
Private Lossless Multiple Release

Joel Daniel Andersson 1 2 Lukas Retschmeier 1 2 Boel Nelson 2 Rasmus Pagh 1 2

Abstract
Koufogiannis et al. (2016) showed a gradual release re-
sult for Laplace noise-based differentially private mech-
anisms: given an ε-DP release, a new release with pri-
vacy parameter ε′ > ε can be computed such that the
combined privacy loss of both releases is at most ε′

and the distribution of the latter is the same as a single
release with parameter ε′. They also showed gradual re-
lease techniques for Gaussian noise, later also explored
by Whitehouse et al. (2022).

In this paper, we consider a more general multiple re-
lease setting in which analysts hold private releases
with different privacy parameters corresponding to dif-
ferent access/trust levels. These releases are determined
one by one, with privacy parameters in arbitrary or-
der. A multiple release is lossless if having access to a
subset S of the releases has the same privacy guaran-
tee as the least private release in S, and each release
has the same distribution as a single release with the
same privacy parameter. Our main result is that lossless
multiple release is possible for a large class of additive
noise mechanisms. For the Gaussian mechanism we
give a simple method for lossless multiple release with
a short, self-contained analysis that does not require
knowledge of the mathematics of Brownian motion. We
also present lossless multiple release for the Laplace
and Poisson mechanisms. Finally, we consider how to
efficiently do gradual release of sparse histograms, and
present a mechanism with running time independent of
the number of dimensions.

1. Introduction
Differential privacy (Dwork et al., 2006) is a statistical no-
tion that provides provable privacy guarantees. Differen-
tially private (DP) algorithms typically introduce inaccuracy
through noise to achieve privacy, and the resulting privacy-
accuracy trade-off is the key object of study in the area. Of
specific interest is the privacy budget that determines how
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much information the output of a differentially private algo-
rithm may reveal about its inputs—a smaller budget means
more private but less accurate results.

Motivation. In deployments of differential privacy, it may
be hard to determine the appropriate privacy budget to grant
an analyst since it depends on trust and accuracy assump-
tions that may change over time. A system may also have
different security clearance levels—a data analyst might
have a higher clearance level than a developer, but both
might require access to some statistics. Similarly, a com-
pany that wants to release, for example, user statistics could
make an accurate release for their own data analysts, a less
accurate release for external consultants, and include an
even less accurate release in a report for shareholders or
other external actors. A different example setting is users
that want to sell their data on data markets: users could let
the accuracy of the release depend on how much they are
paid, and use different budgets for different releases.

Another usage scenario, relevant in distributed or federated
settings, is local differential privacy where the data owner
could be sharing a differentially private function of their data
with multiple servers, and the set of servers might change
over time. Here the privacy budget might depend on the
server: for example, a patient may trust their local hospital
more than their national hospitals, but might not trust the
hospitals not to collude by sharing data among themselves.

Multiple releases. These scenarios motivate creating multi-
ple releases with different privacy budgets aimed at different
analysts. However, these releases should be coordinated
such that a group of analysts who combine their information
do not gain more knowledge about the input than the most
knowledgeable member of the group. This kind of collusion
resilience was first studied by Xiao et al. (2009) with a non-
DP privacy objective—we refer to their work for additional
motivation.

A related aspect is that we may want to provide an analyst
with a less private, more accurate release after the trust we
place in them increases. In this case, we want the accu-
racy of the latest release to match the accuracy that can
be obtained, given the combined privacy budget of both
releases. That is, no additional cost should be incurred for
making two releases rather than one. For example, an ex-
ternal consultant that later gets employed directly by the
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company should be able to get access to the more accurate
release without constituting a privacy violation or requiring
an increased privacy budget to reach the same accuracy.

Baseline. It is possible to create multiple releases for any
differentially private mechanism if we are willing to in-
crease the privacy budget by a constant factor. In particular,
we can create a sequence of independent releases with ge-
ometrically increasing privacy parameters, referred to as
“ε-doubling” by Ligett et al. (2017), and provide each an-
alyst with the most accurate release they are entitled to.
Using composition results, the combined privacy budget for
the information given to a set of analysts is a constant factor
from the highest budget of a single analyst in the group.
In this paper, we study how to make multiple releases in a
lossless way without accuracy or privacy penalty.

1.1. Related Work

Koufogiannis, Han, and Pappas (2016) introduced the con-
cept of gradual release, which makes it possible to increase
the privacy budget with no loss in accuracy. They also
considered privacy tightening for the Laplace mechanism,
where successive releases are increasingly private. In the
journal version of the paper, they also introduce gradual
release for the Gaussian mechanism under approximate DP
which is based on the machinery of Brownian motion.

This technique was later applied in a noise reduction frame-
work by Ligett, Neel, Roth, Waggoner, and Wu (2017) with
the goal of producing mechanisms with ex-post privacy, i.e.,
where the privacy budget is set based on what is required to
achieve a desired accuracy level. Follow-up work by White-
house, Ramdas, Wu, and Rogers (2022) gave results for
noise reduction under approximate DP using Brownian mo-
tion. These works were motivated by work on privacy filters
and odometers (Rogers et al., 2016), keeping track of pri-
vacy budgets over time, rather than multiple release settings.
Recently, Pan (2024) demonstrated lossless gradual release
for randomized response.

Similar research questions have been investigated outside
of the DP literature. Xiao, Tao, and Chen (2009) studied
releasing a sensitive dataset where each element is kept with
probability p, and otherwise sampled uniformly from the
universe. Li, Chen, Li, and Zhang (2012) considered pri-
vatizing data by additive Gaussian noise of scale σ. Both
works dealt with arbitrary sequences of parameters (prob-
abilities p or noise scalings σ), and demonstrated how to
correlate releases to guarantee that (1) each release matches
the single-release case and, (2) limiting the sensitive infor-
mation derived from combining releases. Our method for
adaptively producing Gaussian releases deviates from (Li
et al., 2012), in that ours does not need to maintain any co-
variance matrix for past releases. This makes our approach
more time- and space-efficient.

ρ
ρk ρk+1

ρρ1

Yρ1
Yρk

Yρk+1Yρ Yρ∞

ρ∞ρ2
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ρ0

Yρ0

most private least private

Figure 1. The idea behind lossless multiple release. For concrete-
ness we consider additive noise mechanism and zero-concentrated
differential privacy. Each Yρi denotes a noisy estimate, and to
release a new estimate with ρ > 0, we can combine the adjacent
estimates for ρk and ρk+1 together with some fresh noise to obtain
a new release Yρ that is exactly ρ-zCDP. Note that these estimates
do not need to be strictly increasing (or decreasing) but can be
released in any order. Furthermore, releasing any subset of these
estimates is exactly max(S)-zCDP, where S is the set of privacy
parameters.

1.2. Basic Technique

We illustrate our framework in the setting of addi-
tive Gaussian noise and ρ-zero-concentrated differen-
tial privacy (ρ-zCDP)1. We want to release a private
estimate of a real-valued query f : X → R with ℓ2-
sensitivity ∆2 = 1 using the Gaussian mechanism.
Now consider the simple case where one wants to
privately release an estimate with two privacy levels
ρ < ρ′. Then releasing Yρ = f(x) + N(0, 1

2ρ ) together
with Yρ′−ρ = f(x) + N(0, 1

2(ρ′−ρ) ) is ρ′-zCDP by compo-
sition. Now observe that we can combine these estimates to
produce a better estimate using inverse variance weighting:
Y = ρ

ρ+(ρ′−ρ)Yρ +
ρ′−ρ

ρ+(ρ′−ρ)Yρ′−ρ yields exactly the same
utility as a single release under ρ′-zCDP. That is, instead of
using a privacy budget of ρ+ ρ′ for independently releasing
both estimates, the overall budget spent is just the maximum
of both, which is ρ′.

To do multiple lossless releases for more general additive
noise mechanisms, it turns out that one can always combine
existing releases with fresh noise as illustrated in Figure 1.
In fact, to make any new release with privacy parameter ρ,
it suffices to have saved the two “adjacent” releases whose
privacy parameters are closest to ρ. Our approach applies
more generally to a class of (independent) additive noise
mechanisms that support gradual release, but the releases
can be made in any order, and we do not require the set of
releases to be known in advance.

Our contributions. We introduce a framework for lossless
multiple release, generalizing past work on gradual release.
In addition to allowing for making multiple private releases
and having the privacy loss only scale with the least pri-
vate release, we impose no specific ordering on the privacy
parameters used. Furthermore, we formalize a general theo-
rem (Section 4.2) showing that lossless multiple release is
possible for a large class of mechanisms based on adding

1see definitions in Appendix D
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i.i.d. noise to each coordinate whose distribution satisfies a
convolution preorder, as defined next.

Definition 1.1 (Convolution preorder). A family of real-
valued distributions D(ρ) parameterized by ρ ∈ R+ is said
to satisfy a convolution preorder, if given D(ρ1) and D(ρ2)
for ρ1 < ρ2, there exists a distribution C(ρ2, ρ1) such that
D(ρ2) ∗ C(ρ2, ρ1) = D(ρ1).

This relation is a natural way of stating that the distributions
become more noisy as the parameter ρ gets smaller. We
are unaware of any existing term in the literature but the
definition is closely related to convolution order (Shaked
& Shanthikumar, 2007). Examples of noise distributions
satisfying Definition 1.1 include the Laplace, Poisson, and
the Gaussian mechanisms, parameterized by a decreasing
function of their variance.

Theorem 1.2 (Meta theorem, informal). Let
Af,ρ : X → Rd be a mechanism that adds indepen-
dent, identically distributed noise to coordinates of a
function f : X → Rd. If the noise distribution of Af,ρ

satisfies convolution preorder, then there exists an algorithm
enabling lossless multiple release. Also, any invertible
post-processing of Af,ρ preserves this property.

For the Gaussian mechanism in particular, we show how to
get lossless multiple release by only using basic properties of
Gaussians, and we show similar results for the Laplace and
Poisson mechanisms from first principles. We give concrete
instantiations of Gaussian sparse histograms (Section 5.2)
and factorization mechanisms (Section 5.1).

2. Threat Model and Goals
Our setting is a multi-user system with a set of ana-
lysts/users S, all able to query the same dataset using a
differentially private mechanism. User s has their own secu-
rity clearance level with corresponding privacy budget ρs.
This setting allows for multi-level security where each user
belongs to a security clearance level, like in the classic Bell-
LaPadula model (Bell & La Padula, 1976), where users with
high clearance levels have higher values of ρ. A common
example of such clearance levels is using increasing levels
with labels such as public, restricted, confidential, and top
secret. The user with the highest clearance in the system
has a privacy budget of max

s∈S
(ρs), which we denote ρmax.

We consider an adversary who gains partial knowledge,
that is, an adversary that sees some of the releases. Our
goal is to design a differentially private mechanism such
that an adversary with access to releases from some users
S′ ⊆ S, can learn at most what they could have learned from
a release with privacy parameter max

s′∈S′
(ρs′). This means

that even by compromising or colluding with more users,
the adversary’s knowledge may not increase. In case an

adversary observes all releases (e.g., by compromising all
users), the privacy loss would be bounded by ρmax.

However, our goal is to design a mechanism where the re-
leases are lossless in the sense that the noise distribution
from multiple releases with a combined budget ρmax would
be indistinguishable from one single release with the pri-
vacy budget ρmax. In other words, the privacy loss should
be determined by ρmax, while independent releases would
usually have privacy parameter

∑
s∈S

ρs due to composition.

3. Gaussian Lossless Multiple Release
Extending the work in (Koufogiannis et al., 2016; Li et al.,
2012), we demonstrate next that in the case of the Gaussian
mechanism, providing lossless multiple release is clean and
follows immediately from simple properties of Gaussians.
Throughout the paper, we use the symbol Y to be a random
variable that depends on the private dataset and Z to be one
that does not.

We first consider the gradual release setting where an in-
creasingly accurate estimate is released, and the overall
privacy loss is determined solely by the latest, least private
release. In Lemma 3.3, we drop this restriction, allowing
releases in any order while still guaranteeing that the overall
privacy guarantee is the maximum ρ value provided. For
simplicity, we consider the one-dimensional case, where we
want to release some query f : X → R. The d-dimensional
setting is handled by sampling each coordinate indepen-
dently.

Getting started. Foreshadowing the usage of ρ-zCDP, we
initially use 1/(2ρ) for denoting the variance of a Gaussian.
Our inquiry starts with a basic observation about inverse-
variance weighting of Gaussians.

Lemma 3.1. Let Yρ ∼ N(β, 1
2ρ ) and Yρ′ ∼ N(β, 1

2ρ′ )

where β ∈ R and ρ, ρ′ > 0. Then

Y = ρ
ρ+ρ′Yρ +

ρ′

ρ+ρ′Yρ′ ∼ N

(
β, 1

2(ρ+ρ′)

)
.

Proof. The mean of Y is immediate by the fact that Y is a
weighted-average of Yρ and Yρ′ , both of mean β. For the
variance, direct computation yields:

Var[Y ] =
ρ2/(2ρ) + ρ′2/(2ρ′)

(ρ1 + ρ′)2
=

1

2(ρ+ ρ′)
.

As the sum of two Gaussians is itself Gaussian, we are
done.

The essence of what is being claimed is that a Gaussian
of variance 1

2ρ and another Gaussian of variance 1
2ρ′ with

the same mean can be combined into a new Gaussian with
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variance 1
2(ρ+ρ′) and the same mean. Inspired by this, we

can repeatedly invoke the lemma for the following result.
Lemma 3.2. Given 0 < ρ1 < · · · < ρm and β ∈ R define
Yρ1 , . . . , Yρm ∈ R where Yρ1 ∼ N(β, 1

ρ1
), and for k > 1:

Yρk+1
= ρk

ρk+1
Yρk

+ ρk+1−ρk

ρk+1
·N

(
β,

1

2(ρk+1 − ρk)

)
.

Then for any i ∈ [m] : Yρi ∼ N(β, 1
2ρi

) and for any
j ∈ [m] : Cov(Yρi

, Yρj
) = 1

2max(ρi,ρj)
.

Proof. We first show the distribution of Yρk
by induction

on k. Assume that Yρk
∼ N(β, 1

ρk
), which is true for

the base case of k = 1. Note that the inductive step
follows immediately from invoking Lemma 3.1. For
the covariance, note that we can expand the expressions
inside the covariance and “throw away” the independent
noise added in each recurrence. Assuming i ≤ j we get
Cov(Yρi

, Yρj
) = Cov(Yρi

, ρi

ρj
Yρi

) = ρi

ρj
Var[Yρi

] = 1
2ρj

,
implying the stated covariance.

Releases in arbitrary order. The Gaussian sequence in
Lemma 3.2 will be the basis for our lossless multiple release
version of the Gaussian mechanism. What the lemma does
not address is generating the sequence in arbitrary order:
Statically, given the full sequence (ρk)k∈[m], we can gener-
ate the Gaussians, but what if we receive them one-by-one
and in arbitrary order? We will address this next.
Lemma 3.3. For ρ∞ ∈ R+ (possibly ρ∞ = ∞) and β ∈ R,
let M = {(0,∞), (ρ∞, Yρ∞)} where Yρ∞ ∈ N(β, 1

2ρ∞
).

Consider a finite subset S ⊂ (0, ρ∞) and the following
process that runs for |S| iterations:

1. Pick an arbitrary ρ ∈ S and delete it from S;

2. Let (ρl, Yρl
), (ρr, Yρr ) ∈ M where ρ ∈ (ρl, ρr) and

ρr − ρl is minimal;

3. Sample Z ∼ N

(
0, (1−ρl/ρ)(1/ρ−1/ρr)

2(1−ρl/ρr)

)
, let

Yρ = 1−ρl/ρ
1−ρl/ρr

Yρr
+ ρl/ρ−ρl/ρr

1−ρl/ρr
Yρl

+ Z,

and add (ρ, Yρ) to M .

Then the sequence of random variables generated by the pro-
cess has the same distribution as described in Lemma 3.2.

Proof sketch. The argument is inductive. Under the hypoth-
esis that all values generated up to the given point have
the distribution described by Lemma 3.2, we argue that the
newly generated value does too. The argument considers
the four different cases for ρl, ρr, e.g., ρl = 0, ρr ̸= ρ∞. As
the proof involves tedious computation we refer the reader
to Appendix B for the formal proof.

Algorithm 1 GaussianMultipleRelease

Parameters: ℓ2 sensitivity ∆2

Inputs: Set of releases M , privacy parameter ρ
1: Find (ρk, Yρk

), (ρk+1, Yρk+1
) ∈ M such that

2: ρ ∈ [ρk, ρk+1) and ∀(ρ′, ·) ∈ M : ρ′ /∈ (ρk, ρk+1)

3: Sample Zρ ∼ N(0,∆2
2 · (1−ρk/ρ)·(1/ρ−1/ρk+1)

2(1−ρk/ρk+1)
)

4: Let Yρ := Zρ +
(1−ρk/ρ)Yρk+1

+(ρk/ρ−ρk/ρk+1)Yρk

1−ρk/ρk+1

5: Add M = M ∪ {(ρ, Yρ)}
6: Return Yρ

Formalizing lossless multiple release. Lemma 3.3 will
constitute the basis for our implementation of lossless mul-
tiple release, but we have yet to formally define this notion.
We do so next.

Definition 3.4 (Lossless multiple release). Let
Mρ : X → Y be a family of mechanisms on a do-
main X , indexed by a privacy parameter ρ ∈ R+. We say
that M : X × R+ → Y implements Mρ with lossless
multiple release if for every x ∈ X it satisfies:

1. ∀ρ: M(x, ρ) and Mρ(x) are identically distributed.

2. For every finite subset S ⊂ R+, processed in
arbitrary order by M, and y ∈ Y , conditioned
on M(x,max(S)) = y the joint distribution of
(M(x, ρ))ρ∈S is uniquely determined by y and S.

Functionally, a mechanism meets the definition if its outputs
can be correlated such that for any set of outputs, their joint
distribution can be viewed as (randomized) post-processing
of the least private release. An implementation necessarily
has to store information about releases that have been made,
i.e., the sequence of inputs to M and the corresponding
outputs, to fulfill the requirement that releases for different
privacy parameters are correlated. When M only supports
outputting releases for a sequence of increasing privacy
parameters, we call it lossless gradual release.

Having stated the definition for lossless multiple release,
consider Algorithm 1. It implements Lemma 3.3, and the
idea is visualized in Figure 1.

Corollary 3.5. With M initialized as M =
{(0,∞), (∞, f(x))}, Algorithm 1 implements the
Gaussian mechanism with lossless multiple release.

Proof. Let {Yρ}ρ∈S be the set of outputs produced by Al-
gorithm 1 on receiving the set S of privacy parameters in
arbitrary order. Observe that the algorithm is implementing
the (adaptive) sampling in Lemma 3.3, and so it produces
outputs with the same distribution as Lemma 3.2. Property
1 of Definition 3.4 follows immediately from observing that
Yρ ∼ N(f(x), 1

2ρ ). For property 2, note that every release
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in Lemma 3.2 can be viewed as randomized post-processing
of the least private release. One way to see this is to note
that for any two releases Yρ and Yρ′ where ρ < ρ′, we have
that Cov(Yρ, Yρ′) = Var[Yρ′ ], implying that Yρ = Yρ′ + Z
for aptly scaled zero-mean Gaussian noise Z.

4. Extending to Independent Additive Noise
We will next show that lossless multiple release holds for a
larger class of mechanisms. To proceed we introduce the
notion of an independent additive noise mechanism.

Definition 4.1 (Independent Additive Noise Mechanism).
We define an independent additive noise mechanism Af,ρ :
X → Rd as a mechanism of the form

Af,ρ(x) = f(x) + Z , Z ∼ D(ρ) ,

where D(ρ) is a probability distribution parameterized in ρ,
that draws a d-dimensional vector with i.i.d. samples.

It turns out that any independent additive noise mechanism
Af,ρ satisfying Definition 1.1 supports lossless multiple
release.

Lemma 4.2. Any independent additive noise mechanism
Af,ρ with noise distribution D(ρ) satisfying convolution
preorder can be implemented with lossless multiple release.

Proof. The proof is for the one-dimensional case, but the
same argument can be invoked for the multidimensional
case as each coordinate has independent noise. We begin by
proving that given S = {ρk : k ∈ [m]} ⊂ R+, where ρ1 <
· · · < ρm, it is possible to construct a set of releases {Yρk

:
k ∈ [m]} that satisfy Definition 3.4. By Definition 1.1, it is
possible to express each Yρk

as

Yρk
= f(x) + Zρm +

m−1∑
j=k

Wρj+1,ρj , (1)

where Zρm
∼ D(ρm) and Wρj+1,ρj

∼ C(ρj+1, ρj) are sam-

pled independently. To prove that Yρk

d
= Af,ρk

(x), observe
that Yρk

is distributed as f(x) plus a random variable drawn
from D(ρm)∗C(ρm, ρm−1)∗· · ·∗C(ρk+1, ρk) = D(ρk), as
needed. For the second property in Definition 3.4, observe
that conditioning on Yρm = y we can express every other
Yρk

for k ∈ [m− 1] as

Yρk
= y +

m−1∑
j=k

Wρj+1,ρj
.

As a result, the joint distribution on (Yρ1 , . . . , Yρm)|Yρm=y

is uniquely determined by y, proving the second property.

We will now argue (inductively) that we can produce these
releases adaptively. Let S1 ⊂ S2 · · · ⊂ Sm = S be a

sequence of subsets of S where |Si| = i. For the base case
of S1 we can make a single release using Af,ρ. For our
inductive hypothesis, assume we have produced releases
corresponding to all the privacy parameters in Sn. Now, for
Sn+1, we re-label the privacy parameters such that Sn+1 =
{ρk}k∈[n+1] where ρ1 < · · · < ρn+1. For the unique ρi ∈
Sn+1 \ Sn, we can conditionally sample it from the joint
distribution over (Yρk

)k∈[n+1], conditioned on the value of
each release made in the previous round. By induction, it
follows that we can adaptively release S.

4.1. Sampling in Concrete Settings

Lemma 4.2 proves the existence of a sampling procedure
for lossless multiple release. In Section 3 we showed a
sampling procedure in the particular case of Gaussian noise.
In Appendix A we show that the structure of Algorithm 1
holds for general independent additive noise mechanisms.
Namely, if the privacy parameters we support come from
a bounded range (ρ0, ρ∞) ⊂ R+, then the corresponding
algorithm has a similar structure (see Algorithm 5).

More precisely, consider two neighboring releases Yρk
and

Yρk+1
with noise parameters ρk and ρk+1, respectively, and

a new lossless release Yρ with parameter ρ ∈ [ρk, ρk+1]. We
can use (1) on this set of m+ 1 releases and condition on
the values of the m previous releases Yρ1

, . . . , Yρm
. Next,

write Wρk+1,ρk
= W1 +W2 where W1 = Yρ − Yρk+1

and
W2 = Yρk

− Yρ. In Appendix A, we show that sampling
Yρ can be reduced to the following task:

Sample W1 conditioned on W1+W2 = Yρk
−Yρk+1

. (2)

Example: Poisson mechanism. Consider the independent
additive noise mechanism using the Poisson distribution,
Poi(λ). This mechanism has the property that noise is
always a non-negative integer, making it a natural noise
distribution for integer vectors in settings where negative
noise is undesirable. Appendix E states some basic privacy
properties of the Poisson mechanism.

The family of Poisson distributions parameterized by ρ =
1/λ satisfies convolution preorder since for any λ1 > λ2,
Poi(λ1) = Poi(λ1 − λ2) ∗ Poi(λ2). To adaptively perform
private lossless multiple release of a value f(x) using the
Poisson mechanism and parameters λ1 > · · · > λm we no-
tice that the “bridging” distribution in the kth term of the sum
in (1) has distribution Poi(λk − λk+1). Note that without
conditioning on Yρ1

, . . . , Yρm
, W1 ∼ Poi(λ − λk+1) and

W2 ∼ Poi(λk−λ). By Lemma E.4 in the appendix we have
that the sampling in (2) reduces to W1 ∼ Binomial(N, p)
for N = Yρk

− Yρk+1
and p = (λ− λk+1)/(λk − λk+1).

Example: Laplace Mechanism. Koufogiannis et al. (2016)
have already shown that the Laplace distribution param-
eterized by ρ = 1/b satisfies convolution preorder for
any scale parameters b1 > b2. Let LapBridge(b2, b1) be

5
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the probability distribution that draws 0 with probability
b22/b

2
1 and from Lap(0, b1) with the remaining probabil-

ity. Then Lap(0, b2) ∗ LapBridge(b2, b1) = Lap(0, b1)
exactly. To implement lossless release via the sampling in
(2), it turns out that the conditional distribution is a mixture
W1 ∼ LapBridge(b, b2) of three distributions: With some
probability W1 is equal to either 0 or Yρk

− Yρk+1
, and oth-

erwise it is sampled from the convolution of two Laplace
distributions. We also show that the related exponential
distribution satisfies convolution preorder, see Appendix F
for the full details.

4.2. Lossless Multiple Release as a Blackbox

Inspired by Corollary 15 in Koufogiannis et al. (2016), we
provide a meta theorem for lossless multiple release based
on independent additive noise mechanisms. The central
component is the following lemma, showing that the class
of lossless multiple release mechanisms is closed under
invertible post-processing.

Lemma 4.3. Let Mρ : X → Y satisfy lossless multiple
release, and let H : Y → Y ′ be an invertible function. Then
M′

ρ = H ◦Mρ also satisfies lossless multiple release.

Proof. Let M : X × R+ → Y be an implementation
of Mρ satisfying lossless multiple release, and let
M′ = H ◦ M, which we will argue implements loss-
less multiple release. The only property that does not
trivially hold for M′ is the second property of Defini-
tion 3.4. For a set S ⊂ R+, note that to condition on
M′(x,max(S)) = y is equivalent to conditioning on
H−1(M′(x,max(S))) = M(x,max(S)) = H−1(y) ∈ Y .
We thus have that conditioning M′(x,max(S)) = y
implies that the joint distribution over (M(x, ρ))ρ∈S

is fully determined, and consequently so is
(H(M(x, ρ)))ρ∈S = (M′(x, ρ))ρ∈S , and we are done.

Theorem 4.4 (Meta theorem). Let Mρ : X → Y be a
family of mechanisms on a domain X , indexed by a pri-
vacy parameter ρ ∈ R+. Furthermore, assume Mρ can be
decomposed as Mρ = H ◦ Af,ρ where

• Af,ρ : X → Rd is an independent additive noise
mechanism for releasing f : X → Rd with privacy
parameter ρ and with noise distribution satisfying a
convolution preorder (Definition 1.1);

• H : Rd → Y is an invertible post-processing step;

Then Mρ can be implemented with lossless multiple release.

Proof. The theorem follows from invoking Lemma 4.2 to-
gether with Lemma 4.3.

Supporting non-invertible post-processing. To support
non-invertible post-processing, we also introduce a weaker
notion: weakly lossless multiple release.

Definition 4.5 (Weakly Lossless Multiple Release). A
mechanism Mρ supports weakly lossless multiple release
if it can be written as Mρ = H ◦ M′

ρ where M′
ρ sup-

ports lossless multiple release and H is an arbitrary function
(possibly chosen from some distribution).

We define weakly lossless gradual release analogously. It
follows that these classes of mechanisms are closed under
all post-processing. While this notion is indeed weaker, any
algorithm M(x, ρ) implementing weakly lossless multiple
release for a ρ-private mechanism Mρ(x), will have the
property that the set of releases (M(x, ρ))ρ∈S are max(S)-
private, if ρ-privacy is closed under post-processing. Exam-
ples of such privacy notions are ε-DP and ρ-zCDP. We get
the following immediate corollary to Theorem 4.4.

Corollary 4.6. If the function H in Theorem 4.4 is not
invertible, then Mρ = H ◦ Af,ρ supports weakly lossless
multiple release.

Weakly lossless multiple release will play a role in the next
section, where we consider non-invertible post-processing
such as truncation.

5. Applications
In this section, we describe two applications supported by
our framework for lossless multiple release:

• Factorization mechanisms (Li et al., 2015), where we
want to privately release a linear query Ax, and

• Sparse Gaussian histograms, also known as stability
histograms (Wilkins et al., 2024; Google Anonymiza-
tion Team, 2020).

We will make use of both lossless multiple release (Defi-
nition 3.4), and its weaker variant (Definition 4.5). This
will be necessary since, e.g., the truncation used for sparse
Gaussian histograms is not an invertible function, and so
not covered by Theorem 4.4.

Because the noise generation for histograms on large do-
mains is expensive, we give a dimension-independent algo-
rithm that works in the gradual release setting. Throughout,
we state our results as post-processings of the Gaussian
mechanism, but analogous results hold for any other inde-
pendent additive noise mechanism meeting Definition 1.1.
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Algorithm 2 FactorizationMultipleRelease

Parameters: Factorization A = LR, ℓ2 sensitivity ∆2

Inputs: Set of releases M , privacy parameter ρ
1: Find (ρk, Yρk

), (ρk+1, Yρk+1
) ∈ M such that

2: ρ ∈ [ρk, ρk+1) and ∀(ρ′, ·) ∈ M : ρ′ /∈ (ρk, ρk+1)

3: Zρ ∼ N
(
0,∆2

2 · (1−ρk/ρ)·(1/ρ−1/ρk+1)
2(1−ρk/ρk+1)

)d

4: Let Yρ := L ·Zρ +
(1−ρk/ρ)Yρk+1

+(ρk/ρ−ρk/ρk+1)Yρk

1−ρk/ρk+1

5: Set M = M ∪ {(ρ, Yρ)}
6: Return Z

5.1. Lossless Multiple Release Factorization Mechanism

Let A be a query matrix and fix a public factorization
A = LR. Denote the factorization mechanism (Li et al.,
2015) as Fρ(x) = Ax+ Lz = L(Rx+ Z) on some pri-
vate dataset x where Z is a vector drawn from a distribution
D(ρ) satisfying Definition 1.1 parameterized by ρ, typically
Gaussian or Laplace noise.

Lemma 5.1. Fρ can be implemented with weakly lossless
multiple release, and lossless multiple release if L has a
left-inverse.

Proof. Observe that Fρ(x) = L ◦ AR,ρ for an IAN mech-
anism AR,ρ(x) = Rx + Z where Z ∼ D(ρ) for a D(ρ)
satisfying Definition 1.1. The result follows from Theo-
rem 4.4 and Corollary 4.6, and noting that the linear map L
is invertible exactly when L has a left-inverse.

Besides proving existence in Lemma 5.1, we also give an
explicit instantiation in Algorithm 2 using the Gaussian
mechanism.

Lemma 5.2. With initialization M = {(0,∞), (∞, Ax)},
Algorithm 2 implements the Gaussian noise factorization
mechanism Fρ with (weakly) lossless multiple release.

Proof sketch. Note that the algorithm is practically a copy
of Algorithm 1, but for the specific sensitive function Rx.
The only structural difference is that the linearity of the
post-processing L allows for storing correlated Gaussian
noise directly in M .

5.2. Weakly Lossless Multiple Release of Histograms

We will now describe an example where the post-processing
is neither linear nor invertible: releasing sparse (Gaussian)
histograms (Korolova et al., 2009; Google Anonymization
Team, 2020; Balle & Wang, 2018). Let x = (Xi)

n be
a dataset of n users, and we want to privately release the
histogram H(x) =

∑n
i=1 Xi where Xi ∈ {0, 1}d and a

user can contribute to l distinct counts and the Gaussian
mechanism which scales proportional to

√
l is preferable.

In many natural settings, the domain size d can be very

Algorithm 3 HistogramGradualRelease

Parameters: ℓ2 sensitivity ∆2

Inputs: histogram H(x), set of releases M ,
privacy parameter ρ, threshold τ

1: Extract the single element (ρ′, Z ′) ∈ M

2: Sample Z̃ ∼ N
(
0, 1

2∆
2
2(ρ− ρ′)

)d
3: Let Z =

ρ′

ρ
Z ′ +

1

ρ
Z̃

4: for each i ∈ [d] do
5: if H(x)i + Zi > τ then Yi = H(x)i + Zi

6: else Yi = 0
7: end for
8: Set M = {(ρ, Z)}
9: Return Y

large, and therefore, the resulting histogram is usually very
sparse, k = ∥H(x)∥0 ≪ d. Releasing a noisy histogram
where noise has been added to each coordinate would de-
stroy the sparsity. One can cope by introducing a thresh-
old τ > 0 where only noisy counts that exceed τ are re-
leased. τ is usually set high enough such that the noise
to a zero count will (after thresholding with high probabil-
ity) still be zero. We denote the support of the histogram
as U(H(x)) = {i ∈ [d] : H(x)i ̸= 0} as the index of the
non-zero coordinates. Define the thresholding function
Tτ : Rd → Rd as:

Tτ (x) = (yi)
d
i=1 , where yi =

{
xi, if xi ≥ τ

0, otherwise
.

Denote the (independent additive noise) sparse histogram
mechanism as Hρ(x) = Tτ (H(x) + Z) where Z ∼ D(ρ)
is a distribution satisfying a convolution preorder (Defini-
tion 1.1).

Lemma 5.3. Hρ can be implemented with weakly lossless
multiple release.

Proof. Observe that Hρ can be expressed as a composite
function Tτ ◦ Aρ,f (x) for an independent additive noise
mechanism Aρ,f (x) meeting Definition 1.1. The statement
thus follows from Corollary 4.6.

It is straightforward to implement weakly lossless gradual
release for stability histograms using our framework with
time and space complexity linear in dimension d; see Algo-
rithm 3. The following lemma is proved in Appendix C.

Lemma 5.4. With initialization M = {(0, 0)}, Algorithm 3
implements Hρ with weakly lossless gradual release.

Improving efficiency for weakly lossless gradual release.
Korolova, Kenthapadi, Mishra, and Ntoulas (2009) showed
that under approximate differential privacy, one can skip the

7
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noise generation for zero counts if thresholding is enabled,
adding only a small probability for infinite privacy loss if
this coordinate is non-zero in a neighboring dataset. Un-
fortunately, this approach does not fit our meta theorem, so
instead, we apply a technique due to Cormode, Procopiuc,
Srivastava, and Tran (2012) that efficiently simulates the
noise distribution of those zero counts that would exceed
the threshold and thus gives an identical distribution to the
truncated noisy histogram. The procedure is described in
the following lemma.

Lemma 5.5. For a fixed noise distribution D, the out-
put distribution of releasing Tτ (H(x) + Z) with Z ∼
D are independent noise samples is equal to the fol-
lowing process: (a) add noise to every non-zero coor-
dinate in H(x)i for i ∈ U(H(x)) and then (b) draw
q ∼ Binomial(d− k, p) where p = PrZ∼D[Z > τ ]. (c)
Sample a subset Q ⊆ [d] \ U(H(x)) of size |Q| = q uni-
formly at random and (d) set the noise for H(x) to Z ∼ D
conditioned on being above the threshold τ .

Proof sketch. A formal argument can be found in Cormode
et al. (2012), here we just provide a sketch. It is clear that
every entry in the support gets the correct output distribu-
tion. Furthermore, the number of zero counts q whose noise
exceeds τ follows a binomial distribution, and we can add
conditional noise to a uniformly drawn subset of size q.

Algorithm 6 in Appendix C implements the efficient rou-
tine described by Lemma 5.5 under weakly lossless gradual
release. The key challenge is that the probability for a his-
togram count to exceed the threshold in a given round now
depends on whether it exceeded the threshold in any prior
round. Intuitively, all zero counts that have never exceeded
the threshold have an equal probability to exceed the thresh-
old in any given round, and so the simulation technique in
Lemma 5.5 can be used for these counts (with different prob-
abilities and conditional distributions). However, once any
zero count exceeds the threshold, it will have to be treated
the same as non-zero counts in all future rounds.

The utility and privacy of Algorithm 6 is proved by argu-
ing that its output distribution matches that of Algorithm 3.
A proof sketch for the following lemma is given in Ap-
pendix C.

Lemma 5.6. Let H(x) be a histogram over [d], ρ1, . . . , ρm
be a sequence increasing of privacy budgets, τ1, . . . , τm be
a sequence of thresholds and ∆2 > 0 the ℓ2-sensitivity
of the histogram. Also let the sequences of outputs
(Y (1), . . . , Y (m)) and (Ŷ (1), . . . , Ŷ (m)) be derived from
running Algorithm 3 and Algorithm 6 respectively with
the preceding parameters as input. Then the sequences
(Y (1), . . . , Y (m)) and (Ŷ (1), . . . , Ŷ (m)) are identically dis-
tributed.
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Figure 2. Accuracy comparison of multiple uncorrelated releases
compared to lossless multiple release. Budgets are spaced evenly
on a logarithmic scale between ρ = 0.001 and ρ = 5 on the
x-axis. Creating independent releases with a denser set of privacy
parameters comes at the cost of increased variance. In the lossless
setting we get the best possible variance with no bound on the
number of releases.

The benefit of the efficient sampling technique is that the
number of sampled Gaussians will never exceed that of the
naı̈ve approach and can potentially be in the order of the
sparsity depending on the parameter regime.

Lemma 5.7. Let c be the number of zero-counts in the
histogram output by Algorithm 6 least once over its execu-
tion. Then Algorithm 6 will sample (k + c)m (truncated or
otherwise) Gaussians.

We again refer the reader to Appendix C for a proof.

6. Empirical Evaluation
To confirm our theoretical claims, we empirically evaluate
the accuracy of lossless multiple release against a baseline
algorithm that uses independent releases. We evaluate the
impact by focusing on noise in isolation to avoid capturing
the effect of specific queries. The baseline algorithm is
a simple Gaussian mechanism where noise is drawn inde-
pendently for each consecutive release. To showcase our
algorithm’s performance, we demonstrate how the cost in-
curred by uncoordinated releases grow with the amount of
releases, in contrast to the lossless multiple release where
there is no additional cost. We repeat our experiments 106

times, and measure the variance of the noise. The plot (Fig-
ure 2) shows, as expected, that our mechanism does not lose
any utility from making multiple releases. As we can see,
there is an expected increase in variance when going from
one release to multiple releases—the initial jump is larger
the more releases we want to make as the budget used for the
second release is the difference between the starting point
(ρ = 0.001) and a constant increase in budget, whereas the
subsequent releases all have the same difference in budget.
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7. Conclusion and Open Questions
We have initiated a systematic study of differential privacy
with multiple releases, motivated by settings in which many
levels of privacy or trust may co-exist. The main message is
that it is possible to generalize a large class of lossless grad-
ual release techniques to this setting, even when releases
are determined online and in no particular order. For mech-
anisms based on Gaussian, Laplace, or Poisson additive
noise we give simple and efficient sampling procedures for
creating new lossless releases. In particular, we are able to
do lossless multiple release for any factorization mechanism
using invertible matrices. Finally, we consider algorithmic
challenges related to lossless gradual release and show that
private sparse histograms may be computed much more effi-
ciently than what a direct application of our general results
would imply.

There are still many open questions concerning mechanisms
that do not inherit their privacy guarantee from an indepen-
dent additive noise mechanism. In particular, it would be
interesting to determine under which conditions the expo-
nential mechanism (McSherry & Talwar, 2007) supports
lossless multiple release. Koufogiannis et al. (2016) con-
jecture that this is always possible. Other central private
algorithms, such as report noisy max (Dwork et al., 2014)
also do not have known lossless multiple release mecha-
nisms, even in the gradual release setting. A final challenge
we would like to mention is implementing our mechanisms
on a finite computer, e.g., creating a multiple release ver-
sion of the discrete Gaussian mechanism (Canonne et al.,
2020). An appealing approach would be to base this on
Poisson noise, which meets the technical conditions for our
framework and approaches the Gaussian distribution in the
limit.
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Algorithm 4 GenericMultipleRelease

Parameters: Noise distribution family D(ρ) satisfying a convolution preorder,
bridging noise distribution C(ρ, ρ′) where D(ρ′) ∗ C(ρ′, ρ) = D(ρ) for 0 < ρ < ρ′.

Inputs: Sensitive value f(x), new privacy parameter ρk, set of past releases M = {(ρi, Yρi
) : i ∈ [m] \ {k}}

1: if M = ∅ then
2: Sample Zρk

from D(ρρk
)

3: Set Yρk
= f(x) + Zρk

4: else if k = 1 then
5: Sample Wρk+1,ρk

from C(ρk+1, ρk)
6: Set Yρk

= Yρk+1
+Wρk+1,ρk

7: else if k ∈ (1,m) then
8: Sample Wρk+1,ρk

from C(ρk+1, ρk) conditioned on Wρk+1,ρk
+Wρk,ρk−1

= Yρk−1
− Yρk+1

9: Set Yρk
= Yρk+1

+Wρk+1,ρk

10: else if k = m then
11: Sample Zρk

from D(ρk) conditioned on Zρk
+Wρk,ρk−1

= Yρk−1
− f(x)

12: Set Yρk
= f(x) + Zρk

13: end if
14: Set M = M ∪ {(ρk, Yρk

)}
15: Return Yρk

A. On Lossless Multiple Release Sampling
Lemma 4.2 makes no claim about how easy it is to sample noise from the conditional noise distribution, but guarantees
its existence. We will use this section for discussing this sampling in greater detail. Consider the joint distribution of the
releases defined by Equation (1) from the proof of Lemma 4.2, re-stated below for convenience:

Yρk
= f(x) + Zρm

+

m−1∑
j=k

Wρj+1,ρj
, k = 1, . . . ,m , (1)

where Yρk
is the ρk-private release, Zρm

∼ D(ρm) and Wρj+1,ρj
∼ C(ρj+1, ρj). Recall that C(ρ′, ρ) is the unique

distribution where for any 0 < ρ < ρ′ : D(ρ) = D(ρ′) ∗ C(ρ′, ρ). As argued for in the proof of Lemma 4.2, to make a new
ρ-private release, we consider the joint distribution, and sample the new releases conditioned on all past releases.

Formally, for a set of privacy parameters ρ1 < · · · < ρm, we are interested in releasing ρk for a single k ∈ [m], conditioned
on the set of past releases M = {(ρi, Yρi

) : i ∈ [m] \ {k}}. We give pseudocode for this in Algorithm 4, and a lemma for
its correctness.

Lemma A.1. Initializing M = ∅ and then running Algorithm 4 for a set of privacy parameters {ρi : i ∈ [m]} (processed in
arbitrary order), will produce a set of outputs {Yρi : i ∈ [m]} with distribution given by Equation (1).

Proof. For M = ∅, we have that Yρk
= f(x) +D(ρk) = Af,ρk

(x) on lines 2-3, as expected, where A is our independent
additive noise noise mechanism releasing f with ρ-privacy. For the remaining cases, assume M contains m− 1 releases
with the correct joint distribution, and we are generating a new release at privacy level ρk. We will argue that Algorithm 4
produces a Yρk

whose joint distribution with the releases in M matches (1). For k = 1, observe that Yρ1
= Yρ2

+Wρ2,ρ1
,

and so lines 5-6 are correct. For 1 < k < m, note that Yρk
= Yρk+1

+ Wρk+1,ρk
and Yρk−1

= Yρk
+Wρk,ρk−1

, which
combined allows us to identify the correct conditional distribution. Yρk

is given by Yρk+1
+ Wρk+1,ρk

, conditioned on
Wρk+1,ρk

+Wρk,ρk−1
= Yρk−1

− Yρk+1
, matching lines 8-9. For the final case of k = m, then Yρm = f(x) + Zρm and we

have that Yρm−1 = Yρm +Wρm,ρm−1 . It follows that the correct noise distribution is Yρm = f(x) + Zρm , conditioned on
Zρm +Wρm,ρm−1 = Yρm−1 − f(x), matching lines 11-12. An inductive argument identical to that given in the proof of
Lemma 4.2 completes the proof.

A.1. Simplification and Removing Dependency on the Dataset

Note that f(x) is only used in Algorithm 4 when a more accurate release is generated (lines 1 and 10). In the remaining
cases we are only adding noise to past releases. This already allows us to simplify the algorithm, and argue for not having to
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Algorithm 5 SimplifiedGenericMultipleRelease

Parameters: Noise distribution family D(ρ) satisfying a convolution preorder,
bridging noise distribution C(ρ, ρ′) where D(ρ′) ∗ C(ρ′, ρ) = D(ρ) for 0 < ρ < ρ′

Inputs: Privacy parameter ρ, set of releases M
1: Find (ρk, Yρk

), (ρk+1, Yρk+1
) ∈ M such that ρ ∈ [ρk, ρk+1) and ∀(ρ′, ·) ∈ M : ρ′ /∈ (ρk, ρk+1)

2: Sample Wρk+1,ρ from C(ρk+1, ρ) conditioned on Wρk+1,ρ +Wρ,ρk
= Yρk

− Yρk+1

3: Set Yρ = Yρk+1
+Wρk+1,ρ

4: Set M = M ∪ {(ρ, Yρ)}
5: Return Yρ

store f(x) in memory indefinitely. The algorithm reduces to the case (see line 7 of Algorithm 4) where only the two closest
releases are combined into a new one. Such an algorithm is given in Algorithm 5, together with Lemma A.2.

Lemma A.2. Let M = {(ρ0, Yρ0
), (ρ∞, Yρ∞)} for Yρ∞ = Aρ∞,f (x), and Yρ0

= Yρ∞+Wρ∞,ρ0
. Then running Algorithm 5

with input M and a set of privacy parameters {ρi : i ∈ [m]} ⊂ (ρ0, ρ∞) (processed in arbitrary order), will produce a set
of outputs {Yρi : i ∈ [m]} with distribution given by Equation (1). Moreover, the set M will at all times satisfy ρ∞-privacy.

Proof. The statement follows from carefully comparing to Algorithm 4. Let S = (ρ1, . . . , ρm) be a sequence of noise
values from the lemma statement, and let O = (Yρ1

, . . . , Yρm
) be the outputs. Consider a second sequence S′ =

(ρ∞, ρ0, ρ1, . . . , ρm), and consider the corresponding sequence of outputs O′ = (Y ′
ρ∞

, Y ′
ρ0
, Y ′

ρ1
, . . . , Y ′

ρm
) from inputting

S′ and M ′ = ∅ to Algorithm 4. We can directly check that Yρ0

d
= Y ′

ρ0
and Yρ∞

d
= Y ′

ρ∞
. For the remaining outputs, note

that just before each algorithm is called, their internal states M and M ′ are also identically distributed. Now, the fact
that each ρi ∈ (ρ0, ρ∞) implies that the remaining outputs Y ′

ρ1
, . . . , Y ′

ρm
are generated from lines 10-12 in Algorithm 4.

Checking carefully, lines 1-3 in Algorithm 5 are implementing the same routine, and since M
d
= M ′, it follows that

(Yρ1
, . . . , Yρm

)
d
= (Y ′

ρ1
, . . . , Y ′

ρm
), and so the statement follows from Lemma A.1. The last statement on the ρ∞-privacy

of M follows from Algorithm 5 implements Equation (1), and so each release in M can at any time during execution be
viewed as randomized post-processing of Y∞.

Essentially, if we commit to supporting a bounded range of privacy parameters then we get a simpler algorithm. Lemma A.2
also says something more: If we commit to supporting a lowest level of privacy ρ∞, then Algorithm 5 can be implemented
in such a way that its internal state is ρ∞-private. After initializing M using the sensitive function f(x), we can erase f(x)
from memory and Y∞ will contain enough private information to generate all future releases. This could prove useful in
settings where the time between releases is large, and we want to limit the private information leaked if the state of the
algorithm were to be compromised. This can be compared with the gradual release setting, where natural implementations
would require consistent access to f(x).

B. Omitted Proof for Gaussian Lossless Multiple Release
Proof of Lemma 3.3. Throughout the proof we will ignore the factor 2 in the denominator of the variance. To argue that the
values generated by the process match the distribution Lemma 3.2, we will argue for increasing subsets of releases. Let
Sn = {ρk : k ∈ [n− 1]} where 0 < ρ1 < · · · < ρn < ρ∞ be the set of values in S for which we have generated Gaussians
at the start of the nth round of the process. Note that we re-label the ρ’s between the rounds such that ρk ∈ Sn always is the
kth smallest value in Sn. Our argument will proceed by induction: assume that all the Gaussians {Yρk

: k ∈ [n]} generated
after n rounds have the distribution given by Lemma 3.2. Then we will show that {Yρk

: k ∈ [n− 1]} ∪ {Yρ} has the same
distribution as predicted by Sn ∪ {ρ} from invoking Lemma 3.2.

We begin with our base case. For n = 1, we have that ρl = 0 and ρr = ρ∞, and so Yρ = Yρ∞ +N(0, 1/ρ− 1/ρ∞). Since
Yρ∞ ∼ N(β, 1/ρ∞), we have that Yρ ∼ N(β, 1/ρ), as expected, and so the base case passes.

For n ≥ 2, we first consider the following cases.

Case 1: ρl = 0, ρr = ρ1 ∈ Sn. In this case, Yρ = Yρ1
+N(1/ρ− 1/ρ1), and so Yρ ∼ N(β, 1/ρ). Since ρ < ρ1, we have

that ∀i ∈ [n− 1] : Cov(Yρ, Yρi) = Cov(Yρ1 , Yρi) = 1/ρi, as expected for the release with the smallest value in {ρ} ∪ Sn,
and so the case is complete.
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Case 2: ρl = ρn−1, ρr = ρ∞ = ∞. We have to deal with the case where we have set ρ∞ = ∞ separately, as it is a bit of a

trick. Note that we get Yρ =
(1−ρn−1)β+ρn−1Yρn−1

ρ +N(0, 1−ρn−1/ρ
ρ ), since Yρ∞ = β in this case. The end result is once

more a sum of Gaussians, with mean β, and for the variance we can explicitly compute that Var[Yρ] =
ρ2
n−1

ρn−1ρ2 − ρ−ρn−1

ρ2 =

1/ρ, as expected. For the covariance, for i ∈ [n− 1] : Cov(Yρ, Yρi
) = ρn−1

ρ Cov(Yρn−1
, Yρi

) = 1/ρ, as expected for the
largest value in {ρ} ∪ Sn, and so we are done. Now we consider the most general case.

Case 3: ρl ∈ Sn−1 and ρr ̸= ∞. We begin with computing the variance of Y using the hypothesis Var[Yρr ] = 1/ρr and
Var[Yρl

] = 1/ρl

Var[Yρ] =
(ρ−1

l − ρ−1)(ρ−1 − ρ−1
r )

ρ−1
l − ρ−1

r

+
(ρ−1

l − ρ−1)2 Var[Yρr
] + (ρ−1 − ρ−1

r )2 Var[Yρl
]

(ρ−1
l − ρ−1

r )2

=
1

(ρ−1
l − ρ−1

r )2

[
(ρ−1

l − ρ−1)(ρ−1 − ρ−1
r )(ρ−1

l − ρ−1
r ) + ρ−1

r (ρ−1
l − ρ−1)2 + ρ−1

l (ρ−1 − ρ−1
r )2

]
=

1

(ρ−1
l − ρ−1

r )2
· ρ−1(ρ−1

l − ρ−1
r )2 =

1

ρ
,

where the third equality follows from applying the identity

(a− b)(b− c)(a− c) + c(a− b)2 + a(b− c)2 = b(a− c)2 ,

to the expression in the brackets for a = ρ−1
l , b = ρ−1 and c = ρ−1

r , proving the correctness of the variance. Furthermore,
Yρ is a sum of Gaussians and a convex combination of two Gaussians with mean β, so Yρ ∼ N(β, 1/ρ). What remains to
show is that the covariances match up, which we do next.

We start with the case where ρr ̸= ρ∞, and so there exists ρk, ρk+1 ∈ Sn such that ρ ∈ (ρk, ρk + 1) For j ∈ [n− 1], we
therefore have that

Cov(Yρ, Yρj
) = Cov

(
(ρ−1

l − ρ−1)Yρr + (ρ−1 − ρ−1
r )Yρl

ρ−1
l − ρ−1

r

, Yρj

)
=

1

ρ−1
l − ρ−1

r

[
(ρ−1

l − ρ−1)Cov(Yρr , Yρj ) + (ρ−1 − ρ−1
r )Cov(Yρl

, Yρj )

]
=

1

ρ−1
l − ρ−1

r

[
(ρ−1

l − ρ−1)min(ρ−1
r , ρ−1

j ) + (ρ−1 − ρ−1
r )min(ρ−1

l , ρ−1
j )

]
.

We consider the cases of j ≤ k and j > k separately. For j ≤ k, we have that

Cov(Yρ, Yρj
) =

1

ρ−1
l − ρ−1

r

[
(ρ−1

l − ρ−1)ρ−1
r + (ρ−1 − ρ−1

r )ρ−1
l

]
=

1

ρ
,

and similarly for j ≥ k + 1 we get

Cov(Yρ, Yρj
) =

1

ρ−1
k − ρ−1

k+1

[
(ρ−1

k − ρ−1)ρ−1
j + (ρ−1 − ρ−1

k+1)ρ
−1
j

]
=

1

ρj
.

It follows that Cov(Yρ, Yρj
) =

∆2
2

2max(ρ,ρj)
for j ∈ [m], and so we are done with this part of the covariances.

For the last step, we consider what happens when ρr = ρ∞ < ∞. In this case, ρl = ρn−1 and so for j ∈ [n− 1]:

Cov(Yρ, Yρj
) = Cov

(
(1− ρn−1/ρ)Yρ∞ + (ρn−1/ρ− ρn−1/ρ∞)Yρn−1

1− ρn−1/ρ∞
, Yρj

)
=

1− ρn−1/ρ

1− ρn−1/ρ∞
Cov(Yρ∞ , Yρj ) +

ρn−1/ρ− ρn−1/ρ∞
1− ρn−1/ρ∞

Cov(Yρn−1 , Yρj )

=
1− ρn−1/ρ

ρ∞ − ρn−1
+

1/ρ− 1/ρ∞
1− ρn−1/ρ∞

=
1− ρn−1/ρ+ ρ∞/ρ− 1

ρ∞ − ρn−1
= 1/ρ ,

and now we are done.

13



Private Lossless Multiple Release

Algorithm 6 EfficientHistogramGradualRelease

Parameters: ℓ2-sensitivity ∆2

Inputs: Private histogram H(x), privacy budgets ρ1 < · · · < ρm, thresholds τ1, . . . , τm
1: Let S(0) = U(H(x)) // Tracking counts that have already been released
2: Also let Z(0) = {0}d and ρ0 = 0.
3: ∀r ∈ [m] : let distribution D(r) = N

(
0, 1

2∆
2
2(ρr − ρr−1)

)
4: for each round r ∈ [m] do
5: Initialize Y (r) = {0}d
6: for each tracked count in preceding round j ∈ S(r−1) do
7: Draw fresh noise Z̃

(r)
j ∼ D(r)

8: Update aggregate noise Z
(r)
j = ρr−1

ρr
Z

(r−1)
j + 1

ρr
Z̃

(r)
j

9: if H(x)j + Z
(r)
j > τr then

10: Y
(r)
j = H(x)j + Z

(r)
j

11: end if
12: end for

// Simulating Noise for zero counts
13: Let Z̃(k) ∼ D(k) for k ∈ [r] be random variables.
14: Compute p(r) = Pr

[∑r
k=1 Z̃

(k) > τrρr | {∀ℓ ∈ [r − 1] :
∑ℓ

k=1 Z̃
(k) ≤ ρℓτℓ}

]
15: Draw q ∼ Binomial

(
d− |S(r−1)|, p(r)

)
.

16: Select a subset Q ⊆ [d] \ S(r−1) uniformly at random of size q.
17: for each index j ∈ Q do
18: Initialize Z

(r)
j = 0

19: for k ∈ [r − 1] do
20: Draw fresh noise Z̃

(k)
j ∼ D(k) conditioned on Z̃

(k)
j ≤ ρkτk − Z

(r)
j

21: Update aggregate noise Z
(r)
j = Z

(r)
j + Z̃

(k)
j

22: end for
23: Draw fresh noise Z̃

(k)
j ∼ D(k) conditioned on Z̃

(k)
j > ρkτk − Z

(r)
j

24: Update aggregate noise Z
(r)
j = Z

(r)
j + Z̃

(k)
j

25: Y
(r)
j = H(x)j + Z

(r)
j // Guaranteed to be above the threshold.

26: end for
27: Set S(r) = S(r−1) ∪Q
28: output private histogram Y (r)

29: end for

C. Details on (Efficient) Weakly Lossless Gradual Release of Sparse Gaussian Histograms
Algorithm 3 implements weakly lossless gradual release of private histograms. We prove this next.

Proof of Lemma 5.4. Observe that for any increasing sequence (ρk)k∈m, the corresponding sequence of variables Z on
line 3 produced by the algorithm, have the same distribution as in Lemma 3.1 for β = 0. The Y that is ultimately returned,
however, is a post-processing of H(x) + Z, which has the same distribution as Lemma 3.1 for β = H(x). Therefore
Algorithm 3 is implementing lossless gradual release for the Gaussian mechanism applied to H(x), combined with a
non-invertible post-processing. The lemma statement follows from Corollary 4.6.

Note that one only has to store the noisy terms from the preceding round to implement Algorithm 3. Nevertheless, it might
be infeasible, say, when the domain is really large, to sample the noise for the zero coordinates. Algorithm 6 uses the
computational trick in Lemma 5.5 to speed up this computation. The algorithm is static, where the privacy budgets are fixed
upfront but can easily be converted to an online algorithm. Recall that U(H(x)) = {i ∈ [d] : H(x)i ̸= 0} is the support of
the histogram.

We proceed to give proofs for Lemma 5.6 and 5.7.
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Proof sketch for Lemma 5.6. The claim directly follows an inductive argument. For the base case, note that the first iteration
of Algorithm 6 is running the same routine as described by Lemma 5.5, and so Ŷ (1) must be identically distributed to
Y (1). For our inductive hypothesis, assume that the subsequences (Y (1), . . . , Y (k)) and (Ŷ (1), . . . , Ŷ (k)) are identically
distributed. Note that for the (k + 1)st release, Algorithm 6 handles all the true nonzero counts and every zero count that has
ever exceeded the threshold in a past round in the same way. These counts in Ŷ (k+1) and Y (k+1) clearly have the same
distribution.

Now, note that each of the remaining zero counts have up to and including the kth round been reported as zero in each round,
and so their probability of exceeding the threshold, p(k+1), should be equal across all of them.

The sampling performed by Algorithm 6 is structured in the same manner as Lemma 5.5, but with sampling probability
p(k+1), and the noise terms added for any zero count exceeding the threshold, are different. For the distributions to match,
the probability of exceeding the threshold and the noise distribution for an element chosen to exceed the threshold are more
complex. The probability of exceeding the threshold is conditioned on prefixes of Gaussians, which correctly simulates the
probability of not exceeding the threshold at any prior round until first doing so in the (k + 1)st one. The noise added once
selected to exceed the threshold is a sum of truncated Gaussians, which simulate the same event. As the principle is built on
the same logic as Lemma 5.5, we have that (Y (1), . . . , Y (k+1)) and (Ŷ (1), . . . , Ŷ (k+1)) are identically distributed, and so
the claim is true by induction.

Proof of Lemma 5.7. Note that each of the k non-zero true counts will, in each round, have fresh noise added on line 7. If a
non-zero count is selected by the binomial sampling in the kth round, the for-loop starting on line 17 will result in sampling
k noise terms, after which for future rounds it will get treated as a non-zero count. It follows that non-zero entries contribute
km samples, and zero counts exceeding the threshold contribute cm samples.

D. Definitions
We begin with the most common version of differential privacy.

Definition D.1 ((ε, δ)-Differential Privacy (Dwork et al., 2014)). A randomized algorithm M : X → Y is (ε, δ)-
differentially private if for all S ⊆ Range(M) and all pairs of neighboring inputs x,x′ ∈ X , it holds that

Pr[M(x) ∈ S] ≤ exp(ε) Pr[M(x′) ∈ S] + δ ,

where (ε, 0)-DP is referred to as ε-DP.

Zero-Concentrated Differential Privacy (zCDP) is a notion of differential privacy that provides a simple but accurate analysis
of privacy loss, particularly under composition.

Definition D.2 (Bun & Steinke (2016), ρ-zCDP). Let ρ > 0. An algorithm M : X → Y satisfies ρ-zCDP, if for all α > 1
and all pairs of neighboring inputs x,x′ ∈ X , it holds that

Dα (M (x) ||M (x′)) ≤ ρα,

where Dα (M (x) ||M (x′)) denotes the α-Rényi divergence between two output distributions of M(x) and M(x′).

Lemma D.3 (Bun & Steinke (2016), Composition). If M1(x) and M2(x) satisfy ρ1-zCDP and ρ2-zCDP, respectively,
then (M1(x),M2(x)) satisfies (ρ1 + ρ2)-zCDP.

Lemma D.4 (Bun & Steinke (2016), Gaussian Mechanism). Let f : X → Rd be a query with ℓ2-sensitivity ∆2. Consider

the mechanism Gf,ρ : X → Rd that, on private input x, releases a sample from f(x) + N
(
0,

∆2
2

2ρ

)d

. Then Gf,ρ satisfies
ρ-zCDP.

One way to uniquely describe probability distributions is via their Characteristic Functions.

Definition D.5 (Characteristic Function). The characteristic function of a random variable X is defined as φX(t) = E[eitX ].

For proving Lemma F.4 and Claim F.7, we will use a nice property of CFs for the convolution of two random variables:

Lemma D.6 (Convolution of Characteristic Functions). Let X,Y be two independent RVs with CFs φX(t) and φY (t)
respectively, then φX+Y (t) = φX(t) · φY (t).
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Proof. Furthermore, by linearity of expectation, we have for the sum of X + Y :

φX+Y (t) = E[eit(X+Y )] = E[eitX ] + E[eitY ] = φX(t) · φX(t) .

E. The Poisson Mechanism
We are not aware of any explicit statements in the literature on the privacy guarantees obtained by adding Poisson distributed
noise to a d-dimensional vector of integers. However, since the Poisson distribution is the limiting distribution of binomial
distributions with the same mean λ = Np, where N is the number of trials, such bounds can be derived from existing
bounds on the binomial mechanism. For the sake of completeness, we include such statements based on the following
theorem from (Agarwal et al., 2018):

Theorem E.1 (Agarwal et al. (2018)). For any δ, parameters N, p and sensitivity bounds ∆1,∆2,∆∞ such that

Np(1− p) ≥ max

(
23 log

(
10d

δ

)
, 2∆∞

)
,

the d-dimensional Binomial mechanism is (ε, δ)-differentially private for

ε =
∆2

√
2 log 1.25

δ√
Np(1− p)

+
∆2cp

√
log 10

δ +∆1bp

Np(1− p)(1− δ/10)
+

2
3∆∞ log 1.25

δ +∆∞dp log
20d
δ log 10

δ

Np(1− p)
.

where

dp ≜
4

3
·
(
p2 + (1− p)2

)
, bp ≜

2(p2 + (1− p)2)

3
+ (1− 2p), cp ≜

√
2
(
3p3 + 3(1− p)3 + 2p2 + 2(1− p)2

)
.

Setting p = λ/N and considering the limiting bound when N → ∞ we get:

Theorem E.2 (Privacy guarantees of the Poisson Mechanism). The d-dimensional Poisson mechanism with parameter
λ > max(23 log(10d/δ), 2∆∞), is (ε, δ)-differentially private with

ε =
∆2

√
2 log 1.25

δ√
λ

+
5
√
2∆2

√
log 10

δ + 5
3∆1

λ(1− δ/10)
+

2
3∆∞ log 1.25

δ + 4
3∆∞ log 20d

δ log 10
δ

λ
.

A simpler expression can be derived for unit sensitivities by relaxing the constants and assuming that δ is not too large:

Corollary E.3 (Simplified upper bound with unit sensitivities). Assume that ∆1 = ∆2 = ∆∞ = 1. Then for δ < 1/100,
the d-dimensional Poisson mechanism with parameter λ > 23 log(10d/δ) is (ε, δ)-differentially private for

ε =

√
2 log 1.25

δ√
λ

+
2 log 20d

δ log 10
δ

λ
.

We will need the following lemma that determines the sampling step of private lossless multiple release for the Poisson
mechanism:

Lemma E.4. Let X1 ∼ Poi(λ1) and X2 ∼ Poi(λ2) be independent Poisson random variables. Then, for any nonnegative
integer k, the conditional distribution of X1 given X1 +X2 = k is

X1 | (X1 +X2 = k) ∼ Binomial

(
k,

λ1

λ1 + λ2

)
.

Proof. Since X1 and X2 are independent, their joint probability mass function is for all x = 0, 1, · · · , k

P [X1 = x, X2 = k − x] = e−(λ1+λ2)
λx
1

x!

λ k−x
2

(k − x)!
.
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Moreover, the sum X1 +X2 is Poisson with parameter λ1 + λ2, so that

Pr[X1 +X2 = k] = e−(λ1+λ2)
(λ1 + λ2)

k

k!
.

Thus, by the definition of conditional probability,

Pr[X1 = x | X1 +X2 = k] =
Pr[X1 = x, X2 = k − x]

Pr[X1 +X2 = k]

=

e−(λ1+λ2)
λx
1

x!

λ k−x
2

(k − x)!

e−(λ1+λ2)
(λ1 + λ2)

k

k!

=

(
k

x

)(
λ1

λ1 + λ2

)x (
λ2

λ1 + λ2

)k−x

.

This is precisely the probability mass function of a Binomial random variable with parameters k and λ1

λ1+λ2
.

F. The Laplace Mechanism
Koufogiannis et al. (2016) showed how to do lossless gradual releases for the Laplace mechanism and supports either
tightening the privacy guarantees or loosening them. We will now strengthen this result by exactly showing how to do them
in arbitrary order, similar to what was done in Section 4 for the Gaussian mechanism. We will first show that the Laplace
distribution satisfies Definition 1.1. This already implies the existence of an algorithm supporting gradual lossless release
via Lemma 4.2. After, we will derive how to sample a new release with scale parameter b given two distinct releases with
scaling b2 < b and b < b1.

Definition F.1 (Laplace distribution). The zero-centered Laplace distribution Lap(0, b) with scale parameter b > 0 has
probability density function fb(x) =

1
2b exp(−|x|/b) for all x ∈ R.

Lemma F.2 (Kotz et al. Characteristic function of Laplace). Let X be Laplace random variable with probability density
function as in Definition F.1, then for all t ∈ R, the characteristic function of X is

φX(t) = E[eitX ] =

∞∫
−∞

eitx
1

2b
e−|x|/bdx =

1

1 + b2t2
.

Proof. By a simple integration:

E[eitX ] =
1

2b

∞∫
−∞

eitx−|x|/bdx =
1

2b

 0∫
−∞

e(1/b+ti)xdx+

∞∫
0

e(−1/b+ti)xdx


=

1

2b

(
1

1/b+ ti
+

1

1/b− ti

)
=

1

1 + b2t2
.

We will now show that the zero-centered Laplace distribution with scale parameter b satisfies convolution preorder
(Definition 1.1). Note that a larger value of b corresponds to a more private release by definition. Building on this, we
will condition on the two closest releases to create a new one in the middle, as done in Lemma 3.3 for the Gaussian. The
following fact was already shown in (Koufogiannis et al., 2016), but we give a proof here for completeness.

Claim F.3 (Convolution preorder: Laplace). Fix b2 < b1 ∈ R+ let X ∼ Lap(0, b2) and draw

W =

{
0 with probability b22/b

2
1

Lap(0, b1) otherwise
, then X +W ∼ Lap(0, b1) .
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Proof. We know that the characteristic function of X is φX(t) = 1
1+b22t

2 and for the convolution φX+W = 1
1+b21t

2 . Because
of independence, the convolution is defined for all t as:

φX(t)φW (t) = φX+W (t)

⇔ φW (t) =
1 + b22t

2

1 + b21t
2
=

b21 + b21b
2
2t

2

b21(1 + b21t
2)

=
b22(1 + b21t

2) + b21 − b22
b21(1 + b21t

2)
=

b22
b21

+

(
1− b22

b21

)
· 1

1 + b21t
2
.

The last expression encodes the convex combination of the claimed mixture distribution because 1
1+b21t

2 is again the
characteristic function of a zero-centered Laplace distribution with scaling parameter b1.

We next prove a simple result about the convolution of two Laplace distributions (compare also eq., 2.3.23 of Kotz et al.).

Lemma F.4 (Convolution). For two fixed scaling parameters b1 ̸= b2 ∈ R+, let X1 ∼ Lap(0, b1) and X2 ∼ Lap(0, b2).
Then the density of X1 +X2 is given by

(fb1 ∗ fb2)(t) =
1

2(b21 − b22)

(
b1e

−|t|/b1 − b2e
−|t|/b2

)
.

Proof. Assume t ≥ 0 and note that the other case follows by symmetry. We compute the density of the convolution by a
straightforward integration:

(fb1 ∗ fb2)(t) =
∫ ∞

−∞
fb1(x)fb2(t− x)dx =

1

4b1b2

∫ ∞

−∞
exp

(
−|x|

b1
− |t− x|

b2

)
dx

=
1

4b1b2
·
(∫ 0

−∞
e

x
b1

− t−x
b2 dx+

∫ t

0

e−
x
b1

− t−x
b2 dx+

∫ ∞

t

e−
x
b1

− x−t
b2 dx

)
=

1

4b1b2
·
([

exp (x/b1 − (t− x)/b2)

b−1
1 + b−1

2

]0
−∞

+

[
exp(−x/b1 − (t− x)/b2)

b−1
2 − b−1

1

]t
0

+

[
exp(−x/b1 − (x− t)/b2)

−b−1
2 − b−1

1

]∞
t

)
=

1

4
·
(
exp(−t/b2)

b1 + b2
+

exp(−t/b1)− exp(−t/b2)

b1 − b2
+

exp(−t/b1)

b1 + b2

)
=

1

2(b21 − b22)

(
b1e

−t/b1 − b2e
−t/b2

)
.

Now, we are ready to show that the Laplace mechanism can be implemented with multiple releases.

Lemma F.5 (Multiple release Laplace). For fixed 0 < b2 < b < b1, let µ1 = b2/b21 and µ2 = b22/b
2 and D1 ∼ Ber(µ1)

and D2 ∼ Ber(µ2). Furthermore, let

X1 =

{
0 if D1 = 1

Lap(0, b) otherwise
and X2 =

{
0 if D2 = 1

Lap(0, b2) otherwise
.

Then we have that Pr[X1 = 0 | X1 +X2 = 0] = 1, and for every real number k ̸= 0 the distribution of X1 conditioned on
X1 +X2 = k is:

X1 | (X1 +X2 = k) ∼



0 with probability µ1 · (1− µ2) ·
exp(−|k|/b2)

2b2 · fX1+X2
(k)

k with probability (1− µ1) · µ2 ·
exp(−|k|/b)

2b · fX1+X2
(k)

H(b, b2, k) with probability (1− µ1) · (1− µ2) ·
(fb ∗ fb2)(k)
fX1+X2

(k)

(3)
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where 0 and k denote the constant distributions, H(b, b2, k) is the probability distribution with probability density function

h(x) =
fb(x)fb2(k − x)

(fb ∗ fb2)(k)
,

fX1+X2
(k) =

µ1(1− µ2

2b2
e−|k|/b2 +

(1− µ1)µ2

2b
e−|k|/b (1− µ1)(1− µ2)

2(b2 − b22)

(
be−|k|/b − b2e

−|k|/b2
)
+ µ1µ2δ0(x), and

(fb ∗ fb2)(k) =
1

2(b21 − b22)

(
b1e

−t/b1 − b2e
−t/b2

)
,

where δ0 is the Dirac delta function.

Proof. First we consider Pr[X1 = 0|X1 +X2 = 0], arguing that

Pr[X1 = 0|X1 +X2 = 0] =
Pr[X1 = 0]Pr[X2 = 0]

Pr[X1 +X2 = 0]
=

µ1µ2

µ1µ2 + 0
= 1 .

To see why the first equality holds split Pr[X1 +X2 = 0] into each of the four combinations of discrete/continuous for
X1, X2. The only non-zero contribution to the probability mass comes from the discrete/discrete case, as the remaining
cases contribute mass proportional to the probability that a continuous distribution assumes an exact value, which is zero.

Next we turn to the distribution of X1 conditioned on X1 +X2 = k where k ̸= 0. Denote by fb the probability density
function of Lap(0, b). Note that the mixture densities become

fX1
(x) = µ1δ0(x) + (1− µ1)fb(x) ,

fX2
(x) = µ2δ0(x) + (1− µ2)fb2(x) .

Before analyzing the different cases separately, we compute the convolution X1 +X2.

Convolution fX1+X2 .

Note that have to take care of a subtle technicality: The case that both X1 and X2 are zero from the discrete part can only
happen when we condition on X1 +X2 = 0. We can now give the density of the convolution X1 +X2 at any real point x:

fX1+X2
(x) =

∑
(d1,d2)∈{0,1}2

fX1+X2|D1=d1,D2=d2
(x) · Pr[D1 = d1 ∧D2 = d2]

= µ1(1− µ2) · fb2(x) + (1− µ1)µ2 · fb(x) + (1− µ1)(1− µ2) · (fb ∗ fb2)(x) + µ1µ2δ0(x)

=
µ1(1− µ2)

2b2
e−|x|/b2 +

(1− µ1)µ2

2b
e−|x|/b + (1− µ1)(1− µ2)

1

2(b2 − b22)

(
be−|x|/b − b2e

−|x|/b2
)

+ µ1µ2δ0(x) ,

where the third term follows from Lemma F.4. Note that the last term only contributes when x = 0.

We can now show how the sampling procedure in the claim is justified. We first assume k ̸= 0 and analyze three possible
cases how X1 +X2 is built up: Either both of them are drawn from the (continuous) Laplace distribution or exactly one.
(The case where both are from their respective discrete parts can only happen if k = 0, analyzed above.)

Case 1: X1 = 0 and X2 = k.
X2 = k is necessarily from its continuous part. By the definition of conditional probability, we have for k ̸= 0:

Pr[X1 = 0|X1 +X2 = k, k ̸= 0] =
Pr[X1 = 0 ∧X1 +X2 = k]

Pr[X1 +X2 = k]
=

Pr[X1 = 0]Pr[X2 = k]

Pr[X1 +X2 = k]

= µ1
fX2(k)

fX1+X2
(k)

=
µ1(1− µ2)

2b2fX1+X2
(k)

· e−|k|/b2 := p1 .

For the third equality, we simply used definition of a probability density function via its limit:

lim
∆→0+

Pr [X2 ∈ [k −∆, k +∆]]

Pr [X1 +X2 ∈ [k −∆, k +∆]]
=

fX2(k)

fX1+X2
(k)

.
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Case 2: X1 = k and X2 = 0
Now assume the flipped case. By a similar argument:

Pr[X1 = k|X1 +X2 = k] =
Pr[X1 = k,X1 +X2 = k]

Pr[X1 +X2 = k]
=

Pr[X1 = k] Pr[X2 = 0]

Pr[X1 +X2 = k]
=

(1− µ1)µ2

2bfX1+X2
(k)

· e−|k|/b := p2 .

Case 3: X1 ̸= 0, X2 ̸= 0, X1 +X2 = k
In the remaining case, both X1 and X2 are independently sampled from continuous Laplace distributions with probability
density functions fb(x) and fb2(x). Therefore, with the remaining probability 1− (p1 + p2), we know that X1 is sampled
according to the following conditional probability density function:

fX1
(x)|X1+X2=k =

fX1,X1+X2
(x, k)

(fb ∗ fb2)(k)
=

fb(x)fb2(k − x)

(fb ∗ fb2)(k)
,

where the last line follows from the trivial identity X1 +X2 = k ⇔ X2 = k −X1. This is a valid probability density
function because f is trivially non-negative due to its parts being non-negative and furthermore∫ ∞

−∞

fb(x)fb2(x− k)

(fb ∗ fb2)(k)
dx =

1

(fb ∗ fb2)(k)

∫ ∞

−∞
fb(x)fb2(k − x)dx =

(fb ∗ fb2)(k)
(fb ∗ fb2)(k)

= 1 .

What is left is to verify that the probabilities in Equation (3) indeed add up to one for k ̸= 0:

(1− µ1)(1− µ2)(fb ∗ fb2)(k)
fX1+X2

(k)
+

(1− µ1)µ2 exp(−|k|/b)
2bfX1+X2

(k)
+

µ1(1− µ2) exp(−|k|/b2)
2b2fX1+X2

(k)

=
1

fX1+X2(k)

(
(1− µ1)(1− µ2)(fb ∗ fb2)(k) +

(1− µ1)µ2 exp(−|k|/b)
2b

+
µ1(1− µ2) exp(−|k|/b2)

2b2
e−λ2|k|

)
︸ ︷︷ ︸

fX1+X2
(k) for k ̸=0

= 1

F.1. Showing Convolution Preorder for Exponential Noise

The exponential distribution is closely related to the Laplace distribution, but gives poor differential privacy guarantees.
Nevertheless, it still serves as a building block for some private mechanisms, e.g., Report-Noisy-Max (Ding et al., 2021).
We show next that it also satisfies a convolution preorder.

Definition F.6 (Exponential distribution). The exponential distribution Exp(λ) with rate parameter λ > 0 has probability
density function fλ(x) = λ exp(−λx) for all x ∈ R+. Furthermore, its characteristic function is given by φX(t) =
E[eitX ] = λ

λ−it

Claim F.7 (Convolution preorder: Exponential distribution). Fix λ1 < λ2 ∈ R+, let X ∼ Exp(λ2) and draw

W =

{
0 with probability λ1/λ2

Exp(λ1) otherwise
, then X +W ∼ Exp(λ1) .

Proof. Using the same trick as in the proof of Claim F.3, we have that

φW (t) =
φX+W (t)

φX(t)
=

λ1

λ2
· λ2 − it

λ1 − it
=

λ1

λ2

(
1 +

λ2 − λ1

λ1 − it

)
=

λ1

λ2
+

(
1− λ1

λ2

)
φX+W (t)

where the final expression is the characteristic function of the claimed mixture distribution.
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