
ar
X

iv
:2

50
5.

22
01

0v
1

 [
cs

.C
R

]
 2

8
M

ay
 2

02
5

VulBinLLM: LLM-powered Vulnerability Detection for Stripped
Binaries

Nasir Hussain
University of California, Los Angeles

nasirhm@ucla.edu

Haohan Chen
University of California, Los Angeles

heyohan@ucla.edu

Chanh Tran
University of California, Los Angeles

ctran0014@ucla.edu

Philip Huang
University of California, Los Angeles

philiph930@g.ucla.edu

Zhuohao Li
University of California, Los Angeles

zhuohaol@g.ucla.edu

Pravir Chugh
University of California, Los Angeles

pravirchugh@ucla.edu

William Chen
University of California, Los Angeles

billchen314@g.ucla.edu

Ashish Kundu
Cisco Research

ashkundu@cisco.com

Yuan Tian
University of California, Los Angeles

yuant@ucla.edu

Abstract
Recognizing vulnerabilities in stripped binary files presents a sig-
nificant challenge in software security. Although some progress has
been made in generating human-readable information from decom-
piled binary files with Large Language Models (LLMs), effectively
and scalably detecting vulnerabilities within these binary files is
still an open problem. This paper explores the novel application of
LLMs to detect vulnerabilities within these binary files. We demon-
strate the feasibility of identifying vulnerable programs through
a combined approach of decompilation optimization to make the
vulnerabilities more prominent and long-term memory for a larger
context window, achieving state-of-the-art performance in binary
vulnerability analysis. Our findings highlight the potential for LLMs
to overcome the limitations of traditional analysis methods and
advance the field of binary vulnerability detection, paving the way
for more secure software systems.

In this paper, we present Vul-BinLLM , an LLM-based framework
for binary vulnerability detection that mirrors traditional binary
analysis workflows with fine-grained optimizations in decompila-
tion and vulnerability reasoning with an extended context. In the
decompilation phase, Vul-BinLLM adds vulnerability and weak-
ness comments without altering the code structure or functionality,
providing more contextual information for vulnerability reason-
ing later. Then for vulnerability reasoning, Vul-BinLLM combines
in-context learning and chain-of-thought prompting along with a
memory management agent to enhance accuracy. Our evaluations
encompass the commonly used synthetic dataset Juliet to evaluate
the potential feasibility for analysis and vulnerability detection in
C/C++ binaries. Our evaluations show that Vul-BinLLM is highly
effective in detecting vulnerabilities on the compiled Juliet dataset.

1 Introduction
Binary analysis is pivotal for program analysis and provides a deep
understanding of how executable files operate. In many cases, the
source code is not available for analysis [79, 88], especially with
proprietary or legacy software, which is common in commercial
software (e.g. Microsoft Windows, Adobe Acrobat), firmware in IoT
devices, and third-party libraries [116] where vendors often with-
hold source code to protect intellectual property. Binary analysis
allows security engineers to directly analyze the compiled binary,

enabling them to understand how the program functions and iden-
tify potential vulnerabilities and weaknesses. Traditional binary
analysis tools, such as Ghidra [5] IDA Pro [6], and Angr [101] an-
alyze binary code by translating it into assembly language and
providing higher-level representations to facilitate understanding.
This is accomplished through two main processes: disassembly
and decompilation. Disassembly converts machine code into as-
sembly language, while decompilation translates this code into a
high-level programming language. However, this process inherently
leads to information loss, for reasons such as loss of high-level con-
structs, compiler optimizations, and symbol and debug information
removal. Thus, this leads to lots of ambiguity in the decompiled
code. Additionally, learning and mastering reverse engineering re-
quire significant effort and expertise. The raw binary format and
the complexity of the analysis process make it challenging and
time-consuming for security analysts to detect vulnerabilities in
the binaries. Therefore, automating the analysis process is essen-
tial to efficiently detect vulnerabilities in binaries, reduce manual
efforts, and improve the speed of vulnerability identification.

Recent developments in large language models (LLMs) [1, 15, 19,
77, 97] present a promising avenue for addressing the challenges
of binary analysis. LLMs have demonstrated capabilities in code
summarization and generation [32, 50, 61, 70–72, 87, 90, 107]. LLM
agents [93], which integrate LLMs as a component in the workflow,
enable interactions that closely mimic expert-level intelligence.
This emergence and rapid adoption of LLMs in code analysis and
code copilots raises a critical research question: Can large language
models, with fine-grained prompt engineering and specialized opti-
mizations in system design, assist security and software engineers to
effectively reason about vulnerabilities in binary code?

Objective of this work: We aim to provide an LLM-powered ap-
proach to enable efficient, and scalable vulnerability analysis for the
binary code. However, applying LLMswithin binary analysis retains
several challenges. First, compilation and decompilation causes a
loss of contextual information for the code, which makes it challeng-
ing to identify vulnerabilities on the binary level. While source code
vulnerabilities are typically classified using standards like Common
Vulnerabilities and Exposures (CVEs) [64] and Common Weakness
Enumeration (CWEs) [65], translating these definitions to the bi-
nary level is challenging. Many reported CVEs involve complex

https://arxiv.org/abs/2505.22010v1

projects with custom-built toolchains. These projects include build
configurations and compilation settings that optimize the binary
for various use cases, resulting in an even higher loss of information
during the compilation phase. Thus, it is difficult to map the binary
representation to its source code. Complex compilation processes
add a layer of difficulty in accurately tracking and detecting vul-
nerable code within binary files. Second, binary code is much more
abstract than natural language. Since LLMs rely on probabilities
to predict in an auto-regressive manner, they often have difficulty
extracting meaningful information from low-level representations
directly [94]. Reverse engineering tools are able to help extract use-
ful information, but the output usually lacks semantic information
like variable names and comments. Third, LLMs might suffer from
hallucinations, especially with longer input. This issue is orders
of magnitude worse in binary analysis, where the lack of context
and semantic clues makes it harder for LLMs to interpret the actual
behavior and vulnerabilities of the code reliably. Finally, binary files
are usually very large, posing challenges for the limited context
window of LLMs. As a result, as far as we know, state-of-the-art
LLM-assisted binary analysis solutions are usually evaluated with
small synthetic datasets, and cannot handle real-world binaries.

To address these challenges, we propose Vul-BinLLM , an end-to-
end LLM-powered binary vulnerability analyzer. As far as we know,
Vul-BinLLM is a LLM-assisted binary vulnerability analysis tool
that detects vulnerabilities from compiled binaries. We achieve this
goal by effectively allowing the LLM’s to analyze a binary file that
far exceeds its context window and attaching a function analysis
queue that reduces hallucinations in the memory management
agent to ensure complete analysis of the binary file.

Vul-BinLLM employs a structured workflow to assess and opti-
mize the binary analysis process iteratively, emulating the approach
of a security expert. It features an optimized decompiler that en-
hances decompiled code by appending vulnerability-specific com-
ments, as well as prompt engineering to enhance vulnerability rea-
soning. By decomposing the traditional binary analysis workflow,
Vul-BinLLM integrates insights from the extensive decompiled
source code, offering an effective memory management approach
to improve LLM analysis. In order to reduce hallucinations from
processing of the code within the limited context window, we attach
a function queue with the LLM’s extended memory.

We evaluate Vul-BinLLM on binaries on commonly used syn-
thetic vulnerability datasets i.e Juliet. Vul-BinLLM is able to beat
the state-of-art tools and frameworks for stripped synthetic data
binaries. VulBinLLM can detect CWEs for Juliet with appropriate
information to justify the presence of such vulnerability in code.

We summarize our contributions for building a LLM-Powered
binary analysis framework as follows:

• We build an LLM-assisted binary vulnerability analysis
tool tailored for CWE detection on decompiled files by
integrating a memory management system and a function
analysis queue, enabling it to analyze complex binaries.

• With our analysis, we provide insights into how LLMs can
analyze vulnerabilities on the binary level without much
contextual knowledge and be able to reconstruct them for
vulnerability detection.

• With our evaluations, we achieved approximately 10% in-
creased accuracy in detecting stripped synthetic code vul-
nerabilities.

2 Background
2.1 Reserve Engineering for Vulnerability

Analysis
Reverse engineering plays a critical role in vulnerability analysis,
malware detection, and overall system security. In system security,
reverse engineering refers to the process by which an analyst exam-
ines a binary executable to recover the design and implementation
details necessary for understanding the program’s functionality.
This process can be applied in various contexts, such as malware
analysis, vulnerability discovery, or firmware analysis, with the
specific output varying according to the context. However, the
core goal remains the same: reconstructing the program logic and
identifying the conditions required to reach specific code locations,
which could reveal bugs or suspicious behaviors, especially in the
case of malicious binaries.

While automation has significantly advanced in areas like host-
based and network-based attack detection, malware classification,
and phishing detection, binary reverse engineering is still primarily
driven by highly skilled human experts. Although tools for unpack-
ing, disassembly, emulation, and binary similarity comparison assist
in the process, the task of fully understanding the code remains a
predominantly human effort. This manual work demands a deep
level of expertise and is both time-consuming and labor-intensive.
Unfortunately, the shortage of expert reverse engineers is a bottle-
neck, especially considering the increasing volume of software that
requires analysis.

Initiatives like the DARPA Cyber Grand Challenge (CGC) have
pushed forward the development of autonomous systems capable
of analyzing binaries and identifying vulnerabilities. Despite these
advancements, current automated solutions still struggle to match
human-expert level depth of reasoning and intuition in reverse
engineering tasks. As such, reverse engineering continues to be
a crucial component of software vulnerability discovery, relying
heavily on a combination of human skill and machine assistance.

2.2 Binary Analysis and Program Analysis
Binary analysis can be broadly categorized into dynamic and static
binary analysis. Dynamic analysis examines program behavior
during execution, while static analysis involves examining binary
code without executing it. In this paper, unless otherwise noted,
we focus exclusively on static binary analysis.

Traditional static binary analysis begins with binary acquisition
and format inspection, followed by systematic layers of examina-
tion, including disassembly, control flow analysis, and data flow
analysis. Disassembly and decompilation converts binary code into
human-readable assembly instructions or source code. Control flow
analysis maps the potential execution paths by identifying decision
points and jumps. Data flow analysis tracks data movement and
transformations to uncover vulnerabilities such as buffer overflows
or memory leaks. Additional techniques like call graph analysis,
help visualize relationships between functions and identify entry
and exit points. Symbolic execution explores all possible execution

2

Archived Analysis

Stripped
Binary

Source
Code

Decompilation

(2)

Vulnerability
Prediction &

Analysis

VulBinQ

MemManager

Code Analysis

(1)

(3)

RetDec

Figure 1: Workflow of Vul-BinLLM : (1) Binary files are decompiled into source code, where an LLM-assisted decompiler
enriches the code with contextual information for vulnerability detection. (2) The decompiled source code is then analyzed
by Vul-BinLLM for vulnerability analysis which has an archival storage to store analysis, The analyzer then provides a
comprehensive vulnerability detection result (3) VulBinQ: It features an additional queue that manages the functions that are
to be analyzed using Vul-BinLLM and serves as middleware between the Archived Analysis and Vul-BinLLM .

paths by using symbolic rather than concrete values, uncovering
potential vulnerabilities missed by traditional methods. Static anal-
ysis tools also commonly incorporate pattern matching to detect
known vulnerabilities, which can accelerate the analysis process.
However, this comprehensive analysis usually requires significant
expertise and extensive training.

// Function to multiply two matrices
// with intentional overflow
void buffer_overflow_matrixmul(long m1[R1][C1],

long m2[R2][C2],
long result[R1][C2])

{
for (int i = 0; i < R1; i++) {

for (int j = 0; j < C2; j++) {
result[i][j] = 0;

// Initialize the result matrix element
for (int k = 0; k <= C1; k++) {

// Intentional off-by-one error causing overflow
result[i][j] += m1[i][k] * m2[k][j];

// This will read and write out of bounds when k == C1
}

}
}

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Figure 2: An example of a buffer overflow vulnerability: the
detection of this vulnerability relies on human expertise in
security review. Human experts are able to detect the above
vulnerability, but the subtley of the vulnerability may lead
to difficulty in detection by an LLM.

2.3 CVE and CWE
Existing vulnerability classification systems, such as Common Vul-
nerabilities and Exposures (CVE) [64] and Common Weakness Enu-
meration (CWE) [65], provide standardized frameworks for catego-
rizing and managing security issues. CVE is a system used to de-
scribe and report specific vulnerabilities in real-world applications
(e.g. Google Chrome, Android), with each reported vulnerability

assigned a unique identifier (CVE ID). A single CVE ID may cor-
respond to multiple distinct code snippets representing different
instances of the same vulnerability. CWE serves as a classification
system that organizes common software and hardware security
weaknesses. Each weakness type is assigned a unique identifier
(CWE ID), providing a broad taxonomy of security flaws. Code be-
haviors within the same CWE category can vary significantly. For
instance, CWE-416 (Use After Free) [69] denotes improper use of
memory after it has been freed, which may result from issues such
as race condition mismanagement (e.g., CVE-2023-30772 [68]) or
incorrect reference counting, leading to premature object destruc-
tion (e.g., CVE-2023-3609 [67]). While CWE offers a higher-level
understanding of weaknesses, CVE provides specific instances of
vulnerabilities in real-world systems. CWE and CVE are widely
used in the standardized approach for categorizing and managing
security issues.

Datasets # of CWEs # of Test Cases

Juliet C/C++ [7] 118 90,000+
SARD [11] 200+ 100,000+
Big-Vul [3] 10+ critical CWEs 6,800
Devign [4] 5+ memory-related CWEs 7,000+
REVEAL [10] 10+ memory safety CWEs 3,000+
MVD [8] 10+ critical CWEs 1,000+
Vul4J [12] 10+ Java-specific CWEs 500+
Table 1: Overview of widely-used CWE datasets in vulnerabil-
ity detection. Juliet C/C++ and SARD each contain over 100
CWEs for in-depth testing in C/C++ and Java. NVD includes
over 150 CWEs linked to public CVEs. Big-Vul offers critical
vulnerabilities from open-source projects. Devign and RE-
VEAL focus on memory-related weaknesses in C/C++. MVD
and Vul4J cater to critical and Java-specific vulnerabilities.

3

3 Method
3.1 Overview
Vul-BinLLM breaks the problem down into two steps: 1) the re-
construction of information optimized for vulnerability detection
from binary files, 2) the analysis of decompiled code to infer vul-
nerabilities in terms of CWEs. In particular, the second step poses
a unique challenge when the decompiled code exceeds the context
window for the LLM, leading to an inability for vulnerability analy-
sis of a binary file. To further enhance the problem statement we
present the following Research Questions (RQ) to analyze: RQ1:
Does LLM-powered human-readable code restoration for function-
ality description allow for vulnerability detection using LLMs?

RQ2: Can we optimize the restoration to make the vulnerabil-
ity features more prominent such that the LLM’s ability to detect
vulnerabilities is improved?

To address these RQs, we propose Vul-BinLLM , a LLM-powered
binary analysis framework. Vul-BinLLM is the first framework that
focuses on recovering syntactic information to highlight vulnerable
features using LLMs.

In this section, we present themethodologies behind Vul-BinLLM .
It employs a structured workflow to first generate syntactic infor-
mation from the binary code, making the vulnerable features more
prominent within the source code, to allow the LLM to detect vul-
nerabilities using this syntactic information. Then, it iteratively
assesses the source code with an extended memory structure to
analyze each function in accordance to the control flow, emulating
the approach of a security expert. By decomposing the traditional
binary analysis workflow, Vul-BinLLM integrates insights from
the decompiled source code by embedding appropriate information
during the decompilation stage and then utilizing it for vulnerability
detection, offering an integrated approach to improve vulnerability
analysis. Detailed discussions are provided in Section 3.2.

First, we summarize the challenges of applying LLMs to binary
analysis and describe how Vul-BinLLM addresses them:

• Feature Definition Code Generation: Binary code, es-
pecially in stripped binaries, lacks the high-level abstrac-
tions and semantic information present in source code. This
makes it difficult for LLMs, which are primarily trained on
text and source code, to understand the underlying logic
and identify potential vulnerabilities.

• Data Scarcity: Training effective LLMs for binary vulner-
ability detection requires large datasets of labeled binary
code with known vulnerabilities. However, such datasets
are relatively scarce compared to source code datasets,
which can hinder the development and evaluation of LLM-
based approaches.

• Limited Contextual Awareness: LLMs may struggle to
understand the broader context in which a particular code
segment operates. This can lead to inaccurate vulnerability
assessments, as the model may not fully grasp the implica-
tions of a specific code pattern within the larger program.

3.2 Design of Vul-BinLLM
The overview of Vul-BinLLM is illustrated in Figure 4. The key
insight behind Vul-BinLLM is to emulate the traditional binary
analysis workflow while optimizing each step with LLM-powered
enhancements. In conventional binary analysis, binaries are first
disassembled and decompiled into source code or intermediate rep-
resentations (IR) to then be analyzed using various static analysis
techniques to detect vulnerabilities in the binary as the source
code and IR represent the same functionality but are not easily
understandable by a human. We integrate an LLM-powered work-
flow to assist in tradition binary analysis vulnerability detection
workflow which allows for a better analysis of vulnerable binaries
Vul-BinLLM approaches these challenges using neural decompila-
tion to recover high-level, vulnerability-related syntactic informa-
tion from binary code, enabling LLMs to better understand program
logic and identify potential vulnerabilities. We incorporate LLM
models that analyze the decompiled code in a context-sensitive
manner, considering the relationships between different code seg-
ments and the overall program structure, by utilizing an extended
context windowwhich serves as an archival storage for the analysis
of vulnerabilities in functions within the source code. The archival
storage is a SQL Database which allows the LLM Agent to store
and fetch the summarized analysis of different functions within the
source code file. We also emulate a queue within Vul-BinLLM to
ensure the coverage of all functions within a binary.

3.2.1 Vul-BinLLM - Vulnerability Prominence. Neural decompila-
tion acts as a bridge between the low-level world of binary code and
the high-level understanding of LLMs. By recovering source code
from stripped binaries, it unlocks the potential for LLMs to analyze
and comprehend the program’s logic, paving the way for effective
vulnerability detection. This recovered source code, however, is not
merely a verbatim translation of the binary. It is optimized specifi-
cally for vulnerability detection, with embedding the key features
and potential security flaws highlighted for LLMs to focus on.3
This optimization process involves identifying and emphasizing
code patterns that are commonly associated with vulnerabilities.
These patterns can include dangerous function calls, such as those
known to be susceptible to buffer overflows or injection attacks, as
well as code constructs that often lead to memory corruption or
logic errors. By highlighting these vulnerability-related features,
the recovered source code becomes a more informative and targeted
input for LLMs, guiding their analysis towards potential security
flaws. Furthermore, the optimization process can involve incor-
porating contextual information into the recovered source code.
This can include information about overall program structure, the
relationships between different code segments, and the intended
functionality of the program. By providing LLMs with this broader
context, they can better understand the implications of specific code
patterns and make more accurate vulnerability assessments. LLMs,
with their ability to learn complex patterns and representations
from data, can then analyze the code and identify potential vul-
nerabilities based on the highlighted features and the overall code
structure. This approach combines the strengths of both neural
decompilation and LLMs, enabling the detection of vulnerabilities
1For the buffer overflow weakness, we included the vulnerability by not setting the
bound for the array

4

Models Creator # Parameters Modality Max Tokens Function Vul-1 1 Vul-2

GPT-4 [2] OpenAI 1.7T text 32K ! ! %

ChatGPT [77] OpenAI 175B text 16K ! ! %

Claude 3.5 [19] Anthropic 175B text 32K ! ! %

Gemini [96] Google 500B text 32K ! % %

CodeLlaMA [1] Meta AI 13B text & code 100K ! ! %

Table 2: Our study on LLMs understanding of decompiled binary vulnerable code: Vul-1 is a buffer overflow weakness in our
defined matrixmul function, Vul-2 is a standard CWE-78 (OS Command Injection) in Juliet dataset. We compiled both of them
to binary ELF files and analyze the decompiled code through LLMs. No LLM can find OS Command Injection intuitively from
binary level but some of them can understand simple code (e.g. matrixmul) with synthetic weakness. NOTE: The 100k context
window for CodeLlaMA requires intense computational power to process it.

in stripped binary files that were previously difficult to analyze
with traditional methods. In essence, vulnerability feature opti-
mized source code recovery transforms binary code into a format
that is both understandable and actionable for LLMs. It bridges the
gap between the low-level representation of binary code and the
high-level reasoning capabilities of LLMs, enabling the efficient and
effective detection of vulnerabilities in stripped binary files. Custom
data types and user-defined classes are generally outside the scope
of these tools, leading to inaccurate or incomplete representations.
For instance, the decompiled output of a simple matrixMultiply()
function may display significant discrepancies in variable names
and introduce overly complex or incorrect data structures. Fur-
thermore, comments from the original source code are lost during
decompilation since traditional reverse engineering tools cannot
reconstruct them. Given our goal of using LLMs to analyze decom-
piled source code, preserving meaningful variable names, clear code
structures, and informative comments is essential for enhancing the
model’s comprehension and processing capability. Several recent
approaches, such as DeGPT [48] and ReSym [109], leverage LLMs
to improve decompilation outputs. However, these methods are
not tailored for vulnerability detection, limiting their effectiveness
in security-focused analysis. In order to make the decompilation
efficient to be analyzed by LLMs, we use an LLM to first do a syn-
tactical recovery of comment, structure and variable information
from the decompiled code from RetDec which is then utilized by
the detection agent with an extended context window to analyze
the program state with respect to the syntactically descriptive code.
In this work, we specifically focus on optimizing decompilation for
identifying vulnerabilities alongside extending the LLMs capabil-
ity to evaluate binaries, addressing the unique challenges in this
domain.

Prompt Engineering. We utilized in-context learning and few-
shot Chain-of-Thought (CoT) [105] and in-context-learning [31]
prompting to enhance LLMs’ capability in identifying potential
vulnerabilities. In-context learning enables LLMs to understand
complex reasoning tasks by exposing them to examples of similar
vulnerability patterns. This approach is particularly beneficial for
vulnerability detection, as it allows the model to adapt to specific
security weaknesses through example-based guidance. Few-shot
CoT further decomposes complex reasoning into smaller, logical
steps, prompting the LLMs to analyze code snippets by examining

functionality, root causes, and potential impacts. This structured
approach mirrors the systematic methods employed by security
experts, allowing the model to connect multiple dimensions of a
vulnerability. CoT is especially effective in uncovering hidden risks
by providing a multi-faceted analysis aligned with expert practices.

Construct Knowledge Documents. Several datasets, such as
Devign [118], BigVul [46], and CodeSearchNet [34], are commonly
used to benchmark vulnerability detection performance. PairVul
[32] is a unique resource containing pairs of vulnerable and patched
code samples. The memory management agent is connected to the
VulBinQ, which is responsible for managing the functions that are
to be analyzed by the LLM and various knowledge documents are
created from the binary code to then be placed into the archived
analysis data store allowing for a clearer representation of the
binary code for the LLM.

4 Evaluation
In this section, we evaluate the performance of Vul-BinLLM with
an existing state-of-the-art approach to analyze each part’s effec-
tiveness.

4.1 Implementation
The implementation of Vul-BinLLM is built upon the reverse en-
gineering frameworks Ghidra [5] and [9]. The Vul-BinLLM de-
compilation utilizes the large language model GPT-4o to enhance
vulnerability detection by carefully embedding the vulnerability
information into the decompiled code. Below, we outline the imple-
mentation process. First, the binary is loaded and analyzed using
Ghidra plugins. Ghidra facilitates the extraction of decompiled
code, control flow graphs, import tables, stack frames, and other
relevant information for subsequent analysis. Through the API of
GPT-4.0 [77], Vul-BinLLM identifies weaknesses in the binary and
augments the output by (1) appending comments about potential
vulnerabilities and functionality, (2) simplifying code structures,
and (3) renaming variables for clarity and to make the vulnerability
features more prominent.

Following these enhancements, Vul-BinLLM performs binary
vulnerability classification using GPT-4o [78], leveraging vulnerabil-
ity descriptions from MITRE for CWEs and then utilizes a extended
context window approach with a shared contextual memory that

5

}

}

}
}

m2[k][j];

}
}

}

void multiplyMatrix(long m1[R1][C1], long
m2[R2][C2])
{
// C1 and C2 are dimension of matrix m1 and m2

int result[C1][C2];
for (int i = 0; i < R1; i++) {

for (int j = 0; j < C2; j++) {
result[i][j] = 0;
for (int k = 0; k < R2; k++) {

result[i][j] += m1[i][k] *

}

void multiplyMatrix(long matrix1, long matrix2) {
long
int

saved_offset = *(long
result[R1][C2] = {0};

*)(in_FS_OFFSET + 0x28); // Preserves frame pointer, if necessary
// Initialize result matrix Text

// Iterate over rows and columns to perform matrix multiplication
for (int i = 0; i < R1; i++) {

for (int j = 0; j < C2; j++) {
result[i][j] = 0;
for (int k = 0; k < R2; k++) {

// Calculate addresses in the input matrices and accumulate the result
int
int

value1 = *(int
value2 = *(int

*)(matrix1 + i * 8 + k * 4); // Access element from matrix1
*)(matrix2 + k * 12 + j * 4); // Access element from matrix2

result[i][j] += value1 * value2;
}

void
{

multiplyMatrix(long param_1, long param_2)

local_10 = *(long *)(in_FS_OFFSET + 0x28);
for (*(long *)local_34 = 0; *(long *)local_34 < R1; local_34++) {

for (local_30 = 0; local_30 < C2; local_30++) {
(auStack_28)[(long)local_34 * C2 + (long)local_30] = 0;
for (local_2c = 0; local_2c < R2; local_2c++) {

auStack_28[(long)local_34 * C2 + (long)local_30] +=
*(int *)((long)local_2c * 0xc + param_2 +

(long)local_30 * 4)*
*(int *)((long)local_34 * 8 + param_1 +

(long)local_2c * 4);
}

}
}

void
{

multiplyMatrix(long input_matrix_1, long input_matrix_2)

// Initialize a matrix to store the result of matrix multiplication
int result_matrix[row_1][column_2] = {0};

// Iterate over each row and column of the result matrix
for (int current_row = 0; current_row < row_1; current_row++) {

for (int current_col = 0; current_col < column_2; current_col++) {
// Perform matrix multiplication by iterating over the shared dimension
for (int shared_dim = 0; shared_dim < row_2; shared_dim++) {

// Vulnerability: Potential pointer arithmetic issue if column_1 and row_2 are not properly allocated
// Multiply corresponding elements from the input matrices and accumulate the result
result_matrix[current_row][current_col] += *((int *)(input_matrix_2 + shared_dim * 12 + current_col * 4))

* *((int *)(input_matrix_1 + current_row * 8 + shared_dim * 4));
}

}
}

Source code Ghidra

Ghidra+ GPT-4o

VulBinLLM

Figure 3: An example of Matrix Multiplication decompilation output across different stages: the original source code, Ghidra,
Ghidra enhanced with GPT-4o, and Vul-BinLLM . The Ghidra decompilation provides a low-level representation with generic
variable names and lacks context, making the functionality and security aspects harder to interpret. Ghidra + GPT-4o improves
readability with meaningful variable names and clarifying comments. Vul-BinLLM further augments the output by adding
vulnerability-specific annotations, such as warnings about potential pointer arithmetic issues that could lead to buffer overflows
or memory access vulnerabilities. This layered enhancement helps bridge the gap between decompilation and security analysis,
making Vul-BinLLM particularly beneficial for identifying and understanding vulnerabilities in binary code.

allows for agents to reason about vulnerabilities in the decom-
piled code. Utilizing this agentic unbounded context window along

with prompt templates and advanced prompt engineering tech-
niques alongside a function queue, Vul-BinLLM generates struc-
tured prompt sequences to guide GPT-4o in vulnerability inspection.
GPT-4o processes code snippets in the context of these instructions,

6

Figure 4: Vul-BinLLM -Decompiler overview. Vul-BinLLM -decompiler includes an Optimization Decision Agent and three
Action Agents (Vul-variable, Vul-struct, Vul-comment). After getting raw decompilation output from reverse engineering
tool, Vul-BinLLM -decompiler will perform an initial check on the grammar, functionality, and structures and decide what
optimization decision will be made. Be sending requests to Action Agents, Vul-BinLLM -decompiler will focus on renaming the
variables and functions’ names, reorganize the defined code structure, and critically, appending explanations on potentially
vulnerability and functionalities attached the code. Vul-BinLLM -decompiler can also support to learn examples code by
in-context learning

performing detailed analysis to identify potential vulnerabilities in
the binary.

4.2 Research questions and evaluation setup
In order to address the research questions described above in section
3, we evaluate Vul-BinLLM on binaries from the Juliet dataset, then
compare the accuracy of the detected vulnerability on unstripped
versions of these binaries. We also analyze how accuracy is affected
with Vul-BinLLM ’s extended context window approach for smaller
binaries.

We evaluate the accuracy of Vul-BinLLM ’s accuracy by the
following methods:

• How accurate is LLMs in detecting vulnerabilities in the
stripped and unstipped binaries?

• Can we extend the LLM’s capability to analyze binaries that
far exceed it’s context window?

• Can we utilize LLMs to detect vulnerabilities in the stripped
synthetic test suits and compare it with state-of-the-art LLM
powered tools?

In order to formulate our results we take two approaches for
binary vulnerability analysis where the LLMs are prone to halluci-
nations and might require additional analysis for verification. We
benchmark our system on the decompiled code from Juliet Test
Suite.

4.3 Results
We evaluated Vul-BinLLM on CWE classification on binary decom-
piled code. For the evaluation of Vul-BinLLM , we utilized stripped
Juliet Test Suite binaries. We use the following Dataset:

• Juliet Test Suite (v1.3) [66]: This C/C++ vulnerability
test suite is organized by CWE categories and includes
vulnerabilities relevant to our study (e.g., CWE-78, CWE-
134, CWE-190, CWE-606). For evaluation, we compiled the
test cases into binaries, removing debug information and

7

symbol tables to simulate real-world scenarios. Test cases
involving constant values were excluded, as LATTE targets
vulnerabilities introduced by external inputs. Using GCC
as our compiler, we generated over 20,000 binary samples.
Table 2 summarizes the number of test cases used in our
analysis.

Evaluations on Synthetic Dataset: For the evaluations on sy-
thetic dataset (Juliet), we compare Vul-BinLLM against LATTE
[57], the state-of-the-art approach in utilizing LLMs for binary taint
analysis. LATTE enhances vulnerability detection precision by in-
tegrating flow analysis with prompt-engineered LLM responses,
ensuring consistency and reliability across multiple vulnerability
categories but is limited to a certain class of CWEs that exist in
binary files which are subject to be detected by binary taint analysis.
We provide our results in Table 3 where we compare Vul-BinLLM ’s
abilities with LATTE.

CWE Classification in Vul-BinLLM In Vul-BinLLM ’s CWE
classification task, we prompt GPT-4o to respond with the appro-
priate vulnerability (e.g., CWE-78: OS Command Injection) to
determine the presence of a specific vulnerability in the optimized,
neurally decompiled binary code. As shown in the Figure 5, we pro-
vide the model with a code snippet alongside a list of descriptions
for potential weaknesses, such as OS Command Injection, Stack-
based Buffer Overflow, and Out-of-boundWrite. These descriptions
are sourced directly from authoritative references like the MITRE
CWE database, ensuring accuracy in the model’s understanding of
each vulnerability type.

To minimize the risk of memorization, where the model might
rely on learned patterns rather than performing genuine analysis,
we include multiple CWEs in each query. By appending multiple
vulnerability types and directing GPT-4o to focus on particular
aspects—like data flow in this example—we guide the model to
discern the nuanced characteristics of each potential weakness.
This approach leverages extended context solutions with a stack
that contains the decompiled source code functions to then combine
contextual information with targeted prompt engineering, enabling
Vul-BinLLM to make informed vulnerability assessments within
binary code.

5 Discussions
Despite the promising results demonstrated by Vul-BinLLM , cer-
tain limitations remain First, due to the scarcity of binary vulnera-
bility datasets, we evaluated Vul-BinLLM on compiled data from
the Juliet test suite. Although popular source code datasets such
as BigVul, Devign, and REVEAL are often used in vulnerability
research, they are challenging to apply in binary analysis due to
inconsistent compilation environments and build dependencies. For
example, Devign consists of complex projects requiring specific
Makefiles for compilation, while BigVul includes diverse projects
with inconsistent toolchains for building vulnerable code. There’s
an ongoing effort to improve the neural decompilation process for
binaries and to optimize the decompiled code to recover syntactic
details out of the semantic information that is created by the decom-
piler [94] [109]. Another approach that can be pursued to extend the
LLM’s capability to analyze a binary through LLMs without having

based on the following code, does it have the OS Command Injection? Focus on the dataflow. No explanation.

Here are some descriptions about the weakness that you can refer to:

OS Command Injection: The product constructs all or part of an OS command using externally-influenced
input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that
could modify the intended OS command when it is sent to a downstream component.

Stack-based Buffer Overflow: A stack-based buffer overflow condition is a condition where the buffer being
overwritten is allocated on the stack (i.e., is a local variable or, rarely, a parameter to a function).

Out-of-bound Write: The product writes data past the end, or before the beginning, of the intended buffer.

<code snippet>

Yes: the code has CWE-78 OS Command Injection …

No: the code does not have OS command Injection …

Figure 5: An example of binary classification with CWE-78.
The LLM is required to respond with yes or no, when asked if
it is concentrating on the code flow rather than semantics. To
avoid memorization of LLMs in our special case, we append
multiple CWEs (CWE-121: Stack Buffer Overflow, CWE-787:
Out-of-bound Write)

to go through the decompilation process is to directly detect vulner-
abilities on the assembly level. The critical issue with such a process
it the high syntactic similarity between two binaries for a single
architecture. In our evaluations we evaluated various similarity
metrics including cosine similarity and Levenshtein distance be-
tween two different CWE examples in X86 assembly representation
from the Juliet Test Suite, we detected the cosine similarity to be
approximately 98% for most of the CWEs in there even though the
semantic information is very different for each of those files. It oc-
curs due to the similarity among the two binaries in their assembly
format referring to the same registers and the same architecture-
specific assembly instructions. Another important field of research
is to extend the LLM’s capability to reason about complex tasks,
especially vulnerability reports. The justification in CVE reports
is provided by either a clear definition of the vulnerability or an
exploit method that constitutes as a piece of sufficient evidence to
show the existence of a vulnerability in the source code. However,
in a binary describing a vulnerability would require the availability
of an attack method that is then run to ensure the availability of
such vulnerability in a binary. We consider the explainability of
the reasoning of the vulnerability to be out of scope for this paper
and a future direction. We also lack a comprehensive classification
model for the definition of vulnerabilities in the binary level. For
source code vulnerability classification, we have CVE and CWE def-
initions which provide both a fine and coarse-grained classification
for vulnerabilities which is not defined for architecture-specific
binary vulnerabilities. Another future direction for Vul-BinLLM is
to explore the areas of formal specification, probabilistic inference
mechanisms, retrieval augmented generation, small languagemodel
alongside a descriptive analysis of architecture specific vulnerabil-
ity definition as future directions to advance the binary analysis
ecosystem and to introduce LLM-like solutions to assign security
experts to potentially analyze binaries for vulnerabilities and mal-
ware.

8

CWE-78 (960/960)+ CWE-134 (1200/1200)+ CWE-190 (2860/2860)+ CWE-606 (240/240)+

LATTE Vul-BinLLM LATTE Vul-BinLLM LATTE Vul-BinLLM LATTE Vul-BinLLM

TP 892 1055 1151 1345 1773 1725 210 1218
FN 68 0 49 0 1087 0 30 0
TN 960 4288 1102 3998 1779 3618 142 4125
FP 0 191 98 14 1081 35 98 416
Accuracy 96.46% 96.55% 93.88% 99.74% 62.1% 99.34% 73.33% 74.54%
Precision 100% 84.67% 95.92% 98.97% 52.04% 98.01% 68.18% 92.78%
F1 Score 96.33% 91.70% 93.99% 99.48% 62.05% 98.99% 74.24% 85.4%

Table 3: Evaluation results of Vulnerability inspection based on Juliet Testsuite.

+:LATTE evaluation is done by embedding additional information alongside the code of the stripped binary to detect the CWE in the test
suite.
+:The numbers in parentheses indicate the number of test cases (bad/good) for this vulnerability type.
+:The values for Vul-BinLLM represents the number of files which contained various (bad/good) vulnerability types.
+:TN are all the files such that the vulnerability was in the prompt but was correctly undetected by the LLM.

6 Related Work
6.1 Semantic Recovery from Binary files
While LLMs have shown promise in various software engineering
tasks, their application in binary analysis has primarily focused on
syntactic regeneration of code. Previous research works [109] [48]
has explored using LLMs to generate human-readable representa-
tions of binary code, such as recovering function names or providing
code summaries. These approaches leverage the LLMs’ ability to
learn patterns and structures in code to reconstruct higher-level
representations from the low-level binary code. However, these
efforts primarily aim to improve code understandability for human
analysts rather than directly detecting vulnerabilities. They focus
on regenerating the syntactic structure of the code without nec-
essarily delving into the identification of potential security flaws.
This limitation stems from the inherent challenges of binary code
analysis, where the absence of high-level abstractions and seman-
tic information makes it difficult to extract vulnerability-related
features directly from the binary.

6.2 Reverse Engineering and Program Analysis
for Vulnerability Detection

Reverse engineering is the process of analyzing and understanding
the design, structure, and functionality of a code snippet by working
backward from its final form. It is a critical technique in software
engineering particularly within binary analysis. Traditional binary
analysis is involved in decompilation, which is a significant portion
in reverse engineering. Reverse engineering has been adopted in
many program analysis domains, e.g. vulnerability assessment [18,
26, 44, 51, 82, 99], malware analysis [24, 38, 103, 112], software
repair [56, 80, 84, 98], and code optimization [62].

Due to the inherent difficulty and opacity of binary code, prior
research has focused on the readability and maintainability. Simi-
larity analysis [102, 110], memory analysis [81], assembly-to-code
translation [13, 40], function identification [52]. Decompilation
optimization is an active research area since it combines reverse
engineering and machine learning. David et al. [28] leverage LSTM

[47] to predict variable names in stripped binaries. TIE [53], Retyped
[75], and OSPREY [115] focus on variable type recovery. Direct [74]
and DIRTY [23] have exploited Transformer-based methods for
recovering variable names from decompiled code. More recently,
DeGPT [48] and Resym [109] leverage LLMs to identify, and re-
cover code that is readable and similar to ground-truth original code.
Vul-BinLLM , on the other hand, emphasizes on annotating poten-
tial vulnerability information while simplifying code structures and
renaming variable names, while prior work [22, 45] employ ML-
based approaches to predict debugging information from stripped
binaries. Vul-BinLLM can generate more concrete vulnerability
comments to provide appropriate information for the LLM to ana-
lyze it for vulnerability detection.

6.3 Learning-based Vulnerability Detection
Learning-based approaches have made substantial progress in vul-
nerability detection [21, 37, 43, 63, 89, 118], employing various
methods such as graph representations and large language models
to analyze code. Graph Neural Network (GNN)-based techniques
[63, 95, 118] represent code snippets as graph-based structures,
such as Abstract Syntax Trees (ASTs) and Control Flow Graphs
(CFGs). By utilizing GNN on these graph based structured rep-
resentations, It allows for a better analysis for vulnerabilities in
the representation of control flow graphs, call graphs and code
property graphs. However, GNN-based methods face challenges
in effectively distinguishing vulnerabilities within lexically-similar
but semantically-different code pairs, as they are limited by their
reliance on structural information alone, often lacking deeper se-
mantic understanding required to identify subtle vulnerabilities.
[32]

Other learning-based approaches have explored the use of
transformer-based models, where Large Language Models (LLMs)
have been employed to detect vulnerabilities by leveraging large-
scale pre-training on code [59, 83]. Although LLMs have shown
promise in generating syntactically correct and contextually rele-
vant code, their effectiveness in identifying vulnerabilities is limited
when they encounter complex low-level vulnerabilities or intricate

9

program flows, which require precise interpretation of code seman-
tics and memory handling [117].

In addition, traditional static analysis tools, such as Cppcheck,
offer rule-based analysis to detect code issues, including potential
vulnerabilities.While these tools are efficient and interpretable, they
often suffer from high false-positive rates and lack the flexibility to
detect novel or context-dependent vulnerabilities, as they cannot
generalize beyond predefined rules.

PLM-based Vulnerability Detection involves fine-tuning pre-
trained language models (PLMs) on vulnerability detection datasets.
In this approach, code snippets are tokenized and processed by
PLMs (e.g., RoBERTa [58]), which act as encoders. The PLMs extract
semantic features from the code, which are then used in binary clas-
sification to determine the presence of vulnerabilities. This method
leverages the language understanding capabilities of PLMs to ana-
lyze code textually, making it suitable for detecting vulnerabilities
that are evident from code semantics.

LLM-based Vulnerability Detection utilize LLMs through either
prompt engineering or fine-tuning. Prompt engineering strategies,
such as Chain-of-Thought (CoT) [105] reasoning and few-shot learn-
ing, enable LLMs to detect vulnerabilities more accurately without
modifying the original model parameters. In contrast, the fine-
tuning approach involves training LLMs on vulnerability detection
datasets, allowing the models to learn specific features of vulnerable
code by updating their parameters. This approach takes advantage
of LLMs’ strong contextual understanding, making it well-suited
for identifying complex vulnerabilities across diverse codebases.

6.4 Code Large Language Models (CodeLLMs)
With the power of Transformer architecture [100], modern large
language models (LLMs) show great potential in code related tasks.
Specifically, for encoder-only models (e.g., BERT [30], RoBERTa
[58]), Code-BERT [35] learns from massive source code and natural
language descriptions to show promising results in code search,
completion, and summarizations. GraphBert [114] can learn repre-
sentations from graph-structured code to leverage structural infor-
mation. There are also followed-up work based on them Code-BERT
[35]. Furthermore, for decoder-only models (e.g., GPTs [20, 85]),
GPT-4 with canvas [2], CodeLLaMA series [33, 86, 97], Claude
Sonnet series [19], Mistral [17]& Codestral [15], DeepSeek Code
[42], and Gemini [96] enhance the capabilities of understanding
code related tasks specifically. Recently, more emerging models like
Codestral Mamba [16] offer the advantage of linear time inference
[27, 41] and the theoretical ability to model sequences of infinite
length. However, those Code LLMs are focus on code generation,
debugging, and summarization [14, 36, 42, 55, 73, 86, 104]. Our work
focuses on code analysis especially in vulnerability or weakness.

There are prior works applying LLMs in code understanding
[25, 61, 71, 76, 87], software fuzzing [29, 50, 113], natural language
alignment [39, 70, 72, 108], vulnerability repair [32, 49, 90, 106, 107].
There are few works in applying LLMs in binary analysis. LATTE
[57] is the most relevant works. However, it focuses on specific
taint analysis. Thus, we treat is as a complement to our work. Re-
cent work in binary-related work [54, 60, 91, 92, 111] are all based
on traditional machine leaning methods rather than LLMs. For

example, CodeArt [92] pretrains a BERT-like model on binary func-
tions through explicit attention mechanisms. VulHawk leverages
an intermediate-representation by RoBERTa with code reuse sim-
ilarity. VulANalyzeR exploits Gragh Convolution and attention
mechanisms to classify vulnerabilities from Control Flow Graphs.
Note that DeBinVul is an orthogonal work to ours. They fine-tuned
a Code LLM to detect vulnerabilities from decompiled code with
self-built datasets. On the other hand, Vul-BinLLM is able to de-
tect vulnerabilities without fine-tuning. Further, Vul-BinLLM is
easy to scale to multiple programming languages and have a better
generalization due to its flexibility.

7 Conclusions
This paper introduces Vul-BinLLM, an LLM-based framework for
binary vulnerability detection that integrates decompilation op-
timization utilizing neural decompilation and extended context
window and memory management capabilities to enable vulnera-
bility analysis with binaries. The results demonstrate the potential
of LLMs to address longstanding challenges in binary vulnerability
detection, paving the way for more scalable and secure software
systems.

References
[1] 2023. CodeLlaMA by Meta AI. https://ai.meta.com/blog/code-llama-large-

language-model-coding/
[2] 2023. GPT-4 by OpenAI. https://openai.com/research/gpt-4
[3] 2024. Big-Vul Dataset. https://huggingface.co/datasets/bstee615/bigvul
[4] 2024. Devign Dataset. https://github.com/epicosy/devign
[5] 2024. Ghidra. https://ghidra-sre.org/
[6] 2024. IDA Pro. https://hex-rays.com/ida-pro
[7] 2024. Juliet Test Suite for C/C++ and Java. https://samate.nist.gov/SARD/

testsuite.php
[8] 2024. Microsoft Vulnerability Dataset (MVD). https://github.com/microsoft/MS-

MVD
[9] 2024. RetDec. https://github.com/avast/retdec
[10] 2024. REVEAL Dataset. https://github.com/VulDetProject/ReVeal
[11] 2024. Software Assurance Reference Dataset (SARD). https://samate.nist.gov/

SARD/
[12] 2024. Vul4J Dataset. https://github.com/tuhh-softsec/vul4j
[13] Iftakhar Ahmad and Lannan Luo. 2023. Unsupervised Binary Code Translation

with Application to Code Clone Detection and Vulnerability Discovery. In
Findings of the Association for Computational Linguistics: EMNLP 2023. 14581–
14592.

[14] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.
2021. Unified pre-training for program understanding and generation. arXiv
preprint arXiv:2103.06333 (2021).

[15] Mistral AI. 2024. Codestral. https://mistral.ai/news/codestral/
[16] Mistral AI. 2024. Codestral Mamba. https://mistral.ai/news/codestral-mamba/
[17] Mistral AI. 2024. Mixture of Experts Models. https://mistral.ai/news/mixtral-of-

experts/
[18] Ioannis Angelakopoulos, Gianluca Stringhini, and Manuel Egele. 2023.

{FirmSolo}: Enabling dynamic analysis of binary Linux-based {IoT} kernel
modules. In 32nd USENIX Security Symposium (USENIX Security 23). 5021–5038.

[19] anthropic. 2024. Claude. https://www.anthropic.com/claude
[20] Tom B Brown. 2020. Language models are few-shot learners. arXiv preprint

arXiv:2005.14165 (2020).
[21] Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. 2021.

Deep learning based vulnerability detection: Arewe there yet? IEEE Transactions
on Software Engineering 48, 9 (2021), 3280–3296.

[22] Ligeng Chen, Zhongling He, and Bing Mao. 2020. Cati: Context-assisted type
inference from stripped binaries. In 2020 50th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 88–98.

[23] Qibin Chen, Jeremy Lacomis, Edward J Schwartz, Claire Le Goues, Graham
Neubig, and Bogdan Vasilescu. 2022. Augmenting decompiler output with
learned variable names and types. In 31st USENIX Security Symposium (USENIX
Security 22). 4327–4343.

[24] Sanchuan Chen, Zhiqiang Lin, and Yinqian Zhang. 2021. {SelectiveTaint}:
Efficient Data Flow Tracking With Static Binary Rewriting. In 30th USENIX
Security Symposium (USENIX Security 21). 1665–1682.

10

https://ai.meta.com/blog/code-llama-large-language-model-coding/
https://ai.meta.com/blog/code-llama-large-language-model-coding/
https://openai.com/research/gpt-4
https://huggingface.co/datasets/bstee615/bigvul
https://github.com/epicosy/devign
https://ghidra-sre.org/
https://hex-rays.com/ida-pro
https://samate.nist.gov/SARD/testsuite.php
https://samate.nist.gov/SARD/testsuite.php
https://github.com/microsoft/MS-MVD
https://github.com/microsoft/MS-MVD
https://github.com/avast/retdec
https://github.com/VulDetProject/ReVeal
https://samate.nist.gov/SARD/
https://samate.nist.gov/SARD/
https://github.com/tuhh-softsec/vul4j
https://mistral.ai/news/codestral/
https://mistral.ai/news/codestral-mamba/
https://mistral.ai/news/mixtral-of-experts/
https://mistral.ai/news/mixtral-of-experts/
https://www.anthropic.com/claude

[25] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. 2023. Teaching
large language models to self-debug. arXiv preprint arXiv:2304.05128 (2023).

[26] Victor Cochard, Damian Pfammatter, Chi Thang Duong, and Mathias Humbert.
2022. Investigating graph embedding methods for cross-platform binary code
similarity detection. In 2022 IEEE 7th European Symposium on Security and
Privacy (EuroS&P). IEEE, 60–73.

[27] Tri Dao and Albert Gu. 2024. Transformers are SSMs: Generalized models
and efficient algorithms through structured state space duality. arXiv preprint
arXiv:2405.21060 (2024).

[28] Yaniv David, Uri Alon, and Eran Yahav. 2020. Neural reverse engineering of
stripped binaries using augmented control flow graphs. Proceedings of the ACM
on Programming Languages 4, OOPSLA (2020), 1–28.

[29] Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming
Zhang. 2023. Large language models are zero-shot fuzzers: Fuzzing deep-
learning libraries via large language models. In Proceedings of the 32nd ACM
SIGSOFT international symposium on software testing and analysis. 423–435.

[30] Jacob Devlin. 2018. Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv preprint arXiv:1810.04805 (2018).

[31] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming
Xia, Jingjing Xu, Zhiyong Wu, Tianyu Liu, et al. 2022. A survey on in-context
learning. arXiv preprint arXiv:2301.00234 (2022).

[32] Xueying Du, Geng Zheng, Kaixin Wang, Jiayi Feng, Wentai Deng, Mingwei Liu,
Bihuan Chen, Xin Peng, Tao Ma, and Yiling Lou. 2024. Vul-RAG: Enhancing
LLM-based Vulnerability Detection via Knowledge-level RAG. arXiv preprint
arXiv:2406.11147 (2024).

[33] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783 (2024).

[34] Jiahao Fan, Yi Li, Shaohua Wang, and Tien N Nguyen. 2020. AC/C++ code
vulnerability dataset with code changes and CVE summaries. In Proceedings of
the 17th International Conference on Mining Software Repositories. 508–512.

[35] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming
Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert:
A pre-trained model for programming and natural languages. arXiv preprint
arXiv:2002.08155 (2020).

[36] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022. Incoder: A
generativemodel for code infilling and synthesis. arXiv preprint arXiv:2204.05999
(2022).

[37] Michael Fu and Chakkrit Tantithamthavorn. 2022. Linevul: A transformer-
based line-level vulnerability prediction. In Proceedings of the 19th International
Conference on Mining Software Repositories. 608–620.

[38] Jian Gao, Xin Yang, Ying Fu, Yu Jiang, and Jiaguang Sun. 2018. Vulseeker: A
semantic learning based vulnerability seeker for cross-platform binary. In Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. 896–899.

[39] Mingyang Geng, Shangwen Wang, Dezun Dong, Haotian Wang, Ge Li, Zhi
Jin, Xiaoguang Mao, and Xiangke Liao. 2023. An empirical study on using
large language models for multi-intent comment generation. arXiv preprint
arXiv:2304.11384 (2023).

[40] Redha Gouicem, Dennis Sprokholt, Jasper Ruehl, Rodrigo CO Rocha, Tom Spink,
Soham Chakraborty, and Pramod Bhatotia. 2022. Risotto: a dynamic binary
translator for weak memory model architectures. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 1. 107–122.

[41] Albert Gu and Tri Dao. 2023. Mamba: Linear-time sequence modeling with
selective state spaces. arXiv preprint arXiv:2312.00752 (2023).

[42] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang,
Guanting Chen, Xiao Bi, Yu Wu, YK Li, et al. 2024. DeepSeek-Coder: When
the Large Language Model Meets Programming–The Rise of Code Intelligence.
arXiv preprint arXiv:2401.14196 (2024).

[43] Hazim Hanif and Sergio Maffeis. 2022. Vulberta: Simplified source code pre-
training for vulnerability detection. In 2022 International joint conference on
neural networks (IJCNN). IEEE, 1–8.

[44] Haojie He, Xingwei Lin, Ziang Weng, Ruijie Zhao, Shuitao Gan, Libo Chen,
Yuede Ji, Jiashui Wang, and Zhi Xue. 2024. Code is not natural language:
Unlock the power of semantics-oriented graph representation for binary code
similarity detection. In 33rd USENIX Security Symposium (USENIX Security 24),
PHILADELPHIA, PA.

[45] Jingxuan He, Pesho Ivanov, Petar Tsankov, Veselin Raychev, and Martin Vechev.
2018. Debin: Predicting debug information in stripped binaries. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security.
1667–1680.

[46] Jingxuan He and Martin Vechev. 2023. Large language models for code: Security
hardening and adversarial testing. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security. 1865–1879.

[47] S Hochreiter. 1997. Long Short-term Memory. Neural Computation MIT-Press
(1997).

[48] Peiwei Hu, Ruigang Liang, and Kai Chen. 2024. DeGPT: Optimizing Decompiler
Output with LLM. In Proceedings 2024 Network and Distributed System Security
Symposium (2024). https://api. semanticscholar. org/CorpusID, Vol. 267622140.

[49] Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. 2023. Impact of code
language models on automated program repair. In 2023 IEEE/ACM 45th Interna-
tional Conference on Software Engineering (ICSE). IEEE, 1430–1442.

[50] Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023. Large language models
are few-shot testers: Exploring llm-based general bug reproduction. In 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE,
2312–2323.

[51] Dongkwan Kim, Eunsoo Kim, Sang Kil Cha, Sooel Son, and Yongdae Kim.
2022. Revisiting binary code similarity analysis using interpretable feature
engineering and lessons learned. IEEE Transactions on Software Engineering 49,
4 (2022), 1661–1682.

[52] Soomin Kim, Hyungseok Kim, and Sang Kil Cha. 2023. Funprobe: Probing
functions from binary code through probabilistic analysis. In Proceedings of the
31st ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 1419–1430.

[53] JongHyup Lee, Thanassis Avgerinos, and David Brumley. 2011. TIE: Principled
reverse engineering of types in binary programs. (2011).

[54] Litao Li, Steven HH Ding, Yuan Tian, Benjamin CM Fung, Philippe Charland,
Weihan Ou, Leo Song, and Congwei Chen. 2023. VulANalyzeR: Explainable
binary vulnerability detection with multi-task learning and attentional graph
convolution. ACM Transactions on Privacy and Security 26, 3 (2023), 1–25.

[55] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis
Kocetkov, Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny
Chim, et al. 2023. Starcoder: may the source be with you! arXiv preprint
arXiv:2305.06161 (2023).

[56] Zongjie Li, Chaozheng Wang, Zhibo Liu, Haoxuan Wang, Dong Chen, Shuai
Wang, and Cuiyun Gao. 2023. Cctest: Testing and repairing code completion
systems. In 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE). IEEE, 1238–1250.

[57] Puzhuo Liu, Chengnian Sun, Yaowen Zheng, Xuan Feng, Chuan Qin, Yuncheng
Wang, Zhi Li, and Limin Sun. 2023. Harnessing the power of llm to support
binary taint analysis. arXiv preprint arXiv:2310.08275 (2023).

[58] Yinhan Liu. 2019. Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692 364 (2019).

[59] Zhongxin Liu, Zhijie Tang, Junwei Zhang, Xin Xia, and Xiaohu Yang. 2024.
Pre-training by Predicting Program Dependencies for Vulnerability Analysis
Tasks. In Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering. 1–13.

[60] Zhenhao Luo, Pengfei Wang, Baosheng Wang, Yong Tang, Wei Xie, Xu Zhou,
Danjun Liu, and Kai Lu. 2023. VulHawk: Cross-architecture Vulnerability
Detection with Entropy-based Binary Code Search.. In NDSS.

[61] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah
Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al.
2024. Self-refine: Iterative refinement with self-feedback. Advances in Neural
Information Processing Systems 36 (2024).

[62] Niru Maheswaranathan, David Sussillo, Luke Metz, Ruoxi Sun, and Jascha Sohl-
Dickstein. 2021. Reverse engineering learned optimizers reveals known and
novel mechanisms. Advances in Neural Information Processing Systems 34 (2021),
19910–19922.

[63] Yisroel Mirsky, George Macon, Michael Brown, Carter Yagemann, Matthew
Pruett, Evan Downing, Sukarno Mertoguno, and Wenke Lee. 2023.
{VulChecker}: Graph-based Vulnerability Localization in Source Code. In 32nd
USENIX Security Symposium (USENIX Security 23). 6557–6574.

[64] MITRE. 2024. Common Vulnerabilities and Exposures. https://cve.mitre.org/
[65] MITRE. 2024. Common Weakness Enumeration. https://cwe.mitre.org/
[66] MITRE. 2024. Juliet C/C++ 1.3 v1.3. https://samate.nist.gov/SARD/test-suites/

112
[67] MITRE. 2024. The webiste of cve-2023-3699. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2023-3609
[68] MITRE. 2024. The website of cve-2023-30772. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2023-30772
[69] MITRE. 2024. The website of cwe-416. https://cwe.mitre.org/data/definitions/

416.html
[70] Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui,

Terry Yue Zhuo, Swayam Singh, Xiangru Tang, Leandro VonWerra, and Shayne
Longpre. 2023. Octopack: Instruction tuning code large language models. arXiv
preprint arXiv:2308.07124 (2023).

[71] Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and
Brad Myers. 2024. Using an llm to help with code understanding. In Proceedings
of the IEEE/ACM 46th International Conference on Software Engineering. 1–13.

[72] Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford, Jesse Michael Han, Jerry
Tworek, Qiming Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy, et al.
2022. Text and code embeddings by contrastive pre-training. arXiv preprint
arXiv:2201.10005 (2022).

11

https://cve.mitre.org/
https://cwe.mitre.org/
https://samate.nist.gov/SARD/test-suites/112
https://samate.nist.gov/SARD/test-suites/112
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-3609
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-3609
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-30772
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-30772
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/416.html

[73] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, HuanWang, Yingbo Zhou, Sil-
vio Savarese, and Caiming Xiong. 2022. Codegen: An open large language model
for code with multi-turn program synthesis. arXiv preprint arXiv:2203.13474
(2022).

[74] Vikram Nitin, Anthony Saieva, Baishakhi Ray, and Gail Kaiser. 2021. Direct: A
transformer-based model for decompiled identifier renaming. In Proceedings of
the 1st Workshop on Natural Language Processing for Programming (NLP4Prog
2021). 48–57.

[75] Matt Noonan, Alexey Loginov, andDavid Cok. 2016. Polymorphic type inference
for machine code. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation. 27–41.

[76] Theo X Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and
Armando Solar-Lezama. 2023. Demystifying gpt self-repair for code generation.
arXiv preprint arXiv:2306.09896 (2023).

[77] OpenAI. 2024. ChatGPT. https://openai.com/blog/chatgpt
[78] OpenAI. 2024. GPT-4o. https://openai.com/index/hello-gpt-4o/
[79] Chengbin Pang, Ruotong Yu, Yaohui Chen, Eric Koskinen, Georgios Portokalidis,

Bing Mao, and Jun Xu. 2021. Sok: All you ever wanted to know about x86/x64
binary disassembly but were afraid to ask. In 2021 IEEE symposium on security
and privacy (SP). IEEE, 833–851.

[80] Hammond Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh Karri, and Bren-
dan Dolan-Gavitt. 2023. Examining zero-shot vulnerability repair with large
language models. In 2023 IEEE Symposium on Security and Privacy (SP). IEEE,
2339–2356.

[81] Kexin Pei, Dongdong She, Michael Wang, Scott Geng, Zhou Xuan, Yaniv David,
Junfeng Yang, Suman Jana, and Baishakhi Ray. 2022. NeuDep: neural binary
memory dependence analysis. In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 747–759.

[82] Kexin Pei, Zhou Xuan, Junfeng Yang, Suman Jana, and Baishakhi Ray. 2022.
Learning approximate execution semantics from traces for binary function
similarity. IEEE Transactions on Software Engineering 49, 4 (2022), 2776–2790.

[83] Tao Peng, Shixu Chen, Fei Zhu, Junwei Tang, Junping Liu, and Xinrong Hu.
2023. PTLVD: Program Slicing and Transformer-based Line-level Vulnerability
Detection System. In 2023 IEEE 23rd International Working Conference on Source
Code Analysis and Manipulation (SCAM). IEEE, 162–173.

[84] Yun Peng, Shuzheng Gao, Cuiyun Gao, Yintong Huo, and Michael Lyu. 2024.
Domain knowledge matters: Improving prompts with fix templates for repairing
python type errors. In Proceedings of the 46th IEEE/ACM International Conference
on Software Engineering. 1–13.

[85] Alec Radford. 2018. Improving language understanding by generative pre-
training. (2018).

[86] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.
Code llama: Open foundation models for code. arXiv preprint arXiv:2308.12950
(2023).

[87] Jérémy Scheurer, Jon Ander Campos, Tomasz Korbak, Jun Shern Chan, Angelica
Chen, Kyunghyun Cho, and Ethan Perez. 2023. Training language models with
language feedback at scale. arXiv preprint arXiv:2303.16755 (2023).

[88] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario
Polino, AndrewDutcher, JohnGrosen, Siji Feng, ChristopheHauser, Christopher
Kruegel, et al. 2016. Sok:(state of) the art of war: Offensive techniques in binary
analysis. In 2016 IEEE symposium on security and privacy (SP). IEEE, 138–157.

[89] Benjamin Steenhoek, Hongyang Gao, and Wei Le. 2024. Dataflow analysis-
inspired deep learning for efficient vulnerability detection. In Proceedings of the
46th IEEE/ACM International Conference on Software Engineering. 1–13.

[90] Benjamin Steenhoek, Md Mahbubur Rahman, Richard Jiles, and Wei Le. 2023.
An empirical study of deep learning models for vulnerability detection. In 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE,
2237–2248.

[91] Zian Su, Xiangzhe Xu, ZiyangHuang, Kaiyuan Zhang, and Xiangyu Zhang. 2024.
Source Code Foundation Models are Transferable Binary Analysis Knowledge
Bases. arXiv preprint arXiv:2405.19581 (2024).

[92] Zian Su, Xiangzhe Xu, Ziyang Huang, Zhuo Zhang, Yapeng Ye, Jianjun Huang,
and Xiangyu Zhang. 2024. Codeart: Better code models by attention regulariza-
tion when symbols are lacking. Proceedings of the ACM on Software Engineering
1, FSE (2024), 562–585.

[93] Yashar Talebirad and Amirhossein Nadiri. 2023. Multi-agent collaboration:
Harnessing the power of intelligent llm agents. arXiv preprint arXiv:2306.03314
(2023).

[94] Hanzhuo Tan, Qi Luo, Jing Li, and Yuqun Zhang. 2024. LLM4Decompile: Decom-
piling Binary Codewith Large LanguageModels. arXiv preprint arXiv:2403.05286
(2024).

[95] Wei Tang, Mingwei Tang, Minchao Ban, Ziguo Zhao, and Mingjun Feng. 2023.
CSGVD: A deep learning approach combining sequence and graph embedding
for source code vulnerability detection. Journal of Systems and Software 199
(2023), 111623.

[96] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui
Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican,
et al. 2023. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805 (2023).

[97] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi,
Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288 (2023).

[98] Saad Ullah, Mingji Han, Saurabh Pujar, Hammond Pearce, Ayse Coskun, and
Gianluca Stringhini. 2024. LLMs Cannot Reliably Identify and Reason About
Security Vulnerabilities (Yet?): A Comprehensive Evaluation, Framework, and
Benchmarks. In IEEE Symposium on Security and Privacy.

[99] Jayakrishna Vadayath, Moritz Eckert, Kyle Zeng, Nicolaas Weideman, Gokulkr-
ishna Praveen Menon, Yanick Fratantonio, Davide Balzarotti, Adam Doupé,
Tiffany Bao, Ruoyu Wang, et al. 2022. Arbiter: Bridging the static and dynamic
divide in vulnerability discovery on binary programs. In 31st USENIX Security
Symposium (USENIX Security 22). 413–430.

[100] A Vaswani. 2017. Attention is all you need. Advances in Neural Information
Processing Systems (2017).

[101] Fish Wang and Yan Shoshitaishvili. 2017. Angr-the next generation of binary
analysis. In 2017 IEEE Cybersecurity Development (SecDev). IEEE, 8–9.

[102] Hao Wang, Wenjie Qu, Gilad Katz, Wenyu Zhu, Zeyu Gao, Han Qiu, Jianwei
Zhuge, and Chao Zhang. 2022. Jtrans: Jump-aware transformer for binary
code similarity detection. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis. 1–13.

[103] Junzhe Wang, Matthew Sharp, Chuxiong Wu, Qiang Zeng, and Lannan
Luo. 2023. Can a Deep Learning Model for One Architecture Be Used for
Others?{Retargeted-Architecture} Binary Code Analysis. In 32nd USENIX Se-
curity Symposium (USENIX Security 23). 7339–7356.

[104] Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. 2021. Codet5:
Identifier-aware unified pre-trained encoder-decoder models for code under-
standing and generation. arXiv preprint arXiv:2109.00859 (2021).

[105] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural information processing
systems 35 (2022), 24824–24837.

[106] Yi Wu, Nan Jiang, Hung Viet Pham, Thibaud Lutellier, Jordan Davis, Lin Tan,
Petr Babkin, and Sameena Shah. 2023. How effective are neural networks
for fixing security vulnerabilities. In Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis. 1282–1294.

[107] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated pro-
gram repair in the era of large pre-trained language models. In 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). IEEE, 1482–1494.

[108] Danning Xie, Byungwoo Yoo, Nan Jiang, Mijung Kim, Lin Tan, Xiangyu Zhang,
and Judy S Lee. 2023. Impact of large language models on generating software
specifications. arXiv preprint arXiv:2306.03324 (2023).

[109] Danning Xie, Zhuo Zhang, Nan Jiang, Xiangzhe Xu, Lin Tan, and Xiangyu
Zhang. 2024. ReSym: Harnessing LLMs to Recover Variable and Data Structure
Symbols from Stripped Binaries. (2024).

[110] Xiangzhe Xu, Shiwei Feng, Yapeng Ye, Guangyu Shen, Zian Su, Siyuan Cheng,
Guanhong Tao, Qingkai Shi, Zhuo Zhang, and Xiangyu Zhang. 2023. Improving
binary code similarity transformer models by semantics-driven instruction
deemphasis. In Proceedings of the 32nd ACM SIGSOFT International Symposium
on Software Testing and Analysis. 1106–1118.

[111] Shouguo Yang, Chaopeng Dong, Yang Xiao, Yiran Cheng, Zhiqiang Shi, Zhi Li,
and Limin Sun. 2023. Asteria-Pro: Enhancing Deep Learning-based Binary Code
Similarity Detection by Incorporating Domain Knowledge. ACM Transactions
on Software Engineering and Methodology 33, 1 (2023), 1–40.

[112] Wei You, Zhuo Zhang, Yonghwi Kwon, Yousra Aafer, Fei Peng, Yu Shi, Carson
Harmon, and Xiangyu Zhang. 2020. Pmp: Cost-effective forced execution with
probabilistic memory pre-planning. In 2020 IEEE Symposium on Security and
Privacy (SP). IEEE, 1121–1138.

[113] Jiahao Yu, Xingwei Lin, Zheng Yu, and Xinyu Xing. 2024. {LLM-Fuzzer}:
ScalingAssessment of Large LanguageModel Jailbreaks. In 33rd USENIX Security
Symposium (USENIX Security 24). 4657–4674.

[114] Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. 2020. Graph-bert:
Only attention is needed for learning graph representations. arXiv preprint
arXiv:2001.05140 (2020).

[115] Zhuo Zhang, Yapeng Ye, Wei You, Guanhong Tao, Wen-chuan Lee, Yonghwi
Kwon, Yousra Aafer, and Xiangyu Zhang. 2021. Osprey: Recovery of variable
and data structure via probabilistic analysis for stripped binary. In 2021 IEEE
Symposium on Security and Privacy (SP). IEEE, 813–832.

[116] Binbin Zhao, Shouling Ji, Xuhong Zhang, Yuan Tian, Qinying Wang, Yuwen Pu,
Chenyang Lyu, and Raheem Beyah. 2023. {UVSCAN}: Detecting {Third-Party}
Component Usage Violations in {IoT} Firmware. In 32nd USENIX Security
Symposium (USENIX Security 23). 3421–3438.

[117] Xin Zhou, Sicong Cao, Xiaobing Sun, and David Lo. 2024. Large Language
Model for Vulnerability Detection and Repair: Literature Review and Roadmap.

12

https://openai.com/blog/chatgpt
https://openai.com/index/hello-gpt-4o/

arXiv preprint arXiv:2404.02525 (2024).
[118] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. 2019. De-

vign: Effective vulnerability identification by learning comprehensive program

semantics via graph neural networks. Advances in neural information processing
systems 32 (2019).

13

	Abstract
	1 Introduction
	2 Background
	2.1 Reserve Engineering for Vulnerability Analysis
	2.2 Binary Analysis and Program Analysis
	2.3 CVE and CWE

	3 Method
	3.1 Overview
	3.2 Design of Vul-BinLLM

	4 Evaluation
	4.1 Implementation
	4.2 Research questions and evaluation setup
	4.3 Results

	5 Discussions
	6 Related Work
	6.1 Semantic Recovery from Binary files
	6.2 Reverse Engineering and Program Analysis for Vulnerability Detection
	6.3 Learning-based Vulnerability Detection
	6.4 Code Large Language Models (CodeLLMs)

	7 Conclusions
	References

