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Abstract. Federated Learning (FL) offers a promising approach for
training clinical AI models without centralizing sensitive patient data,
yet its real-world adoption is hindered by challenges in privacy, resource
constraints, and compliance. Existing differential privacy (DP) approaches
often apply uniform noise, which disproportionately degrades model per-
formance even among well-compliant institutions. In this work, we pro-
pose a novel compliance-aware FL framework that enhances DP by adap-
tively adjusting noise based on quantifiable client compliance scores. Ad-
ditionally, we introduce a compliance scoring tool based on key health-
care and security standards to promote secure, inclusive, and equitable
participation across diverse clinical settings. Extensive experiments on
the public datasets demonstrate that integrating under-resourced, less
compliant clinics with highly regulated institutions yields accuracy im-
provements of up to 15% over traditional FL. This work advances FL
by balancing privacy, compliance, and performance, making it a viable
solution for real-world clinical workflows in global healthcare.

Keywords: Compliance-Aware Clinical Federated Learning · Privacy-
Preserving FL · Adaptive Compliance· Resource-Efficient DP.

1 Introduction

Artificial Intelligence (AI) can advance healthcare through improved diagnostics
and personalized treatments, but privacy concerns and regulatory constraints
limit its adoption. Federated Learning (FL) [22] enables decentralized model
training, preserving data privacy and security while supporting collaborative
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clinical AI development. Despite its potential, FL in healthcare [30] faces chal-
lenges in data security, privacy, and inclusivity. FL systems are vulnerable to re-
construction attacks, where model updates can reveal sensitive information [8,32].
Differential privacy (DP) has been integrated into FL to mitigate these risks,
providing theoretical guarantees against data reconstruction and inference at-
tacks [2,10]. However, DP introduces trade-offs by adding noise to model updates,
often degrading performance [3]. Traditional DP methods apply noise uniformly
across clients [21], overlooking disparities such as compliance, resources [28,23].

Healthcare FL faces significant challenges due to institutional heterogeneity,
with DP imposing high computational demands that often require specialized
hardware [6]. Clinical sites with lower patient loads struggle to participate due
to resource constraints, compliance gaps, and coordination overhead [26,9,19].
Real-world FL studies [25,29] demonstrate feasibility but rely on trust-based fed-
erations, marginalizing smaller institutions. Balancing privacy and utility in DP
requires clear trade-offs, as any DP implementation impacts model performance.
A review of 612 studies found only 5.2% involved real-world clinical applications,
highlighting the need for FL frameworks that ensure privacy, inclusivity, and
equitable participation while addressing compliance and computational barri-
ers [19,5,6].

This paper proposes a novel compliance-aware FL framework to enhance pri-
vacy in healthcare by dynamically integrating DP with client compliance scores.
The framework introduces a customizable compliance scoring tool aligned with
key healthcare standards to ensure privacy, security, and interoperability while
maintaining inclusivity. It incorporates privacy concepts from various regula-
tory and best-practice frameworks such as patient consent management [15],
anonymization practices [13,17], audit logs & network security [12], data en-
cryption & secure infrastructure [24], ethical AI policies [1], interoperability [16],
and data & model training quality. These standards collectively address privacy
risks, enforce secure data handling, and promote equitable FL scalability in clin-
ical environments.

To mitigate manipulation risks in untrusted client settings, our framework
performs adaptive server-side DP, optimizing noise injection to balance privacy
and utility [31]. By adapting noise levels to client compliance scores, it ensures
robust performance in resource-constrained healthcare environments. The com-
pliance scoring tool enables investigators to weigh regulatory adherence, data
integrity, and security protocols, fostering tailored and trustworthy FL deploy-
ments. We evaluated our method on multiple public datasets [33] and aggregation
methods [22,20,27], and quantified overall accuracy gains of 1% to 15%.

This manuscript’s contributions are: i) a compliance-aware FL framework
with adaptive DP, adjusting noise based on client compliance to enhance fairness
and inclusivity, ii) a web-based compliance scoring tool aligned with healthcare
and security standards to provide quantifiable compliance scores, and iii) imple-
mentation of adaptive server-side DP, enabling resource-constrained clinics to
participate while balancing privacy and performance.
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2 Methods

Fig. 1. (a) Existing FL with client-side DP uses uniform noise, requiring DP-compliant
hardware, limiting less compliant, resource-constrained clinics. (b) Server-side DP adds
uniform noise post-aggregation, reducing privacy-utility efficiency and further exclud-
ing less compliant clinics. (c) Our compliance-aware adaptive DP applies per-client
noise before aggregation, enabling participation from low-resource, less compliant clin-
ics while optimizing privacy and performance.

Compliance Scoring Mechanism. Our compliance scoring tool enables exper-
iment organizers to assign weights to various factors (see Table 2 for an example)
and configure corresponding options, offering flexible, customized evaluation for
diverse clinical settings. The overall compliance score (Sc) for each client is de-
termined by assessing all the factors and is calculated as follows:

Sc =

∑n

i=1 (wi · si)∑n

i=1 wi

(1)

where n is the total number of compliance factors, wi is the weight assigned
to factor i, and si is the selected option score for factor i. For instance, the
anonymization practices factor offers three options: ISO/TS 25237:2017 Fully
Anonymized (Score 1.0), Pseudonymized (Partial Anonymization) (Score 0.7),
and No Anonymization (Score 0.5), with the tool defaulting to a 0.5 threshold,
adjustable by experiment owners, including setting it to 0 if needed.
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Algorithm 1 Adaptive Noise-Based Differential Privacy in Federated Learning

1: Initialize GLOBAL_MODEL

2: for round = 1 to FED_ROUNDS do
3: Client Training:
4: for each client i do
5: CLIENT i ← Copy(GLOBAL_MODEL)
6: CLIENT i ← Train(CLIENT i, data i, epochs = 1)
7: end for
8: Send {CLIENT i} to aggregator
9: DP Processing:

10: for each client i do
11: DP i ← Copy(CLIENT i)
12: DP i ← DPTrain(DP i, agg_data , η = AdaptiveNoise(ci))
13: end for
14: Aggregation:
15: GLOBAL_MODEL← FedAvg({DP i}) ⊲ Fed Median/Prox/Yogi/Adam
16: Broadcast GLOBAL_MODEL to clients
17: end for
18: return GLOBAL_MODEL

Noise Multiplier Calculation. To implement DP adaptively, noise levels are
dynamically adjusted based on client compliance scores. The noise multiplier
(Nm) is computed as: Nm = (1.0−Sc)+Min Noise Multiplier, where Sc denotes
the client’s compliance score, and Min Noise Multiplier (set to 1e-10 in this
experiment) ensures baseline privacy. This approach ensures that clients with
lower compliance scores need higher noise levels. Noise can be tuned or clipped
per FL aggregation strategy, protecting data while preserving model quality and
ensuring secure FL participation.

Experimental Setup. Experiments were conducted with a batch size of 32,
50 FL training rounds, a learning rate of 0.001, and images resized to 128 ×

128. Each FL round included 3 local epochs per client, followed by 1 epoch
on the aggregator dataset (at the server) using noise-injected client updates
before global aggregation. This allows the model to adapt to perturbed updates,
improving stability and convergence (see Algo 18). A total of 61 experiments
(Table 3) were performed, including an additional data quality experiment 2.
The dataset was split into 16 client subsets, with one for aggregator training
with DP and another for global evaluation. Vanilla FL used the same FL rounds
and learning rate but excluded DP and compliance.

Data Quality Experiment To simulate a realistic scenario and assess the
“data quality” compliance factor, we degraded data for 12 clients by randomly
cropping, resizing (80–100% of the original size), adding Gaussian noise (σ =
0.05), and reducing contrast to 80%. These clients received a compliance score
of 0.3, while 4 trusted clients retained a score of 1.0. Compared to Experiment 4
(only 4 trusted clients), this setup showed that incorporating lower-quality data,
despite its lower compliance score, can still enhance overall model performance.
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Table 1. Client participation per experiment, compliant/non-compliant clients, DP
settings. Non-compliant clients have compliance levels between 0.1 and 0.6. Experi-
ment 1 includes 12 non-compliant clients, split into two groups of 6, each with com-
pliance levels between 0.1 and 0.6. Experiment 2 has 6 non-compliant clients with the
same compliance range. Exp. 1-4: individual compliance-based DP. Exp. 6: DP with
uniform noise post-aggregation. Baseline noise is 1e

−10.

Client Type Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

Compliant
Clients

4 10 16 4 16-Vanilla 16

Non-Compliant
Clients

12 clients 6 clients None None None None

Compliance
Applied?

Yes Yes Yes No No Yes

Minimum DP
Applied?

Yes Yes Yes Yes No Uniform
DP

Implementation Details. The framework was implemented using Lightning [11],
Flower [4], and ResNet-18 [14], and tested on an NVIDIA Tesla T4 GPU (16GB),
demonstrating its feasibility in resource-constrained clinical settings. Compliance
scores for each client were pre-assigned using a customizable web-based compli-
ance scoring tool, simulating the role of a Principal Investigator (PI)(Table 2).
This tool, grounded in established healthcare and security standards, evaluated
clients on 12 compliance factors with predefined options and weights (Equation
1). These scores determined the level of noise dynamically added to client con-
tributions2, ensuring baseline privacy with a minimum noise threshold applied
across all clients. FL training began with the global model distributed to clients,
who performed 3 epochs of training without DP on local datasets. The client
contributions were then sent to the server, where noise proportional to compli-
ance scores was added to each contribution. Before global aggregation, the server
trained for one epoch on the noise-adjusted data using the aggregator dataset
with DP [9]. The final aggregated model weights were computed using the se-
lected FL strategy and redistributed to all clients. This iterative process was
repeated for 50 FL training rounds, ensuring adaptive DP noise, robust aggrega-
tion, and inclusivity across clients with varying compliance levels. DP was inte-
grated using Opacus [34], with minimum noise level tested (1e−10). Noise distri-
bution followed the compliance score distribution, where high-compliance clients
received minimal noise to preserve model performance, while low-compliance
clients had higher noise applied to maintain privacy.

3 Results

Table 1 summarizes six experimental configurations on two datasets Pneumoni-
aMNIST and BreastMNIST using various FL strategies. In these experiments,
compliance-aware DP was compared against Vanilla FL across 50 experimen-
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Table 2. Compliance factors and standards are customizable to fit study requirements.

Compliance Factor Standards/Options

Data Encryption Standards AES-256 (NIST), AES-128 (Healthcare
Minimum)

Ethical AI Policies EU AI Act, FDA Guidelines
Privacy Regulations HIPAA, GDPR
Data Quality DICOM Standard, Partially Validated

Data
Anonymization Practices ISO/TS 25237:2017, Pseudonymization
Interoperability Standards HL7/FHIR Standards
Secure Network Infrastructure NIST Cybersecurity Framework
Authentication and Authorization MFA, RBAC
Audit Logs SOC 2 Type II Certification
Patient Consent Management HL7 CDA Compliant
Trusted Execution Environments Intel SGX, AMD SEV
Local Model Training Quality High Accuracy (>95%), Moderate Accu-

racy (85–95%)

tal settings (see Table 3), with different combinations of compliant and non-
compliant client groups. For both datasets—PneumoniaMNIST and BreastM-
NIST—FedYogi achieved the highest accuracy in Experiment 1 (86.62% and
75.50%, respectively), FedAdam in Experiment 2 (85.55% and 71.49%), and Fe-
dAvg in Experiment 3 (85.64% and 73.68%). In Experiment 4 (compliant clients
only), FedAvg performed best (81.28% and 65.85%). In the Vanilla FL configu-
ration (Experiment 5), FedAdam achieved the highest accuracy for Pneumoni-
aMNIST (86.96%), while FedYogi led for BreastMNIST (78.50%). The official
AUC and ACC for PneumoniaMNIST (centralized training) are 95.6 and 86.40.
For BreastMNIST, they are 89.10 and 83.30, respectively.

In addition to the experiments in Table 3, we conducted a Data Quality exper-
iment and a realistic data quality-based compliance score experiment (see 2). The
global model was evaluated on the test set using accuracy, with results across dif-
ferent FL strategies as follows: dp_FedAvg achieved 72.68%, dp_FedYogi 71.62%,
dp_FedAdam 69.55%, dp_FedMedian 66.23%, and dp_FedProx 64.04%.

4 Discussion

In this manuscript, we have developed a novel compliance-aware FL framework
which optimizes the privacy-utility trade-off by dynamically adjusting DP noise
based on client compliance scores. We evaluated our method across multiple ex-
periments using various aggregation strategies (FedAvg, FedProx, FedMedian,
FedAdam, and FedYogi) and public datasets (PneumoniaMNIST and BreastM-
NIST). Notably, The experiment with 4 highly compliant and 12 less-compliant
clients beat the 4 highly compliant-only setup, gaining 1%–15% accuracy across
strategies, outperforming uniform server DP as well. This highlights that in-
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corporating lower-compliance clients can enhance overall model performance.
However, FedMedian exhibited sensitivity to compliance distribution.

Considering the experimental design (Section 2), in Experiment 1 (75% low-
compliance clients), FedMedian achieved only 70.12% accuracy on Pneumoni-
aMNIST and 50.01% on BreastMNIST (see Table 3), likely due to the median
selection favoring noisy updates. In contrast, Experiment 2 (37% low-compliance
clients) saw improved FedMedian accuracy (82.94% and 70.86%, respectively),
nearing Vanilla FL performance. This suggests that FedMedian’s effectiveness
depends on compliance distribution, making it less reliable in settings with a
high proportion of low-compliance clients.

Performance gains mainly benefit the principal investigator, while high com-
pliance institutions access diverse, real-world data, improving model generaliz-
ability. FL ethically integrates data from less-compliant or resource-constrained
clinics, preserving privacy with minimal DP protection for all, regardless of com-
pliance. In rare disease studies, this collaboration is critical. For instance, a
glioblastoma study [25] across 71 sites (n=6,314) saw a 33% improvement in
delineating surgically targetable tumors and a 23% gain for complete tumor ex-
tent, demonstrating how high-compliance institutions benefit from the inclusion
of less regulated clinics (Asia, South America, Australia) by accessing rare and
geographically diverse data that would otherwise be unavailable.

We have presented a compliance-aware DP framework in FL which pro-
motes inclusivity and reducing resource constraints without specialized hard-
ware. While DP offers theoretical privacy guarantees [9,26], it remains the most
practical alternative to trusted execution environments (hardware-dependent)
and homomorphic encryption (computationally intensive). Our method mini-
mizes computational burdens on resource-limited clinics, enabling broader par-
ticipation without enforcing DP-compliant hardware [9,6]. The compliance scor-
ing tool allows experiment administrators to customize compliance factors, align-
ing with global healthcare standards [18,7] to foster secure, equitable FL par-
ticipation. Unlike traditional server-side DP (See Exp.6 3), which applies uni-
form noise across all clients, our adaptive DP mechanism adjusts noise based
on compliance scores, ensuring a balanced trade-off between privacy and utility.
This effectively simulates client-side DP at the server level, allowing resource-
constrained clinics to contribute without requiring DP-compliant infrastructure.

5 Limitations and Future Works

While our compliance-aware FL framework advances privacy, inclusivity, and
performance, some limitations remain. One is the initial trust assumption, where
first-round client updates lack DP, posing a minor risk if the server is curious.
Later updates mitigate this with DP, but adding minimal noise in the first round
or using secure multi-party computation (SMPC) could enhance security. Addi-
tionally, the framework assumes accurate and honest compliance scores, which
may not always hold. Future work could explore dynamic validation to ensure
real-time compliance verification.
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This work brings “privacy” closer to clinical practice by validating the frame-
work in controlled settings with defined resource constraints and compliance
parameters. Expanding its evaluation to real-world clinical environments with
diverse datasets and infrastructures will provide deeper insights into its scal-
ability and robustness. Our approach separates privacy from hardware limits,
enabling resource-constrained clinics to join a more inclusive FL ecosystem. Fu-
ture work could refine adaptive aggregation by compliance, balance efficiency
and privacy, boost global clinical FL use, and prevent inference attacks from
untrusted clients.
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Table 3. Results for all combinations of Compliant Clients, Strategies, and Minimum
DP Noise. Batch size is fixed at 32, and FL rounds are set to 50. Irrespective of
compliance, a baseline noise of 1e − 10 is added to each model. Results for vanilla
FL (no compliance, no DP) are included as a separate block. Detailed Experiment
configurations are provided in Table 1.

Experiment Strategy PneumoniaMNIST BreastMNIST

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

1

FedAvg 82.43 89.39 82.43 84.30 66.98 84.40 66.98 69.69
FedMedian 70.12 81.38 70.12 71.16 50.01 36.53 50.01 42.22
FedYogi 86.62 91.68 86.62 88.26 75.50 81.51 75.70 77.64
FedProx 84.01 89.93 84.01 85.76 71.61 81.60 71.11 74.34
FedAdam 84.01 89.93 84.01 85.76 64.16 60.26 64.86 66.11

2

FedAvg 85.29 90.57 85.29 86.95 70.73 78.51 70.74 73.01
FedMedian 82.94 89.39 82.94 84.75 70.86 82.65 70.86 73.76
FedYogi 83.84 90.32 83.84 85.68 62.21 81.46 62.24 63.58
FedProx 84.78 90.54 84.78 86.52 64.47 76.62 64.47 66.37
FedAdam 85.55 91.15 85.55 87.28 71.49 77.93 71.49 73.56

3

FedAvg 85.64 90.97 85.64 87.31 73.68 68.65 73.68 67.29
FedMedian 83.67 90.73 83.67 85.61 73.24 83.98 73.29 76.24
FedYogi 84.27 90.52 84.27 86.09 66.22 86.73 66.21 68.87
FedProx 85.04 91.13 85.04 86.85 71.36 75.20 71.40 72.79
FedAdam 82.99 89.91 82.99 84.87 62.97 79.36 62.97 64.58

Impact of Experiment 1 with only Compliant Clients:

4

FedAvg 81.28 89.10 81.28 83.21 65.85 71.79 65.85 67.43
FedMedian 79.44 87.96 79.44 81.35 62.84 73.62 62.74 64.33
FedYogi 81.06 89.00 81.06 83.00 60.90 73.30 60.80 61.87
FedProx 78.80 87.66 78.80 80.70 63.03 68.46 63.03 64.27
FedAdam 79.65 88.06 79.65 81.56 54.76 57.50 54.96 51.55

Vanilla FL (No compliance Score and No DP noise):

5

FedAvg 85.42 89.80 85.42 86.88 76.37 84.29 76.37 79.03
FedMedian 85.34 89.96 85.34 86.85 75.81 79.79 75.81 77.38
FedYogi 84.61 90.93 84.61 86.45 78.50 79.91 78.53 79.15
FedProx 86.88 91.18 81.28 88.35 73.43 78.27 73.45 75.19
FedAdam 86.96 90.10 87.00 88.12 75.18 77.89 83.65 75.18

DP with uniform noise post-weight aggregation:

6

FedAvg 75.89 87.66 75.89 77.74 68.04 79.30 68.04 70.51
FedMedian 76.45 88.24 76.45 78.36 68.55 68.98 73.55 74.07
FedYogi 77.16 88.13 77.50 78.50 72.10 76.11 75.89 76.80
FedProx 79.53 89.18 79.60 81.56 63.72 70.80 63.72 65.51
FedAdam 79.12 89.10 78.30 89.12 63.45 79.90 73.01 75.30
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