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ABSTRACT

Open-ended learning (OEL) –which emphasizes training agents that achieve broad capability over
narrow competency –is emerging as a paradigm to develop artificial intelligence (AI) agents to achieve
robustness and generalization. However, despite promising results that demonstrate the benefits of
OEL, applying OEL to develop autonomous agents for real-world cybersecurity applications remains
a challenge.
We propose a training approach, inspired by OEL, to develop autonomous network defenders. Our
results demonstrate that like in other domains, OEL principles can translate into more robust and
generalizable agents for cyberdefense. To apply OEL to network defense, it is necessary to address
several technical challenges. Most importantly, it is critical to provide a task representation approach
over a broad universe of tasks that maintains a consistent interface over goals, rewards and action
spaces. This way, the learning agent can train with varying network conditions, attacker behaviors,
and defender goals while being able to build on previously gained knowledge.
With our tools and results, we aim to fundamentally impact research that applies AI to solve cyberse-
curity problems. Specifically, as researchers develop gyms and benchmarks for cyberdefense, it is
paramount that they consider diverse tasks with consistent representations, such as those we propose
in our work.

Keywords Reinforcement Learning · Open-ended Learning · Cybersecurity

1 Introduction

Reinforcement Learning (RL) has been demonstrated useful to develop agents that solve complex tasks with high
performance. Naturally, this has led researchers to hypothesize that RL may be used to develop agents to defend the
next generation of computer networks with increasingly complex requirements and sophisticated adversaries. However,
unlike other problems where RL has been applied successfully, network defense is not characterized by a single task
with a fixed set of rules. Our work explores the applicability of Open-ended Learning (OEL) [34] to offer a solution to
this dichotomy, enabling autonomous agents to learn a broad set of behaviors that result in more secure and reliable
computer networks, even when information is imperfect and goals are underspecified.

Open-ended Learning has emerged as a promising learning process for training agents to achieve multiple goals that
require mastering several tasks. Moreover, OEL expects agents to exhibit useful behaviors when agents face situations
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Figure 1: Overview of dynamic task selection: The outer loop adjusts the training-task distribution based on the latest
agent policy evaluation, following predefined rules (e.g., a curriculum heuristic that increases task complexity). The
agent trains for multiple iterations, with each evaluation round informing the next.

that are unknown at design time [34]. This kind of learning paradigm is well aligned to the requirements for training
agents to defend networks. Cyberdefenders need to reconfigure networks, balancing multiple goals and subtasks that
must adapt to service demands and evolving threats. Nonetheless, despite its potential, applying OEL in the context of
cyberdefense is challenging. Crucially, OEL requires adequate representations of goals, states and actions [34, 12] that
enable agents to learn complex behavior by becoming competent in a collection of skills or subtasks. This effectively
requires representations and learning architectures that allow agents to use previously learned skills to acquire new
skills.

Providing a framework that presents a learning agent with a broad set of tasks is insufficient. If action spaces,
state spaces and goal representations are totally disconnected between two tasks, we can hardly expect that an
agent learns how mastering one task relates to mastering the other. Thus, like previous work by Stooke et al. [41]
in the context of physical 3D worlds, a key component of our approach is to define a representation for network
defense tasks that can be procedurally generated while preserving the necessary consistency between tasks to enable
agents to learn task relationships. Though previous work has proposed partial answers to do this effectively in other
domains [41, 33, 43, 6, 27], it is not yet understood how to accomplish this in the context of training agents to defend
computer networks.

Key ideas enabling our approach include the use of action representations [11] to maintain consistency of action spaces;
and the specification of goals and metrics using the Planning Domain Definition Language (PDDL). Correspondingly,
these two ideas allow agents to learn consistent action semantics over a task universe; and the representation of broad
sets of goals and metrics that have well-defined relationships. Importantly, full domain dynamics need not be specified
in PDDL. Defining all aspects of network tasks using PDDL is intractable for realistic network defense problems. The
results of network defender actions are non-deterministic and preconditions are not fully observable.

Adequate representations for network defense tasks must be complemented by an approach to sample these tasks and
present them to the agent during training. Our work discusses benefits of difficulty-based curriculums (similar to
automated domain randomization [32]), as well as the role of task diversity to seek policy robustness and generalization.
Similar to previous work outside network defense, we show that presenting a learning agent with a collection of subtasks
with varying focus and difficulty results in policies that perform better at solving complex network defense tasks –when
compared to an approach where the agent interacts with a single environment and performs a single task (i.e., the end
goal). Arriving at a useful policy with this approach requires experiencing fewer timesteps, and the resulting policy is
more robust, namely, it performs better under conditions not seen during training. Our results support the hypothesis
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that the OEL paradigm may be more suitable for learning network defense tasks than approaches that only train by
interacting with a single instance of an adversary.

Our work does not fully answer the general question of what distribution of tasks will produce the best agent. However,
we provide insights about aspects of tasks and curriculums that are relevant for network defense. Specifically, in the
context of defending computer networks, it is important that the behavior of defending agents be robust to changes
in the network (e.g., size, topology, congestion); changes in the behavior of normal users (gray agents); the presence
of adversaries with different goals (e.g., ransomware vs stealing data); and changes (to a degree) in the procedures
(behavior) employed by the adversary.

Ultimately, our recommendation is that future developments of gyms for network defense [5, 40, 29, 26, 2], consider
the problem of broad task representation. Our tools and insights provide a foundation in that regard. We also advocate
for the consideration of broader sets of network defense tasks when developing benchmarks to evaluate the robustness
of network defenses. The issues of generalization in machine learning solutions for network security problems is an
increasingly relevant topic [21, 9].

Contributions

The following are the most important contributions of this work:

• We present evidence to support the idea that OEL presents a promising learning paradigm to develop au-
tonomous network defenders. Importantly, when an agent learns to master a broad set of tasks, the knowledge
of the agent can be generalized to master a task from the same universe of tasks without having faced that
specific task before.

• We present a concrete approach for defining a universe of network defense tasks, and demonstrate how this
results in training an agent that learns a policy that can generalize to a reasonably complex network defense
task.

• We explore the extent to which this kind of “flexible” learning may be an important step toward learning robust
policies for network defense whose performance does not fall apart when the adversary deviates from its basic
behavior.

2 Related Work

Our work is related to two main research areas: (1) research pursuing techniques to train agents to perform a broad set
of tasks; and (2) research focusing on the specific aspects of applying reinforcement learning to network defense. With
regard to the first area, our work is related to research in meta-learning [13, 14, 35, 16, 23], curriculum learning [10, 36]
and open ended learning [34, 41]. With regard to the second area, our contributions are complementary to prior work
developing autonomous network defenders [24, 5, 37, 26, 17] or autonomous red agents [42, 44, 18].

Multiple approaches have been developed, in the context of robotics, with the general goal of training robots to perform
complex tasks. Eysenbach et al. [14] studied how to hierarchically compose pretrained skills to learn complex tasks.
Finn et al. [16] introduced the notion of online meta-learning to quickly adapt to new tasks.

Other work has focused on the role of task selection for fast, effective, and robust learning. Our work is more closely
related to these works, such as curriculum learning [10] and open ended learning [41, 33, 43, 6, 27]. We share the
general goal of achieving robust and generalizable learning. However, our work has an emphasis on adversarial settings.
In adversarial settings, an adversary controls aspects of a task definition (i.e., by controlling aspects of the environment),
and therefore we study the extent to which RL policies must be robust to various forms of task variation.

Several research efforts have pursued the general problem of building gyms, to train network defenders via reinforcement
learning [24, 5, 37, 26, 29]. Kanagawa et al. [24] touch on the issue of generalization. However, the environments in
their Rogue-Gym are based on roguelike video games. In contrast, our work has sought to be directly applicable to
the problem of defending realistic computer networks. Other works have similarly prioritized relevance to network
defense [5, 37, 26]. CyberBattleSim [40] was created to be an experimental platform to train automated agents through
RL and research and investigate how they operate in enterprise network environments, using a high-level simulated
abstraction of computer networks and cybersecurity concepts. The Cyber Operations Research Gym (CybORG) [5, 37]
was an environment developed to support the creation of agents capable of autonomous cyber operations with the
expectation of training in simulation and the expressed ambition to address the gap between this and validation for
deployment to real environments. CyGIL [26] is an architecture providing an environment of network operations for
emulated RL training, which also includes the integration of state-of-the-art industry tools to increase agent capability.
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The Primary-level AI Training Environment (PrimAITE) [28] is a simulator gym for training and assessing AI for
cyberdefense against modeled cyberattacks, where training uses RL reward functions balance countering adversaries and
maintaining successful operations. Yawning Titan [2] is a simulator that stands as a different approach for simulation
toward developing cyber defenses, focusing on models for causal inference, using dynamic causal Bayesian optimization
(DCBO) to inform blue actions. FARLAND (the framework for advanced RL for autonomous network defense) [29],
enables a practical approach to create RL-enabled autonomous network defense agents and the evaluation of their
robustness against attacks.

RL is a typical approach for training defenders with wide possibilities for implementation. In Bates et al. [8], the focus
was on reshaping how defenders are rewarded, expanding on the basis of giving penalties for adversarial success to
inquire as to the effects of the relative magnitude of penalties, of introducing positive rewards, and of establishing
agent curiosity, motivating agent exploration of lesser known states, which determined that the precise techniques used
matters greatly to ensure improvements instead of degradation. Research has also examined specific approaches of
RL against different cyber use cases. In [7], RL was pitted against other machine learning approaches (CN2, SVM) in
an intrusion detection context. In [19], the use case considered was intrusion response, where the authors employed a
simulation system in which to train defenders through their RL method of Threshold Fictitious Self-Play which were
in turn evaluated in an emulation system, although this emulation system was designed around intrusion response
specifically.

Unlike our work which includes an abstraction that allows transition of simulation to emulation, many approaches
remain within a simulation environment. Feng and Xu [15] couched cyber state dynamics as a two player zero-sum
mathematical game and learned an optimal cyber defense strategy for it using an actor-critic neural network trained
via DRL. Applebaum et al. [4] performed an analysis of Tabular Q-Learning RL as a baseline algorithmic approach
to autonomous cyberdefense in a simulated cyber environment expanding from Microsoft’s CyberBattleSim. Zhu et
al. [45] provided an approach for network defense agents trained with an algorithm combining DDQN and dueling DQN
in the CybORG framework, but with the future intent of expanding into experiments inclusive of emulation. In [31, 30]
RL was used to learn defenses for intrusion response simulations in an environment using attack graphs specified in the
Meta Attack Language, where the future ambition was to bridge the gap between simulation and real environments.

Our approach is also related to previous work that suggested defining universes of tasks to train cyberdefenders [29].
However, that work did not specifically study how dynamic task selection impacts learning results, or how to concretely
implement network defense representations that provide consistency during training. Our paper proposes concrete
implementation approaches and provides empirical evidence to justify our hypotheses.

Reinforcement learning has also been proposed to drive the behavior of red agents [40, 42, 44, 18]. Janisch et al. [22]
introduced a red-focused gym, Network Attack Simulator & Emulator (NASimEmu), for DRL training offensive
penetration agents that can withstand and adapt to novel scenarios, allowing transfer to new settings with different
network topology, size, and configuration and supporting seamless deployment from simulation training to emulation.
Like all this work, our work is directly concerned with the practical aspects of applying RL to network defense.
However, their rationale and approach are different. Our approach relies on sampling tasks from a universe to achieve
generalizability and to facilitate progress during training. In contrast, the goal of red applications is not to find single
agents that master multiple tasks. In their approach, it is sufficient to find any number of red agents that induce at least
one security violation.

Moreover, research into attacks can extend to examining and mitigating attacks on the controls in cyberphysical systems
managed by RL. In Havens et al. [20], to achieve online mitigation of the bias introduced by an attack on a DRL system,
the researchers took an approach of optimizing a master policy that can detect attacks and choose between subpolicies
appropriate to either the nominal state or the state an adversary perturbed.

3 Approach

In Section 4, we discuss the performance of an agent dealing with a relatively complex network defense task. This
agent was trained to master simpler tasks to both ensure that the agent continues to learn and that we end with a robust
agent that can effectively perform network tasks that are similar to—but not exactly the same as—a task that the agent
has performed before. This section describes our approach to define network defense tasks and universes of them. In
addition, we discuss our strategy to present new tasks to a learning agent to achieve both progress and generalization.

3.1 Network Defense Tasks

A network defense task in our framework must adequately capture the security and quality of service goals of a concrete
enterprise network. In other words, a concrete task encodes various quality of service (QoS) requirements of the
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network, as well as the dynamics of the enterprise network, which in turn, depend on the behavior of the users of the
network, the computer applications in the network, and how the network is configured to process and deliver packets.

3.1.1 Task Representation

Concretely, our framework defines a network defense task as a pair (N,G), where N defines the network dynamics
and G defines the security and liveness goals of the network defender. The network dynamics N consist minimally of
(I, {πgi}, {πrj}, f), an initial network configuration; a set of policies that drive the behavior of gray agents; a set of
policies that drive the behavior of red agents; and, a function that transforms an action representation, which is typically
a high-level, abstract description of a defender action, into an action that can be executed in the simulation.

I includes a description of the set of initial hosts in the network, how they are connected, what software is installed in
each host, and what packet forwarding rules initially apply. I also determines where red remote agent tools (RATs) are
installed. Policies in {πgi} and {πrj} can be implemented via traditional programs, stochastic policies, or planners.

The dynamics of a RL task also depend on the sets of states and actions, the observation model, and the state transitions.
Crucially, f is a key component of the task definition. As we elaborate in Section 3.1.2, to be able to implement OEL
ideas we need stable observation and action spaces. For this, we rely on action representations [11] that are mapped (by
f ) to complex actions that can be executed in the environment.

G is specified as a set of conditions that are checked during and at the end of an episode, and a real valued function
(reward function) of these conditions. For example, when using sparse rewards, G is specified as a function of the
number of times conditions (related to security or quality of service) were observed during an episode. These conditions
may include, among others, network hosts reporting inability to transfer a file from one host to another or hosts with a
red RAT being captured in a honey network. Section 3.1.3 describes goals in our framework in more detail.

The aspects (N,G) of a network defense task are all aspects that are likely to change in a real network. For that reason,
it is necessary for an agent to learn robust policies that perform well for most tasks in a universe N × G, for a suitable
set of network dynamics N and a set of security and liveness goals G (cf. § 3.1.3). The behavior of authorized users in
a network and the sets of tactics, techniques, and procedures that dictate the behavior of an adversary can be very broad.
However, when developing an RL network defender, U = N × G should not be arbitrary. Instead, we argue that the
definition of U and the selection of tasks in U , during training and evaluation, should be important considerations for
the development of said defender.

As expected, the performance of a RL network defender also depends on what it can observe and the actions it can take.
To ensure a consistent interface for the RL defender, varying the task parameters (N,G) across the universe of tasks
N ×G must be done in a way that maintains a standardized set of possible actions and observations, as described below.

3.1.2 Network Dynamics

Similarly to Stooke et al. [41], when we train a network defender, we fix the sets of actions A and observations O for a
task universe U .

Fixing O is generally not difficult as representations of state do not change as frequently. These would only need to be
adjusted, for example, when new sensors or data sources are added. On the other hand, fixing A presents a technical
challenge because defender actions are more accurately characterized as parametric actions, such as isolate host with
IP 192.168.1.103; re-image host with hostname webserver1.example.com; or start routing packets from host with IP
in range R1 to hosts with IP in range R2 through the network function with IP 192.168.100.1. With this parametric
representation, the set of defender actions grows as the network scales. For example, a network with 200 hosts results
in an action space of about 3,000 possible actions.

To address this challenge, we use action representations with heuristics that depend on the state of the network. For
example, the actions above could be described as non-parametric actions, such as: isolate-host-flagged-by-nids; reimage-
webserver; or start-deep-packet-inspection-in-zone-flagged-by-nids. Because there is no unique way to transform these
non-parametric actions into parametric actions, our approach requires specifying such transformation f in the definition
of the dynamics N of the network task.

Note that fixing actions and observation spaces does not mean that the dynamics are fixed. The initial conditions and the
policies of gray and red agents (I, {πgi}, {πrj}) can still vary during training. In addition, different network defense
tasks in a curriculum can also specify different goals for the defender agent, as we describe next.
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3.1.3 Goals

One typical way to encode the targeted behavior of RL agents is through the specification of reward functions. However,
it is not feasible to manually tailor reward functions to encode each behavior in a large set of desired behaviors. This
presents a technical challenge that we address by encoding a reward as a function of a goal and a metric that helps to
optimize for desirable characteristics of solutions. Specifically, in our framework, each network defense task defines a
boolean goal and a numeric metric that combine terms using PDDL syntax. These terms describe a goal that must be
satisfied at the end of an episode; and, a metric that is evaluated at the end of the episode (when using a sparse reward)
or every step (when using a dense reward).

With these goal-metric pairs we defined a sparse reward function as follows, where x is the result of evaluating the
numeric expression corresponding to the metric, and g is the boolean expression corresponding to the goal:

r(x) =

{ 1
2ex2 + 0.5 if g is satisfied

1
2ex2 if g is not satisfied

It is possible to specify other reward functions from a goal-metric pair. We selected this approach because it provides
intuitive and desirable properties. The reward function is bounded between 0 and 1, where 1 represents the most
desirable outcome. When x is close to zero (indicating less penalties), r(x) approaches 1 if the goal is satisfied and at
most 0.5 if the goal is not satisfied. Conversely, as x decreases (indicating more penalties), r(x) converges to 0.5 if the
goal is satisfied and to 0 if the goal is not satisfied. This approach offers a more intuitive and interpretable reward signal
compared to other methods, where reward values may drop to extreme ranges [1], which can be difficult to interpret.
For instance, using the definition of r(x) and the example goal-metric pair shown in Figure 3, we derive the reward
curve illustrated in Figure 2.

In our evaluation, the goal-metric pairs are expressed as ratios. For metrics that yield larger integer values for x,
alternative reward functions may be more appropriate to prevent r(x) from dropping to zero too quickly.

Figure 2: Reward curve derived from the goal-metric pair shown in Figure 3.

3.1.4 The Use of PDDL

Given PDDL’s well-established role in defining planning problems and domains for symbolic planning and problem
solving [39], we build on this familiarity for task representation in our approach. PDDL enables us to formally specify
goals and metrics, mask actions, and create plans for bootstrapping. By leveraging PDDL, we gain a consistent and
flexible approach to defining these core components of our network defense tasks, which in turn enhances training
efficiency and supports the development of robust RL agents. Below, we detail the three key areas where PDDL is used
in this work:

Goal-Based Rewards: As mentioned in Section 3.1.3, manually defining reward functions for a wide range of
behaviors is impractical. Although it is possible to use programming languages like Julia to implement reward functions
by parsing agent actions and observed states, this approach often presents several challenges. For example, as the
action and state spaces grow, parsing these actions and states into meaningful numeric rewards becomes increasingly
cumbersome, making the system difficult to scale.

To efficiently define a diverse set of goals and metrics, we instead use PDDL. The key advantage of using PDDL is the
ability to crisply specify a broad range of goals and behaviors while minimizing complexity and scaling issues that
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come with parsing state-action data manually. Additionally, PDDL simplifies the process of adapting reward functions
as new tasks or behaviors emerge.

We utilize PDDL to define boolean goals and numeric metrics for each network defense task, forming the core of
our reward structure. The goal must be satisfied by the end of an episode, while the metric is evaluated either at the
episode’s conclusion (for sparse rewards) or at each step (for dense rewards). Figure 3 illustrates one example of a
goal-metric pair. Additional examples and a comprehensive list of the terms used in our evaluation are available in
Appendix 6.2.

( : g o a l
( o r

( and ( n o t red − i n a c t i v e )
( n o t r e a l −compromise )
( d e c l a r e d − v i c t o r y ) )

( and ( red − i n a c t i v e )
(= n o n t r i v i a l − b lue − a c t i o n s 0 ) ) ) )

( : m e t r i c min imize
(+

( / n o n t r i v i a l − b lue − a c t i o n s
s t e p s − to − s u r v i v e )

( / bad −qos − e v e n t s
(+ bad −qos − e v e n t s

good −qos − e v e n t s ) ) ) )

Figure 3: Example of a goal and a metric in PDDL: When an active red agent is detected, the agent should use decoys
as a countermeasure to deceive the red agent into thinking it has successfully compromised a real asset on the network.
This behavior is encoded by the requirement that the red agent must "declare victory" without the presence of a "real
compromise." In the absence of an active red agent, the agent should remain passive ("do nothing" action). The metric
specifies to minimize the ratio of non-trivial actions over the total number of actions, and the ratio of negative QoS
events over the total number of QoS events.

Action Masking: The second application of PDDL is in action masking, which limits the RL agent’s action space
to only those actions that are actually available in the current state. Without this mechanism, the agent would have
access to the entire action space A (described in section 3.1.2), which is large and likely to include many actions that
are not actually applicable to the current state. Many other RL network defense projects implement action filtering in a
rule-based manner [25, 40, 37, 5], where constraints on the available actions are manually defined based on the current
state and environmental conditions. These rule-based methods, though effective in some settings, rely on hardcoded
constraints that are specific to the environment, making them less scalable and adaptable to more complex or varied
scenarios.

While specifying the full domain dynamics in PDDL is not necessary, defining action preconditions in PDDL enables
the use of its built-in functions to dynamically filter out inapplicable actions. This reduces the action set without needing
manually defined rules for every possible constraint. As a result, this approach offers a more scalable and flexible
solution for action filtering, well-suited for managing complex and dynamic environments. By focusing on actions that
can yield meaningful effects, this approach improves the agent’s decision-making and accelerates the learning process.

Blue Agent Planning: The third key use of PDDL, which will be discussed in more detail in future work, is blue-agent
planning. In this approach, PDDL is used to combine goal-based rewards and masked actions to generate example plans
for the blue agent. These plans are then bootstrapped into the RL algorithm, providing the agent with valuable learning
experiences that guide its training. By leveraging these PDDL structures, we can create plans that accelerate the agent’s
training and enhance its performance. Future work will explore and elaborate on additional aspects and impacts of this
planning.

3.2 Task Selection

There are several challenging questions related to task selection, and, while we do not offer complete solutions in
this paper, we hope that our framework and insights guide future work. First, it is important to know what strategy
should guide the selection of tasks during training, to achieve optimal progress. Similarly, what task selection strategy
would lead to greater generalization? The answers to both most likely depend on the training algorithm that is used.
An answer to the first question would result in the most efficient curriculum to solve specific tasks. An answer to the
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second question would yield a strategy to train more generally capable agents. Finally, since our goal is to train robust
network defenders, we also care about a third question: How do we select testing tasks? Here, we outline our current
task selection strategies and then we evaluate them in Section 4.

Our approach for task selection is loosely related to Stooke et al.’s [41] and to Akkaya et al.’s [32]. Stooke et al. varied
three properties of tasks –applied to worlds and agent goals –as agents learned: smoothness, vastness, and diversity.
In contrast, Akkaya et al. only sought to gradually increase the difficulty of tasks during training. Our notion of
smoothness is similar to Stooke et al.’s. However, our research motivation includes more modest notions of diversity
and vastness. As we present new tasks to learning agents, we keep small distances between tasks (within the universe of
tasks).

Concretely, these are the attributes of network dynamics that may vary during training:

1. Size of a network controlled by two parameters: the number of hosts in a network and the number of subnets
2. Number of initially compromised hosts (with a red RAT from the beginning)
3. The basic behavior of a red agent consistent with one of the following goals: (Exfiltration, Ransomware,

DDoS, or DoS)
4. Deviation from a known basic behavior along two dimensions: the time between actions consistent with the

known basic behavior; and the amount of gray-like behavior driven by the red agent aimed at masking red
behavior1

5. The number of time steps that the blue agent must survive without incident
6. A goal-metric pair in a set of 43 pairs that range from simply detecting the presence of an attack, using

specific actions to mitigate the attack, to ultimately determining how to efficiently use any available actions to
maximize QoS and satisfy more sophisticated security goals

The variation of these parameters, whose list can be naturally extended, helps to provide a somewhat diverse universe of
tasks. However, while the number of possible instantiations of tasks is large, we cannot currently consider N vast. We
leave for future work extending our architecture to draw many more TTPs from frameworks, such as ATT&CK [38],
and considering richer forms of injecting normal behavior.

Our task selection strategy, during training, is to simply increase the numbers (or cardinalities of sets) for each of the
parameters that determine N as agents’ mean scores reach a level and to decrease these numbers as the agents’ mean
scores fall below a level. Figure 4 provides an example visualization of how the cardinalities for each parameter change
as levels increase.

To evaluate generalization, we present trained agents with a new task that they never saw during training: A red agent
with a DoS goal and multiple levels of deviation from its basic behavior. We describe further details about the testing
task in Section 4.

4 Evaluation

To assess the extent to which OEL may be a suitable learning paradigm to train autonomous cyberdefenders, we evaluate
the following aspects. First, Section 4.1 evaluates the benefits of training with a broad universe of tasks, gradually
scaling the complexity of the defense tasks that are presented to the learning agent. Then, Section 4.1 compares different
strategies for dynamic task selection. Finally, Section 4.2 evaluates the degree to which it may be possible to achieve
generalization and robustness via OEL.

This section also discusses relevant implementation details. Specifically, Section 4.3 explains how we created curricu-
lums with multiple goal-metric pairs. We describe how we estimate the relative difficulty of each goal-metric as well
as how it is possible to use different approaches for representing goals as observations to guide the learning agent.
Sections 4.4 and 4.5 also provide details about the algorithms and hyperparameters that we used in our experiments2.

4.1 Scaling

With regards to scaling, we evaluate the extent to which using dynamic task selection during training results in a policy
with higher performance and with shorter training –when compared to an approach that only trains to master a task of
fixed difficulty.

1We capture these two dimensions via parameters of probability distributions that affect the sampling of red actions.
2Source code to replicate our results is forthcoming.
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Figure 4: Maximum sampling values at different levels for dynamic task selection of a blue agent with no DoS.
Parameters are sampled from a range between the maximum value at each level and the minimum (value at level 0).
Diversity of host behavior is calculated as gray traffic divided by two, then multiplied by gray agent diversity, with the
division preventing plot flattening at larger y-axis values.

Figure 5: Comparing Defender Generalization Ability: Dynamic vs. Fixed Task Training Approaches

Specifically, we compare the performance of two policies obtained with two different task selection strategies, as the
agent is learning:

Fixed task selection In this case, the task definition remains constant throughout the training period using only a task
that is representative of the testing task.

Dynamic task selection This strategy consists of dynamically adjusting the difficulty of the task, as the agent is
learning, and until it eventually faces the target task.

Figure 6 compares the performance of policies with the two approaches, on multiple dimensions, as the agent trains.
Dynamic task selection outperforms fixed task selection in many regards. Importantly, we can arrive at a higher
performance with less training on a more diverse set of conditions.

We also evaluate the performance of the policies with several testing tasks after training has been completed. The
testing tasks consist of defending against one of several attacks in a network with 200 hosts during 100 episodes,
while maintaining a minimum quality of service. The policies of the red and gray agents are probabilistic, but the
corresponding probability distributions (driving the behavior of the red and gray agents) are fixed. Figure 5 compares
the testing performance of policies after 5M training simulation steps. On tasks at the highest difficulty, policies trained
via dynamic task selection perform better at with regards to mitigating attacks. However, training with fixed task
selection provides higher QoS when there is not an active attack. Policies trained via dynamic task selection outperform
those via fixed task selection in robustness and generalization, as we explain the next sections.
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Figure 6: Comparison of two policies: one with the fixed task selection strategy from Section 4.1, and another with
dynamic task selection (also from Section 4.1). The marker colors indicate task difficulty during training, based on
factors like hosts, subnets, and red/gray behavior variability. Figure 17 shows the comparisons across additional network
components.

Figure 7: Comparison of task selection strategies: one based on increasing difficulty levels, another selecting tasks
uniformly at random, and a third using small variations. While ’smooth’ task updates yield higher average rewards, the
difficulty of tasks mastered is greater with the difficulty-based approach. Marker colors represent task difficulty during
training, derived from hosts, subnets, and the variability of red and gray behaviors. Figure 18 shows additional plots
comparing these strategies across various network components.

As we discuss in Section 3.2, during training, we select tasks aiming to gradually increase the difficulty of a task.
This section examines how this concrete strategy can result in a better performing policy. For this, we compare
the performance of the resulting policy guided by difficulty with policies trained via alternative strategies. Figure 7
illustrates the performance of the strategies that we describe next.

Difficulty driven One of the policies is obtained via our difficulty-driven task selection.
Uniformly random A second policy is obtained presenting diverse tasks (drawing from the same universe of tasks),

but selecting their parameters uniformly at random.
Smooth changes A third policy is obtained by varying tasks by a small amount, but without being guided by difficulty.

Concretely, training starts from a task chosen arbitrarily, when the agent masters this task, the training task is
updated by varying one of several aspects by the minimum amount (e.g., increasing the number of hosts in a
subnet by 1). To control for the potential influence of the initial task in the this case, we train the policy several
times and report the average performance of all the policies trained following the same approach.

As we can see in Figure 7, given a computing budget, the difficulty-driven strategy masters harder tasks, with larger
networks. Sampling uniformly, tends to present an agent with tasks of medium difficulty, while unguided smooth
updates are unlikely to arrive at the highest complexity. While there is more work needed to fully understand how to
effectively select tasks during training, our empirical results suggest that smooth updates with a bias toward harder
tasks could be a reasonable strategy, in the context of training agents for network defense.

4.2 Generalization

Next, we evaluate the extent to which an agent trained with dynamic task selection is able to generalize to similar tasks,
even if the agent never experienced the task during training. Concretely, we compare the performance of an agent
trained to perform only one task (to mitigate a DoS attack) with the performance of an agent that is trained experiencing
a variety of tasks, including the mitigation of an exfiltration and a ransomware attack. However, the agent trained with
dynamic task selection never experienced a DoS attack (with a single flooding attacker).
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Figure 8: Performance comparison of two policies: one trained with a fixed task to mitigate a traditional exfiltration
attack, and the other trained with dynamic task selection, where the blue agent mitigates an exfiltration attack while the
red agent interleaves gray-like actions between traditional red actions. Marker colors represent task difficulty during
training, derived from hosts, subnets, and the variability of red and gray behaviors. Figure 19 shows additional plots
comparing the two policies across other network components.

In this part of our evaluation, each agent needs to defend against a DoS attack in a network with 200 hosts during 100
episodes, while maintaining a minimum quality of service. As we can see in Figure 5, the policy trained with dynamic
task selection outperforms the policy that was trained to mitigate a DoS. This result suggests that, in addition to arriving
at a higher performance with shorter training, the diversity of tasks also helps to arrive at more capable agents.

Another form of generalization is related to obtaining policies that are robust to variations in adversarial behavior
with the intention to evade. We examine the prospect of obtaining policies that are more robust against this type of
obfuscation via our approach. For this, we evaluate the performance of a policy trained with dynamic task selection
on a task similar to the one we describe in 4.1. However, this time, the red agent gradually deviates from its original
behavior. Figure 8 compares the performance of two policies. As we can see, the performance during training is similar
for these two strategies. However, the agent training via dynamic task selection is ultimately trained against a more
sophisticated red TTP.

4.3 Curriculums with Goals

As we explained in Section 3.1.3, our experiments include network defense tasks where the agent must learn to master
multiple tasks, corresponding to 43 goal-metric pairs. While it is not easy to determine a total order of these goal-metric
pairs that corresponds to their difficulty, we compared the difficulty of an agent to master tasks with each of the
goal-metric pairs in a subset of the 11 tasks that are more distinct, based on the goals and metrics. In this comparison,
all other parameters were sampled uniformly at random from consistent sets. For example, the number of subnets in a
task ranged from 2 to 5 and the number of hosts in each subnet ranged from 5 to 20. Figure 9 shows the reward mean
as the agent learns to master tasks in each of the corresponding 11 sets. The goal-metric pairs included were: (1, 22,
26, 30, 34, 38, 39, 40, 41, 42, 43). For example, (goal, metric) pair 1 simply requires the blue agent to learn to trigger
any non-trivial action when there is an active red agent and do nothing when a red agent is not active. There are no
other requirements about QoS or about minimizing unnecessary expensive actions. Goal-metric pair 39 requires the
blue agent to learn to use honey networks to mitigate an active attack and to minimize the number of nontrivial blue
actions. Goal-metric pair 43 further requires the agent to learn to use honey networks to convince the red agent that it
has successfully compromised a real asset, and it requires the agent to minimize the number of nontrivial blue actions
and the number of negative QoS events. The descriptions of all these goals are included in Appendix 6.2.

Based on the difficulty to master these goals, we selected 6 that the agent was able to reasonably master and used them
in a curriculum to measure how five different representations for goal-metric pairs resulted in higher performing policies.
The representations include a discrete representation, a one-hot representation and three dense representations. For
dense representations, we use a trainable embedding Layer to transform discrete blue goals IDs into a compact, dense
vector representation. This embedding technique is enables the treatment of discrete goal IDs within a high-dimensional
continuous space. Throughout the training process, back-propagation adjusts the parameters of the goal embedding
layer within our neural network to optimize the model’s overall performance.

Figures 10 and 11 show that the one-hot representation results in higher performance but the gains are not significant. The
one-hot representation drops entropy faster leading to more deterministic behavior. However, further experimentation is
needed to determine if a dense representation would be better when the cardinality of the set of goal-metric pairs is
higher.
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Figure 9: Mean reward for configu-
rations, each fixing one of 11 goal-
metric pairs.

Figure 10: Mean reward for several
different goal-metric pair representa-
tions.

Figure 11: Fraction of episodes that
result in a real compromise.

4.4 Training

In our experiments, we varied the following aspects of a task T = (N,G). With respect to the network dynamics in N ,
we varied the number of subnets in a network, the number of hosts in each subnet, the amount of gray-agent diversity
and the amount of gray-traffic volume, and the specific TTP that drives the behavior of the red agent. For the robustness
experiments, we also varied the probability that a red agent deviated from its original behavior, the deviation diversity,
and the deviation volume. The last two parameters are similar to the amount and diversity of gray traffic.

With respect to the initial conditions, we varied the number and identities of the initially compromised hosts, as well as
the placement of special host in the network. Special hosts include those that have digital content that the adversary
seeks to exfiltrate and/or servers that the adversary seeks to compromise.

In this case, the goal balanced a set of QoS and security subgoals. These were encoded in a sparse reward function that
reported the desirability of an outcome at the end of each episode. This QoS-aware sparse reward accounted for the
following factors: The result adds 1 when the blue agent wins and subtracts one when the blue agent loses. Depending
on the red TTP, the blue agent only wins if the red agent is deceived and forced to compromise a fake target. This
implies that preventing a compromise only by isolating compromised hosts does not result in a blue win with one
exception. This QoS-aware sparse reward accounts for the possibility that there is no compromise (the red agent is
inactive). In this case, the best outcome is achieved by not disrupting QoS. QoS contributes a number between -1 and 1
based on a normalized account of good QoS events and bad QoS events. Additionally, it penalizes unnecessary blue
actions (host isolations and crown-jewel relocations). Penalizations contribute a number in the interval [-1, 0] for each
type of blue action. As we describe in Appendix 6, our implementation normalizes this reward function to return values
in the [0, 1] interval.

When the learning agent acts, it observes the following: The number of attempts to relocate a protected host during an
episode; the number of attempts to isolate a host during an episode; the number of isolated hosts during an episode; the
numeric ID of the last action; the number of log events associated with a jewel search since the previous blue action;
the number of log events associated with passive discovery attempts since the previous blue action; the number of log
events associated with active discovery attempts since the previous blue action; the number of failed HTTP connections
reported by hosts since the previous blue action; the number of failed SCP connections reported by hosts since the
previous blue action; the number of failed SSH connections reported by hosts since the previous blue action; the number
of successful HTTP connections reported by hosts since the previous blue action; the number of successful internal
SCP connections reported by hosts since the previous blue action; the number of successful SSH connections reported
by hosts since the previous blue action; the number of successful external SSH connections reported by hosts since the
previous blue action; and, a metric that summarizes QoS since the previous blue action.

Depending on the task, the blue agent needed to mitigate an exfiltration, a DDoS, a DoS, or a ransomware attack by
performing one of the following actions: isolating a protected host, isolating a suspicious host, relocating a protected
host, reimaging a suspicious host, or migrating a suspicious host to a honey network. Using action representations [11],
we map a small number of actions to a larger set of parametric actions where the subject host of the action needs to be
specified. This strategy already proves some learning benefits, as we illustrate in Figure 12. This plot illustrates that,
given two training settings that only differ in the action spaces, when the action space is too large, learning is more
difficult.
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Figure 12: Comparison of two learning strategies that differ only in the available actions: one uses action representations,
while the other allows the agent to select actions based on the target host. Learning stagnates with a large action space.
In both strategies, observation spaces, reward functions, and network dynamics are the same. Figure 20 shows additional
plots comparing these strategies across other network components.

4.5 Algorithm and Hyperparameters

We use the Proximal Policy Optimization (PPO) implementation by RLlib with the hyperparamters in Table 1. We
selected these hyperparameters through a combination of experimentation and recommendations by Andrychowicz et
al. [3]. For example, we use generalized advantage estimation (GAE); we applied observation normalization to the
observation space; and we used separate value and policy networks. To min-max scale the observation features across
tasks in the task space, we scaled the minimum and maximum bounds accordingly with the number of hosts and the
horizon of the episode. This ensures the observation space remains consistent as we discuss in Section 3.1.2.

Table 1: PPO Agent Training Hyperparameters

Hyperparameter Value

gamma 0.99
lr 0.0001

fcnet_activation ReLU
use_critic True
use_gae True

lambda_ (GAE lambda parameter) 1.0
vf_share_layers False

fcnet_hiddens (policy) [128, 128, 128, 128]
fcnet_hiddens (value) [256, 256, 256, 256]

kl_coeff 0.5
kl_target 0.01

train_batch_size 4000
sgd_minibatch_size 128

num_sgd_iter 30
shuffle_sequences True

vf_loss_coeff 1.0
entropy_coeff 0.005

entropy_coeff_schedule None
clip_param 0.3

vf_clip_param 1.0
grad_clip 500

evaluation_duration_unit episodes
evaluation_duration 20

evaluation_config_explore True

Dynamic task selection can also work in combination with other algorithms, such soft actor critic algorithms (i.e., SAC)
and DQN. Figure 21, in the Appendix, compares the performance for a universe with tasks that vary network dynamics
but keep the goal-pair constant.

5 Discussion and Conclusion

This paper studies the role of training network defenders with task universes, as opposed to training with a single task.
We highlight scalability and generalizability as some of the benefits of training and evaluating cybersecurity agents
via the specification of comprehensive sets of tasks, rather than small sets of “representative” tasks. Furthermore, by
presenting a broad set of tasks during training, it is possible to train agents to mitigate realistic threats. This represents
an important milestone toward being able to delegate useful cybersecurity tasks to an autonomous agent.

However, while we show that training with dynamic task selection can result in shorter training and higher generalizabil-
ity, more work is needed to identify optimal task selection strategies during training. Similarly, further research must
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address the problem of defining adequate task selection strategies to evaluate policies in adversarial settings. Moreover,
we believe that building protection mechanisms for RL-enabled decisions requires more than just training an agent with
a broader task universe. In future work, we are investigating how dynamic task selection can be combined with RL
algorithms that integrate probabilistic inference to infer relations between the current task and other tasks that the agent
has already mastered. We hypothesize that this can help to minimize some forms of adversarial manipulation where an
adversary obfuscates a well-known TTP to avoid detection.
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6 Appendix

6.1 Reward Functions

In order to guide the behavior of a RL network defender to align with defense and quality of service goals, it is crucial
to carefully select a reward function for the task at hand. Choosing an appropriate reward function is a critical aspect
of the RL design process and can greatly impact the success of the network defender. For the results in Section 4 we
applied a sparse reward that depends on the goal and metric specified in PDDL. However, we explored other options as
well, including:

• An outcome-based sparse reward that returns -1 if the attacker agent compromises the network. 1 if the attacker
does not compromise the network by the end of the episode, 0 otherwise.

• The QoS-aware sparse reward is similar to the outcome-based-sparse reward but also accounts for Quality of
Service (QoS) by penalizing at the end of the episode based on the number of CJ relocation attempts, host
isolation attempts, as well as host reported bad QoS events in the network (e.g scp_failed, ssh_failed, http
_failed). This reward has range in the interval (0, 8].

• The scaled-QoS-aware sparse reward is a a min-max scaled version of the QoS-aware sparse reward with range
in the interval (0, 1].

It has been shown that optimal behavior may be achieved via multiple rewards [? ]. However, in practice, some of them
result in substantial reductions in learning time [? ]. As we described in Section 3.1.1, our reward function aims to be
consistent across the space of possible tasks exposed to the RL agent. Therefore, we designed reward functions that are
invariant to: network size, red agent TTP, and amount network traffic.

6.1.1 Dense rewards

We did not extensively explore dense reward functions in this work. In practice, dense rewards that are nonzero on every
state must be carefully designed to perform well. Poorly designed dense reward functions have been shown to perform
worse than goal sparse reward functions [? ]. More importantly, as the number of tasks to master increases (i.e., as is
the case in Open-ended Learning), it is simpler to implement sparse reward functions. In future work we explore the use
of other types of less sparse rewards to accommodate interactions with human operators and to formulate long-horizon
defense tasks as sequences of smaller sub tasks.

6.2 PDDL Terms for Goals and Metrics

Figures 13 - 16 list the goal-metric pairs that we used in our evaluation. These use the following terms:

• red-inactive: A boolean that is true when the red is inactive

• declared-victory: A boolean that is true when the red agent declares victory

• real-compromise: A boolean that is true when the red agent compromises a real asses (as opposed to a fake
one)

• good-qos-events: An integer that corresponds to the number of good QoS events

• steps-to-survive: An integer that corresponds to the upper bound of necessary steps for the red agent to succeed
without intervention from the blue agent

• bad-qos-events: An integer that corresponds to the number of bad QoS events

• isolate-actions: An integer that corresponds to the number of actions to isolate hosts

• crown-jewel-relocations: An integer that corresponds to the number of actions to relocate a crown jewel

• num-blue-actions: An integer that corresponds to the total number of blue actions

• worst-contributor-isolations: An integer that corresponds to the number of actions attempting to isolate a
suspicious host

• crown-jewel-isolations: An integer that corresponds to the number of actions attempting to isolate a crown
jewel

• worst-contributor-reimages: An integer that corresponds to the number of actions attempting to reimage a
suspicious host
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{
" i d " : 1 ,
" o r i g i n a l _ i d " : 1 ,
" g o a l " : " ( : g o a l ( > n o n t r i v i a l − b lue − a c t i o n s 0 ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize ( 0 ) ) "

} ,
{

" i d " : 2 ,
" o r i g i n a l _ i d " : 2 ,
" g o a l " : " ( : g o a l ( > wors t − c o n t r i b u t o r − i s o l a t i o n s 0 ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize ( 0 ) ) "

} ,
{

" i d " : 3 ,
" o r i g i n a l _ i d " : 3 ,
" g o a l " : " ( : g o a l ( > wors t − c o n t r i b u t o r − i s o l a t i o n s 0 ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize ( / n o n t r i v i a l − b lue − a c t i o n s s t e p s − to − s u r v i v e ) ) "

} ,
{

" i d " : 4 ,
" o r i g i n a l _ i d " : 4 ,
" g o a l " : " ( : g o a l ( > wors t − c o n t r i b u t o r − i s o l a t i o n s 0 ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize ( qos − p e n a l t y ) ) "

} ,
{

" i d " : 5 ,
" o r i g i n a l _ i d " : 5 ,
" g o a l " : " ( : g o a l ( > wors t − c o n t r i b u t o r − i s o l a t i o n s 0 ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize (+ ( / n o n t r i v i a l − b lue − a c t i o n s s t e p s − to − s u r v i v e ) ( qos − p e n a l t y ) ) ) "

} ,
{

" i d " : 6 ,
" o r i g i n a l _ i d " : 6 ,
" g o a l " : " ( : g o a l ( > crown − jewe l − i s o l a t i o n s 0 ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize ( 0 ) ) "

} ,
{

" i d " : 7 ,
" o r i g i n a l _ i d " : 7 ,
" g o a l " : " ( : g o a l ( > crown − jewe l − i s o l a t i o n s 0 ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize ( / n o n t r i v i a l − b lue − a c t i o n s s t e p s − to − s u r v i v e ) ) "

} ,
{

" i d " : 8 ,
" o r i g i n a l _ i d " : 8 ,
" g o a l " : " ( : g o a l ( > crown − jewe l − i s o l a t i o n s 0 ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize ( qos − p e n a l t y ) ) "

} ,
{

" i d " : 9 ,
" o r i g i n a l _ i d " : 9 ,
" g o a l " : " ( : g o a l ( > crown − jewe l − i s o l a t i o n s 0 ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize (+ ( / n o n t r i v i a l − b lue − a c t i o n s s t e p s − to − s u r v i v e ) ( qos − p e n a l t y ) ) ) "

} ,
{

" i d " : 10 ,
" o r i g i n a l _ i d " : 10 ,
" g o a l " : " ( : g o a l ( > wors t − c o n t r i b u t o r − r e i m a g e s 0 ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize ( 0 ) ) "

} ,
{

" i d " : 11 ,
" o r i g i n a l _ i d " : 11 ,
" g o a l " : " ( : g o a l ( > wors t − c o n t r i b u t o r − r e i m a g e s 0 ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize ( / n o n t r i v i a l − b lue − a c t i o n s s t e p s − to − s u r v i v e ) ) "

} ,
{

" i d " : 12 ,
" o r i g i n a l _ i d " : 12 ,
" g o a l " : " ( : g o a l ( > wors t − c o n t r i b u t o r − r e i m a g e s 0 ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize ( qos − p e n a l t y ) ) "

} ,

Figure 13: Goal-metrics 1-12.

• worst-contributor-relocations: An integer that corresponds to the number of actions attempting to relocate a
suspicious host to a different subnet

• worst-contributor-honeys: An integer that corresponds to the number of actions attempting to relocate a
suspicious host to a honey network

• full-nontrivial-blue-actions: An integer that corresponds to the number of all blue actions that "do something"

• nontrivial-blue-actions: An integer that corresponds to the number of represented blue actions that "do
something"
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{
" i d " : 13 ,
" o r i g i n a l _ i d " : 13 ,
" g o a l " : " ( : g o a l ( > wors t − c o n t r i b u t o r − r e i m a g e s 0 ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize (+ ( / n o n t r i v i a l − b lue − a c t i o n s s t e p s − to − s u r v i v e ) ( qos − p e n a l t y ) ) ) "

} ,
{

" i d " : 14 ,
" o r i g i n a l _ i d " : 14 ,
" g o a l " : " ( : g o a l ( > wors t − c o n t r i b u t o r − r e l o c a t i o n s 0 ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize ( 0 ) ) "

} ,
{

" i d " : 15 ,
" o r i g i n a l _ i d " : 15 ,
" g o a l " : " ( : g o a l ( > wors t − c o n t r i b u t o r − r e l o c a t i o n s 0 ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize ( / n o n t r i v i a l − b lue − a c t i o n s s t e p s − to − s u r v i v e ) ) "

} ,
{

" i d " : 16 ,
" o r i g i n a l _ i d " : 16 ,
" g o a l " : " ( : g o a l ( > wors t − c o n t r i b u t o r − r e l o c a t i o n s 0 ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize ( qos − p e n a l t y ) ) "

} ,
{

" i d " : 17 ,
" o r i g i n a l _ i d " : 17 ,
" g o a l " : " ( : g o a l ( > wors t − c o n t r i b u t o r − r e l o c a t i o n s 0 ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize (+ ( / n o n t r i v i a l − b lue − a c t i o n s s t e p s − to − s u r v i v e ) ( qos − p e n a l t y ) ) ) "

} ,
{

" i d " : 18 ,
" o r i g i n a l _ i d " : 18 ,
" g o a l " : " ( : g o a l ( > wors t − c o n t r i b u t o r − honeys 0 ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize ( 0 ) ) "

} ,
{

" i d " : 19 ,
" o r i g i n a l _ i d " : 19 ,
" g o a l " : " ( : g o a l ( > wors t − c o n t r i b u t o r − honeys 0 ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize ( / n o n t r i v i a l − b lue − a c t i o n s s t e p s − to − s u r v i v e ) ) "

} ,
{

" i d " : 20 ,
" o r i g i n a l _ i d " : 20 ,
" g o a l " : " ( : g o a l ( > wors t − c o n t r i b u t o r − honeys 0 ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize ( qos − p e n a l t y ) ) "

} ,
{

" i d " : 21 ,
" o r i g i n a l _ i d " : 21 ,
" g o a l " : " ( : g o a l ( > wors t − c o n t r i b u t o r − honeys 0 ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize (+ ( / n o n t r i v i a l − b lue − a c t i o n s s t e p s − to − s u r v i v e ) ( qos − p e n a l t y ) ) ) "

} ,
{

" i d " : 22 ,
" o r i g i n a l _ i d " : 22 ,
" g o a l " : " ( : g o a l ( and ( n o t r e a l −compromise ) ( > wors t − c o n t r i b u t o r − i s o l a t i o n s 0 ) ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize ( 0 ) ) "

} ,
{

" i d " : 23 ,
" o r i g i n a l _ i d " : 23 ,
" g o a l " : " ( : g o a l ( and ( n o t r e a l −compromise ) ( > wors t − c o n t r i b u t o r − i s o l a t i o n s 0 ) ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize ( / n o n t r i v i a l − b lue − a c t i o n s s t e p s − to − s u r v i v e ) ) "

} ,
{

" i d " : 24 ,
" o r i g i n a l _ i d " : 24 ,
" g o a l " : " ( : g o a l ( and ( n o t r e a l −compromise ) ( > wors t − c o n t r i b u t o r − i s o l a t i o n s 0 ) ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize ( qos − p e n a l t y ) ) "

} ,

Figure 14: Goal-metrics 13-24.

6.3 Curriculum Design

Though the challenge of architecting a good curriculum is a research area in its own right, we have a few practical
findings from our experience designing a curriculum.

Tier-Based Structuring of Goals. Training independent policies for each goal proved to be an efficient way to
establish tiers of difficulty. Our 43 goals naturally divided into four phases:
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{
" i d " : 25 ,
" o r i g i n a l _ i d " : 25 ,
" g o a l " : " ( : g o a l ( and ( n o t r e a l −compromise ) ( > wors t − c o n t r i b u t o r − i s o l a t i o n s 0 ) ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize (+ ( / n o n t r i v i a l − b lue − a c t i o n s s t e p s − to − s u r v i v e ) ( qos − p e n a l t y ) ) ) "

} ,
{

" i d " : 26 ,
" o r i g i n a l _ i d " : 26 ,
" g o a l " : " ( : g o a l ( and ( n o t r e a l −compromise ) ( > crown − jewe l − i s o l a t i o n s 0 ) ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize ( 0 ) ) "

} ,
{

" i d " : 27 ,
" o r i g i n a l _ i d " : 27 ,
" g o a l " : " ( : g o a l ( and ( n o t r e a l −compromise ) ( > crown − jewe l − i s o l a t i o n s 0 ) ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize ( / n o n t r i v i a l − b lue − a c t i o n s s t e p s − to − s u r v i v e ) ) "

} ,
{

" i d " : 28 ,
" o r i g i n a l _ i d " : 28 ,
" g o a l " : " ( : g o a l ( and ( n o t r e a l −compromise ) ( > crown − jewe l − i s o l a t i o n s 0 ) ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize ( qos − p e n a l t y ) ) "

} ,
{

" i d " : 29 ,
" o r i g i n a l _ i d " : 29 ,
" g o a l " : " ( : g o a l ( and ( n o t r e a l −compromise ) ( > crown − jewe l − i s o l a t i o n s 0 ) ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize (+ ( / n o n t r i v i a l − b lue − a c t i o n s s t e p s − to − s u r v i v e ) ( qos − p e n a l t y ) ) ) "

} ,
{

" i d " : 30 ,
" o r i g i n a l _ i d " : 30 ,
" g o a l " : " ( : g o a l ( and ( n o t r e a l −compromise ) ( > wors t − c o n t r i b u t o r − r e i m a g e s 0 ) ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize ( 0 ) ) "

} ,
{

" i d " : 31 ,
" o r i g i n a l _ i d " : 31 ,
" g o a l " : " ( : g o a l ( and ( n o t r e a l −compromise ) ( > wors t − c o n t r i b u t o r − r e i m a g e s 0 ) ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize ( / n o n t r i v i a l − b lue − a c t i o n s s t e p s − to − s u r v i v e ) ) "

} ,
{

" i d " : 32 ,
" o r i g i n a l _ i d " : 32 ,
" g o a l " : " ( : g o a l ( and ( n o t r e a l −compromise ) ( > wors t − c o n t r i b u t o r − r e i m a g e s 0 ) ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize ( qos − p e n a l t y ) ) "

} ,
{

" i d " : 33 ,
" o r i g i n a l _ i d " : 33 ,
" g o a l " : " ( : g o a l ( and ( n o t r e a l −compromise ) ( > wors t − c o n t r i b u t o r − r e i m a g e s 0 ) ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize (+ ( / n o n t r i v i a l − b lue − a c t i o n s s t e p s − to − s u r v i v e ) ( qos − p e n a l t y ) ) ) "

} ,
{

" i d " : 34 ,
" o r i g i n a l _ i d " : 34 ,
" g o a l " : " ( : g o a l ( and ( n o t r e a l −compromise ) ( > wors t − c o n t r i b u t o r − r e l o c a t i o n s 0 ) ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize ( 0 ) ) "

} ,
{

" i d " : 35 ,
" o r i g i n a l _ i d " : 35 ,
" g o a l " : " ( : g o a l ( and ( n o t r e a l −compromise ) ( > wors t − c o n t r i b u t o r − r e l o c a t i o n s 0 ) ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize ( / n o n t r i v i a l − b lue − a c t i o n s s t e p s − to − s u r v i v e ) ) "

} ,
{

" i d " : 36 ,
" o r i g i n a l _ i d " : 36 ,
" g o a l " : " ( : g o a l ( and ( n o t r e a l −compromise ) ( > wors t − c o n t r i b u t o r − r e l o c a t i o n s 0 ) ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize ( qos − p e n a l t y ) ) "

} ,

Figure 15: Goal-metrics 25-36.

• Initialization: Goal 1

• Basic Skills: Goals 2–21

• Applied Skills: Goals 22–41

• Advanced Goals: Goals 42–43

In this context, skills refer to goals that focus the agent on using specific actions either for their own sake (basic skills)
or to achieve a major theme of the curriculum (applied skills). Using this goal order resulted in an average reward of
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{
" i d " : 37 ,
" o r i g i n a l _ i d " : 37 ,
" g o a l " : " ( : g o a l ( and ( n o t r e a l −compromise ) ( > wors t − c o n t r i b u t o r − r e l o c a t i o n s 0 ) ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize (+ ( / n o n t r i v i a l − b lue − a c t i o n s s t e p s − to − s u r v i v e ) ( qos − p e n a l t y ) ) ) "

} ,
{

" i d " : 38 ,
" o r i g i n a l _ i d " : 38 ,
" g o a l " : " ( : g o a l ( and ( n o t r e a l −compromise ) ( > wors t − c o n t r i b u t o r − honeys 0 ) ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize ( 0 ) ) "

} ,
{

" i d " : 39 ,
" o r i g i n a l _ i d " : 39 ,
" g o a l " : " ( : g o a l ( and ( n o t r e a l −compromise ) ( > wors t − c o n t r i b u t o r − honeys 0 ) ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize ( / n o n t r i v i a l − b lue − a c t i o n s s t e p s − to − s u r v i v e ) ) "

} ,
{

" i d " : 40 ,
" o r i g i n a l _ i d " : 40 ,
" g o a l " : " ( : g o a l ( and ( n o t r e a l −compromise ) ( > wors t − c o n t r i b u t o r − honeys 0 ) ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize ( qos − p e n a l t y ) ) "

} ,
{

" i d " : 41 ,
" o r i g i n a l _ i d " : 41 ,
" g o a l " : " ( : g o a l ( and ( n o t r e a l −compromise ) ( > wors t − c o n t r i b u t o r − honeys 0 ) ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize (+ ( / n o n t r i v i a l − b lue − a c t i o n s s t e p s − to − s u r v i v e ) ( qos − p e n a l t y ) ) ) "

} ,
{

" i d " : 42 ,
" o r i g i n a l _ i d " : 42 ,
" g o a l " : " ( : g o a l ( and ( n o t r e a l −compromise ) ( red − d e c l a r e d − v i c t o r y ) ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize ( 0 ) ) "

} ,
{

" i d " : 43 ,
" o r i g i n a l _ i d " : 43 ,
" g o a l " : " ( : g o a l ( and ( n o t r e a l −compromise ) ( red − d e c l a r e d − v i c t o r y ) ) ) " ,
" m e t r i c " : " ( : m e t r i c min imize (+ ( / n o n t r i v i a l − b lue − a c t i o n s s t e p s − to − s u r v i v e ) ( qos − p e n a l t y ) ) ) "

}

Figure 16: Goal-metrics 37-43.

0.75 and a compromise rate of 10%, significantly outperforming the reverse goal order, which failed to progress through
the curriculum.

Importance of Ascending Difficulty. Structuring curriculums with ascending difficulty is essential, as front-loading
too many challenges can overwhelm agents. For instance:

• A curriculum with multiple versions of a goal arranged by ascending difficulty outperforms using just the goal
with the most difficult metric, improving average reward by 26%.

• Curriculums that include both basic and applied skills achieved a 15% higher average reward than those
without skill differentiation.

Handling Atypical Adversaries. Starting curriculums with exclusive exposure to atypical adversaries (e.g., the
inactive red agent) can completely derail training. Agents exposed to adversaries in this way developed policies that
failed to generalize to the main set of adversaries, leading to cycles of demotion and promotion when encountering
their first typical adversary. To mitigate this, it is best to heterogeneously mix experiences with atypical adversaries
throughout training. This approach improved average reward by 10–15%.
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Figure 17: Performance comparison of three policies. One policy corresponds to training with the fixed task selection
strategy in Section 4.1. Another policy corresponds to training with dynamic task selection, also described in Section
4.1. For reference, we compare the performance of these policies with a trivial policy in which the blue agent does
nothing. Note that it is possible to achieve worse performance than the trivial policy, if in addition to allowing
security compromises, the QoS was degraded. The color of the markers represents the difficulty of the task during the
corresponding training iteration, derived from the number of hosts, subnets, and variability of red and gray behaviors.
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Figure 18: Performance comparison of multiple task selection strategies. One strategy uses difficulty levels to drive
selection of tasks with increasing difficulty. Other task selection strategies include choosing tasks uniformly at random
and choosing tasks via small variations (smoothly). While the average reward for “smooth” task updates is higher, the
difficulty of the task mastered is higher with the approach that uses difficulty levels. The color of the markers represents
the difficulty of the task during the corresponding training iteration, derived from the number of hosts, subnets, and
variability of red and gray behaviors.
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Figure 19: Performance comparison of two policies. One policy was trained via a fixed task, with the goal of mitigating
a traditional exfiltration attack. The other one was trained via dynamic task selection, where the blue agent learns
to mitigate an exfiltration attack, where the red agent interleaves gray-like actions between traditional red actions,
with some probability. The color of the markers represents the difficulty of the task during the corresponding training
iteration, derived from the number of hosts, subnets, and variability of red and gray behaviors.

24



Training RL Agents for Multi-Objective Network Defense Tasks A PREPRINT

Figure 20: Comparison in learning performance between two learning strategies that only differ in the actions available
to the agent. One learning strategy uses action representations while the other allows the agent to select actions that
include the target host to execute the action over. Learning stagnates when the action space is too large. In both cases,
observation spaces, reward functions, and network dynamics are the same.
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Figure 21: Performance comparison of algorithms with the same dynamic task selection strategy.
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