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25.1  INTRODUCTION

The penetration of software‑based systems has transformed the ways in which almost every indus‑
try operates. From controlling nuclear power stations to maneuvering spacecraft, complex software 
systems are used to interface with many critical systems. It is essential to ensure that these soft‑
ware systems are reliable and resilient. If these were to fail or get compromised, they would have a 
domino effect on subsequent systems. Supply chain attacks are an emerging threat targeting these 
systems. To quote an example of a popular widespread attack, the “SolarWinds hack” in late 2020 
(Analytica, 2021) had led to a series of data breaches that affected tens of thousands of customers 
around the globe. Behind the screens, the cybercriminals had exploited the software package sup‑
ply chain to distribute Trojan versions of the software masqueraded as updates and patches. As an 
example of how this attack has resulted in consequent damage, the hackers who attacked a cyber‑
security firm (named FireEye) obtained unauthorized access to confidential tools that the company 
used for security auditing. The security flaw discovered in Apache Log4j (MITRE, 2021) is another 
notable vulnerability with a Common Vulnerability Scoring System (CVSS) score of 10 (the highest 
possible score) that had devastating consequences. The Log4j library is widely used in Java applica‑
tions and thus, the vulnerability impacted a very wide range of software and services. Such vulner‑
abilities leave organizations exposed and susceptible to attack. More recently, Crowdstrike reported 
a supply chain attack on March 29, 2023, involving the popular VoIP program 3CXDesktopApp 
(Kucherin et al., 2023). The infection spreads through tampered 3CXDesktopApp MSI installers, 
including a Trojan macOS version resulting in not just financial loss, but also loss of trust for the 
company (Madnick, 2023).

Note that the package supply chain is not restricted only to the patches and updates. The distri‑
bution networks are involved during all stages of the software life cycle. Right from installing the 
tools required to set up the development environment, to pushing out newer versions of the packaged 
software product, different software supply chains are involved in all phases (Ohm et al., 2020). 
Figure 25.1 illustrates the entanglement and high involvement of software distribution supply chains 
when operating critical systems. This applies to various sectors like smart grids, manufacturing, 
healthcare, and finance. Modern infrastructure, from PLCs to data analytics, relies on multiple soft‑
ware systems and their supply chain dependencies. While Industry 4.0 has revolutionized processes 
and Industry 5.0 aims to merge cognitive computing with human intelligence, the cyber‑attack 
surface continues to expand (Culot et al., 2019).

A software package refers to a reusable piece of software/code that can be obtained from a 
global registry and included in a developer’s programming environment. In fact, packages serve as 
reusable modules integrated with developers’ application code, abstracting implementation details 
and addressing common needs not supported by native applications, such as database connections. 
Most packages are available through Free and Open‑Source Software (FOSS) contributions, aid‑
ing in application development by reducing time and effort. Packages may have dependencies; for 
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example, installing package X would automatically install its dependencies like package Y. Projects 
may contain hundreds or thousands of dependencies managed by package managers, including 
those developed by the developers or published by others. For example, in the JavaScript ecosys‑
tem, the two widely employed package managers are NPM and YARN (Vu et al., 2020). CLI tools 
resolve packages by name and version through communication with the corresponding registry. 
JavaScript’s popularity stems from its widespread use across the entire software and hardware 
stack, running on servers and mobile devices, which mutually sustains its language and package 
registries. As a matter of fact, in 2020, an article from the official NPM blog reported that more than 
5 million developers use more than 1.3 million packages from the NPM registry, which itself caters 
up to 125 billion downloads every month. These statistics stand as a testimony to the popularity of 
package managers within developer communities.

This work presents a comprehensive study of the security posture of existing package distribu‑
tion (PD) systems and uses this research as a base to propose an architecture that addresses the most 
critical security concerns arising out of this tight coupling of software package supply chains and 
the infrastructure that depends on them. This proposed architecture provides end‑to‑end integrity of 
the package supply chain to mitigate the cascading effects of a critical failure. While NPM or PyPI 
might not be a part of the toolchain that every software developer would use, this chapter would 
continue to quote these systems as an indicative example of the current state of package managers. 
Nevertheless, the architecture itself is platform‑agnostic and caters to the overall goal of securing 
the software package supply chains across all phases of a product’s life cycle and its usage in criti‑
cal systems.

Further sections discuss topics including the survey of existing studies and threat landscape 
analysis. Based on this, a new architecture is presented along with a demarcation of various entities 

FIGURE 25.1  Involvement of software supply chains in critical systems.
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and the flow of information among them. The proposed architecture can be employed to secure 
the acquisition of software packages, while also being used to securely distribute updates to any 
software. Following this, a summary of different attack vectors and corresponding mitigation 
strategies are also analyzed. Finally, the potential impacts of this solution are discussed before 
concluding the chapter.

25.2  RELATED WORK

25.2.1 S tudies on Package Distribution Frameworks

With the advancement in web technologies and increased usage of web apps, there has been an 
exponential increase in the number of frameworks available for developers to choose from. The 
deployment of cloud native applications and orchestrated micro‑services has also fueled the fre‑
quency and magnitude at which these services are consumed. This section hopes to present an 
overall survey on the current software distribution mechanisms and then analyze them in the con‑
text of critical systems to understand the threat landscape. Catering to the potential needs of web 
practitioners, software engineering quality metrics have been used to evaluate each alternative. 
Factors like modularity, scalability, and reliability play a dominant role in the perception of a frame‑
work (Graziotin and Abrahamsson, 2013). An inundation of micro‑packages will result in a fragile 
ecosystem that becomes sensitive to any critical dependency changes. There can be a ripple effect 
down the dependency tree in case of any breakage (Librantz et al., 2020). Some packages perform 
trivial tasks, but others serve as interfaces to load foreign dependencies and third‑party modules, 
indicating that package complexity isn’t accurately defined by statistics like lines of code (LOC). 
Studies delve into statistics such as average package size, dependency chain size, and usage cost, 
emphasizing the importance of package stability and their impact on delivering end solutions (Kula 
et al., 2017).

The Python development ecosystem is also highly mature and growing in popularity (Bommarito 
and Bommarito, 2019). The repository’s growth has been measured experimentally based on fac‑
tors like package versions, user releases, module size, and package imports. This highlights the 
significance of frameworks and the extensive library availability. Enhancing PD architecture can 
significantly impact the IT industry, emphasizing the need for a robust and secure package man‑
ager and distribution framework. The security of these PD frameworks has been a critical con‑
cern ever since the popularity of package registries began to increase (Achuthan et al., 2014). To 
address the security concerns over Software Dependency Management, there have been various 
attempts to leverage technologies ranging from virtualization to distributed architectures (D’mello 
and Gonzalez‑velez, 2019).

Markus Zimmermann et al. (2019) have studied the security risks for NPM users and explored 
several mitigation strategies. The study was performed by analyzing dependencies among pack‑
ages, monitoring the maintainers responsible, and tracking publicly reported security vulnerabili‑
ties. There have also been similar attempts to devise vulnerability analysis frameworks by Ruturaj 
K. Vaidya et al. (2019). Once again, it is found that issues in individual packages can have a ripple 
effect across the ecosystem. The authors found that many projects unwittingly use vulnerable code 
due to lack of maintenance, even after vulnerabilities have been publicly announced for years. They 
compared the effectiveness of preventative techniques such as total first‑party security and trusted 
maintainers.

When a package needs to be installed, there are a lot of tasks that happen under the hood. 
NPM not only downloads and extracts packages but also executes install hooks, which can include 
compiling sources and installing dependencies. While some tasks are essential, malicious tasks 
can also be run. There have been cases where post‑install scripts were used to distribute malware 
(Wyss et al., 2022). A major incident unfolded when malicious payloads infiltrated the widely used 
NPM package “event‑stream,” impacting millions of installations. This prompted package registries 
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to prioritize security measures. In 2018, attackers exploited systems running Electron framework 
apps due to outdated chromium packages, despite known vulnerabilities. NPM issued an advisory 
addressing a vulnerability allowing reverse shells and arbitrary data access from malicious package 
installations (Baldwin, 2018).

In November 2017, user “ruri12” uploaded three malicious packages – libpeshnx, libpesh, and 
libari – to official channels like RubyGems and PyPI, but their discovery didn’t happen until July 
2019 (Robert Perica, 2019). This delay prompted calls for automated malware checks. Another 
recent incident involved two typo‑squatted Python libraries discovered stealing SSH and GPG 
keys (Cimpanu, 2019). Despite their removal, many developers had already incorporated them 
into their projects, illustrating the significant impact of such attacks on both independent devel‑
opers and companies reliant on open‑source frameworks and packages, causing distrust within 
the community. At this juncture, it is also worth pointing out that the 3CX attack (mentioned 
previously) was the result of another supply chain attack. A 3CX employee downloaded a tainted 
version of “X Trader” software in April 2022. The X Trader software was used by traders to view 
real‑time and historical markets and developed by another company, “Trading Technologies,” 
which discontinued the software in 2020. However, the software was still available for download 
from the company’s website which itself was compromised in February 2022 (Page, 2023). This 
incident further highlights the critical nature of supply chain attacks as the potential for cascad‑
ing is extremely high.

NPM offers an API to enhance visibility into the software package supply chain, providing 
critical information about a package’s publication context. This includes metadata such as payload 
information, integrity hash, and Indicators of Compromise like IP addresses and file hashes. The 
newly introduced Security Insights API (Adam) exposes a GraphQL schema for accessing publica‑
tion information. Two‑factor authentication for the publishing account enhances security assess‑
ment, while publishing over the Tor network may raise suspicions of malicious behavior. Sandboxed 
execution and post‑install script analysis can further aid in flagging tasks with malicious intent 
(Murali et  al., 2020). For Python packages, open‑source projects such as Safety DB maintain a 
public record of known security vulnerabilities. Packages are reviewed by filtering change logs and 
Common Vulnerabilities and Exposures (CVEs) for flagged keywords. However, it is worth pointing 
out that the vulnerabilities are only fixed after it is publicly available and not checked prior to the 
public announcement (Alfadel et al., 2023).

Platforms like Snyk Intel and Sonatype open‑source software (OSS) index aid developers in 
identifying and resolving open‑source vulnerabilities. The Update Framework (TUF) is a collabora‑
tive effort aimed at securing update delivery across software updaters, Library package managers, 
and System package managers. TUF, maintained by the Linux Foundation under the Cloud Native 
Computing Foundation (CNCF), safeguards compromised repository signing keys and is utilized 
in production systems by multiple organizations. Uptane and Upkit based on TUF guidelines have 
effectively secured updates for automotive and Internet of Things (IoT) devices. Despite their poten‑
tial for broader application, adoption rates remain low across industries.

25.2.2 C urrent Security Landscape

To securely store and distribute packages, having accurate information is crucial for risk assessment. 
Current security tools often identify vulnerabilities only after an extensive audit of the end product, 
neglecting details about the publishing pipeline. Understanding existing mitigation methods and 
event flow is key to designing an effective architecture. Compromised systems offer adversaries 
a range of techniques to cause harm. Infected applications can exploit remote services and steal 
credentials. Client software vulnerabilities may expose installed packages and sensitive metadata. 
Adversaries can establish persistent control through malicious droppers or by connecting infected 
machines to a Command‑and‑Control (C2) server, enabling sophisticated advanced persistent threat 
(APT) attacks.
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Attackers conduct supply chain attacks by injecting malicious code into open‑source projects, 
targeting downstream consumers for execution during installation or runtime. They can target any 
project type and condition code execution based on factors like lifecycle phase, application state, 
operating system, or downstream component properties (Ohm et  al., 2020). The attacks involve 
creating and promoting a distinct malicious package from scratch, entailing the development of a 
new open‑source software (OSS) project with the intention of spreading malicious code (Balliauw, 
2021). Attackers use various tactics to target users on platforms like PyPI, npm, Docker Hub, or 
NuGet, including promoting projects to attract victims and creating name confusion by mimick‑
ing legitimate package names. These deceptive tactics aim to trick downstream users and may 
involve techniques like Combosquatting, Altering Word Order, Manipulating Word Separators, 
Typosquatting, Built‑In Package, Brandjacking, and Similarity Attack. Furthermore, attackers may 
subvert legitimate packages by compromising existing, trustworthy projects, injecting malicious 
code, taking over legitimate accounts, or tampering with version control systems to bypass project 
contribution workflows (Ladisa et al., 2023).

By abusing legitimate development features, malicious components can elevate privileges and 
move laterally through the network. Techniques such as hiding the artifacts and disabling log‑
ging mechanisms can be used to evade defenses. Most PD frameworks also have provisions to 
create/modify system processes. This can be utilized to execute malicious daemons and exploit 
system‑level vulnerabilities. While one might argue that the mentioned attacks could also be per‑
formed independently, the key issue in PD frameworks (in their current form) is that they could 
be utilized as a trusted dropper by malicious players. Software companies are prime targets for 
APT actors, lacking a unified architecture to leverage knowledge from various sources for secure 
development. This lack can hinder traditional methods of studying adversary Tactics, Techniques, 
and Procedures (TTPs), enabling attack vectors to infect systems and industries using seemingly 
harmless software.

Looking at the current security landscape from the perspective of critical systems, the effects 
are even more pronounced. Recent developments in the Internet of Things (IoT) and Cyber‑Physical 
Systems (CPS) have been revolutionizing industrial control systems (ICS) such as Supervisory 
Control and Data Acquisition (SCADA) networks. The integration of web and mobile applications 
with these systems exposes downstream systems to potential catastrophic failures due to their com‑
plex workflows and interlinked nature (Abou el Kalam, 2021). Despite hardware redundancy in most 
industrial deployments, software failures at key controllers could still lead to a single point of col‑
lapse. For instance, the remote manipulation of Safety Instrumented Systems (SIS) could result in 
severe consequences for dependent industrial facilities (Iaiani et al., 2021). State‑Sponsored actors 
often tend to engage in warfare by compromising these systems and disrupting essential services 
(Izycki and Vianna, 2021). Consequently, cyber‑attacks on critical infrastructure can even cost lives.

Network‑based segmentation and protection are standard practices in industrial systems. 
However, once an adversary infiltrates a host connected to the internal network, the entire system 
(even if “air‑gapped”) becomes vulnerable. For instance, over‑the‑air (OTA) updates increasingly 
update firmware in these systems. Efforts to secure firmware updates, such as using blockchain 
networks, have been explored by researchers (Tsaur et  al., 2022). Nevertheless, concerns persist 
about the security implications of computationally aided nodes (Mukherjee et al., 2021). Various 
protocols, including system isolation, multi‑factor authentication, and integrity controls, meet secu‑
rity requirements. Governments mandate compliance policies, requiring training in best practices 
and conflict‑free involvement in these systems.

Despite initiatives, inadequate scrutiny during package publication exposes a large vulnerable 
surface area. Users must remain vigilant regardless of project significance and seek enhanced pro‑
tection against outside interference (Tomas et al., 2019). To mitigate the risks imposed by the cur‑
rent situation, the chapter propounds the idea of a distributed and trusted code vetting process. This 
work thus proposes a unified and scalable architecture that includes all stakeholders to aid users in 
ensuring security throughout the development process.
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25.3  PROPOSED ARCHITECTURE

Blockchains have been regarded as a disruptive innovation that can potentially revolutionize various 
sectors and applications. Going by standard definitions, a blockchain is a complex data structure 
recording transactional records securely, transparently, and decentralized. It’s a distributed ledger 
without a single controlling authority, open to anyone on the network. Once information is on a 
blockchain, it’s nearly impossible to modify due to cryptographic schemes and digital signatures. 
Participants can reach consensus without a third party, enabling record verification. These capabili‑
ties have proven useful to establish provenance and enable key supply chain management processes 
(Bandara et al., 2021).

The proposed blockchain‑based architecture splits the stakeholders into four different discrete 
entities. Publishers are those who develop packages/modules and publish them on an online reposi‑
tory hosted on a VCS (Version Control System) like GitHub. Package Registries index them and 
make these packages available to the public. Entities responsible for ensuring the security and integ‑
rity of packages are termed Observers. This would include security advisories that audit the pack‑
ages and the CVE watchers who keep track of reported vulnerabilities. Finally, entities who would 
want to verify the security of the packages that they would be consuming are labeled as users. 
Depending on the context, users can be the developers who ought to download and use published 
packages for their projects, or users can refer to the systems deployed on a critical infrastructure that 
needs to verify the update packages that are being delivered to it. Figure 25.2 outlines the proposed 
architecture and details the interactions between the entities. In certain cases, the observers need 
not be external to the package registries, i.e., both these services could be provided by the same 
vendor. They just represent two different components.

FIGURE 25.2  Interaction between entities in proposed architecture.
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Once a package has been developed and is ready for publishing, common tasks such as running 
tests, updating tags, and version numbers according to the Semver (Semantic Versioning) are done 
before pushing it to the Package Registry (Figure 25.2 Step 1). Until this step, none of the traditional 
methodologies needs to be modified. Once the package has been published, a copy of the package 
information is forwarded to all the observers in the observer pool (Figure 25.2 Step 2). They would 
then check if the details were authentic and if no known vulnerabilities exist. Common methods 
include verification of checksums and validations against VirusTotal. If the package is found to be 
harmless by an observer, the verification process is translated into a local block and prepared to be 
added to the blockchain network (Figure 25.2 Step 3). The digital asset can simply be represented as 
a collection of key‑value pairs in binary or JSON formats. Some of the metadata that could be used 
to denote vulnerabilities can include a Common Vulnerability Scoring System (CVSS) score, threat 
classification, affected systems, etc.

Each observer accumulates their commits locally until they decide to create a block. The creation 
of a block would require an observer to digitally sign the proposed block using a multi‑party digital 
signature algorithm. In addition to their private key, this scheme requires a consortium of users to 
sign a single blob, addressing the concerns of both group and ring signatures. Each observer would 
need the validation of their work from at least another co‑observer which would be selected at ran‑
dom by the Package Registry (Figure 25.2 Step 4) who would then return the verified and signed 
block to the Package Registry (Figure 25.2 Step 5). Finally, the Package Registry would add this 
accepted block to the blockchain (Figure 25.2 Step 6). Note that adding blocks can only be per‑
formed by the Package Registry. Like how the genesis block is created in most DLTs (Distributed 
ledger technologies), it can be hard coded in this case also.

Since the observers can be seen as competing entities, the constant challenging of the scanning 
report by co‑observers would result in a more accurate and accepted block. The block interval is 
also designed to be configurable to provide granular control over the system’s functioning. Once 
a block is added to the chain, the observers are notified by the Package Registry to update their 
local copies of the blockchain with this new block based on the publicly accessible blockchain 
(Figure 25.2 Step 7). This process of block confirmation serves as an acknowledgment to the nodes 
that a proposed transaction was successfully included in the chain.

When multiple observers try to propose a block causing a race condition, the Package Registry 
is responsible for resolving this. The addition of blocks is done sequentially and the observer whose 
block wasn’t added is notified to propose a new one. The resultant signature is a part of the currently 
accepted record and the root’s final hash will be inclusive of the multi‑party signature. The “previ‑
ous hash” field of the next block would point to this newly computed hash and hence establish a link. 
This results in an immutable ledger that can securely record the verification process with federated 
trust management. The entire flow of data has been illustrated as a sequence diagram in Figure 25.3.

Now, when a user must download a package and include it as part of their project, the details 
and security of the package can be verified against the information in the blockchain network 
(Figure 25.2 Steps 8 and 9). The security of this architecture is enforced because every root hash is 
being digitally signed by multiple observers. A user who might want to verify a package would have 
to use the public key of the corresponding observer to read a block. Consequently, the identity of 
the observers is at stake which validates that the block(chain) is free of any malicious entries. This 
serves as a Proof of Authority (PoA) consensus algorithm that leverages the value of identities and 
reputations (Honnavalli et al., 2020). Algorithm 25.1 outlines the verification procedure that would 
be followed by the user while attempting to check if a dependency is safe to be installed.

Algorithm 25.1: Verification of a Package Status

	 INPUT: Identifier for a Package that needs to be verified
	 OUTPUT: Returns ’true’ if the package is safe, else, the list of vulnerabilities
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is returned.
	 chainValidity():
	 for block in chain do:
		  Check if previousHash equals to the currentHash of the previous block;
		  if chain is broken then:
		  return false;
		  End
	 End
	 return true;
	 If chainValidity() == true then:
	 Find the latest block containing package information;
	 Verify the signature on the Root Hash
	 Retrieve the latest record corresponding to the concerned package and version
	 if package is trusted by observers then
		  Initiate periodic verification of package status;
		  return true;
	 End
	 End
	 return List of all Vulnerabilities;

An observer would also have a numeric “rank” tagged to them. This rank would determine an 
observer’s reputation. Each time a block is verified by a co‑observer, the rank is incremented. 
Similarly, when the observer seems to increase false positives or true negatives while classifying 
threats, their rank would be downgraded. Combined with the PoA, the rank can be used to reward 
and penalize observers according to their participation in the network.

When multiple observers seem to have different opinions on the security of a package, an observer 
might decline to sign the proposed block. In this case, the Package Registry would request yet 
another observer to validate the block. Thus, there needs to be a minimum of two entities having the 

FIGURE 25.3  Sequence diagram of the proposed architecture.
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same opinion by default. However, there could be a case where only one observer was sophisticated 
enough to detect a threat in a package. In this case, the observer’s rank can be used to determine if 
the block can be accepted or not. This methodology balances the occurrences of false positives and 
the diversity in the reporting, as each observer might report a distinct vulnerability that might have 
been missed by another scanner. When users are confused in choosing if a package can be trusted 
or not, voting ensembles can help them make informed decisions based on these insights.

The blockchain system discussed in this solution is comparable to a permissioned ledger that is 
open for public view and replication. Only verified observers would be allowed to add blocks to the 
chain via the Package Registry. All other entities would be entitled to have read‑only access to this 
source of truth. Therefore, identity and access management controls can be effectively implemented. 
This brings along an array of advantages such as better scalability and faster transactions when 
compared to public blockchains (Ambili et al., 2017). The limited number of pre‑approved block 
validators enables an efficient platform capable of achieving higher transactions per second (TPS). 
They combine the concept of “permissioning” from private associations while embracing certain 
principles of decentralized governance. Since there is no mining involved, recording validations are 
efficient and free. Such a model presents the best of both worlds and optimally addresses security 
concerns while balancing availability. DLTs like Hyperledger Fabric and R3 Corda can be used to 
construct such networks (Sajana et al., 2018). The primary reason for choosing a blockchain over any 
database is the requirement of needing an append‑only ledger that can be read by anyone. Traditional 
databases do not block updates or deletes by design, which is undesirable in this use case.

When analyzing architecture in the context of securing critical systems, speed and efficiency are 
key aspects that would have to be ensured. Contrary to how most permissioned voting consensus 
systems operate, public blockchains often resort to a technique called sharding to increase transac‑
tional throughput. Fundamentally, it involves horizontally spreading out storage and computational 
workloads to speed up processes. In such a scenario, it would suffice if a node maintained the data 
related to its partition, or shard alone. In the case of the architecture mentioned in this section, 
explicit engineering efforts to scale up the network would not be required. Most Hyperledger imple‑
mentations employing Byzantine fault‑tolerant (BFT) protocols have inherent abilities to perform 
at scale (Sousa et al., 2018).

In a practical setting, there might be instances where the blockchain would have to “fork.” They 
might occur due to diverging copies of the chain being maintained separately, or simply because of 
a software update to the system. For all the observer entities who would participate as full nodes, 
the same version of the processing logic must be in sync. To ensure backward compatibility with the 
outdated nodes, the system would ensure that soft forks are used to create an unanimously agreed 
consensus algorithm. In the case of most public blockchain networks, a contentious hard fork is 
enforced when a significant fraction of full nodes contradicts their opinion on the software versions. 
However, since this proposed system is designed along the lines of a permissioned ledger, this can 
be avoided.

Many critical systems tend to prioritize the stability of feature enhancements. Hence, software 
engineers writing code for such systems tend to lock the dependency versions. Being a blockchain 
that functions as an append‑only ledger, information for the older versions is always going to be 
retained. Even if an update must be made for a block that has been added to the chain, it can only 
be added to the old one. This way, the system can also serve as an audit trail that documents all 
changes that have been made across versions. With various phases in which supply chains and PD 
networks are involved, this architecture can be used in multiple stages of the product life cycle. Being 
focused on interoperability, the proposed architecture builds on top of the existing stack. For effec‑
tive implementation of the solution, the system doesn’t require the existing framework to be replaced 
entirely. All the governing rules can be programmed as smart contracts based on the DLT platform 
of choice. This would comprise the code that contains the set of rules enforced by the system. The 
blockchain‑based ledger can be implemented in addition to the existing system and populated asyn‑
chronously. Thus, the migration can happen gracefully and will not result in service downtime.
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With full API and webhooks support, users can extend their existing workflows to work with 
the proposed framework. Since the entire process will be handled asynchronously, there will be no 
reduction in the read or write throughput of the package managers. By having periodic checks per‑
formed on the source code as a part of the CI/CD (Continuous Integration and Continuous Delivery) 
pipeline, organizations can verify the integrity of their development life cycle at scale. From an 
organizational standpoint, using this solution would lead to an agile DevSecOps cycle by introduc‑
ing appropriate checks at critical stages of the software development process. Similarly, once an 
application is deployed, any further updates to the system can be considered a package published 
over an update server. In this case, the update server would be analogous to the Package Registry 
and all transactions can be mapped correspondingly. This way, the proposed solution can be inte‑
grated with critical systems and secure every interaction that involves pulling/pushing software.

25.4  ANALYSIS AND OBSERVATIONS

25.4.1 S ecurity Assumptions

The proposed architecture is based on the assumption that the verdict given by the observers will 
be accurate to the best of their knowledge. The system assumes that the Package Registry is trusted 
and will not act against its functioning. Furthermore, this system does not outline the compensatory 
model for recognizing the commercial value of the observers. Just like the current systems where 
vendors have a business model where they often provide basic security and scanning services at 
no cost, this architecture establishes a similar environment for them to provide services. Standard 
security protocols need to be in place across all layers of the network stack. All communications 
among  entities will need to happen over secure communication channels using protocols like TLS 
and IPsec. The certificate revocation list (CRL) will have to be checked to ensure the validity of 
certificate authorities (CA) and the X.509 digital certificates issued by them. This is critical to 
prevent man‑in‑the‑middle attacks (MITM) and session hijacking. Attacks such as DNS (Domain 
Name System) cache poisoning can also be prevented by enforcing signature validation. Access 
control configurations need to adhere to the principle of least privilege (POLP). All server‑level 
vulnerabilities will need to be patched and updated to prevent possibilities of security compromise 
and breaches. The “Blockchain Security Framework” from the OWASP Foundation could serve as a 
general guideline for hardening various stages of development and establishing a security baseline.

25.4.2 P rotection Against Malicious Entities

The process of threat modeling aids in effective risk management which is critical for compliance 
with certain regulations and certification bodies. Here, the chapter attempts to detail the attack 
scenarios that have been discussed earlier and present the potential mitigation provided by the pro‑
posed architecture. The MITRE ATT&CK knowledge base has been used as a foundation for the 
development of threat models specific to this use case.

Scenario 1: Consider the scenario where a package has been published to a Package Registry 
along with an obfuscated malicious payload. These malicious commits often go unnoticed during 
reviewing pull requests to open‑source repositories. As per the proposed architecture, once the 
package has been published, observers receive a trigger to evaluate the security concerns over this 
newly published package. Publicly known threats can be easily detected in coordination with ser‑
vices like VirusTotal and watching CVE listings. Regardless of whether the presence of a threat is 
confirmed, the scan results are recorded in the block(chain). Both the observers and these services 
can utilize the determined result to further enhance their datasets on which anti‑malware engines 
are trained. The attestation of the observer is reinforced using the digital signature and the rank 
that is included as a part of the block’s contents. Now, the observer can initiate a take‑down request 
with the Package Registry. If any user had downloaded the malicious package, during this process, 
the user could securely verify the status of the package with the read‑only copy of the blockchain 
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ledger using the digital signature of the observer(s). The same verification process applies to any 
other package that has this malicious package as one of its dependencies. If an attacker chooses to 
modify the status of a package stored on the ledger, they will have to recreate the Merkle tree of 
the block. However, in this case, the attacker will be unable to create a valid digital signature of 
the block, since he does not have access to the private key of any valid observers. Assuming that a 
forged signature is created and put in the ledger (assuming the Package Registry is compromised), 
the forgery would be detected by the observers as their local blockchains would alert the stakehold‑
ers. Even if the alert is ignored, the user will still be able to detect that the data has been tampered 
with by verifying the identity of the entity that has signed the block. The immutability of the ledger 
has thus been enforced in the proposed architecture.

Scenario 2: Zero‑day vulnerabilities can be discovered for packages that are already powering 
production systems. Initially, the threat could have gone unnoticed while the observers scanned it. 
The requirement is to have systems aware that they have been using a compromised package. Two 
features in the proposed system accommodate this requirement. First, since the ledger can have 
multiple blocks added to the chain corresponding to a specific package and its version, the user 
would have to read the latest metadata to have up‑to‑date information on a package. Secondly, the 
automated periodic verification routine on the user’s end would be able to let the system know if 
any of the install packages have been comprised. If yes, the concerned stakeholders can be alerted 
to do the needful.

Scenario 3: In adverse attacks, an observer itself could be compromised and act maliciously 
despite their identity being held at stake. This could result in the final verdict being inverted and 
intentionally increase the number of false positives and true negatives. In such a case, the multi‑party 
signature enforced by the architecture ensures that a single malicious observer cannot affect the 
system. Since each observer would need at least another randomly chosen entity (co‑observer) to 
acknowledge its scan results or have a high rank based on past reputation, it becomes hard for a 
malicious entity to masquerade as an observer. For the entire system to be compromised, multiple 
observer entities will have to be controlled to successfully execute the attack. Before such a situation 
occurs, this behavior can be easily traced by the participating entities and their access to the permis‑
sioned blockchain can be revoked. To further harden the system, the minimum number of required 
co‑observers can be increased at the discretion of the stakeholders. Nevertheless, this can serve as 
a self‑regulating framework whose functioning is dictated by its stakeholders.

25.4.3 A dvantages of the Proposed Architecture

Compared to most PD frameworks available today, the proposed architecture combines the advan‑
tages of these frameworks, while ensuring that the security concerns are effectively addressed. 
Essential features such as vulnerability reporting and integrity verification have been hardened by 
utilizing a blockchain system. The key difference is in the philosophy of enforcing security and 
trust. While most systems like the NPM and PyPI offer a wide distribution of trust, the proposed 
architecture uses a narrow distribution of trust and encourages multi‑party consensus between enti‑
ties that might be mutually suspicious. Based on the business requirements of organizations, the 
proposed solution would be able to accommodate customizable security policies and access con‑
trols on top of the core architecture. Furthermore, when inspecting this architecture with regard to 
critical systems, the proposed solution can be loosely integrated with legacy systems and provides 
graceful degradation of services in case of failures on blockchain nodes. The “zero‑trust” approach 
ensures that every software artifact used can be verified independently. The distributed system also 
means that the users can offload the computational processing required at endpoints. On the tech‑
nology side, the proposed system is fully compatible with proprietary protocols and data formats, 
eliminating concerns about vendor lock‑in.

Finally, for implementing and enforcing a security measure involving multiple entities, there is 
an inherent need to have some commonly shared responsibilities. To incentivize the adoption of 
this architecture, participating entities can leverage the advantages of sharing threat intelligence 
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(Samtani et  al., 2020). All interactions happening on this system can be logged in a Security 
Information and Event Management (SIEM) and Security Orchestration Automated Response 
(SOAR) solutions for proactive monitoring and alerting. In certain cases, the collective information 
and statistical analysis derived from these sources can help organizations in patch management and 
prioritization strategies. This repository of information about the security of software packages can 
also serve as a source to aid Open‑Source Intelligence (OSINT) and Operations Security (OPSEC).

25.5  CONCLUSION

Open‑source developers across the globe use PD networks to publish packages and consume those 
shared by other contributors. Many industries and essential services are also a part of this software 
distribution supply chain, either as producers or as consumers. With such huge market penetration, 
it is not surprising that cybercriminals have started to increasingly target these systems. With the 
convergence of information technologies and operational technologies, attacks on the supply chain, 
and consequently the critical systems, can extend beyond the organization and be devastating to 
communities, economies, and even countries.

The blockchain‑based strategy proposed in this chapter ensures the effective implementation 
of essential security services such as authentication, authorization, data integrity, non‑repudiation, 
and immutability. This solution is carefully designed to be platform‑agnostic and suitable for usage 
with various PD methodologies. Specific entities such as the package manager, users, and observers 
have been defined as sentinels to limit the attack surface area. The attack scenarios have been mod‑
eled considering that an attack could originate from any internal/external entity participating in the 
software product ecosystem. The narrow distribution of trust and multi‑party consensus strategy 
employed by the proposed architecture ensure that the attacks are successfully mitigated. While 
multiple entities and transactions are mandated by the proposed architecture, the resultant system 
ensures that a user/developer is not delivered a piece of un‑intended software that could compromise 
the security of the product/environment.

Due to the increasing digitization of essential infrastructure, the need for a higher level of security 
is quite evident. Additionally, the complexities of SCADA networks, distributed control systems, 
and process automation are exacerbated by the network of software dependencies their systems are 
relying on. The solution proposed promotes best practices and builds confidence in the PD frame‑
work by reducing the cascading impact of any failures/attacks while enhancing the security of the 
software package delivery supply chain.
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