un-
certainty scores. The algorithm is designed to study the behavior
of classifiers post-training under rejection. To perform this analy-
sis, practitioners need to record the uncertainty scores 𝑆 for every
test month 𝑀𝑖 in Dtest. In our evaluations, we experiment with
rejection budgets of 𝜏rej. = {0, 100, 200, . . . , 1500} in steps of 100.

Aurora: Are Android Malware Classifiers Reliable under Distribution Shift? Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Algorithm 1 Post-Hoc Rejection Routine
Require:

1: Test-Data Dtest with test-months𝑀𝑖 (with 𝑖 = 0, . . . , 𝑀)
2: Rejection-Quota: 𝜏rej
3: Method: ood or softmax

4: Initialize empty array 𝐴
5: for each month𝑀𝑖 (with 𝑖 = 1, 2, . . . , 𝑀) do ⊲ Skip𝑀𝑖=0
6: if method is softmax then
7: 𝑆 ← softmax scores for𝑀𝑖 ⊲ Of the positive class
8: else

9: 𝑆 ← ood scores for𝑀𝑖
10: end if

11: 𝑇 ← 𝑖 × 𝜏rej
12: if 𝑖 = 1 then ⊲ Skip Post-hoc for first Month
13: Append 𝑆 from𝑀0 to 𝐴
14: end if

15: if method is ood then
16: 𝑐 ← ood_threshold(𝐴,𝑇)
17: for each sample 𝑗 in𝑀𝑖 do
18: if 𝑆 [𝑗] > 𝑐 then
19: Mark 𝑗 as rejected
20: end if

21: end for

22: else ⊲ softmax method
23: (𝑙, 𝑢) ← softmax_thresholds(𝐴,𝑇)
24: for each sample 𝑗 in𝑀𝑖 do
25: if 𝑆 [𝑗] is between 𝑙 and 𝑢 then

26: Mark 𝑗 as rejected
27: end if

28: end for

29: end if

30: Append scores 𝑆 to array 𝐴
31: end for

Algorithm 2 Binary Classification Rejection Thresholds

1: function softmax_thresholds(𝑆 , 𝑇)
2: Input: Scores 𝑆 ; Total to reject 𝑇
3: Output: Lower and upper thresholds (𝑙, 𝑢)
4: Sort 𝑆 in descending order (most to least uncertain)
5: Initialize 𝑙 ← 1.0, 𝑢 ← 0.0
6: for 𝑘 = 0 to 𝑇 − 1 do
7: 𝑣𝑎𝑙 ← 𝑆 [𝑘]
8: 𝑙 ← min(𝑙, 𝑣𝑎𝑙) ⊲ Update lower threshold
9: 𝑢 ← max(𝑢, 𝑣𝑎𝑙) ⊲ Update upper threshold
10: end for

11: return (𝑙, 𝑢) ⊲ Rejection zone: 𝑆 ≤ 𝑙 or 𝑆 ≥ 𝑢
12: end function

Algorithm 3 Single Value Uncertainty Threshold

1: function ood_threshold(𝑆 , 𝑇)
2: Input: Scores 𝑆 ; Total to reject 𝑇
3: Output: Threshold for rejection

4: Sort 𝑆 in descending order (most to least uncertain)
5: 𝑖𝑑𝑥 ← index of the 𝑇 -th sample in sorted array
6: return 𝑆 [𝑖𝑑𝑥] ⊲ Threshold value
7: end function

C HYPERPARAMETER CONFIGURATIONS

Drebin SVM: We conducted a search for the regularization param-
eter 𝐶 from the set 0.001, 0.01, 0.1, 1, 10, 100, 1000. The best C is
1 for the Transcendent dataset, 0.1 for the APIGraph dataset, and
0.01 for the Androzoo dataset.

DeepDrebin MLP: For the DeepDrebin implementation, we ad-
hered to the configuration described in [17], employing a batch
size of 512, Adam optimizer with default parameters, and a dropout
probability of 𝑝 = 0.5. As part of our experimental design, we varied
the number of epochs 𝑒 ∈ 30, 50, though we found this choice to
be relatively inconsequential, with 𝑒 = 30 proving sufficient for
convergence.

HCC: Our HCC implementation followed the architecture and
training set-up described in the original paper [7]. The encoder
subnetwork comprises fully connected layers with ReLU activation,
progressively reducing the dimensionality from the input features
to a 128-dimensional embedding space through layers of sizes 512-
384-256-128. The classifier subnetwork employs two hidden layers
with 100 neurons each, ReLU activation, and two output neurons
normalized with Softmax. The authors used a batch size of 1,024.
For hyperparameter selection, they considered two optimizers (SGD
and Adam), four initial learning rates (0.001, 0.003, 0.005, 0.007),
three learning rate schedulers (cosine annealing without restart,
step-based decay by a factor of 0.95 every 10 epochs, and step-
based decay by a factor of 0.5 every 10 epochs), and four choices for
classifier epochs (100, 150, 200, 250). The warm start phase involved
exploring two optimizers (SGD and Adam), two learning rate scales
(1% and 5% of the initial learning rate), and two epoch counts (50
and 100). The best parameters for the APIGraph dataset are: SGD
optimizer for the initial model with learning rate 0.003 and step-
based decay by factor 0.95 every 10 epochs for 250 training epochs;
Adam optimizer during warm start with learning rate 1.5 × 10−4
(5% of initial) for 100 epochs after each monthly update. For the
Androzoo dataset are: SGD optimizer for the initial model with
learning rate 0.001 and step-based decay by factor 0.5 every 10
epochs for 200 training epochs; Adam optimizer during warm start
with learning rate 1 × 10−5 (1% of initial) for 50 epochs after each
monthly update. For the Transcendent dataset, after performing a
search over the parameter space reported in [7], we determined the
optimal configuration to be: SGD optimizer for the initial model
with learning rate 0.003 and step-based decay by factor 0.95 every
10 epochs for 250 training epochs; Adam optimizer during warm
start with learning rate 3 × 10−5 (1% of initial) for 100 epochs after
each monthly update.

CADE: For CADE, we used the exact same setup described in [7].
The authors in [7] adapt CADE OOD sample selector for MLP in
both cold start and warm start. To have a fair comparison, the au-
thors use the same encoder dimensions as their encoder, and mirror

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Alexander Herzog, Aliai Eusebi, and Lorenzo Cavallaro

that as the decoder in CADE. They use the same MLP structure
as their classifier subnetwork. They use batch size 1,536. The au-
thors fix the MLP learning rate (0.001) and training epochs (50),
but perform grid search over the same set of parameters for the
CADE autoencoder as described above. Note that the original ac-
tive learning experiment in CADE did not tune hyperparameters
(Section 6 in [43]). But they tune hyperparameters including opti-
mizer, initial learning rate, learning rate scheduling, epochs to train
the contrastive autoencoder model, warm start learning rate, and
epochs.

The optimal cold-start configuration for the APIGraph dataset is:
Adam optimizer with learning rate 0.001, step-based decay by factor
0.95 every 10 epochs, and 150 training epochs. For the Androzoo
dataset is: Adam optimizer with learning rate 0.001, step-based de-
cay by factor 0.5 every 10 epochs, and 100 training epochs. For the
Transcendent dataset, after grid search over the parameter space re-
ported in [7], we determined the optimal configuration to be: Adam
optimizer, initial learning rate 0.003, cosine decay with a factor 1

every 10 epochs, and 100 training epochs. The optimal warm-start
configuration for the APIGraph dataset is: Adam optimizer for both
initial classifier and active learning; autoencoder with learning rate
0.001, cosine annealing decay without restart, and 250 initial train-
ing epochs; during active learning, both the autoencoder and MLP
used 5% of the initial learning rate for 50 warm training epochs. For
the Androzoo dataset is: Adam optimizer for both initial classifier
and active learning; autoencoder with learning rate 0.001, cosine
annealing decay without restart, and 100 initial training epochs;
during active learning, both the autoencoder and MLP used 1%
of the initial learning rate for 50 warm training epochs. For the
Transcendent dataset, after grid search over the parameter space
reported in [7], we determined the optimal configuration to be:
Adam optimizer for both initial classifier and active learning; initial
learning rate 0.007, step-based decay with a factor 0.95, and 200
initial training epochs; active learning: for both the autoencoder
and MLP, initial learning rate 0.00035, and 50 warm training epochs.

Aurora: Are Android Malware Classifiers Reliable under Distribution Shift? Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

D RISK-COVERAGE CURVES

Figure 6: Risk-coverage curves for 𝜏 ∈ {100, 200, 400}.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Alexander Herzog, Aliai Eusebi, and Lorenzo Cavallaro

E ADDITIONAL NUMERICAL RESULTS

Table 2: Additional results for both the baseline evaluation and under simulated abstention . For each dataset, we report

the False Negative Rate (FNR), False Positive Rate (FPR), and their coefficient of variation (CV). For metrics under simulated

abstention, we also report Maximum Drawdown (F1) and CV[F1]. All experiments with simulated abstention use 𝜏rej ∈
{100, 200, . . . , 1500}.

Dataset

androzoo apigraph transcendent

𝜏 𝜏init Method FNR↓ FPR↓ 𝐶𝑉 [FNR]↓ CV[F1]↓ Max D.↓ FNR↓ FPR↓ 𝐶𝑉 [FNR]↓ CV[F1]↓ Max D.↓ FNR↓ FPR↓ 𝐶𝑉 [FNR]↓ CV[F1]↓ Max D.↓

50
|Dinit |

CADE (cold) - OOD 48% 0.6% 52 34 8% 17% 1.1% 47 27 4% 37% 1.5% 46 27 32%
CADE (cold) - Softmax 48% 0.6% 52 35 20% 17% 1.1% 47 5 3% 37% 1.5% 46 43 81%
CADE (warm) - OOD 45% 0.4% 53 30 29% 20% 1.0% 49 133 19% 38% 12.5% 59 58 87%
CADE (warm) - Softmax 45% 0.4% 53 25 10% 20% 1.0% 49 7 4% 38% 12.5% 59 65 78%
DeepDrebin (cold) - Softmax 58% 0.2% 42 38 14% 15% 0.4% 46 6 1% 20% 1.3% 46 7 7%
HCC (warm) - Pseudo-Loss 34% 0.4% 66 57 24% 16% 0.6% 46 4 11% 19% 1.7% 50 10 4%
HCC (warm) - Softmax 34% 0.4% 66 55 26% 16% 0.6% 46 4 0% 19% 1.7% 50 11 4%
SVC 50% 0.3% 47 85 33% 18% 0.5% 43 5 0% 49% 0.8% 35 38 6%

4800 DeepDrebin (cold) - Softmax 40% 0.4% 64 30 26% 15% 0.4% 50 6 1% 22% 1.4% 58 14 10%
SVC 42% 0.3% 55 83 21% 17% 0.5% 44 6 2% 48% 0.7% 36 33 15%

100
|Dinit |

CADE (cold) - OOD 48% 0.6% 52 34 8% 16% 0.9% 47 25 4% 36% 1.4% 47 29 59%
CADE (cold) - Softmax 48% 0.6% 52 35 24% 16% 0.9% 47 5 0% 36% 1.4% 47 57 88%
CADE (warm) - OOD 50% 0.3% 50 37 26% 18% 0.8% 49 214 15% 45% 1.8% 50 64 91%
CADE (warm) - Softmax 50% 0.3% 50 30 23% 18% 0.8% 49 6 0% 45% 1.8% 50 66 80%
DeepDrebin (cold) - Softmax 55% 0.2% 46 37 21% 13% 0.3% 52 5 2% 17% 1.3% 52 7 7%
HCC (warm) - Pseudo-Loss 32% 0.4% 70 51 12% 14% 0.4% 48 4 0% 17% 1.6% 51 10 7%
HCC (warm) - Softmax 32% 0.4% 70 50 25% 14% 0.4% 48 4 0% 17% 1.6% 51 10 7%
SVC 44% 0.3% 55 68 33% 17% 0.5% 43 5 0% 40% 1.3% 40 30 6%

4800 DeepDrebin (cold) - Softmax 33% 0.4% 75 23 12% 12% 0.4% 53 5 1% 18% 1.2% 48 8 11%
SVC 45% 0.3% 53 68 15% 16% 0.5% 43 5 1% 42% 0.8% 42 32 7%

200
|Dinit |

CADE (cold) - OOD 44% 0.5% 59 33 43% 14% 0.8% 50 23 23% 32% 1.3% 48 25 58%
CADE (cold) - Softmax 44% 0.5% 59 33 14% 14% 0.8% 50 4 0% 32% 1.3% 48 56 87%
CADE (warm) - OOD 48% 0.3% 53 38 34% 17% 0.7% 50 239 11% 53% 1.7% 58 84 90%
CADE (warm) - Softmax 48% 0.3% 53 28 24% 17% 0.7% 50 6 0% 53% 1.7% 58 110 86%
DeepDrebin (cold) - Softmax 53% 0.2% 48 32 22% 12% 0.3% 54 5 0% 15% 1.2% 69 6 2%
HCC (warm) - Pseudo-Loss 31% 0.3% 72 49 27% 12% 0.5% 54 3 0% 14% 1.6% 45 11 7%
HCC (warm) - Softmax 31% 0.3% 72 50 27% 12% 0.5% 54 3 0% 14% 1.6% 45 8 7%
SVC 42% 0.3% 56 58 4% 16% 0.5% 42 5 0% 42% 0.7% 45 35 8%

4800 DeepDrebin (cold) - Softmax 27% 0.3% 75 16 33% 12% 0.3% 54 4 1% 15% 1.2% 58 7 5%
SVC 42% 0.4% 60 60 14% 15% 0.5% 44 5 1% 40% 0.9% 44 30 8%

400
|Dinit |

CADE (cold) - OOD 32% 0.5% 68 25 37% 11% 1.1% 59 20 9% 28% 1.3% 58 21 58%
CADE (cold) - Softmax 32% 0.5% 68 23 24% 11% 1.1% 59 4 0% 28% 1.3% 58 46 86%
CADE (warm) - OOD 40% 0.4% 62 33 35% 13% 0.9% 48 152 10% 48% 1.4% 62 61 78%
CADE (warm) - Softmax 40% 0.4% 62 25 20% 13% 0.9% 48 4 0% 48% 1.4% 62 60 83%
DeepDrebin (cold) - Softmax 41% 0.2% 61 24 12% 11% 0.3% 55 5 0% 12% 1.1% 48 3 4%
HCC (warm) - Pseudo-Loss 23% 0.3% 71 48 26% 16% 1.3% 136 - 0% 10% 1.6% 42 9 7%
HCC (warm) - Softmax 23% 0.3% 71 47 27% 16% 1.3% 136 26 0% 10% 1.6% 42 8 13%
SVC 38% 0.3% 65 47 3% 16% 0.5% 43 5 1% 37% 1.3% 43 30 11%

4800 DeepDrebin (cold) - Softmax 23% 0.3% 80 15 34% 10% 0.3% 55 4 0% 11% 1.1% 43 3 4%
SVC 38% 0.5% 67 51 12% 16% 0.5% 42 4 1% 40% 0.8% 46 32 8%

Aurora: Are Android Malware Classifiers Reliable under Distribution Shift? Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

F ADDITIONAL RESULTS FOR REJECTION SIMULATION

Figure 7: Results depicting performance of classifiers after rejection for the transcendent- and apigraph datasets.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Alexander Herzog, Aliai Eusebi, and Lorenzo Cavallaro

G ADDITIONAL RESULTS AND COMMENTS

Figure 8: Temporal Instability in HCC (warm) beginning at month 61 - manifesting in large values for 𝐶𝑉 [F1] (see table 1). We

repeated the experiments for HCC as described in [7] and repeated the experiment with 5 random trials (random seeds). The

cause for the observed instability in HCC is unknown. Reported is average monthly performance across all 5 seeds.

	Abstract
	1 Introduction
	2 Motivation and Related Work
	3 Aurora
	3.1 Risk-Coverage Curve
	3.2 Coefficient of Variation
	3.3 Performance under Simulated Abstention

	4 -proportional subsampling of Dinit
	5 Experimental Setup
	5.1 Reference Frameworks
	5.2 Datasets

	6 Experiments
	6.1 Risk-Coverage Plots
	6.2 Numerical Results

	7 Limitations
	8 Conclusion
	References
	A Background on Confidence Functions
	A.1 Softmax Uncertainty
	A.2 Distance to the Hyperplane
	A.3 CADE OOD Score
	A.4 HCC OOD Score

	B Algorithm for Post-Hoc Simulated Abstention
	C Hyperparameter Configurations
	D Risk-Coverage Curves
	E Additional Numerical Results
	F Additional Results for Rejection Simulation
	G Additional Results and Comments

