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1 Executive Summary

2 Introduction

2.1 Objective

The objective of this Malware Analysis Report is to provide an in-depth understanding
of the behavior, architecture, and intent of a malicious software instance. At its core,
this report serves as a crucial tool for identifying the characteristics and operations of the
threat, offering detailed insights that can be used to map the broader attack landscape.
By dissecting the capabilities and infrastructure of the malware, analysts are able to build
a clear picture of its functionality, origin, and potential impact.

Mapping a threat accurately is of paramount importance for defenders. A well-crafted
malware analysis report helps connect individual malicious artifacts with broader attack
campaigns and identifies common Techniques, Tactics, and Procedures (TTPs) employed
by adversaries. This intelligence feeds into a larger knowledge base that allows cyber-
security teams to understand how threats evolve, recognize new campaigns with similar
signatures, and anticipate potential next steps of attackers. The report is not merely an
exercise in detailing technical specifics but also a way of enriching the collective under-
standing of a Threat Actor ’s capabilities, motivations, and behaviors.

Actionable Threat Intelligence derived from malware analysis is particularly valuable
because it enables proactive defenses. With a structured understanding of the malware’s
Indicators of Compromise (IOCs), behavioral patterns, and infrastructure, Threat Hunt-
ing and Monitoring teams are equipped with the context needed to seek out malicious
activity before it fully manifests. Threat Hunters can leverage this intelligence to identify
adversarial presence across their environments more effectively, while Monitoring teams
can enhance detection logic and fine-tune alerts to identify these threats more accurately
in real time. This coordinated approach bolsters an organization’s defense posture, mak-
ing it possible to detect and respond to even well-structured, sophisticated threats that
are designed to evade traditional security mechanisms.

Ultimately, a comprehensive malware analysis report provides not only a retrospective
view of what a threat has done but also equips defenders with the tools and knowledge
to better predict, detect, and prevent future attacks. This knowledge empowers security
teams to make informed decisions, prioritize vulnerabilities, and improve their capabilities
against Advanced Persistent Threats (APTs).
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2.2 Infection Chain

Figure 1: Infection Chain Diagram
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3 Methodology

Analyzing the malware involved a comprehensive approach utilizing both static and dy-
namic analysis techniques to thoroughly understand its structure, behavior, and potential
impact. By combining these two approaches, it is possible to gain a comprehensive un-
derstanding of the malware’s capabilities and objectives. Static analysis provided insights
into its structure and obfuscation methods, while dynamic analysis revealed its real-time
behavior and interactions with the system. This dual approach was essential in developing
effective detection and mitigation strategies against this sophisticated threat.

3.1 Static Analysis

Static analysis is a fundamental technique in malware analysis that involves examining the
code of malicious software without executing it. This approach focuses on understanding
the structure, logic, and intent of the malware through methods such as disassembling,
decompiling, and reviewing its binary or script content. By analyzing the static properties
of malware, such as strings, embedded resources, file headers, and imported functions,
researchers can gather valuable insights into its capabilities, communication patterns, and
potential targets.

The main goal of static analysis is to dissect the malware’s inner workings, identify
hardcoded Indicators of Compromise (IoCs) like IP addresses, URLs, or file paths, and
infer its behavior without the risk of executing harmful code. This method is particu-
larly useful for uncovering obfuscation techniques, encrypted payloads, and multi-stage
architectures, which are often employed by modern malware to hinder direct analysis.

However, static analysis comes with its challenges. Advanced malware frequently uses
obfuscation, packing, or encryption to conceal its code and deter examination. Analysts
must rely on specialized tools and techniques, such as deobfuscation scripts, unpackers,
and cryptographic analysis, to overcome these barriers. Moreover, analyzing assembly-
level or machine code demands a high level of expertise, as the complexity of the malware’s
logic can obscure its true intent.

Despite its limitations, static analysis is invaluable as it allows analysts to preemp-
tively assess a malware sample’s potential threats, providing critical intelligence without
the inherent risks of execution. Combined with dynamic analysis, it forms a comprehen-
sive approach to malware investigation, equipping defenders with the necessary under-
standing to develop effective detection and mitigation strategies.

3.2 Dynamic Analysis

Dynamic analysis is a cornerstone of malware analysis, enabling researchers to observe the
behavior of malicious software in real-time by executing it within a controlled, isolated
environment. This approach is particularly valuable for analyzing modern malware that
employs sophisticated obfuscation techniques, rendering static analysis alone insufficient.
By simulating realistic conditions, analysts can examine how malware interacts with the
file system, registry, processes, network, and system API s, providing direct insights into
its functionality and intent.

The objective of dynamic analysis is to uncover the behavioral profile of the malware,
revealing actions such as data exfiltration, Command-and-Control communication, cre-
dential theft, and persistence mechanisms. It also aids in identifying Indicators of Compro-
mise (IoCs), such as IP addresses, domains, and modified system configurations, which
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are crucial for detection and response efforts. This method is not without challenges,
as modern malware often incorporates anti-analysis techniques designed to detect and
evade Sandboxed Environments, Virtual Machines, or Debugging Tools. These measures
include delaying execution, checking for artifacts indicative of analysis environments, and
employing runtime obfuscation to conceal its activities.

Despite these difficulties, dynamic analysis remains a critical tool in the fight against
advanced threats. Its ability to reveal runtime behavior complements static analysis,
providing a comprehensive understanding of the malware’s objectives and capabilities.
While the process can be resource-intensive and time-consuming, its contributions to
cybersecurity are indispensable, offering valuable intelligence to counteract and mitigate
malicious campaigns effectively.
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4 Analysis Results

4.1 Malware Distribution

On November 13, 2024, an attempted social engineering attack was detected involving
LinkedIn, a widely trusted professional networking platform. The target, a Web3 and
blockchain developer, was approached by an individual posing as a representative of a
reputable company in the NFT and blockchain space. The attacker initially framed their
approach as a business opportunity, inviting the target to participate in an NFT gaming
project, as extensively reported by Luca Di Domenico on his Notion website.

Figure 2: Attacker trying to engage its victim.

The interaction began with what appeared to be a standard recruitment message, con-
taining project details that aligned with the target’s professional expertise and current
industry trends. The attacker followed up by requesting that the target download and
run a codebase hosted on Bitbucket, presented as part of a skill assessment process. How-
ever, as communication progressed, subtle signs raised suspicion, prompting the target
to further investigate the provided code.

Figure 3: BitBucket malicious repository.

Upon examination, the codebase was found to contain obfuscated scripts designed to
perform unauthorized actions on the target’s system. This discovery revealed the true
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nature of the message: a well-crafted attempt to execute malicious code under the guise
of a professional opportunity. The following report outlines the timeline of events, initial
detection, and subsequent findings, detailing the approach used by the attacker and the
potential risks identified.

Figure 4: Obfuscated malicious code posed inside the error.js Middleware module.

4.2 First-Stage

Figure 5: First Stage

The initial JavaScript code is a highly obfuscated script crafted to execute malicious op-
erations, including the deployment of additional payloads, collection of sensitive data and
its subsequent exfiltration to a remote server under the attacker’s control. The obfusca-
tion layers serve to conceal its true intent, complicating analysis and detection efforts. By
targeting critical data such as credentials and cryptocurrency wallets, the script demon-
strates a deliberate focus on financial and personal information theft, aligning with its
malicious objectives.

4.2.1 Code Obfuscation

In this section, there will be explored the various obfuscation techniques and decoy mech-
anisms utilized in the code to hinder reverse engineering and analysis efforts. One of the
primary methodologies used is the adoption of meaningless and non-descriptive variable
and function names. Variables such as 0x5647f0, 0x49e0, and functions like 0xb038d0
are prevalent throughout the script. This practice obscures the code’s intent, making it
challenging for a human reader to discern the purpose of different variables and functions.
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Figure 6: Variables are renamed to avoid leaking any useful insight.

In addition to meaningless naming, the code employs string encoding and lookup
tables. Functions like 0xfee7 and 0x49e0 map obfuscated strings to their actual
values using a lookup table, which is an array of strings that are themselves difficult to
interpret. This method effectively hides string literals and function names, complicating
static analysis.

Figure 7: Code employs lookup-tables for strings to reduce code understandability.

Figure 8: Lookup-table content

The script makes extensive use of self-invoking functions and nested function wrap-
pers. These patterns complicate the control flow and make it harder to follow the sequence
of execution. By encapsulating code within multiple layers of functions that immediately
invoke themselves, the script hides the true entry points and interconnections between
different parts of the code.
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Malware Analysis Report 9

Figure 9: An example of self-invoking and wrapped functions.

Another obfuscation technique introduced is the use of the function constructor for
dynamic code execution. By constructing new functions at runtime, the script can gen-
erate and execute code that is not visible in its static form, thereby concealing the actual
operations being performed. This method hinders static analysis tools, which rely on
examining the code as it appears without executing it.

Figure 10: Functions are instantiated at runtime to make it harder analyze source code.

Anti-debugging and Anti-Tampering techniques are also employed. The script includes
functions designed to detect if it is being debugged and alter its behavior, accordingly,
potentially interfering with debugging efforts, by even invoking the debugger statement
dynamically, which can cause debuggers to pause execution unexpectedly or enter infinite
loops.

Figure 11: Anti-Debugging functionalities
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It also utilizes Opaque Predicates and Dead Code. These are conditions and code
blocks that do not affect the overall program logic but are intended to confuse the analyst.
Opaque predicates are conditions that always evaluate to true or false, making it difficult
to determine the actual execution path, while Dead Code is never invoked.

Figure 12: Example of Opaque Predicate.

Control flow flattening is another technique used to obfuscate the code. By rearrang-
ing the normal execution flow and breaking it into smaller blocks with indirect jumps and
calls, the script makes it challenging to follow the logical sequence of operations. This
method obscures the natural structure of the code, hindering attempts to map out its
functionality. Numeric literals are often encoded in hexadecimal or expressed as compu-
tations, making it harder to interpret constants directly. This adds an additional layer of
complexity, as analysts must compute the actual numeric values to understand the code’s
behavior.

Figure 13: Numbers are hex-encoded to add complexity to code analysis.

Confusing naming conventions are also used as a decoy strategy. The use of similar
or repeating variable names with slight variations, such as 0x214ade and 0x2f409e ,
can cause confusion. This practice makes it difficult to track variables and understand
their roles in the code.

Figure 14: Usage of confusing naming conventions for script imports.

Additionally, the script introduces unnecessary complex mathematical operations,
including mathematical computations or expressions that serve no purpose can obfuscate
the actual logic and mislead analysts into thinking they are significant when they are not.

By nesting functions and using self-invoking patterns, the script creates multiple lay-
ers of execution that hide the entry point and make it harder to trace the execution
path. Analysts may need to unravel several layers before reaching the core functionality,
increasing the effort required for analysis. The use of dynamic code generation with the
function constructor serves as a decoy by obscuring the actual code being executed until
runtime. This makes static analysis less effective, as the code’s behavior cannot be fully
understood without executing it.

The primary goal of these obfuscation techniques and decoy mechanisms is to prevent
easy reading and understanding of the code. By making it difficult to interpret, the
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attacker aims to prevent quick detection of the malicious activities. The obfuscated code
can evade detection by static analysis tools that rely on pattern matching or signature-
based detection. Furthermore, by increasing its complexity, the attacker delays reverse
engineering efforts. This added difficulties and pitfalls increases the time and effort
required for analysts to de-obfuscate the code, which may allow the attacker more time to
exploit the compromised system. The inclusion of decoy code and unnecessary complexity
helps hide the malicious intent within layers of confusing code, potentially leading analysts
down incorrect paths and causing them to misinterpret the code’s purpose or miss critical
malicious components.

4.2.2 Code Analysis - error.js

By investigating a refactored version of this code, it is possible to gather how the execution
begins with the invocation of the main function, which serves as the orchestrator of the
script’s activities.

Figure 15: Refactored main routine of the malicious JS file.

Inside this section the script first generates a UNIX timestamp to tag the exfiltrated
data uniquely. It then proceeds to collect information from various browsers by invoking
collectBrowserData for Chrome, Brave, and Opera browsers. The collectBrowser-
Data function determines the appropriate base directory for each browser based on the
operating system and then calls collectExtensionData to harvest data from targeted
extensions.
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Figure 16: Snippet of the refactored capabilities of collectBrowserData .

Figure 17: Snippet of the refactored capabilities of collectExtensionData .

collectExtensionData scans through multiple browser profiles, attempting to find
and collect data from extensions specified in the extensionIds array, which includes pop-
ular cryptocurrency wallets like MetaMask. For each profile and extension the identified
threat constructs the path to the extension’s data directory and, if it exists, reads the
files within. Each file is read and stored in an array along with its metadata, such as the
filename constructed from the browser prefix, profile number, extension ID, and original
filename. A complete list of all the extensions tracked is provided below:

• nkbihfbeogaeaoehlefnkodbefgpgknn - MetaMask (A widely used cryptocurrency wallet
for Ethereum and ERC-20 tokens);
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• ejbalbakoplchlghecdalmeeeajnimhm - TronLink (The official wallet for the TRON
blockchain);

• fhbohimaelbohpjbbldcngcnapndodjp - LastPass: Free Password Manager (Helps users
store and manage passwords securely);

• ibnejdfjmmkpcnlpebklmnkoeoihofec - Binance Chain Wallet (Official wallet for Bi-
nance Chain, Binance Smart Chain, and Ethereum);

• bfnaelmomeimhlpmgjnjophhpkkoljpa - Coinbase Wallet Extension (Allows users to
interact with decentralized applications (dApps) on the browser);

• aeachknmefphepccionboohckonoeemg - Jaxx LibertyWallet (A multi-currency, multi-
platform cryptocurrency wallet);

• hifafgmccdpekplomjjkcfgodnhcellj - Exodus Wallet (Provides a user-friendly interface
for managing multiple cryptocurrencies);

• jblndlipeogpafnldhgmapagcccfchpi - BitPay Wallet (Allows users to manage Bitcoin
and other cryptocurrencies);

• acmacodkjbdgmoleebolmdjonilkdbch - Nifty Wallet (Designed for interacting with
Ethereum and related dApps);

• dlcobpjiigpikoobohmabehhmhfoodbb - Authy (A two-factor authentication (2FA) app
to secure online accounts);

• mcohilncbfahbmgdjkbpemcciiolgcge - Guarda Wallet (A non-custodial wallet sup-
porting multiple cryptocurrencies);

• agoakfejjabomempkjlepdflaleeobhb - Ledger Wallet (A hardware wallet extension for
managing cryptocurrencies securely);

• omaabbefbmiijedngplfjmnooppbclkk - OneKey Wallet (A hardware wallet extension
providing secure cryptocurrency storage);

• aholpfdialjgjfhomihkjbmgjidlcdno - Math Wallet (Supports numerous blockchains
and provides dApp support);

• nphplpgoakhhjchkkhmiggakijnkhfnd - SafePal Wallet (Offers secure cryptocurrency
management with hardware and software solutions);

• penjlddjkjgpnkllboccdgccekpkcbin - Yoroi Wallet (A light wallet for Cardano (ADA)
cryptocurrency);

• lgmpcpglpngdoalbgeoldeajfclnhafa - Phantom Wallet (A friendly Solana wallet built
for DeFi and NFTs);

• fldfpgipfncgndfolcbkdeeknbbbnhcc - Brave Wallet (The built-in crypto wallet of the
Brave browser);

• bhhhlbepdkbapadjdnnojkbgioiodbic - Ronin Wallet (Used for the Axie Infinity game
and manages NFTs and tokens on the Ronin network);
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• gjnckgkfmgmibbkoficdidcljeaaaheg - XDEFI Wallet (A cross-chain wallet extension
supporting multiple blockchains);

• afbcbjpbpfadlkmhmclhkeeodmamcflc - MEW CX (MyEtherWallet Extension) (Pro-
vides access to Ethereum accounts directly in the browser).

Figure 18: Crypto-related browser extensions list.

If the collectSolana flag is true, the script also attempts to collect the Solana id.json
file from the user’s home directory. This file often contains sensitive wallet information.
After this information gathering activity is completed, the script calls sendData to
exfiltrate the collected files to the attacker’s server.

Figure 19: Malicious function designed to exfiltrate data to remote C2 server.

November 26, 2024
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The sendData function constructs a form data object containing the type, a unique
host identifier, the timestamp, and the array of collected files. It then uses the request
module to perform an HTTP POST request to the attacker’s server, effectively transmit-
ting the stolen data.

Returning to the main function (Figure 15), the script also calls collectFirefoxData
to target Mozilla Firefox profiles. This function navigates through Firefox’s profile di-
rectories, specifically those containing -release in their names, and searches for extension
data within the storage/default directory. It targets moz-extension directories and col-
lects IndexedDB files used by extensions, which may contain sensitive information.

Figure 20: Function designed to collect Firefox profiles and extensions.

The script further attempts to collect data from the Exodus cryptocurrency wallet by
invoking collectExodusData . Depending on the operating system, it constructs the
path to the exodus.wallet directory and collects any files found within it. These may
contain wallet data, private keys, or transaction histories.

November 26, 2024
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Figure 21: Function designed to collect the Exodus Cryptowallet information.

For Windows systems, the script additionally targets Microsoft Edge by calling col-
lectExtensionData with the appropriate path. This increases the scope of data collec-
tion to include users who primarily use Edge. The script then performs a platform check
to determine whether to collect login data. On macOS systems (platform starting with
’d’), it calls collectLoginDataMac to collect the macOS keychain file (login.keychain
or login.keychain-db) and the Login Data files from Chrome and Brave browsers. The
keychain may contain passwords, certificates, and secure notes, while the Login Data files
store saved login credentials.
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Figure 22: Function designed to collect the macOS Keychain and browser’s login data.

For other platforms, the script calls collectLocalStateAndLoginData for Chrome,
Brave, and Opera browsers. This function collects the Local State file, which contains
browser settings and encryption keys, and the Login Data files from each browser profile.
By collecting these files, the attacker aims to access encrypted passwords and other
sensitive data stored by the browsers.
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Figure 23: Function designed to collect credentials from different Browser.

After completing the data collection, the script calls executeAdditionalCode to
download and execute further malicious code.

Figure 24: Function related to download and execution of the subsequent infection stages.
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In executeAdditionalCode , the script checks if it is running on a Windows sys-
tem and whether a Python interpreter exists at /.pyp/Python.exe. If it does, the script
downloads a Python script from the attacker’s server and executes it using the available
interpreter. If the latter is not present, the script calls downloadAndExtractZip to
download and extract a legit Python3.11 archive named p.zip. For non-Windows sys-
tems, the script directly downloads a .py script and executes it using Python3. This
allows the attacker to execute additional code on the victim’s machine.

Figure 25: Function designed to download and extract a compressed Python 3.11 inter-
preter if not available on target machine.

This function uses the curl command to download an archive from the attacker’s
server. If the download fails, it retries after 20 seconds. Upon successful download,
it renames and extracts the archive into the user’s home directory, then proceeds to
execute the additional code and remove the stored archive. Throughout the script, helper
functions such as normalizePath and fileExists are used to handle file paths and check
for the existence of files or directories.

Figure 26: normalizePath and fileExists functions snippet.

These functions ensure that the script can correctly navigate the file system across
different operating systems, enhancing its effectiveness and portability. At the end of the
script, an interval is set to repeat the main function every five minutes, up to a total of
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three executions. By repeatedly executing the main function, the script ensures that it
can capture any new data that may have been added since the last execution, such as
newly saved passwords or wallet transactions. This repetition increases the chances of
collecting valuable information over time.

Figure 27: Main function is executed every 5 minutes on the compromised host.

Based on the observed behaviors and technical characteristics of the analyzed JavaScript
code, it is plausible to associate the subjected threat with the BeeverTail malware fam-
ily. The latter is recognized for its advanced data-stealing capabilities, particularly tar-
geting browser extensions and cryptocurrency wallets. The code operates by infiltrating
systems and scanning browser profiles across multiple web browsers, including Google
Chrome, Brave, Opera, Mozilla Firefox, and Microsoft Edge. It specifically targets ex-
tensions associated with popular cryptocurrency wallets such as MetaMask, TronLink,
and Exodus Wallet. By accessing data stored by these extensions, the malware aims to
extract sensitive information like private keys, seed phrases, and wallet files, potentially
compromising users’ cryptocurrency assets. Additionally, the malware harvests login cre-
dentials and browser data by accessing files like Login Data and Local State from browser
profiles. These files may contain encrypted usernames, passwords, and session cookies.
The exfiltration of collected data to remote servers controlled by the attackers, typi-
cally using HTTP POST requests, aligns with the data exfiltration methods employed by
BeeverTail . Also the usage of port 1224, known URL path as /pdown/ and a Python-
based second-stage payload. To evade detection and hinder analysis, malware employs
advanced obfuscation techniques. It uses meaningless variable and function names, mak-
ing the code difficult to read and understand. Strings are encoded and utilized through
lookup tables to conceal actual values and function calls. Control flow flattening is used
to alter the logical flow of the program, complicating efforts to follow the execution path.
Moreover, dynamic code execution is implemented using the function constructor and
self-invoking functions, allowing the malware to execute code dynamically at runtime.
The analyzed code also demonstrates the capability to download and execute additional
malicious code from remote servers. By installing legitimate-looking software, such as a
Python interpreter, it can run further scripts without raising suspicion. This modular
approach allows the malware to enhance its capabilities, maintain persistence, and adapt
to different environments, which is consistent with BeeverTail ’s behavior.

The malware known as BeeverTail has often been utilized as a delivery mechanism
for subsequent stages, notably deploying the malware family InvisibleFerret . The be-
havior exhibited by the error.js file, which was analyzed in this report, aligns closely
with this pattern. The specific set of Tactics, Techniques, and Procedures (TTPs) and
Indicators of Compromise (IoCs) associated with this file have been extensively docu-
mented as characteristic of the DPRK Threat Actor Lazarus Group.
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4.3 Second-Stage

Figure 28: Moving from First to Second Stage.

4.3.1 Code Obfuscation

The identified Second-Stage payload is located inside a Python script, stored as%TEMP%
\sysinfo script.py and downloaded from hxxp[:]//86.104.74[.]51:1224/client/8/87, car-
rying the initial stage of the InvisibleFerret malware family.

Figure 29: Second-Stage payload content.

As observed in the preceding image, the malware employs a sophisticated obfuscation
strategy designed to hinder analysis. To reveal the underlying payload, analysts must
reverse the provided string, decode it using base64, and decompress the resulting output.
This sequence of operations must be repeated fifty times before the actual malicious
payload becomes accessible.

This obfuscation technique is consistently applied across nearly all subsequent Python
scripts identified in the malware’s progression. Even scripts initially stored in clear text
at earlier stages are later written to disk using the same obfuscation mechanism. This
deliberate and systematic use of layered obfuscation underscores the attacker’s intent to
evade static detection and impede reverse engineering attempts.
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4.3.2 Code Analysis - sys info.py

Figure 30: Second-Stage imported modules

Identified script defines several variables and sets up the environment. It uses the platform
module to determine the operating system type, which is stored in the variable ot. This
information is subsequently used to decide how the payloads will be handled. The user’s
home directory is determined and stored in the variable home, and a hidden folder named
.n2 is created within this directory to store the downloaded payloads. By storing the
payloads in a hidden folder, the script aims to avoid detection by the user.

Figure 31: Remote connection configurations

The first payload is handled by the function download payload(). It checks if
the payload file, named %USERPROFILE%\.n2\pay , already exists in the hidden
directory. If it does, it attempts to remove it. Then, the script ensures that the di-
rectory .n2 is created if it does not already exist. The payload is downloaded from
86.104.74[.]51:1224 , with additional parameters (sType and gType, campaign identi-
fiers) passed in the URL. The downloaded content is saved in the hidden directory, and
once the download is successful, the script proceeds to execute the payload. If the system
is Windows, the payload is executed using the subprocess.Popen() method with specific
flags to suppress the console window and create a new process group, making the exe-
cution less noticeable. Otherwise, for macOS systems, the payload is executed without
these flags.

Figure 32: Malicious function designed to retrieve and run pay Python script.
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A specific condition is implemented for macOS systems, identified by platform as
Darwin. After the first payload is downloaded and executed, the script terminates if it
is running on macOS, implying that subsequent parts of the script are not meant to be
executed on this platform.

The script then continues to download and execute two additional payloads through
the functions download browse() and download mclip(). Like the process described
for the first payload, each of these functions first checks whether the corresponding file
already exists, removing it if necessary. It also ensures that the hidden directory .n2 is
present. The second payload, named %USERPROFILE%\.n2\bow , still a Python
script, is downloaded from a different endpoint on the same server, and the content is
saved and executed in the same way as before.

Figure 33: An additional Python payload is downloaded from the same C2 server.

The third payload, named%USERPROFILE%\.n2\mlip, follows the same down-
load, save, and execute procedure, using yet another endpoint on the server and still
employing a Python script.

Figure 34: A third Python script is then downloaded and executed.

Additionally, as illustrated in Figure 31 and Figure 32, the Threat Actor appears to
have left behind comments within the code that point to potential debugging targets.
The inclusion of a private IP address and an alternative URL for retrieving the pay
script suggests that the attacker might have been testing the functionality of this threat.
Alternatively, this could indicate a rushed deployment, where programmers neglected to
remove these debugging artifacts prior to release. Regardless of the reason, these elements
provide valuable intelligence, offering insight into the attacker’s development process and
potentially aiding in attribution or threat profiling.
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4.4 Third-Stage

Figure 35: Moving from Second to Third Stage.

As previously noted, this specific infection-stage provides a clear indication of the new
tradecrafts being employed by the Lazarus Group in this campaign. Notably, the
introduction of a new Python script, mlip, first identified only a few weeks prior to the
discovery of this campaign, signifies a deliberate evolution in their operational approach.
Additionally, an unprecedented payload embedded within the bow script was identified
during this investigation, further underscoring the group’s intent to expand their arsenal
of malicious tools.

These developments suggest that the Threat Actor is actively seeking to extend their
capabilities, aligning with their shift in focus over recent years. While Lazarus historically
targeted industry leaders, such as Sony and Blockbuster, their operations have increas-
ingly pivoted toward exploiting individuals and organizations within the cryptocurrency
and technology sectors. This strategic redirection leverages a combination of social en-
gineering, sophisticated malware, and multi-stage attack chains, marking a significant
departure from their earlier campaigns focused on traditional industrial targets.

4.4.1 Code Obfuscation

All of the Python scripts involved in this stage are obfuscated with the same technique
described in Section 4.3.1.

4.4.2 Code Analysis - mlip

mlip defines a malicious script designed to capture sensitive information from a user’s
system, specifically targeting cryptocurrency data such as private keys and mnemonic
phrases. It functions as a keylogger and clipboard monitor, intercepting keystrokes and
clipboard contents when the user interacts with certain web browsers, and then transmit-
ting this data to a remote server.
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At the beginning of the script, the main section attempts to import several modules
necessary for its operation. If any of these modules are not present, the script automat-
ically installs them using pip. This ensures that all dependencies are met without user
intervention.

Figure 36: mlip imports and missing libraries installation.

This pattern repeats for modules like psutil, win32process, win32gui, win32api, win32con,
win32clipboard, requests, and wx. The script uses these modules to interact with Windows
system APIs, handle HTTP requests, and interact with GUI applications.

As first it initializes several global variables, including the server’s IP address and port
to which the stolen data will be sent, and a list of targeted web browsers. Thus, indicating
that the script specifically monitors these processes. Developers also left a commented-out
HOST, highlighting how localhost was probably used for testing purposes.

Figure 37: Hard-coded very useful information

The act win pn() function retrieves information about the active window, such as
the process ID, process name, and window caption. These information is used to determine
if the user is interacting with one of the targeted browsers.

Figure 38: act win pn() function code snippet

The script then defines several utility functions to check the state of control keys
and to save logs. Indeed, save log() function is particularly important as it sends the
captured data to the remote server using an HTTP POST request.
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Figure 39: C&C Server URL and exfiltration parameters.

The OnKeyboardEvent() function is a callback that is triggered on every keyboard
event. It checks if the active process is one of the targeted browsers and captures the
keystrokes. This function also intercepts clipboard data when the user pastes content
using Ctrl+V, invoking GetTextFromClipboard() to process the clipboard contents.
Additionally, the script sets up a keyboard hook using pyHook to monitor all keyboard
events.

Figure 40: Callback function to trigger Keylogging activity.

In addition to keystroke logging, the script defines the TestFrame class, which inherits
from wx.Frame. This class sets up a clipboard viewer that monitors changes to the
clipboard.
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Figure 41: TestFrame class initialization

Within this class, the OnDrawClipboard() method is called whenever the clipboard
content changes. It processes the new clipboard data to detect potential private keys or
mnemonic phrases.

Figure 42: OnDrawClipboard() code snippet

The GetTextFromClipboard() method retrieves the clipboard text and checks if it
contains sensitive information.

Figure 43: Function designed to capture and retrieve sensitive data.
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The savepvkey() method searches for hexadecimal strings of specific lengths that
may represent private keys. Similarly, the ismnemonic() method checks if the clipboard
content consists of 12, 16, or 24 words, which are common lengths for mnemonic seed
phrases in cryptocurrency wallets.

Figure 44: savepvkey() and ismnemonic() implementations

Finally, the main loop of the script creates an instance of the TestFrame class and
starts the application. This ensures that the clipboard monitoring continues to run as
long as the application is active.

Figure 45: Main loop

In conclusion, the script operates by covertly logging keystrokes and clipboard contents
when the user interacts with specific web browsers. It specifically targets data that
resembles cryptocurrency private keys or mnemonic phrases. The captured data is then
transmitted to a remote server without the user’s consent, representing a significant
security and privacy threat.

Unused code in the script appears minimal, as most functions and classes are integral
to its malicious functionality. However, certain error handling or exception cases might
not be fully fleshed out, potentially causing the script to fail silently under unexpected
conditions.

Additionally, further OSINT investigations revealed how this code was built by in-
corporating code available on some Online-Forums (ActiveState and Douban). In both
the provided websites, there is available the exact same code the attacker embedded in
its threat to interact with the compromised system’s clipboard.
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Figure 46: Code shown in Figure 41 was found on Online Python Forums.

4.4.3 Code Analysis - pay

Proposed script is a malicious program designed to infiltrate a victim’s computer, gather
sensitive information, and establish persistent remote control. It combines several mali-
cious functionalities, including system reconnaissance, data exfiltration, remote command
execution, keylogging, and clipboard monitoring. The malware is crafted to operate on
both Windows and non-Windows systems, adapting its behavior while also being able to
download and execute the aforementioned bow Python script. This indeed highlight the
enhanced resilience the Threat Actor employed in its tradecrafts.

Starting from the main execution point, the script initiates its malicious activities by
importing essential modules and defining global variables that will be used throughout
its operation. It begins by importing modules such as base64, socket, uuid, hashlib,
getpass, platform, and time. These imports are crucial for network communication, system
information retrieval, and cryptographic functions.
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Figure 47: pay script’s imports

The script defines sType and gType, constants in this campaign and used to uniquely
define it within their various compromising activities.

The main function of the script is encapsulated within the run comm() function,
which initiates the transmission of collected system and network information to the at-
tacker’s server. It does so by creating an instance of the Trans class and calling its
contact server() method.

Figure 48: Snippet of run comm() function

Within the Trans class, the init method collects system and network information
by instantiating the SysInfo class and calling its get info() method. This method ag-
gregates system information such as the operating system, hostname, release version, and
user details, as well as network information like IP address and geolocation data. Ad-
ditionally, by comparing information provided in Figure 49 and Figure 51 it is possible
to gather how the attacker set up two different ports to achieve two different malicious
purposes. Port 1224 is used to extract geographical victim’s information, while Port 2247
will be used as a remote C2 Endpoint to bind an interactive shell between the Threat
Actor and the victim’s system. It is also interesting to highlight how Figure 49 shows
two commented host variable containing seemingly base64 encoded information. As it
will be discussed in Sec. 4.5.2, this same string is manipulated to retrieve the remote C2
Server. Thus, denoting a possible on-the-fly change applied to the inner workings of their
scripts, either due to changing their habits or experimenting obfuscation boundaries for
AV detection.

Figure 49: Trans class initialization

November 26, 2024



Malware Analysis Report 31

The SysInfo class leverages the HostInfo and Position classes to gather this informa-
tion. The HostInfo class collects system-related data, while the Position class retrieves
network-related information.

Figure 50: HostInfo class maps host information into a dictionary to be exfiltrated

In the HostInfo class, the getID() method generates a unique identifier for the vic-
tim’s machine by hashing theMAC address and username. This UUID is used to uniquely
identify the infected system.

The Position class retrieves the internal IP address and geolocation data by mak-
ing a request to hxxp[:]//ip-api[.]com/json, which returns the public IP and associated
geolocation information.

Figure 51: Position class is designed to gather geographical information from victim’s
IP.

After collecting all the necessary information, the Trans class’s contact server()
method sends this data to the attacker’s server using an HTTP POST request Figure 49.

Furthermore, developers introduced a dictionary, C, which contains a timestamp, the
type identifier, host identifier, a label sys info, and the collected system and network
information. This data is then sent to the attacker’s server at the specified HOST and
PORT.

Following the initial data exfiltration, the script attempts to establish a persistent
connection to the attacker’s Command and Control (C2 ) server to receive further in-
structions. It defines the Client class, which handles the connection setup and maintains
the communication loop.
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Figure 52: Client class setups an interpretative connection to attacker’s servers.

The make connection() method attempts to establish a socket connection to the
attacker’s server. If successful, it creates a Session object for low-level communication
and a Shell object to handle commands. The Shell class contains methods for executing
various commands received from the attacker, such as running shell commands, uploading
files, and manipulating processes.

The Shell class is responsible for interpreting and executing various commands sent
by the attacker, effectively acting as a remote shell. It maintains the session state, handles
incoming commands, and dispatches them to the appropriate methods.

Figure 53: Shell class provides the attacker with RAT capabilities.

In the Shell class’s constructor, it initializes various attributes and defines a dictionary
self.cmds that maps command codes to their corresponding methods. These methods
handle different functionalities such as executing shell commands, terminating processes,
uploading files, and more.

The listen recv() method continuously listens for incoming commands from the
attacker.
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Figure 54: Function listen recv() code snippet

The method receives data from the session, parses it, and dispatches it to the ap-
propriate handler method based on the command code. It uses threading to handle
commands concurrently.

The shell() method starts the listener thread and keeps the shell active until it’s
terminated.

Figure 55: Shell() translates attacker’s command into ones to be executed on target.

Below are some of the handler methods in the Shell class:

• ssh obj(self, args): This method allows the attacker to execute arbitrary shell
commands on the victim’s machine and returns the output;

• ssh cmd(self, args): Terminates Python processes running on the victim’s ma-
chine;
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• ssh clip(self, args): Sends the contents of the clipboard to the attacker;

• ssh upload(self, args): This method provides the attacker with the ability to
search for and exfiltrate files from the victim’s system;

• ssh kill(self, args): Terminates specific processes, such as web browsers;

• ssh any(self, args): These methods collectively enable the attacker to perform
a wide range of malicious activities on the victim’s machine, from executing com-
mands and terminating processes to uploading and downloading files.

Figure 56: Function used to download any.py , which gets and runs AnyDesk.

An additional essential part of the malware’s operation is its capability to search for
and exfiltrate sensitive files from the victim’s system. It defines patterns and exclusion
lists to target specific files while avoiding others. The ld() function recursively lists files
in directories, excluding those that match the specified patterns. It collects file paths
that are then used by the ups() function to upload the files to the attacker’s server.

Figure 57: Arrays embedding file’s extensions to be serached on target system.

The ups() function handles the file upload process, sending the collected files to the
attacker’s server via HTTP POST requests.

Figure 58: How files with known extensions are exfiltrated.
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The malware also incorporates keylogging and clipboard monitoring capabilities. As
first it ensures that these modules are present, then malware can interact with the Win-
dows API to capture keystrokes and clipboard content. The keylogging functionality is
initiated in the run client() function, which starts a thread to hook keyboard and mouse
events.

Figure 59: run client() deploys keyboard hooking functionality.

The hk loop() function sets up the hooks for keyboard and mouse events using
pyHook. Within the event handlers, the script captures keystrokes and writes them to a
buffer. It also captures clipboard content when the user performs copy or paste actions.
In the hkb() function, the script checks if control keys are pressed and handles special
keys accordingly. It also sets up timers to capture clipboard content shortly after copy
or paste actions are detected.

Figure 60: Main Hooking routine

At the end of the script, the run client() function is called within the main block
to start the malware’s execution.

Regarding unused code, there are several sections where function calls are commented
out, such as in the auto up() function. This function is intended to search for files
with patterns related to cryptocurrency wallets and configuration files, but the calls are
commented out, possibly to avoid immediate detection or to be activated under certain
conditions.
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Figure 61: Crypto-Wallet related patten which have been commented out.

Additionally, the write txt() function is defined but does not perform any operation.
It may have been intended to log captured keystrokes or clipboard content to a file but
remains unused.

Figure 62: Unused function write txt()

In conclusion, the script is a complex piece of malware that performs multiple ma-
licious activities, including system information gathering,data exfiltration, remote com-
mand execution, file searching and uploading, keylogging, clipboard monitoring, and the
ability to retrieve and execute bow script. The latter provides additional resilience in
case sys info.py fails to correctly download it.

This threat also leverages various Python modules and Windows API functions to
interact with the system and maintain persistence by establishing a connection with the
attacker’s server. The presence of unused code suggests that the malware may have
additional capabilities that are not currently active but maybe intended for future use.

4.4.4 Code Analysis - bow

bow was previously employed as a Browser credentials’ dumper. However, by deobfus-
cating this script, beside the aforementioned well-known malicious functionality, designed
to steal browser’s credentials, there was found, embedded and obfuscated, an additional
malicious payload with the aim of delivery the Tsunami toolset.

Figure 63: Snippet of the additional Tsunami suite embedded in Bow script.

As first, the credential stealing capabilities will be discussed, later also the newly
identified functionalities will be analyzed as well.
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Browser Credentials Stealer
bow is a malicious program designed to extract sensitive information such as saved pass-
words and credit card details from various web browsers installed on a user’s system. It
targets multiple browsers, including Chrome, Brave, Opera, Yandex, and Microsoft Edge,
across different operating systems like Windows, Linux, and macOS. The script decrypts
the stored credentials and exfiltrates them to a remote server controlled by the attacker.

Starting from the main execution point, the script begins by importing necessary
modules and setting up the environment. It attempts to import critical libraries required
for its operation, and if they are not present, it installs them using pip to ensure all
dependencies are met. This includes libraries for HTTP requests, cryptographic functions,
and OS-specific modules for accessing system resources.

Figure 64: pip imports and management of missing libraries.

The script sets up several global variables, including sType, gType, host1 and home,
which are used throughout the code for exfiltration and path resolution. It also determines
the hostname of the machine and constructs URLs for communication with the attacker’s
server.

Figure 65: Global variables definition and C2 server remote URL construction.

The script defines classes representing different browser versions it aims to target.
Each class inherits from a base class BrowserVersion and specifies the browser’s base
name along with version identifiers for Windows, Linux, and macOS. An array avail-
able browsers holds all the browser classes the script will attempt to extract data from.
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Figure 66: Classes defining all the targeted victims’ browsers.

The core functionality resides within the ChromeBase class and its subclasses for each
operating system. This provides methods for decrypting stored credentials and retrieving
data from browser databases.

In the ChromeBase class, the get decorator is used to dynamically update paths to
the browser’s data directories based on the operating system and browser versions.

Figure 67: Snippet of the ChromeBase class

The retrieve database() method in ChromeBase is responsible for copying the
browser’s login data database, decrypting stored passwords, and collecting them for ex-
filtration.

Figure 68: retrieve database() targets Chrome locally stored credentials.

Similarly, the retrieve web() method extracts credit card information stored by the
browser.
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Figure 69: retrieve web() targets credit cards information.

For Windows systems, the Windows class inherits from ChromeBase and implements
Windows-specific methods for decrypting passwords. It uses the win32crypt module to
interact with Windows Data Protection API (DPAPI ) for decryption.

Figure 70: Windows class initialization and browsers’ paths.

For Linux systems, the Linux class implements methods to retrieve the encryption
key from the GNOME Keyring using the secretstorage module.
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Figure 71: Linux class initialization and browsers’ paths.

For macOS systems, the Mac class retrieves the encryption key from the Keychain
using system commands.

Figure 72: Mac class initialization and browsers’ paths.

At the end of the script, the main execution flow determines the operating system
and initializes the appropriate class to perform the data extraction. It iterates over each
available browser, retrieves stored credentials, and sends them to the attacker’s server.
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Figure 73: Main routine adapting its behavior within the identified OS.

The save() method in ChromeBase is responsible for exfiltrating the collected data
by sending an HTTP POST request to the attacker’s server.

In this method, self.pretty print() formats the extracted data into a readable string,
which is then sent to the server specified by host2. The data includes timestamps, host
identifiers, and the collected credentials.

Figure 74: save() function setups the exfiltration process.

Unused code in the script is minimal, with some commented out sections at the end
that may have been used for debugging or cleanup purposes.

Figure 75: Commented clean-up last lines.

This most probably indicates an intention to remove the script after execution, pos-
sibly to cover its tracks, but it is commented out, so it doesn’t execute.

In conclusion, this bow script component operates by methodically accessing browser
storage files, decrypting sensitive information, and sending it to a remote server with-
out the user’s consent. It uses platform-specific methods to handle encryption and file
paths, making it adaptable to various operating systems and browsers. The code is well-
structured, leveraging object-oriented programming to encapsulate functionality for each
operating system and browser type, which enhances its effectiveness as a malicious tool.
Additionally, with some further OSINT investigations, it has been possible to find an-
other IoC related to the same Threat Actor, hosting this same script on another server
in the past.

Figure 76: Bow was hosted, in the past, on this server.
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Tsunami
With reference to Figure 63, the first lines of the identified bow script were embedding
an additional malicious obfuscated payload. By applying the same 50-iterations deobfus-
cation process, as done for all the previously mentioned Python scripts, it was possible
to gather its content.

The latter is a piece of malware designed to ensure that Python is installed on a
Windows system and to persistently execute a secondary malicious script, referred to as
the TSUNAMI INJECTOR, by placing it in the system’s startup folder. The script
employs obfuscation techniques to conceal the secondary payload and attempts to gain
elevated privileges to install Python if it is not already present.

Starting from the main execution point, the script begins by importing several mod-
ules necessary for its operation. These imports include standard libraries for system
interaction, such as subprocess, platform, tempfile, winreg, ctypes, random, base64, zlib,
time, sys, and os. The script also attempts to suppress warnings to avoid drawing at-
tention during execution. This suppression ensures that any warnings generated by the
script are ignored, which is typical in malicious software to prevent the user from noticing
unexpected behavior.

Figure 77: Script’s imports

The script begins by defining several global variables that are essential to its operation.
The DEBUG MODE flag is initialized as False, ensuring that the script suppresses debug
output during execution unless explicitly enabled. This configuration emphasizes the
malware’s intent to operate covertly, minimizing any indicators of its presence.

Among the critical variables is the URL for downloading a Python installer, which
points to an official Python repository. This mechanism enables the script to ensure that
a Python interpreter is installed on the target system, a prerequisite for executing its
subsequent stages. The inclusion of this step highlights the malware’s adaptability and
its capability to dynamically establish its required runtime environment.

The script also determines the path to the AppData Roaming directory, a commonly
utilized location in Windows for storing user-specific application data. This directory
is leveraged to construct the storage path for the TSUNAMI INJECTOR, the sec-
ondary malicious payload. The variables specify the name, folder, and full path where
this payload will reside. Additionally, the TSUNAMI INJECTOR SCRIPT vari-
able is allocated to contain the actual code of this secondary stage, which serves a critical
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role in advancing the malware’s objectives. A detailed examination of this payload and
its functionality will be discussed in Sec. 4.5.3.

Figure 78: Script’s global variables

The obfuscate script() function takes the script data and a loop count to determine
the level of obfuscation. It replaces a placeholder variable RandVar with a random
integer to ensure that the obfuscated script differs on each execution (avoiding an easy
fingerprinting through hashing). In this function, the script repeatedly compresses and
encodes the data, then reverses the encoded string. The obfuscation loop runs for the
specified loop count, which is set to 50 in the main block, making the resulting script
highly obfuscated and difficult to analyze. This technique is the same one used until now
for all the identified Python scripts, here we can have a direct look on how the attacker
implemented this by itself.

Figure 79: 50-iterations obfuscation technique implementation.

Utility functions are defined to assist with the script’s operations. The output function
conditionally prints debug messages if DEBUG MODE is enabled.
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Figure 80: Debugging mode

The download file() function uses PowerShell to download a file from a given URL
to a specified file path.

Figure 81: Function designed to download remote utilities.

By utilizing PowerShell ’s Invoke-WebRequest cmdlet, the script avoids raising network-
related flags that might occur with other methods.

The script proceeds to define functions under the Tsunami Infecter section, which
handle the installation of Python if it is not already present. The is Python installed()
function checks the Windows registry to determine if Python is installed on the system.

Figure 82: Function designed to check whether a Python interpreter is available on target
machine.
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This function attempts to open the PythonCore registry key under bothHKEY LOCAL
MACHINE and HKEY CURRENT USER to check for installed Python versions. If no
versions are found, it concludes that Python is not installed.

The execute Python with uac() function tries to run the Python installer with
administrative privileges using the Windows ShellExecute API :

Figure 83: Function designed to runas to install a Python interpreter.

By specifying the runas verb, the script prompts the User Account Control (UAC )
dialog to request elevated privileges. The installer is executed with silent installation
parameters to avoid user interaction.

The install Python() function orchestrates the download and installation of Python
inside a newly created temporary file path, and attempts to execute it with elevated
privileges. If the user denies the UAC prompt, the script waits for a random interval
between 10 and 30 seconds before retrying, persistently attempting to install Python.

Figure 84: Function designed to run Python installer and prompting for user administra-
tive permissions via UAC.

In the main section of the script, the execution flow begins by checking if Python
is installed. If Python is not installed, it proceeds to download and install it using
the methods previously described. Once Python is confirmed to be installed, the script
writes the obfuscated TSUNAMI INJECTOR to the Windows Startup folder to
ensure persistence. The obfuscate script() function is called with a loop count of 50,
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resulting in a heavily obfuscated script that is difficult to analyze or detect by security
software. The script is saved with a .pyw extension, which allows Python scripts to run
without opening a console window, further hiding its execution. The script includes a
check for DEBUG MODE, and if enabled, it waits for user input to keep the window
open. The entire script is also wrapped in a try-except block that silently passes any
exceptions.

Figure 85: Script’s main routine

In conclusion, the script functions as a dropper that ensures Python is installed on the
target Windows system, leveraging administrative privileges if necessary. It then installs
a persistent, obfuscated secondary payload in the startup folder to achieve persistence and
execute additional malicious activities each time the system boots. The use of obfuscation
and silent error handling indicates an attempt to evade detection and analysis, which is
characteristic of malicious software designed to compromise system security without the
user’s knowledge.

Moreover, as it is possible to see from the following image, the attacker posed, in the
first lines of the Windows Update Script.pyw script a peculiar citation.

Figure 86: Interesting citation available inside Windows Update Script.pyw .

The quote, Sometimes you never know the value of a moment until it becomes a
memory, is often attributed to Dr. Seuss, although its precise origins are uncertain. The
phrase captures a universal truth about human experience: we often fail to recognize the
significance of events as they happen and only appreciate them in hindsight. However,
no additional insights about the usage of this were identified, either as associated to the
threat or the Threat Actor itself.
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4.5 Fourth Stage

Figure 87: Moving from Third to Fourth Stage.

4.5.1 Code Obfuscation

In this stage, as yet reported in the previous section, Windows Update Script.pyw
was obfuscated with the well-known 50-iterations process. On the other hand, any.py
is not ubfuscated at all.

4.5.2 Code Analysis - any.py

any.py is a malicious program designed to manipulate the configuration of AnyDesk,
a popular remote desktop application, on a target system. The script aims to modify
AnyDesk’s configuration files to inject predetermined credentials, potentially allowing
unauthorized remote access to the system. It also attempts to download and execute
AnyDesk if it is not already present, and ensures that AnyDesk is running with the
manipulated configuration. Finally, the script cleans up by deleting itself from the system.
These imports include modules for system interaction (os, platform, subprocess, sys),
networking (socket, requests), and data encoding/decoding (base64, time).

The script then determines the operating system type and retrieves environment vari-
ables essential for its execution. Starting from the main execution point, the script begins
by importing necessary modules that facilitate its operation. The os type variable holds
the name of the operating system, which is crucial for setting file paths and executing
OS-specific commands. The appdata variable retrieves the path to the local application
data directory on Windows systems. Next, the script defines variables that are used to
construct the URL of a remote server controlled by the attacker. Here, host is a base64 -
encoded string that, when decoded, provides the IP address of the attacker’s server. The
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hn variable stores the hostname of the victim’s machine, and sType is likely used to cat-
egorize the type of data being sent to the server. The script then decodes the host string
to obtain the actual server address. In the following snippet, this string is manipulated
by rearranging its parts before decoding. The slicing host[8:] + host[:8] swaps the first
eight characters with the rest as a rudimentary obfuscation technique. After decoding,
host1 contains the server address (95.164.17[.]24), and host2 constructs the full URL with
a specific port (1224 ).

Figure 88: any.py imports and global variables

The script then defines a function save conf() that reads the contents of a given
file and sends it to the attacker’s server. This function checks if the file fn exists. If it
does, it reads the file’s contents into buf. If the latter is not empty, it constructs a data
payload options containing the file content and sends it to the attacker’s server via an
HTTP POST request to the /keys endpoint. The script then sets up paths and variables
necessary for interacting with AnyDesk ’s configuration. It defines the home directory
and initializes an empty list files. The variable any path specifies the default installation
path of AnyDesk on Windows systems.

Figure 89: Defining AnyDesk path and configuring C2 connection to share its settings.

A function get anydesk path() is defined to locate or download AnyDesk if it is not
already installed.
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Figure 90: Funtion designed to establish AnyDesk presence on target system.

This function first checks if AnyDesk exists at the default path. If not, it attempts
to download AnyDesk from the attacker’s server (host2 + /any). The downloaded exe-
cutable is saved in the user’s home directory as anydesk.exe. The function then returns
the path to the AnyDesk executable. The script proceeds to determine the paths to Any-
Desk ’s configuration files based on the operating system. For Windows systems, it sets
conf path1 and conf path2 to the possible locations of AnyDesk ’s service.conf file. For
non-Windows systems, it sets the paths accordingly. If neither configuration file exists on
a Windows system, the script attempts to run AnyDesk. This step ensures that AnyDesk
is running, potentially causing it to create the service.conf file, which the script intends
to modify.

Figure 91: Script maps AnyDesk ’s configurations related paths.

It then defines a PowerShell script as a multi-line string anydesk ps1.
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Figure 92: anydesk ps1 variable content

This script reads the AnyDesk configuration file, replaces certain lines with predefined
values (specifically pwd hash, pwd salt, and token salt), and writes the changes back to
the file. It then forcefully terminates AnyDesk.

The core function that performs the configuration file modification is update conf.

Figure 93: Function designed to update AnyDesk configurations.

This function first checks if the configuration file at d path exists. It then reads the file
to see if it already contains the attacker’s pwd salt. If not, it proceeds to modify the file.
It opens the existing configuration file for reading and a new file (d path + d) for writing.
It copies all lines except those starting with ad.anynet.pwd hash=, ad.anynet.pwd salt=,
or ad.anynet.token salt=. It then writes the attacker’s predefined values for these settings
to the new file.
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If direct file modification fails (possibly due to permissions), the function attempts
to execute the previously defined PowerShell script with elevated privileges. It writes
the PowerShell script to a file (conf.ps1 ) and executes it using a subprocess call with
Start-Process -Verb RunAs, which prompts for administrative rights.

The script then calls update conf() on both configuration file paths. After attempt-
ing to update the configuration files, the script defines a function restart anydesk to
restart the AnyDesk application.

Figure 94: Configurations update and AnyDesk restart.

This function kills any running AnyDesk processes and restarts them subsequently.
On non-Windows systems, it uses the psutil library to iterate over running processes and
terminate them. On Windows, it uses the taskkill command. After killing the process, it
waits for one second and restarts AnyDesk using the anydesk path determined earlier.

The script then saves the (possibly modified) configuration files to the attacker’s
server. By calling save conf(), the script reads the contents of conf path1 and conf path2
and sends them to the server, allowing the attacker to retrieve the configuration files.
Finally, the script restarts AnyDesk and deletes itself.

Figure 95: Manipulation of the AnyDesk configuration and settings.

Deleting itself is a common tactic in malware to reduce forensic evidence and avoid
detection.

Regarding unused code, the script includes commented-out print statements and ex-
ception handling that does not report errors. These comments suggest that during de-
velopment, the script output errors for debugging purposes, but these were suppressed in
the final version to avoid revealing its activities.

In conclusion, the script is a malicious tool designed to manipulate AnyDesk ’s configu-
ration to insert known credentials, potentially granting the attacker unauthorized remote
access to the victim’s system. It ensures AnyDesk is installed and running, modifies
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configuration files with predetermined values, restarts AnyDesk to apply changes, and
exfiltrates the configuration files to the attacker’s server. The script takes measures to
avoid detection by deleting itself after execution and suppressing error messages.

4.5.3 Code Analysis - Windows Update Script.pyw

This specific Python script is designed to establish persistence on a Windows system by
creating scheduled tasks, downloading and executing additional malicious payloads, and
bypassing security measures such as Windows Defender. The script employs various ob-
fuscation techniques to conceal its activities and evade detection. It attempts to escalate
privileges by prompting the User Account Control (UAC ) dialog to gain administrative
rights for executing its payloads.

Starting from the main execution point, the script begins by importing several modules
necessary for its operation. These imports provide functionalities for network communi-
cation, file handling, system interaction, encryption, and obfuscation. The script defines
also a global variable RandVar, which is assigned a random integer value. This variable
is used within the obfuscation process to ensure that each deobfuscated script instance is
unique. Next, the script sets up several global variables that determine paths and names
used throughout its execution.

Figure 96: Script’s imports and anti-fingerprinting variable RandVar.

The script introduces several critical global variables that govern its behavior and
facilitate the deployment of its malicious components. The DEBUG MODE flag is used
to toggle debug output, remaining disabled in its default state to minimize any detectable
artifacts during execution.

Paths to the AppData directories, both Roaming and Local, are retrieved using the
variables ROAMING APPDATA PATH and LOCAL APPDATA PATH. These directo-
ries are commonly exploited by malware due to their accessibility and legitimate usage
in Windows environments.

For the malicious payload, TSUNAMI PAYLOAD NAME dynamically generates a
random 16-character string to obfuscate the filename and evade static detection. The
variables TSUNAMI PAYLOAD FOLDER and TSUNAMI PAYLOAD PATH are used
to specify the temporary directory and complete file path for the payload’s storage, rein-
forcing the attack’s stealth. Similarly, the names and paths for the malicious installer are
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defined using TSUNAMI INSTALLER NAME, TSUNAMI INSTALLER FOLDER, and
TSUNAMI INSTALLER PATH. These variables ensure precise control over the place-
ment and execution of the installer within the compromised system.

Lastly, the script embeds a multi-line string containing the payload’s code, assigned to
TSUNAMI PAYLOAD SCRIPT. This design ensures that the payload is readily available
for execution without requiring an immediate download, thus increasing the resilience and
effectiveness of the attack.

Figure 97: Global variables embedding additional payloads information and paths.

The script contains an embedded payload script as a multi-line string assigned to
TSUNAMI PAYLOAD SCRIPT, designed to be obfuscated and executed later.

Figure 98: Code snippet of the embedded TSUNAMI PAYLOAD SCRIPT.

Within this embedded script, the add windows defender exception() function
attempts to add specific file paths to the Windows Defender Exclusion List by executing
PowerShell commands. The create task() function creates a scheduled task named
Runtime Broker that executes the malicious installer at user logon with administrative
privileges.

The obfuscate script() function is responsible for obfuscating the payload script
(identical to the one shown in Figure 79). Windows Update Script.pyw as first
deploys and run this Python script to make arrangements for the next deploy of the
TSUNAMI INSTALLER. Indeed, it will apply AV exclusions for the executable
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path and will also create a scheduled task to allow its run at each user’s login. At this
point, the script will exploit the is task scheduled() to check if this scheduled task
exists with a PowerShell query.

Figure 99: Function designed to check whether Runtime Broker.exe is in a scheduled
task.

Then, the script defines functions to decrypt and decode an obfuscated URL from
which it downloads an additional malicious payload. These functions perform xor en-
cryption/decryption (key: !!!HappyPenguin1950!!! ) and base64 decoding to retrieve the
actual URL. These are encrypted and store in the URLS array, which has a size of 1000
strings. Each one of these is composed of a Profile Name, a ’ ’ and a File Name (e.g.
GlassesMagenta6644 MassageRecorded9001 ).

Figure 100: Functions designed to decrypt the strings embedded in the URLS array.

download installer url() shuffles the URLS list and then begin looking for existing
profiles and blacklisting non-existing ones. It also disables SSL and employs as User-Agent
the string Mozilla/5.0. In details, it retrieves from each single encrypted string the Profile
Name. Thus, looks for a document, named as the File Name value, which will contain
the path for the additional payload download, on Pastebin.
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Figure 101: download installer url() queries Pastebin profiles and find existing ones.

Figure 102: Function designed to download and decode data from Pastebin.

During the dynamic analysis of this sample, a hit was found among the 1000 possible
profiles when attempting to connect to hxxps[:]//Pastebin[.]com/u/TwelveThrows2886.
As expected, TwelveThrows2886 InductionInteriors4401 was the corresponding encrypted
string and thus the only available file in this profile was named exactly InductionInteri-
ors4401. This file (hxxps[:]//pastebin.com/raw/suEqUQBY ) hosts an encoded string.
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Figure 103: Pastebin profile contacted to retrieve the additional payload.

Figure 104: Pastebin file containing the encoded URL for the additional payload location.

The decoded string translates to hxxp[:]//23.254.229.101/cat-video and delivers a file
named cat video.mp4 . This is instead a reversed gzip archive which contains Runtime
Broker.exe and gets stored inside the following path: %APPDATA%\Microsoft\Windows\
Applications\Runtime Broker.exe.

The script then defines functions to download the TSUNAMI INSTALLER and
execute the TSUNAMI PAYLOAD with elevated privileges. download installer()
downloads the malicious installer, decodes it, and saves it to the specified path. ex-
tract payload() writes the obfuscated payload script to a temporary file. execute paylo
ad with uac() attempts to execute the payload with administrative privileges by invok-
ing ShellExecuteW with the runas verb.

Figure 105: download installer() code snippet
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Figure 106: Function designed to employ runas to install Python as admin.

In the main section of the script, the execution flow is as follows.

Figure 107: Script’s main routine

The script checks if the scheduled task Runtime Broker exists. If it does and the
TSUNAMI INSTALLER is not present, it downloads and installs this malicious
executable. Otherwise, if it is present, it exits. Then, If a task for the TSUNAMI
INSTALLER is not scheduled, it attempts to execute the TSUNAMI PAYLOAD ,
with elevated privileges, to schedule it. Thus, this script repeatedly prompts the UAC
dialog until the user grants administrative rights. Once the TSUNAMI PAYLOAD
executes successfully, it exits the loop.

November 26, 2024



Malware Analysis Report 58

While investigating the comments written inside this script, it is possible to find
a reference about an extensive explanation of how the decryption URL schema works,
hosted on the attacker’s Youtube Channel. However, this is just a joke since it redirects
to the Never Gonna Give You Up video (basically RickRolling analysts).

Figure 108: Developers RickRolling analysts.

In conclusion, the script is a sophisticated piece of malware that aims to compromise
a Windows system by installing malicious payloads, achieving persistence, and evading
security measures. It uses multiple layers of obfuscation and encryption to conceal its
actions and relies on social engineering (prompting UAC dialogs) to gain elevated priv-
ileges. The script’s modular structure allows it to perform various malicious activities
while making analysis and detection challenging.

4.6 Fifth Stage

Figure 109: Moving from Fourth to Fifth Stage

4.6.1 Code Obfuscation

As discussed in the previous section, the TSUNAMI CLIENT script is written to disk
with the well-known 50-iterations obfuscation schema. On the other hand, TSUNAMI
INSTALLER executable is not a packed executable.

4.6.2 Code Analysis - TSUNAMI PAYLOAD

TSUNAMI PAYLOAD , as mentioned above, is a malicious program designed to
establish persistence on a Windows system by creating scheduled tasks and modifying
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Windows Defender settings to exclude certain files from scanning. The script attempts
to run with administrative privileges to modify system settings, adds specific file paths
to the Windows Defender Exclusion List, and creates a scheduled task that executes a
malicious payload named Runtime Broker.exe at user logon. This behavior allows the
malware to evade detection and maintain persistence across system reboots.

Starting from the main execution point, the script begins by importing necessary
modules that facilitate interaction with the operating system and system-level functions.

These imports enable the script to execute subprocesses (such as PowerShell com-
mands), interact with Windows API functions for privilege escalation checks, and ma-
nipulate file paths.

Figure 110: Script’s imports

The script defines global variables that are crucial for its operation. DEBUG MODE
flag is set to False, indicating that debug output is suppressed during normal execution.
The script retrieves the paths to the roaming and Local AppData directories using en-
vironment variables. These paths are used to construct locations where the malicious
payload and related files will be stored. The script specifies the name and paths for the
TSUNAMI INSTALLER, which is actually a disguised malicious executable. As a
first analysis it is possible to have a look at this executable name, which is all but random,
since it tries to mimic known Windows one RuntimeBroker.exe. The latter is indeed a le-
gitimate system process designed to manage permissions for modern Universal Windows
Platform (UWP) applications. Its primary role is to act as a broker between these appli-
cations and the operating system, ensuring that apps operate within their defined permis-
sion boundaries. For instance, it monitors access to sensitive resources like location, mi-
crophone, and file systems, prompting the user when permissions are requested. The legit-
imate RuntimeBroker.exe process is typically spawned by its parent process, svchost.exe,
which is responsible for hosting various system services and its path is located in the Win-
dows system directory, specifically at C:\Windows\System32\RuntimeBroker.exe. This
location is a key indicator of authenticity, as any instance of RuntimeBroker.exe found
outside the System32 directory is likely malicious or suspicious, just like in this specific
case.

Figure 111: Global variables declarations
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Through continued code analysis, it becomes evident that the is admin() function is
implemented to verify whether the script is executing with administrative privileges. This
is achieved by invoking the IsUserAnAdmin() function from the shell32 library. This
function provides a straightforward mechanism to determine if the current user context
has the necessary elevated permissions to perform privileged operations. If administrative
privileges are not present, the script may encounter limitations in executing tasks that
require such permissions, potentially resulting in failed operations or the bypassing of
restricted functionality. This check ensures that the script can conditionally adapt its
behavior based on the level of access available.

The script then defines functions that perform the core malicious activities. The
add windows defender exception() method adds specified file paths to theWindows
Defender Exclusion List.

Figure 112: Functions designed to check user’s permissions and apply AV exclusions.

This function constructs a PowerShell command that invokes Add-MpPreference to
exclude the specified filepath from Windows Defender scans. By doing so, the malware
attempts to prevent its executable from being detected or removed by the antivirus
software.

Instead, create task() function creates a scheduled task that ensures the malicious
payload runs at every user logon. In this function, a multi-line PowerShell script is
constructed to define a new scheduled task. The task is configured with the following
parameters:

• Action: Executes the malicious payload located at TSUNAMI INSTALLER PATH.

• Trigger : Set to trigger at user logon (-AtLogOn).

• Principal : Runs under the current user’s context with interactive logon type and
elevated privileges (RunLevel = 1 ).

• Settings : Configured to allow the task to start even if the system is on battery
power and to not stop the task if the system switches power states.
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The task is registered using Register-ScheduledTask, ensuring that the malicious payload
will persist and execute whenever the user logs in.

Figure 113: Function designed to add Runtime Broker.exe as a scheduled task.

The script first checks for administrative privileges by calling is admin(). If the
script is not running as an administrator, it outputs a warning message (ifDEBUG MODE
is enabled). However, it proceeds with execution regardless of the privilege level, which
may result in certain functions failing silently due to insufficient permissions. These paths
include:

• The main malicious payload (Runtime Broker.exe) stored in theAppData Roam-
ing directory;

• A secondary payload or client component also named Runtime Broker.exe in
the AppData Local directory;

• msedge.exe which should host the XMRig cryptocurrency miner.

By adding these paths to the exclusion list, the malware attempts to prevent Win-
dows Defender from scanning or quarantining these files, allowing malicious activities
to proceed unhindered. The script iterates over the EXCEPTION PATHS and calls
add windows defender exception() for each. After modifying the Windows De-
fender settings, the script proceeds to create the scheduled task by calling create task().
This ensures that the malicious payload is executed at every user logon, establishing per-
sistence on the system. Finally, if DEBUG MODE is enabled, the script waits for user
input before exiting, which is useful for testing or analysis purposes.
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Figure 114: Main routine

In conclusion, the script functions as a persistence mechanism for a malicious payload
on a Windows system. It attempts to elevate privileges, modifies Windows Defender
settings to exclude its files from scanning, and creates a scheduled task that executes
the payload at user logon. The use of familiar names like Runtime Broker.exe and
placement within system-like directories aims to disguise the malware and avoid raising
suspicion. The script’s ability to run without administrative privileges may limit its
effectiveness, as certain operations require elevated permissions. The presence of unused
code suggests that the malware may have additional capabilities that are not active in
this version or that code has been removed or altered during obfuscation.

4.6.3 Executable Analysis - TSUNAMI INSTALLER

Runtime Broker.exe acts as a central orchestrator of malicious operations. This pro-
cess engages in a broad spectrum of activities that exploit native system utilities and
functions, establishing a foothold in the system, evading detection, enabling persistence
and deploying a C2 TOR channel.

Static Analysis
This analysis reveals several advanced anti-analysis techniques implemented within sub-
jected executable. For instance, there are multiple matches indicating access to the
Process Environment Block (PEB) to detect the presence of a debugger, as logged in
matches for PEB access. This behavior aligns with previously observed anti-debugging
and anti-analysis methods, emphasizing the malware’s intent to evade dynamic sand-
box environments and indicates reliance on low-level system structures for evasion, likely
preceding more overt malicious actions to ensure execution only in non-analytical en-
vironments (e.g. exploiting isDebuggerPresent function). Also, it is possible to find
execution delays trough Sleep, Software Breakpoints checks, Debug Break, GetTickCount
and QueryPerformanceCounter invokes.
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Figure 115: QueryPerfomanceCounter invoke

Figure 116: DebugBreak invoke

Another significant discovery is the use of API calls such as VirtualAlloc and Vir-
tualProtect to allocate and modify memory permissions dynamically. These suggest the
malware includes functionality for memory-based payload staging and execution, poten-
tially leveraging reflective injection techniques. This capability allows the malware to
inject code into other processes or execute shellcode directly from allocated memory,
increasing its stealth.

Figure 117: ShellExecuteW invoke
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The static analysis also identifies logic for delaying execution using API s like SleepEx,
with the intention of bypassing automated sandboxes or security tools that rely on time-
outs to detect malicious behavior. These deliberate delays enable the malware to outlast
dynamic analysis environments that may prematurely conclude monitoring, ensuring its
functionality is triggered only in live systems.

Figure 118: SleepEx invoke

Furthermore, the file exhibits the capability to compress and decompress data using
Zlib (compress data via Zlib inflate or deflate) and encode/encrypt data using base64
and xor. These functionalities strongly correlate with obfuscation techniques observed
during behavioral analysis, where repeated file and payload manipulation were recorded.
For example, Zlib compression is used in the malware’s payload delivery mechanism to
reduce file size and disguise its contents.

Figure 119: Set of values possibly associated with xor activities.

New insights from the static analysis also highlight capabilities for obtaining sys-
tem locale and geographical information, as seen in the following image. This discovery
introduces the possibility that the malware is region-specific or dynamically adapts its
behavior based on the host’s location.
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Figure 120: GetLocaleInfoEx invoke

Further investigation of the malware’s embedded strings has uncovered the presence
of debugging information, left behind by the developers. These artifacts provide valuable
insights into the attacker’s behavior and offer a deeper understanding of the development
process behind this malicious tool. By analyzing these remnants, analysts can better
fingerprint the attacker’s techniques and gain additional intelligence about their testing
environments, coding practices, and potential oversights. This evidence underscores the
often iterative and sometimes rushed nature of malware development.

Figure 121: Debugging strings left behind by malware developers.

Static Analysis - Runtime Broker.dll
The unusually large size of RuntimeBroker.exe prompted an examination of its raw
hex code to uncover potential embedded components. This analysis revealed the presence
of eighty-seven distinct executables embedded within the binary, including a substantial
collection of statically linked known .NET DLLs.

Among these embedded files, certain suspicious strings stood out, hinting at the pres-
ence of an unusual and potentially malicious library. A deeper examination for content
related to Tsunami indeed revealed a subset of strings associated not only with the mal-
ware itself but also with Windows components being exploited to collect additional system
information. This discovery underscores the likelihood that the binary conceals malicious
payloads or extra functionalities, leveraging its considerable size and complexity to evade
detection and analysis. These findings suggest that the identified suspiciousDLL may
serve as a critical component of the malware, facilitating data gathering or other mali-
cious operations. Further investigation into this library is imperative to fully understand
its purpose and its role within the broader malicious framework.
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Figure 122: Tsunami strings embedded in Runtime Broker.exe.

By determining the address range associated with the most noteworthy strings and lo-
cating the specific executable segment containing this memory region, it became possible
to isolate and extract the embedded component for standalone analysis. This meticu-
lous extraction process revealed the core module of RuntimeBroker.exe , identified as
RuntimeBroker.dll .

Analyzing RuntimeBroker.dll independently provided a clearer view of its role
within the larger binary. This module appeared to function as the central orchestrator,
potentially handling key tasks such as Command-and-Control communication, process
injection, and the execution of additional embedded payloads. The identification and ex-
traction of this core component were critical steps in unraveling the underlying structure
and functionality of the malware, shedding light on its operational complexity and mod-
ular design.

Figure 123: Runtime Broker.dll overview

Since the library was written in .NET, it was possible to load it into dnSpy and
examine its source code directly. Remarkably, debug information was still intact, and
the code appeared completely unobfuscated, with human-readable functions, variables.
This stark contrast highlights an inconsistency in the attacker’s efforts to conceal their
operations. While the error.js file, part of the initial stage, was heavily obfuscated,
requiring significant effort for static analysis, the library hosting the core functionality
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of the first malicious executable dropped on the target system lacked any obfuscation or
stripping.

This divergence suggests that, although the Threat Actor has invested substantial
resources in constructing a resilient, distributed, and flexible malicious architecture, their
efforts to obscure their operations diminished in later stages of the infection chain. This
could indicate either a rushed development cycle or a deliberate decision to prioritize ob-
fuscation in earlier stages, leaving subsequent stages exposed. Unfortunately, these clues
alone are insufficient to definitively determine whether this lapse was due to oversight
or a calculated choice. Nonetheless, it underscores a critical aspect of the operation,
revealing potential weaknesses in their approach to maintaining stealth and obfuscation
consistency throughout the chain.

Figure 124: Runtime Broker.dll reversed content

The Main method initializes the program by invoking Meta.Init, setting its usage
type to TsunamiInstaller with a specified version, i.e. 1.0.0, before invoking the Start()
method. The inclusion of an infinite loop at the end ensures that the program remains
active, executing indefinitely and ready to retry failed operations as needed.

The workflow begins with the Start() method, which initiates its operations by dis-
abling key Windows security features through a call toProgram.DisableWindowsSecu
rity(). This step is likely aimed at neutralizing Windows Defender and Firewall protec-
tions, creating an environment where the malware can operate without interference from
built-in security mechanisms. Following this, the program installs and starts the Tor
proxy using TorProxy.Install() and TorProxy.Start(), setting up an anonymized
communication channel that obfuscates its connections to the Command-and-Control
server.

The program places a high priority on ensuring that its malicious payload is cur-
rent and operational. It accomplishes this by repeatedly checking for updates with Pro-
gram.CheckForUpdates(). If updates are not available or the check fails, the program
attempts to execute theTSUNAMI CLIENT using Program.ExecuteTsunamiCli
ent(). This mechanism ensures that the payload remains functional and capable of
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adapting to the latest malicious features or patches. In the event that the client is not
already running, the program logs its attempts to execute it.

Establishing a connection with the Command-and-Control server is another critical
aspect of the workflow. The program uses the Tor proxy for this purpose, retrying every
ten minutes if initial attempts fail. This persistence underscores the malware’s resilience
in maintaining communication with its operators. Once connected, it attempts to trans-
mit telemetry data using TelemetryUploader.SendApplicationLogs(), which likely
includes runtime logs and system information. This data is valuable for profiling the com-
promised environment, assessing the malware’s deployment, or monitoring its operational
state.

The program also incorporates a controlled shutdown mechanism. After completing its
tasks, such as verifying updates and transmitting telemetry, it logs a message indicating
readiness to terminate and exits using Environment.Exit(0). This behavior suggests
a level of sophistication in managing its lifecycle, ensuring it avoids unnecessary detection
or conflicts with subsequent stages of its operation. The structured flow of actions, from
disabling security to transmitting telemetry, demonstrates a calculated approach designed
to maximize the malware’s impact while maintaining stealth.

Figure 125: Runtime Broker.dll Main method.

At this point, each implemented class and its respective functionalities will be thor-
oughly examined, following a cascading order from the first to the last as they appear
in the execution flow of the Main method. This approach ensures a structured analy-
sis, beginning with the foundational initialization and setup processes, and progressing
through the subsequent operations, dependencies, and interactions. By dissecting the
classes in the order they are invoked, it becomes possible to trace the logic, dependencies,
and intent of the program, providing a comprehensive understanding of its architecture
and behavior.

The Meta class is a static utility designed to manage metadata for the application,
providing essential details such as the application’s usage type, version, session ID, and
server URL. The Init() method initializes these values, setting up the necessary en-
vironment for the application to operate. It assigns the UsageType and AppVersion
based on the parameters passed during initialization. The AppSessionID is dynam-
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ically generated as a unique identifier for each session using the Guid.NewGuid()
method, ensuring distinct identification for every instance. Additionally, the server
URL is hardcoded to point to a .onion address, which indicates the use of the Tor
network for communication, reinforcing the application’s emphasis on anonymized oper-
ations (hxxp[:]//n34kr3z26f3jzp4ckmwuv5ipqyatumdxhgjgsmucc65jac56khdy5zqd[.]onion).

Accessors such as GetUsageType(), GetAppVersion(), GetAppSessionID(),
and GetServerURL() provide controlled retrieval of these initialized values. These
methods enable other components of the application to query the metadata without
directly modifying it, ensuring data consistency and encapsulation. The class uses private
static fields to store these values, maintaining a centralized configuration structure that
supports the application’s runtime needs.

The design of the Meta class reflects its critical role in orchestrating the application’s
configuration. By combining dynamic elements like the session ID with predefined set-
tings such as the server URL, the class facilitates flexible yet consistent behavior across
different stages of the application. The inclusion of a .onion URL further aligns the
class with the application’s broader strategy of leveraging Tor for secure and anonymized
communication.

Figure 126: Overview of Meta class
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The DisableWindowsSecurity() method is designed to neutralize Windows secu-
rity features by disabling both Windows Defender and Windows Firewall through calls
to the AntiDefender class. The method begins by checking for the existence of an Anti
Malware flag using the AntiDefender.FlagExists() method. This flag acts as an in-
dicator that the disabling operations have already been executed in a previous instance,
allowing the program to adjust its behavior accordingly.

If the flag exists, the program logs the detection and pauses execution for one minute,
indicating a shorter delay when security features are presumed to have already been
addressed. If the flag does not exist, the program proceeds to disable Windows Defender
and Windows Firewall, as implemented in the respective methods of the AntiDefender
class. Following this, it logs the absence of the flag and introduces a longer delay of five
minutes before continuing execution.

The use of conditional delays based on the flag ’s presence serves to reduce unnecessary
re-execution of security-disabling routines while providing a persistent mechanism to dis-
rupt or evade host protections. By incorporating these actions early in the workflow, the
program ensures that security defenses are neutralized, enabling subsequent malicious op-
erations to proceed unimpeded. The method’s detailed logging further demonstrates an
emphasis on tracking the program’s progression, which aids in monitoring and debugging
within the malware framework.

Figure 127: Overview of the DisableWindowsSecurity() method

The AntiDefender class represents a set of functions aimed at disabling key Windows
security features, specifically Windows Defender and Windows Firewall. The methods
operate by adding exceptions to these defenses for specific applications, enabling the
malware or potentially unwanted software to bypass detection and restriction mechanisms.

The DisableWindowsDefender() method is designed to add exclusions to Win-
dows Defender for a predefined list of applications, ensuring that these files are ignored by
the antivirus. It retrieves the paths of these applications through the GetApplication-
List() method and iterates over them, invoking the Shell.AddWindowsDefenderEx
ception() function for each entry. This action allows the specified files to evade real-time
scanning, reducing the likelihood of detection. Logging is incorporated to document the
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process, recording successful additions of exceptions.
The DisableWindowsFirewall() method performs a similar task but targets the

Windows Firewall. It first checks whether a flag exists, indicating that the operation
has already been performed. If the flag is absent, it iterates over the same application
list, invoking Shell.AddWindowsFirewallException() for each entry. By adding
firewall exceptions, the method ensures that these applications can communicate over the
network without restrictions. Once the exceptions are added, it creates the flag file to
avoid re-executing the process in subsequent runs.

The CreateFlag() method generates a file named TsuAmFlag.txt in the system’s
temporary directory. This file serves as an indicator that the firewall exception process
has already been completed. The method incorporates exception handling to ensure
stability and logs the success or failure of the operation. The FlagExists() method
checks for the presence of this flag file, returning a boolean value that determines whether
the DisableWindowsFirewall() method should proceed.

The GetApplicationList() method defines a hardcoded list of paths to applica-
tions that require exceptions in both Windows Defender and the Firewall. These paths
include various directories, such as temporary locations, application folders, and known
Windows directories, where components likeRuntime Broker.exe , System Runtime
Monitor.exe , and msedge.exe are stored. By using the KnownFolder class to retrieve
specific system paths, the method adapts to the target system’s environment dynamically.

Figure 128: Overview of the AntiDefender class

Upon further analysis of the AntiDefender class, it becomes evident that it contains
a hardcoded list of file paths that are subjected to the whitelisting process. The paths
in question include critical system directories and filenames that mimic legitimate appli-
cations, such as Runtime Broker.exe , System Runtime Monitor.exe , and other
executables placed in standard or temporary directories.

This deliberate selection of paths indicates an effort to blend malicious components
with legitimate system files, reducing the likelihood of detection. By targeting common
system directories such as AppData, WindowsApps, and the temporary folder, the mal-
ware leverages locations that are often overlooked or trusted by security mechanisms.
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This whitelisting tactic ensures that key malware components can persist and execute
their payloads without triggering alarms, further emphasizing the Threat Actor ’s focus
on stealth and persistence.

A more detailed and comprehensive list of the paths corresponding to these folder
identifiers will be presented in the subsequent dissection during the dynamic analysis
phase. This approach will enable the retrieval of runtime-resolved paths by observing the
malware’s behavior in a controlled environment, ensuring a thorough understanding of
how these identifiers are translated into actual system directories.

Figure 129: Hardcoded paths of additional payloads undergoing whitelisting process.

The Shell class provides utility functions to interact with the Windows system through
PowerShell commands. It includes methods to execute arbitrary commands, add excep-
tions to Windows Defender, and create firewall rules, primarily aiming to configure the
system in favor of the malware’s operations.

The ExecutePowerShellCommand() method serves as a generic utility to execute
PowerShell commands. It creates a new Process instance with powershell.exe as the
executable and the specified command as its argument. The process is configured to run
without displaying a window (CreateNoWindow = true), enabling it to execute silently.
This generic command execution capability underpins the other methods in the class.

The AddWindowsDefenderException() method uses a PowerShell command to
add a specified path to Windows Defender Exclusion List, preventing the AV from scan-
ning or monitoring files in that location. The command is executed using powershell.exe
with elevated privileges (Verb = ”runas”), ensuring that administrative access is granted
for modifying Defender settings. This functionality is critical for the malware to bypass
detection and ensure the persistence of its components.

Similarly, the AddWindowsFirewallException() method constructs a PowerShell
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command to create a firewall rule allowing inbound traffic for a specified program. The
rule is labeled with a generic name, such asMicrosoft Edge WebEngine, to avoid suspicion.
Like the Defender exclusion method, this command also runs with elevated privileges and
suppresses any visible command window. The use of netsh commands within PowerShell
highlights an effective approach to manipulate firewall rules programmatically.

This class demonstrates a deliberate focus on leveraging PowerShell for system mod-
ifications, a common tactic in malware to evade detection and achieve operational goals.
By embedding commands directly into the malware, the attackers reduce the reliance on
external scripts, ensuring stealth and flexibility. The silent execution and elevation of
privileges further underline the emphasis on maintaining a low profile while performing
critical system changes.

Figure 130: Overview of the Shell class

November 26, 2024



Malware Analysis Report 74

The TorProxy class provides a comprehensive implementation for managing a Tor
proxy, encompassing its installation, execution, and usage for network operations such as
HTTP requests and file downloads. The ExecutablePath property specifies the location
of the Tor proxy executable as Runtime Broker.exe within the system’s temporary
directory. This choice of name and location raises suspicions of an attempt to masquerade
as a legitimate Windows process, potentially aiding in evasion from detection mechanisms.

The Install() method is responsible for deploying the Tor proxy executable. It first
checks if the proxy is already running, avoiding redundant installations. If the executable
is absent, it retrieves the Tor binary data from a resource loader and writes it to the
specified location. The method is equipped with detailed logging to capture success or
failure, reflecting the developer’s attention to error handling and debugging capabilities.
The Start() method initiates the proxy process, configured to use a standard SOCKS
port (9050) and a temporary directory for its data storage. If an instance of the proxy
is already active, the method attempts to terminate it before restarting, ensuring no
conflicts arise from multiple running instances. Again, logging is extensively used to
provide insights into process management.

The Shutdown() method complements this functionality by stopping the Tor proxy.
It performs a check to confirm the process is running and, if so, attempts to terminate it.
Detailed logs document whether the shutdown succeeds or fails, providing transparency
and aiding troubleshooting.

Network communication is facilitated through the SendRequest() method, which
allows HTTP requests to be routed through the Tor proxy. This asynchronous function
supports both GET and POST requests, with headers and payloads designed for JSON -
based data exchanges. By incorporating a custom SOCKS port handler, the method
ensures all traffic is anonymized. Comprehensive error handling and logging provide a
detailed account of the request outcomes, including response status codes and content
sizes. Similarly, the DownloadFile() method enables file retrieval via the proxy. Using
asynchronous streaming, it efficiently downloads files from specified URLs to designated
file paths. Its reliance on the Tor network for anonymizing traffic and the inclusion of
robust error handling underscore its capability for secure and reliable file transfers.

The overall design of the TorProxy class reflects a technically proficient implemen-
tation, leveraging asynchronous programming to ensure efficient and non-blocking oper-
ations. However, the choice to disguise the executable as Runtime Broker.exe and
deploy it in a temporary directory suggests potential misuse for malicious purposes. These
characteristics, combined with the use of Tor for anonymizing traffic, align with tactics
commonly seen in malware aimed at concealing Command-and-Control communications,
data exfiltration, or secondary payload delivery.
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Figure 131: Snippet of TorProxy class

The CheckForUpdates() method is a robust implementation designed to manage
updates for the Tsunami Client application. It combines multiple functionalities to ensure
the client executable is current, secure, and operational. The process begins by verifying
the existence of the designated directory for the Tsunami Client. If the directory is
missing, it is created, and the operation is logged, ensuring the required environment is
properly configured.

The method then requests the hash of the latest client version from the server via
an HTTP GET request, routed through a Tor proxy for anonymized communication.
The response from the server contains the hash and a success status. If the request is
successful, the received hash is compared against the one of the currently installed client
executable, computed using the SHA-256 algorithm. This step ensures the integrity of
the existing file and determines whether an update is required. If the executable is missing
or the hashes do not match, the method identifies the need for an update.

Before proceeding, the method checks whether the current version of the client is
running. If it is, the method attempts to terminate the process to ensure a clean update
environment. If termination fails, an error is logged, and the update process is aborted.
Once the update is confirmed, the method downloads the latest compressed version of the
client executable from the server using the Tor proxy. The file is temporarily stored in the
system’s temporary directory, and its contents are read, reversed, and decompressed using
a GZIP library. The decompressed data is then written to the client executable’s path,
replacing the old version with the updated one. Finally, the temporary file is deleted,
with any failure to delete it logged as a warning.

Throughout the process, the method incorporates comprehensive error handling and
logging. Each step, whether successful or failed, is documented to ensure transparency
and facilitate debugging. For instance, it logs successes for tasks such as fetching the hash
and downloading the compressed file, and records warnings or errors for issues like hash
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mismatches, decompression failures, or file system errors. The use of SHA-256 hashing
underscores the method’s focus on verifying update integrity, preventing corrupted or
malicious files from being applied.

The reliance on the Tor proxy for communication adds a layer of obfuscation, making
it difficult to trace server interactions. The ability to dynamically download and apply
updates allows for the deployment of new payloads or modifications, enhancing the adapt-
ability and persistence of the system. The integration of GZIP compression minimizes
the size of update payloads, optimizing bandwidth usage while maintaining functionality
through proper decompression. The CheckForUpdates() method exemplifies careful
and efficient design, incorporating advanced techniques for process management, error
handling, and file integrity verification.

Figure 132: Overview of CheckForUpdate() method

The susscessive analysis of the ResourceManager component reveals the presence of
two notable embedded resources: a tor.exe file and a tsunami payload.exe . While the
first file, tor.exe , is actively extracted and utilized by the malware during execution, the
latter appears to be embedded without any direct reference to its extraction or deployment
within the program’s logic. This discrepancy raises questions about the attacker’s intent
and the role of the unused tsunami payload.exe .

The active usage of tor.exe aligns with the malware’s reliance on the Tor network for
anonymized communication. Conversely, the embedded tsunami payload.exe stands
out as an anomaly. Despite being included within the resource bundle, no references
to its extraction or execution were identified in the program’s workflow. This omission
is particularly intriguing given the malware’s reliance on hash-based comparison for de-
ploying the most recent version of the Tsunami Client. This update mechanism ensures
that only the latest and potentially most secure version of the tool is deployed during the
attack. The presence of this forgotten executable, a seemingly outdated or redundant
payload, raises questions about its intended purpose.
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One plausible explanation is that tsunami payload.exe could have been a place-
holder or backup resource intended for testing or as a contingency in case of a failure in
the update process. Alternatively, its inclusion may have been unintentional, resulting
from oversight or rushed development during the malware’s construction. The lack of
references to its deployment leaves its intended role ambiguous and opens the possibility
that it was meant to serve in a future iteration of the malware but was left dormant in
this version.

Nevertheless, its presence allows for standalone analysis. This dormant payload pro-
vides an additional opportunity to uncover details about the attacker’s broader toolkit
or objectives. Its embedded status, while curious, does not detract from the malware’s
operational efficiency but instead offers valuable insights into the development practices
and potential missteps of the threat actor.

Figure 133: tsunami payload.exe availability with no reference to its deployment.

The TorServer class provides functionality for establishing and managing communi-
cation with a remote server over the Tor network. It facilitates tasks such as session
initialization, environment information submission, and data transmission. The imple-
mentation exhibits a deliberate focus on maintaining persistent and anonymized commu-
nication, leveraging the Tor proxy for network routing.

TheConnect() method serves as the entry point for establishing communication with
the remote server. It sequentially calls the SendInit() and SendEnvironmentInfo()
methods to initialize the session and transmit the host system’s environment details. The
method ensures that both steps are successful, logging any failures and terminating the
connection attempt if errors occur. Upon successful completion, a session key is obtained,
which is critical for subsequent interactions.

The SendInit() method initializes the connection by sending an empty payload ({})
to the server’s API initialization endpoint. The server responds with a session key, which
is parsed and stored for later use. This acts as an authentication token, binding subsequent
requests to a specific session. The method logs the outcome of the initialization, ensuring
transparency in the connection process.

The SendEnvironmentInfo() method collects detailed system information, includ-
ing application version, system specifications (e.g., processor, RAM, display size, operat-
ing system), and geographic location (e.g., city and country). This information is compiled
into a dictionary and transmitted to the server via the SendData() method. The lat-
ter ensures that critical system attributes are accurately collected and sent, potentially
aiding in profiling the victim’s environment for tailored malicious activities.
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The SendData() method is a generalized function for transmitting data to the server.
It serializes the data into a JSON object, incorporating the session key for authentication.
The payload is then sent via the TorProxy.SendRequest() method, which routes
the request through the Tor network. Analyzed method provides detailed logging for
successful transmissions, including the size of the data sent and the response received.

This class also defines several constant URLs for various API endpoints, including
those for telemetry, browser passwords, session data, and other assets. These endpoints
reflect a comprehensive framework for data exfiltration and telemetry reporting, likely
intended for managing stolen information and maintaining control over the infected sys-
tem.

A noteworthy aspect of this class is its use of Tor for anonymizing communication.
By routing all requests through the Tor network, it obscures the server’s location and the
nature of the communication, complicating detection and attribution efforts. The imple-
mentation of detailed logging and error handling ensures that failures are documented,
facilitating debugging and operational resilience.

The TorServer class demonstrates a well-structured approach to managing communi-
cation within a malicious framework. Its integration of session management, environment
profiling, and anonymized data transmission reflects a high degree of sophistication. This
class is likely a critical component of a broader malware architecture designed for data
exfiltration, telemetry, and maintaining remote control over compromised systems.

Figure 134: JSON -based template with acquired information to exfiltrate.
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Figure 135: API endpoint paths for each single activity the malware takes care of.

• hxxp[:]//n34kr3z26f3jzp4ckmwuv5ipqyatumdxhgjgsmucc65jac56khdy5zqd[.]onion/
assets/v2/dotnet6-installer-ur

• hxxp[:]//n34kr3z26f3jzp4ckmwuv5ipqyatumdxhgjgsmucc65jac56khdy5zqd[.]onion/
api/v1/discord-accounts

• hxxp[:]//n34kr3z26f3jzp4ckmwuv5ipqyatumdxhgjgsmucc65jac56khdy5zqd[.]onion/
api/v1/browser-passwords

• hxxp[:]//n34kr3z26f3jzp4ckmwuv5ipqyatumdxhgjgsmucc65jac56khdy5zqd[.]onion/
api/v1/init

• hxxp[:]//n34kr3z26f3jzp4ckmwuv5ipqyatumdxhgjgsmucc65jac56khdy5zqd[.]onion/
assets/v2/tsunami-client/file

• hxxp[:]//n34kr3z26f3jzp4ckmwuv5ipqyatumdxhgjgsmucc65jac56khdy5zqd[.]onion/
api/v1/browser-sessions

• hxxp[:]//n34kr3z26f3jzp4ckmwuv5ipqyatumdxhgjgsmucc65jac56khdy5zqd[.]onion/
api/v1/telemetry

• hxxp[:]//n34kr3z26f3jzp4ckmwuv5ipqyatumdxhgjgsmucc65jac56khdy5zqd[.]onion/
assets/v2/tsunami-client/hash

• hxxp[:]//n34kr3z26f3jzp4ckmwuv5ipqyatumdxhgjgsmucc65jac56khdy5zqd[.]onion/
api/v1/environment-info

As observed in previous instances, nearly all components within the identified list,
except for the Discord and Browser related paths, are actively utilized in at least one of
the malicious functions implemented in the analyzed DLL. This notable exception raises
similar questions to those posed earlier, as it may represent a remnant of a prior iteration
of the module, initially developed for a different purpose and subsequently repurposed or
adapted to fit its current scope. It might be a leftover artifact from an earlier stage of
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development, where the module was designed with broader or alternative functionalities.
This could imply that the malware’s architecture has evolved, discarding certain features
while adapting others to serve the campaign’s objectives. Alternatively, it might offer a
glimpse into future intentions, signaling the attacker’s plans to incorporate Discord and
Browser focused features into subsequent versions of the module.

Such patterns reflect the iterative nature of the Threat Actor ’s development process,
where modularity and flexibility play key roles. The inclusion of potentially deprecated
or yet-to-be-deployed components demonstrates the evolving scope of their malicious
toolkit. While it is possible that the Discord and Browser related paths was left in
unintentionally due to rushed development, it cannot be dismissed as a mere oversight.
Instead, it provides valuable insight into the attacker’s design philosophy and the lifecycle
of their malicious tools.

This dormant paths, much like other unexplored functionalities or components, high-
lights the importance of monitoring the malware’s development over time. Analyzing
such artifacts can reveal potential shifts in the attacker’s focus, providing early warning
of new techniques or targets that may emerge in future campaigns.

Figure 136: Discord and Browser paths are not read by any function.

By proceeding with the code analysis, it is possible to focus on the ComputerInfo class.
The latter is designed to gather detailed system information, leveraging both managed
.NET functionality and native Windows API s. It provides methods to extract data
about hardware, operating system, and display settings, as well as geolocation and public
IP address information. The methods combine command-line utilities, registry queries,
and API calls to compile a comprehensive profile of the host system.

The class includes methods such as GetProcessorName(), GetProcessorCore-
Count(), and GetGraphicsCardName() to retrieve details about the system’s CPU
and GPU. These methods execute Windows Management Instrumentation Command-
line (WMIC ) queries through the command prompt and parse the output. For instance,
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GetProcessorName() retrieves the CPU name by running the WMIC command for
processor details, extracting and formatting the output string. Similarly, GetProces-
sorCoreCount() uses WMIC to determine the number of CPU cores, and GetGraph-
icsCardName() queries the GPU name.

To determine if a dedicated GPU exists, the DedicatedGraphicsCardExists()
method uses WMIC to fetch video controller descriptions and searches for keywords
like Nvidia or Radeon in the output. This method provides insight into the graphical
capabilities of the system, which can be useful for tailoring payloads or assessing the
target’s computational power.

The class includes GetTotalMemoryGB(), which retrieves the system’s physi-
cal memory using the GetPhysicallyInstalledSystemMemory() function from ker-
nel32.dll. This API call ensures accurate memory reporting in GB, independent of the
system’s OS or configuration. Display size is obtained through the EnumDisplaySet-
tings() function from user32.dll, which retrieves the screen resolution for the primary
monitor.

Operating system details are retrieved via methods such as GetOperatingSystem-
Name() and GetOperatingSystemID(). The former uses WMIC to fetch the OS
caption and formats it as a user-friendly string. The latter queries the Windows registry
for the product ID using predefined paths, demonstrating its ability to gather licensing
information or unique identifiers tied to the operating system.

The geolocation capabilities of the class are implemented in GetLocation(), which
combines public IP retrieval with location services such as ipinfo.io. The method sends
HTTP requests to these API s, fetching data about the system’s public IP, country, and
city. The GetPublicIP() method offers similar functionality, querying multiple online
services for the public IP address.

Internally, the class uses helper methods to parse and extract relevant information
from the outputs of WMIC commands, registry queries, and API responses. The use
of both .NET libraries and unmanaged code illustrates a hybrid approach, enabling the
class to access a wide range of system information.

This class serves as a robust tool for profiling the host system, with applications
ranging from hardware and software inventory to geolocation and network assessment.
While such capabilities can be legitimate in administrative or diagnostic contexts, in this
context they are used to fingerprint the targeted machine and possibly to tailor an evental
deploy of the previously referenced XMRig Miner .
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Figure 137: Snippet of the ComputerInfo class

The ExecuteTsunamiClient() method manages the execution of the Tsunami
Client, with a focus on ensuring the necessary runtime environment, such as .NET 6,
is installed and operational. It begins by verifying if the .NET 6 framework is present
on the system. If not, it attempts to retrieve the installer URL from the server via a Tor
proxy, provided the server is online. This step underscores its reliance on dynamic depen-
dencies, highlighting its adaptability but also its dependency on external infrastructure.

If the server is offline or the installer URL cannot be retrieved, the method logs an error
and aborts the process, reflecting the criticality of .NET 6 to the client’s functionality.
Once the URL is obtained, the method invokes the DotNet6.Install() function to
download and install the framework. Any failure during this installation process is logged,
emphasizing robust error reporting.

After ensuring the runtime environment is ready, the method attempts to launch the
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Tsunami Client executable. If successful, it logs the initiation of the client and sets the
ClientRunning flag to true, indicating operational status. Conversely, a failure to start
the client is logged as an error, ensuring transparency in operation status.

This method demonstrates a structured approach to dependency management and
execution control. The integration of dynamic installation for .NET 6 enables the mal-
ware to adapt to a variety of environments, ensuring compatibility regardless of the target
system’s initial configuration. Its reliance on the Tor proxy for obtaining dependencies
highlights an emphasis on obfuscating communication, aligning with tactics commonly
employed by malicious software.

The presence of robust error handling and detailed logging provides insights into its
operational logic but also reveals its potential misuse. By ensuring dependencies are
dynamically resolved and operational status is closely monitored, the method reflects a
design aimed at maintaining resilience and adaptability, potentially in support of a larger
malicious framework.

Figure 138: Overview of the ExecuteTsunamiClient()

The TelemetryUploader class appears to be designed for aggregating and transmitting
application logs to a remote server under the guise of legitimate telemetry functionality.
The SendApplicationLogs() method processes runtime logs by categorizing them into
Success, Info, Warning, and Error types, creating both a summary and a detailed report
of the application’s activity. These logs are dynamically categorized based on the ap-
plication’s role (e.g., ClientAppLogs or InstallerAppLogs) to ensure contextual relevance,
further suggesting a tailored approach to data collection.

A telemetry object encapsulates the session ID, log categories, and detailed runtime
data, which is transmitted to a remote server via the TorServer.SendData() method.

The robust design, detailed logging, and anonymized communication suggest that its
likely intent is to gather intelligence from compromised hosts, either for system profiling,
operational oversight, or further exploitation. The sophistication of this class underlines
the need for thorough investigation and monitoring to mitigate its potential impacts.
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Figure 139: Overview of the TelemetryUploader class

The UserInteractions class is a utility designed to monitor and analyze user activity
and system interaction states. It relies on Windows API calls to retrieve idle time, detect
fullscreen applications, and assess the user’s last input. Despite being implemented in
the source code, this class remains unused within the provided execution flow, raising
questions about its intended purpose and whether it was meant for testing, debugging,
or future expansion.

The class includes methods such as GetIdleTime() and GetLastInputTime(),
which determine the duration since the last user interaction. These methods leverage
the GetLastInputInfo() function from User32.dll to fetch the timestamp of the most
recent input. GetIdleTime() calculates the elapsed time in milliseconds, while Get-
LastInputTime() provides this information in seconds, incorporating error handling to
manage API call failures.

The FullScreenEnabled() method evaluates whether the currently active applica-
tion is running in fullscreen mode. It retrieves the dimensions of the primary display
using the ComputerInfo.GetDisplaySize() method and compares them with the
dimensions of the foreground window, obtained via GetWindowRect() and GetFore-
groundWindow() from User32.dll. By constructing and comparing rectangles, this
method determines if the foreground window occupies the entire screen.

The class relies on two internal structs, RECT and LASTINPUTINFO, which act as
data containers for API calls. RECT stores the dimensions of a window, while LASTIN-
PUTINFO holds details about the last user input. These structures facilitate seamless
integration with the Windows API, enabling the class’s functionality.

Despite its sophisticated design, the absence of this class from the operational code-
base suggests it was either deprecated, unfinished, or reserved for future use. The presence
of such a class indicates an interest in user activity profiling, potentially to tailor malicious
actions based on the victim’s behavior. For example, detecting fullscreen mode might
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signal a gaming or media application, potentially delaying certain malware activities to
avoid detection.

The unused state of the UserInteractions class could also hint at incomplete develop-
ment or a deliberate exclusion from the main code to reduce detection risk. Its capabilities
align with broader reconnaissance and behavioral monitoring goals, but without active
invocation, it remains an artifact that offers insights into the malware’s potential design
objectives and development process.

Figure 140: Overview of the unused UsersInteractions class

The CaesersCipher class implements a classical Caesar cipher encryption and decryp-
tion algorithm, providing basic functionality for shifting letters in a string by a specified
number of steps. Despite its simplicity and potential utility, this class remains unused
within the provided codebase, suggesting it may have been intended for testing, debug-
ging, or as part of a feature that was ultimately removed or deferred.

The Encrypt() method transforms a given string by shifting each alphabetical char-
acter forward in the alphabet by the specified number of steps (step). It preserves the
case of the letters, ensuring uppercase and lowercase characters are shifted within their
respective ranges, and leaves non-alphabetic characters unchanged. For example, the
letter ’A’ shifted by one step would become ’B’, while ’z’ shifted by one step would wrap
around to ’a’.

Similarly, the Decrypt() method reverses the transformation by shifting charac-
ters backward by the specified number of steps, also preserving case and ignoring non-
alphabetic characters. The implementation uses modular arithmetic to handle the wrap-
ping of letters at the boundaries of the alphabet.

The unused state of this class raises questions about its intended role within the
malware. Its implementation suggests it might have been designed for lightweight obfus-
cation of strings or data, such as encoding configuration settings, URLs, or commands to
evade simple detection mechanisms. However, the simplicity of the Caesar cipher makes
it unsuitable for robust cryptographic purposes, as it is easily broken through frequency
analysis or brute force due to the limited keyspace.
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The inclusion of the CaesersCipher class, despite its non-use, provides insight into
the potential development process of the malware. It could indicate that the developers
experimented with or considered alternative encryption mechanisms before settling on
more complex or secure methods elsewhere in the code. Alternatively, it might reflect a
placeholder or backup implementation, highlighting the iterative nature of the malware’s
development lifecycle.

Figure 141: Overview of the unused CaesarsCipher class

Dynamic Analysis
The execution of Runtime Broker.exe shows, as first, the executable being accessed from
the %APPDATA%\Roaming\Microsoft
\Windows directory. This unconventional execution path immediately raises suspicions,
as it deviates from standard system directory conventions, as previously mentioned.
Subsequent interactions with system libraries like KernelBase.dll and kernel32.dll sug-
gest that the process is preparing its runtime environment, loading functions critical for
system-level interactions. These methods likely include capabilities for memory manipu-
lation, process injection, or thread management, which are common in malicious processes
aiming to extend their reach within the system.

Figure 142: Runtime Broker.exe loading system libraries.
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There are also Registry operations appearing particularly noteworthy. Analyzing reg-
istry operations reveals access to HKLM\System\CurrentControlSet\Services\bam\State
\UserSettings, a registry key that tracks user-level application activity. This query sug-
gests reconnaissance activities aimed at gathering information about system usage pat-
terns or identifying running applications for potential injection or exploitation. What
has been recorded and shown below indicates that the process accessed HKLM\System
\CurrentControlSet\Control\Session Manager, a key integral to managing system boot
configurations. By querying this key, the malware likely intends to evaluate or modify
startup behaviors, ensuring that it executes automatically upon system reboot.

Figure 143: Runtime Broker.exe querying interesting registry keys.

Additional file operations involve interactions with apphelp.dll, a library often associ-
ated with compatibility and application support in Windows. This may indicate attempts
to exploit or modify application compatibility settings as part of its malicious strategy.

Figure 144: Runtime Broker.exe interacting with apphelp.dll.

Then, there are several attempts to access specific registry keys under HKLM\Software
\Policies\Microsoft\Windows\Display andHKLM\SOFTWARE\Microsoft\Windows NT
\CurrentVersion. These actions frequently result in a NAME NOT FOUND detail, indi-
cating the queried registry entries do not exist. The desired access permissions are pre-
dominantly read-related, with some operations querying values and enumerating subkeys.
This phase suggests that the process is performing system reconnaissance, as previously
identified in the analysis of Runtime Broker.dll .
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Figure 145: Executable querying extensively the HKLM hive.

Later, activities shift toward file handling and memory management. Operations like
CreateFileMapping and FASTIO RELEASE FOR SECTION SYNCHRONIZATION ap-
pear, signaling interaction with memory-mapped files. These are common in processes
attempting to share memory between applications or manage large datasets efficiently.
Additionally, thread creation events (Thread Create) indicate that new execution threads
are being initialized, hinting at multitasking or concurrency within the process. The
interaction with system libraries, such as rpcss.dll, and the presence of FAST IO DIS-
ALLOWED suggest potential privilege or capability constraints imposed on the process.

Figure 146: Executable interacting with rpcss.dll.

The process queries and opens multiple registry keys under paths such as HKLM
\Software\Microsoft\Windows\CurrentVersion and HKLM\System\CurrentControlSet.
The successful results for these actions indicate that the queried keys exist, and the desired
access permissions, predominantly read permissions, are granted. These operations likely
aim to retrieve system or application configurations, such as file paths, environment
settings, or user preferences.
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Figure 147: Executable continues to map the HKLM hive looking for keys of interest.

Registry-related events dominate this range, with key activities including RegQueryKey,
RegOpenKey, and RegCloseKey. The keys being accessed, such as those under Con-
trol\Hvsi andNls\Sort, suggest the process is targeting configurations related to hardware-
assisted virtualization and system sorting behaviors, respectively. These entries might be
leveraged for compatibility checks, feature detection, or runtime behavior adjustments.

Figure 148: Executable interactions with Control\Hvsi and Nls\Sort.

The occasional NAME NOT FOUND details for specific queries, such as in the Reg-
QueryValue operation under Control\Hvsi\IsHvsiContainer, indicate that some queried
values are absent, perhaps revealing conditional checks within the process’s logic. Indeed,
this registry key is associated with Hypervisor-based Security Isolation (HVSI ) and is typ-
ically used to indicate whether a system or process is running inside an HVSI container.
Hypervisor-based Security Isolation (HVSI ) is a feature enabled by virtualization-based
security (VBS ) and Hyper-V on Windows systems. It isolates critical system components
and certain processes within containers that are protected by the hypervisor. This en-
hances security by preventing unauthorized access and code execution, even in the event
of a kernel compromise. This allows the subjected executable to both adapt its behavior,
basing on the security measures available on the system, and acquire system’s security
configuration to later exfiltrate to the remote Threat Actor.

Figure 149: Runtime Broker.exe tries to identify the presence of HVSI container.

There is also evidence of deeper system exploration, such as the retrieval of data
related to kernel32.dll. This could imply attempts to verify core system library availabil-
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ity or extract runtime parameters that depend on the system’s localization and sorting
configuration.

The process, at this point, attempts to open or query specific files, related to Pow-
erShell instances. Each of them posed in a different folder, and related to different
application (e.g. Chocolatey). Additional details are provided in the following image.

Figure 150: Runtime Broker.exe tries to map PowerShell.exe instances.

There are also interactions with files related to system patching and PowerShell,
such as sysmain.sdb in the C:\Windows\apppatch directory and powershell.exe in the
C:\Windows\System32\WindowsPowerShell\v1.0 path. These successful interactions,
like FASTIO RELEASE FOR SECTION SYNCHRONIZATION andQueryStandardInfor-
mationFile, suggest that the process is inspecting system utilities and environment details,
possibly for compatibility checks or preparatory tasks.

Figure 151: Additional system queries made by Runtime Broker.exe .

As depicted in the accompanying image, the establishment of these exclusions occurs
in two distinct phases, executed by separate components. Initially, upon the execution of
Runtime Broker.exe , all six new firewall rules are applied (paths correspond to the
one identified in Figure 129). Subsequently, after a delay of approximately 15 seconds,
these same exclusions are reapplied by a child PowerShell process, spawned by Runtime
Broker.exe . This evidence underscores the heightened level of resilience and redundancy
embedded by the developers across their toolset.

• %APPDATA%\Microsoft\Windows\Start Menu\Programs\Startup\System Runtime
Monitor.exe
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• %APPDATA%\Microsoft\Windows\Applications \Runtime Broker.exe

• %LOCALAPPDATA%\Microsoft\Windows\Applications\Runtime Broker.exe

• %APPDATA%\Microsoft\Windows\Dependencies\System Runtime Monitor.exe

• %LOCALAPPDATA%\Microsoft\Windows\WindowsApps\msedge.exe

• %TEMP%\Runtime Broker.exe

At the onset of the malware’s activity, some of the most noteworthy behaviors pertain
to the manipulation of Firewall policies and Antivirus exclusions. These actions provide
analysts with critical insights into the additional payloads that the Threat Actor intends
to deploy within the target systems. One of the initial observations involves six inbound
allow rules introduced by the Runtime Broker.exe executable within the Windows
Firewall. These rules are deceptively labeled as Microsoft Edge WebEngine as previously
identified in the analysis of the Runtime Broker.dll .

Figure 152: Windows Firewall exclusions

A similar fail-safe rationale is evident in the implementation of AV exclusions. Prior
to the active execution of Runtime Broker.exe, the TSUNAMI PAYLOAD script was
responsible for modifying Defender’s policies and registering Runtime Broker.exe as
a scheduled task (Figure 144). As illustrated in the subsequent image, both the three file
paths managed by the TSUNAMI PAYLOAD and an additional four paths introduced
later are excluded from Defender ’s scans. This layered approach ensures that, even in
scenarios where the Python script might fail to execute its intended tasks, the executable
can independently enforce the exclusions. Such robust and redundant design highlights
the meticulous planning and sophistication employed by the malware’s developers.

Figure 153: Defender’s exclusions

Furthermore, it is also interesting how the TSUNAMI CLIENT refers to the XM-
Rig Miner path as%LOCALAPPDATA%\Microsoft\Windows\Applications\msedge.exe,
at the same time, this path is not embedded inside the Runtime Broker.exe code,
which instead whitelists %LOCALAPPDATA%\Microsoft\WindowsApps\msedge.exe. It
is not possible, as per the achieved analysis, to distinguish between the existence of two
different payloads or a change in the attacker’s behavior which was not consistent between
these two applications.

After around 34 seconds of execution, identified threat went silent for around 4 min-
utes. This behavior is consistent within the expected malware capabilities and what
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identified during the static analysis. Runtime Broker.exe slows down its execution
to avoid being detected within Sandbox analyses, which usually employ shorter analysis
time frames.

Figure 154: Malware execution stops around 17:49:50 to the restart at 17:54:20.

Once the malware got unfrozen, one of the first activities it carries out on the system
is to drop tor.exe inside path %TEMP%\Runtime Broker.exe. This executable was
indeed previously whitelisted from Defender ’s scan engine and allowed to receive inbound
connections from Windows Firewall.

Figure 155: Runtime Broker.exe drops an embedded malicious executable in
%TEMP%\Runtime Broker.exe .

Once deployed, this additional payload is also executed to achieve a TOR connections
towards remote networks.

Figure 156: %TEMP%\Runtime Broker.exe is executed

From the initiation of the execution until it was terminated, spanning a total duration
of eight minutes and resulting in the logging of over 241,000 events, the initial Runtime
Broker.exe process actively transmitted data from the host’s port 63300 to port 9050,
designated as the TOR SocksPort. This activity, as depicted in Figure 156, confirms
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that port 9050 was specifically utilized by the %TEMP%\Runtime Broker.exe as a
Inter Process Communication (IPC ) alternative, compared to standard ones (i.e. named
pipes).

Figure 157: Runtime Broker.exe sends acquired data to the local TOR SocksPort.

The behavior involving the parent process sending data through a child process that
runs Tor represents an interesting and deliberate design choice to use Tor as a local
proxy to exchange data between processes. This setup offers various technical gains as
well as drawbacks when compared to traditional Inter-Process Communication (IPC )
mechanisms, such as named pipes, shared memory, or sockets.

The use of Tor as a means to handle local Inter-Process Communication (IPC )
presents significant advantages. The primary gain lies in the inherent obfuscation and
anonymization that the Tor network provides. By routing data between processes over
Tor, the malware developer ensures that even local communication appears as part of
a legitimate Tor network flow. This not only obfuscates the purpose of the commu-
nication but also effectively anonymizes its endpoints, making network-based detection
difficult. This is particularly effective because network analysis often focuses on identify-
ing unusual connections to external addresses, while Tor is widely recognized for privacy
purposes, which may lead security tools to treat it with less scrutiny. Furthermore, by
communicating over a local SOCKS proxy on port 9050, the malware can easily convert
internal messages into externally routable data, offering a seamless transition between
local activity and external control or exfiltration.

This separation between the parent process (responsible for payload execution or in-
formation gathering) and the child process running Tor as a proxy also creates a modular
approach. In software design, modularity provides flexibility and scalability, which allows
each component to be independently modified or updated without affecting the overall
functionality. In this scenario, the Tor proxy module handles network anonymity, while
the parent process focuses on the core malicious operations. This architecture also de-
couples the anonymization and routing logic from the malicious payload itself, allowing
for greater flexibility and code reuse. The Tor process can be used by multiple malicious
modules, potentially even in parallel, to handle diverse communication needs, which in-
creases the versatility of the malware.

Another important advantage is the simplicity of implementation for cross-platform
compatibility. Tor -based local communication relies on network sockets, which are in-
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herently cross-platform. This means the malware developer can easily adapt the code
to work on different operating systems (e.g., Windows, Linux, macOS) with minimal
changes. This contrasts sharply with named pipes, which are Windows-specific and re-
quire entirely different implementations if the malware is to function on a non-Windows
environment. By using Tor and network sockets, the malware becomes highly adaptable,
reducing development overhead for maintaining multiple versions of the same malware
for different operating systems.

However, despite these advantages, using Tor as a local proxy for IPC also comes
with some drawbacks that must be considered. One of the fundamental drawbacks is the
inherent overhead associated with using the Tor network. Tor ’s routing mechanism is
designed to provide anonymity by encrypting and routing traffic through multiple nodes,
which introduces latency and computational overhead. Even though the Tor proxy in
this scenario is operating locally, it still retains the characteristics of the network’s design,
which may result in slower communication between processes compared to the direct
nature of named pipes or shared memory. Standard IPC mechanisms, like named pipes
or shared memory, are optimized for low-latency, high-throughput data exchange between
processes on the same machine. Tor, on the other hand, is optimized for privacy, which
means performance is not a priority.

Additionally, using Tor introduces complexity, both in deployment and maintenance.
The Tor client requires certain configurations, such as creating and managing the data
directory, handling key files, and maintaining network state. This setup may increase
the chance of detection by endpoint monitoring tools that look for non-standard direc-
tory structures or unauthorized executables, especially when these executables exhibit
behavior associated with network anonymization. In a scenario where security policies
are configured to monitor for unauthorized use of Tor or similar software, such behavior
may raise an alarm, leading to further investigation.

From a technical standpoint, using Tor also poses risks of failure related to network
components. For example, if the local Tor process crashes or is terminated by end-
point security software, the entire communication channel would be disrupted, effectively
disabling any data flow between the parent and child processes. In contrast, IPC mecha-
nisms like named pipes or shared memory are more tightly integrated into the operating
system, and thus less prone to being disrupted by network-related issues. This depen-
dence on the local Tor process introduces an additional point of failure that may make
the malware less resilient in certain environments.

Using Tor as a local means of inter-process data exchange also complicates the task of
maintaining persistence. Persistence mechanisms like registry modifications or scheduled
tasks must be crafted to not only ensure that the malware payload is reinstated after
a reboot, but also that the Tor component remains operational. If the Tor client is
blocked, disabled, or deleted, the entire communication strategy collapses. This makes the
malware inherently more brittle compared to implementations relying on more native IPC
approaches, where persistence and functionality could be maintained more seamlessly
within the operating system’s standard features.

Furthermore, the use of Tor introduces a visibility challenge for the malware itself.
Network security analysts and advanced detection tools often flag Tor -related processes
or network activity for closer examination, given Tor ’s common use by malware for
command-and-control communication. In an environment where network monitoring is
performed actively, the presence of a Tor client, even if it is just used locally, can serve as
an Indicator of Compromise (IoC ) and might invite forensic analysis of the host system.
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Traditional IPC methods, such as named pipes, tend to blend in with other operating
system activity, making them inherently more covert from an analyst’s perspective.

In conclusion, the decision to use Tor as a local proxy for Inter-Process Communication
involves a trade-off between the desire for anonymity and modularity versus the efficiency
and resilience provided by standard IPC mechanisms. The advantages of using Tor
include enhanced anonymity, modular separation of network responsibilities, and cross-
platform adaptability. However, these benefits come at the cost of increased complexity,
reduced communication efficiency, and the risk of raising suspicions due to the inherently
recognizable and often monitored presence of Tor components. This approach is effective
in highly targeted attacks where the benefits of obfuscation and anonymity outweigh
the drawbacks, but it may be counterproductive in environments with strong network
monitoring and endpoint protections, where the presence of Tor can itself trigger alerts.

At the same time, the Tor Client performs remote connections towards TOR nodes
and employing DGA domains to hide its real destination.

Figure 158: TOR Client connecting towards TOR Network.

By trying to load the executable inside ILSpy, it is also possible to gather the presence
of the DotNetTor DLL (v.2.3.3.0) as an additional reference to the discussion provided
above.

Figure 159: Runtime Broker.exe implements DotNetTor library.

In conclusion, the observed execution demonstrates the malware’s primary objective:
to comprehensively map the victim’s system asset, exfiltrate valuable information, and
deploy additional payloads. However, it is evident that the malware’s capabilities extend
beyond those exhibited during this analysis. This observation suggests that either pro-
longed analysis durations are required or that certain features, such as Process Injection
or Shellcode Execution, necessitate activation via attacker-issued commands.
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4.7 Sixth Stage

Figure 160: Moving from Fifth-Stage to Sixth-Stage.

4.7.1 Code Obfuscation

With respect to different six executables identified as possible additional threats, only one
of them was actively deployed on the analyzed system,%TEMP%\RuntimeBroker.exe ,
tor.exe and is not a packed executable. On teh other hand, it is of interest to analyze
the embedded and not used tsunami payload.dll

4.7.2 Code Analysis - tsunami payload.exe

As with the previously identified executable, this additional payload similarly embeds
a .NET DLL within its code. This practice reflects a recurring design choice by the
threat actors, indicating a preference for incorporating modular components directly into
their executables. By embedding such a library, the attackers can encapsulate specific
functionalities, likely to maintain modularity and ensure that critical operations remain
within the same binary, reducing dependencies on external files.

The inclusion of a .NET DLL suggests that the payload is leveraging the capabilities
of the .NET framework to implement complex functionalities, which may include system-
level operations, network communication, or further stages of malicious behavior. This
approach enables the attackers to streamline their deployment process, as the embedded
library eliminates the need for downloading or unpacking additional resources during
runtime, which could otherwise expose the malware to detection.

However, the embedded nature of the .NET DLL also presents opportunities for static
analysis. Analysts can isolate and extract the library for closer examination, poten-
tially uncovering the specific functionalities it provides or its interactions with the larger
payload. Such insights could offer valuable intelligence into the attacker’s objectives,
methodologies, or even allow for the creation of signatures to detect the malware.
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The reuse of this technique in multiple payloads underscores the attackers’ methodical
approach to constructing their malware, emphasizing modularity and reusability across
their toolset. It also raises questions about the specific role and necessity of embedding
such a library in this particular case, suggesting either a deliberate redundancy to ensure
functionality or a potential oversight during the payload’s development.

Figure 161: Overview of the TSUNAMI PAYLOAD embedded .NET DLL

The code demonstrates clear intentions to disable system security features, establish
persistence through a scheduled task, initiate Tor-based communication, and send teleme-
try data to a remote server.

The Main method initializes the program by calling the Meta.Init function with the
usage type set to TsunamiPayload, signaling its role within the malware’s architecture.
It then invokes the Start() method, which orchestrates the core functionality of the pay-
load. It begins by disabling Windows Defender and Firewall through the DisableWin-
dowsSecurity() function, which leverages the AntiMalware class. This ensures that
critical security mechanisms are neutralized, allowing the malware to operate with min-
imal resistance and performs it in the same way as it was achieved previously by the
Runtime Broker.dll .

Persistence is established by creating a scheduled task named Runtime Broker. Using
the TaskService library, the malware registers this task to execute the previous stage
Runtime Broker.exe , TSUNAMI INSTALLER, located in AppData Roaming.
This ensures the payload is executed at every user logon, effectively embedding itself into
the system’s startup process. The configuration of the task, such as enabling it to run
with administrative privileges (RunLevel = 1 ) and allowing multiple instances, highlights
the attacker’s efforts to ensure resilience and continuous operation.

After establishing persistence, the TorProxy component is installed and started, while
TelemetryUploader.SendApplicationLogs() is used to share telemetry data within
the C2 server. All of these actions perfectly mimic what was previously achieved with
Runtime Broker.dll .

Error handling within the Start method ensures the program remains functional even
if certain operations, such as creating the scheduled task, fail. However, the logging of
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success messages for failed operations (Logger.LogSuccess() in the catch block) appears
to be a misleading or incorrectly implemented feature, possibly intended to confuse or
mislead analysts.

Figure 162: Tsunami payload.dll Main method

In summary, the tsunami payload.dll performs a narrowed subset of the actions
seen in its preceding stage, while embedding a significant portion of the same source code.
Despite this overlap, a few critical differences are notable. One of the most significant
changes is the method of persistence, which is now achieved through the creation of a
scheduled task specifically targeting the TSUNAMI INSTALLER. This mechanism
ensures that the installer is executed at every user logon, embedding the payload firmly
into the system’s startup sequence.

Another key distinction lies in the selective whitelisting of executables. Unlike previous
stages, where broader security exceptions were made, this stage restricts the whitelist to
a more curated set of executables. This modification could reflect an attempt to minimize
detection or streamline the malware’s operations by focusing only on components deemed
essential for its functionality.

These changes highlight a potential evolution in the attacker’s methodology, aiming
for efficiency and stealth while maintaining the core capabilities of the malware. The per-
sistence mechanisms, combined with the adjusted scope of whitelisting, indicate a refined
approach to ensuring the payload’s longevity and operational success on compromised
systems.
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• %APPDATA%\Microsoft\Windows\Start Menu\Programs\Startup\System Runtime
Monitor.exe

• %APPDATA%\Microsoft\Windows\Applications \Runtime Broker.exe

• %LOCALAPPDATA%\Microsoft\Windows\Applications\Runtime Broker.exe

• %LOCALAPPDATA%\Microsoft\Windows\WindowsApps\msedge.exe
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5 Additional Analysis of Attacker’s Infrastructure

By moving around attacker’s Webserver hosted at 86.104.74[.]51 it has been possible
to gather additional information on tits setup, by looking at the PHPInfo page. This
provides a detailed overview of the attacker’s server environment, exposing vulnerabilities
and potential exploitation points that are critical for tracking their infrastructure. By
correlating this information with the activity and characteristics of the identified IPs,
a coherent picture of the attacker’s tactics, techniques, and infrastructure management
emerges.

The server hosting the PHPInfo page operates onWindows Server 2016 and employs a
lightweight XAMPP stack, consisting of Apache 2.4.58 and PHP 8.0.30. This configura-
tion points to a possible development or staging environment, as indicated by the paths
(C:/xampp/php, C:/xampp/apache) and default settings, such as postmaster@localhost
for the server administrator. The exposure of the PHPInfo page itself demonstrates poor
operational security, which either reflects an oversight or deliberate disregard for stealth,
potentially indicating a rushed or less sophisticated deployment.

Figure 163: Overview of the PHPInfo() available on attacker’s main Webserver.

Further examination reveals that key configurations, such as the enabled allow url fopen
directive and permissive upload and execution parameters (upload max filesize=1024M ),
could facilitate malicious activities like remote file inclusion or large payload execution.
The combination of high resource allowances, enabled error reporting, and lack of critical
function restrictions suggests that the server is configured to handle resource-intensive
or long-running scripts, such as those used for data exfiltration or payload unpacking.
The presence of multiple enabled PHP extensions, including cURL, zlib, and bz2, further
demonstrates capabilities for advanced data handling and compressed payload manipu-
lation, which are hallmarks of modern malicious operations.

The PHPInfo file also provides insight into the network environment, exposing regis-
tered streams and protocols that include HTTP2, SSL/TLS, and other transports. These
details suggest that the server is equipped for complex and secure network communication,
a requirement for modern Command-and-Control (C2 ) frameworks. Such configurations
enhance the attacker’s ability to execute multi-layered campaigns, though they also offer
indicators that can be leveraged for detection and tracking.

Figure 164: Some additional parameters
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Furthermore, this same configuration file allows to gather very interesting additional
insights also on the Windows system running behind this Webserver. The asset it-
self is a Windows-based server operating with administrative privileges, named WIN-
BS656MOF35Q, and configured to allow Remote Desktop Protocol (RDP) access. The
presence of SESSIONNAME set to RDP-Tcp#0 indicates that the attacker is actively
managing the server using RDP, originating from a client machine named DESKTOP-
V0U7LU6. The use of RDP for connecting to the server implies that the attacker requires
manual control, allowing them to directly execute commands, manage files, and make
real-time adjustments to the malicious infrastructure.

The client machine name, DESKTOP-V0U7LU6, appears to follow a default Win-
dows naming convention, suggesting that this client system is either newly configured or
intentionally generic. This default configuration could indicate a throwaway device being
used for malicious purposes while minimizing any personalized trace that might link back
to the attacker’s identity or reveal additional information. This is a common tactic used
to maintain operational security (OPSEC ), as a non-descriptive system name helps avoid
drawing attention during investigations or when interacting with compromised systems.

Figure 165: Information about the underlying Windows Server system.

The server hardware itself is a powerful Windows machine, with the PROCESSOR AR
CHITECTURE set to AMD64 and NUMBER OF PROCESSORS set to 32. The pro-
cessor is identified as Intel64 Family 6 Model 79 Stepping 1, GenuineIntel, highlighting
that this asset has substantial computational resources, possibly indicating a server-grade
machine or a high-end workstation. This level of computing power suggests that the sys-
tem is capable of supporting demanding operations, such as encryption, network relays,
or multi-threaded control of a large number of compromised clients.

The attacker has configured the server using XAMPP, a popular development environ-
ment that includes Apache, PHP, and MySQL. This configuration is evident from paths
like DOCUMENT ROOT set to C:/xampp/htdocs and the use of PHP version 8.0.30,
Apache 2.4.58, and OpenSSL 3.1.3. The use of XAMPP is particularly significant as it
points to a development or testing server configuration that may not be appropriately
secured for a production environment. XAMPP is designed for ease of use, and default
configurations often lack the security features necessary to protect the system in a live
deployment. This provides a window of opportunity for defenders, as these configurations
may expose vulnerabilities or lead to misconfigurations that could be exploited to regain
control of the system or disrupt the attacker’s operations.
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Figure 166: Server’s Software lists

The server IP address is confirmed by the SERVER NAME, SERVER ADDR, and
HTTP HOST variables. The SERVER SIGNATURE reveals the software stack being
used, which includes Apache and PHP, while running on a Windows (Win64 ) environ-
ment. This stack’s details are critical for identifying potential vulnerabilities that may be
exploited by defenders. Additionally, the use of HTTP on port 80 (SERVER PORT set
to 80) implies that the server may not enforce secure (HTTPS ) communications, leaving
it potentially vulnerable to Man-in-the-Middle (MITM ) attacks.

The presence of a web-based dashboard (HTTP REFERER set to hxxp[:]//86.104.74[.]
51/dashboard/ ) implies that the server is being used to host a control panel, which may
be central to managing the infrastructure or interacting with compromised clients. Such
dashboards are often used in Command-and-Control (C2 ) operations, providing an inter-
face for the attacker to manage their campaigns, send commands, and exfiltrate data. The
fact that this dashboard is accessible over HTTP further suggests lax security and could
provide an opportunity for defenders to exploit weaknesses in the interface or intercept
unencrypted data.

In addition to XAMPP, the presence of Node.js and NVM (Node Version Manager) in-
stalled on the server, with directories like C:\Program Files\nodejs and C:\Users\Adminis
trator\AppData\Roaming\nvm included in the system Path, suggests that the attacker is
using JavaScript-based tools or services. Node.js is often used for executing lightweight
scripts, hosting web services, or automating various aspects of a campaign. The inclusion
of both XAMPP and Node.js illustrates the versatility of the attacker’s infrastructure,
which is configured to support multiple scripting environments, potentially allowing for
rapid adaptation to different tasks and objectives. This highlights the server’s capabil-
ity to execute multiple types of workloads, from traditional web hosting to script-based
operations.

The environment variables also reveal that the attacker is operating with admin-
istrative privileges, as indicated by the USERNAME being set to Administrator and
USERPROFILE pointing to C:\Users\Administrator. Administrative privileges give
the attacker a high degree of control over the server, allowing them to install addi-
tional tools, make system modifications, and persist within the system. Such privi-
leges also suggest that the attacker might have used privilege escalation techniques to
gain control over the server, possibly leveraging existing vulnerabilities or weak con-
figurations. The presence of PowerShell modules in the PSModulePath (C:\Program
Files\WindowsPowerShell\Modules) implies that PowerShell scripts are available, which
are frequently used by attackers to automate various post-exploitation tasks, including
enumeration, data exfiltration, and lateral movement within the network.
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Figure 167: Server’s Environmental variables

The CLIENTNAME, SESSIONNAME, and LOGONSERVER values collectively con-
firm that the attacker has direct, manual access to the server, which might indicate an
interest in maintaining control of the asset beyond automated scripts. This manual in-
tervention could involve more sophisticated or targeted operations that require real-time
decision-making or adjustment based on network conditions, responses from defenders, or
the progress of their activities. The presence of RDP (RDP-Tcp#0 ) further emphasizes
the attacker’s active presence on the system, managing and operating the infrastructure
through a graphical user interface.

The network details, including the REMOTE ADDR value of 85.190.233[.]54, sug-
gest active client connections to the server, which could represent either compromised
victims or an intermediate attacker device interacting with the hosted infrastructure.
This interaction indicates ongoing activity, potentially involving monitoring or control-
ling compromised clients through the web-based dashboard or other means.

Temporary paths such as TEMP and TMP set to C:\Users\ADMINI1̃\AppData\Local
\Temp\2 are indicative of locations that may be used by the attacker for staging payloads
or storing intermediary files before exfiltration. These directories are commonly used due
to their writable nature and are easily accessible by all processes, making them ideal for
temporarily holding malicious payloads without raising suspicion.

Figure 168: Server’s remote RDP connection details and Temp folders paths.

In conclusion, the asset under analysis is a Windows server, powerful and versatile,
configured for both web hosting and script execution, with active RDP -based control by
an attacker using administrative privileges. The server leverages XAMPP for web ser-
vices, Node.js for scripting, and has direct, potentially insecure web interfaces that expose
management capabilities through an HTTP-based dashboard. The asset is accessible via
RDP from a generic client machine, indicating an effort by the attacker to maintain an
active, low-profile presence. While the setup provides the attacker with significant flexi-
bility and capability, it also exposes several security weaknesses. The use of XAMPP with
default configurations, a publicly accessible HTTP dashboard, and reliance on RDP all
present potential points of vulnerability that could be exploited by defenders to disrupt
the attacker’s control over the infrastructure, gather further intelligence, or mitigate the
ongoing malicious activities.

November 26, 2024



Malware Analysis Report 104

6 Mitigation Strategies

To mitigate the risks posed by threats of this nature, organizations must adopt a compre-
hensive and proactive approach to cybersecurity. Enhancing employee awareness through
regular training can significantly reduce the effectiveness of social engineering tactics, as
educated staff are less likely to fall prey to deceptive schemes like fictitious job offers.
Implementing advanced security solutions capable of detecting and responding to obfus-
cated and multi-stage malware is essential. Regular system updates and the application
of security patches can close vulnerabilities that attackers might exploit.

Strengthening authentication processes by adopting multi-factor authentication can
add an additional layer of security, for sensitive accounts, making unauthorized access
more difficult especially for attackers exfiltrating administrative credentials from low-
privilege systems. Monitoring network activity for anomalies and establishing robust in-
cident response plans can further enhance an organization’s ability to detect and respond
to intrusions promptly. Collaborating with cybersecurity professionals and participating
in information-sharing initiatives can help organizations stay informed about emerging
threats and adapt their defenses accordingly.

By fostering a security-conscious culture and investing in advanced protective mea-
sures, organizations can better safeguard themselves against sophisticated cyber adver-
saries like the Lazarus Group. Remaining vigilant and adaptive is crucial in the ever-
evolving landscape of cyber threats, ensuring that defenses evolve in tandem with the
tactics employed by attackers.

Additionally, by taking into account identified IoCs and TTPs, reported inside the
Appendix section (App. A.1), both a proactive approach and a Threat Intelligence based
one can be implemented. These allows to track possible already established compromise
and block malicious files which could be exploited by the Threat Actor to have a foothold
inside the victim’s network.
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7 Conclusion

This report highlights a sophisticated and meticulously constructed multi-stage threat
campaign, demonstrating technical expertise and a focused intent on long-term system
compromise and financial data theft. The campaign unfolds through a series of infection
stages, each building upon the last with enhanced functionality and advanced obfus-
cation techniques. This layered approach reflects the attackers’ careful planning and
understanding of security mechanisms, ensuring that each stage remains both functional
and resistant to detection.

Obfuscation emerges as a cornerstone of this campaign, with techniques such as multi-
layered encoding and control flow manipulation employed to hinder reverse engineering
and evade standard detection methods. These methods not only complicate analysis
but also underscore the attackers’ efforts to protect their malware from scrutiny and
countermeasures. The modular design of the malware further enhances its adaptability,
allowing it to dynamically incorporate additional components, update its functionalities,
and tailor its operations to specific environments. This flexibility demonstrates a level of
sophistication that is characteristic of advanced threat actors.

The malware’s focus on targeting sensitive data is particularly notable. It employs a
range of techniques, including credential harvesting, clipboard monitoring, and direct file
extraction, to exfiltrate information such as browser-stored credentials, cryptocurrency
wallet details, and system configurations. This breadth of capability reflects a deliberate
intent to maximize the value of compromised systems. Persistence mechanisms, such as
the creation of scheduled tasks and the use of startup folder scripts, further reinforce this
intent, ensuring the malware remains operational even after system restarts.

An intriguing aspect of the analysis is the integration of open-source components and
legitimate tools, such as Python and AnyDesk, into the malware’s architecture. By em-
bedding publicly available utilities, the attackers not only extend the malware’s capabil-
ities but also exploit the trust associated with these legitimate tools to evade detection.
However, the presence of unused code, debugging information, and redundant artifacts
within the malware suggests a degree of oversight or a rushed deployment. These rem-
nants offer valuable insight into the attackers’ development processes and potential areas
of improvement.

The Tactics, Techniques, and Procedures observed in this campaign strongly align
with those associated with the Lazarus Group, a North Korean state-sponsored Threat
Actor known for targeting financial institutions and engaging in cyber-espionage. The
campaign’s focus on financial and cryptocurrency-related data, combined with its ad-
vanced design and execution, aligns with the group’s established objectives and opera-
tional patterns.

The analysis underscores the growing sophistication of modern cyber threats and the
necessity for enhanced defensive measures. It highlights the importance of proactive
threat hunting, robust monitoring for Indicators of Compromise, and comprehensive user
education to mitigate risks. This campaign exemplifies the evolving nature of advanced
persistent threats, revealing a highly adaptive adversary capable of leveraging both tech-
nical innovation and strategic planning to achieve its objectives.
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A Appendix

A.1 IoCs, TTPs & Yara Rules

The entire set of IoCs, TTPs and few Yara Rules, gathered through-out this entire
analysis, are available inside the following AlienVault OTX pulse.

Figure 169: Overview of the AlienVault OTX pulse
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A.2 Sigma Rules

1 title: Detection of Suspicious AnyDesk File Modification and Termination via

PowerShell

2 id: 1234abcd-5678-efgh-ijkl-9012mnopqrst

3 description: Detects suspicious PowerShell activity involving AnyDesk file

modification and process termination when specific command patterns are

observed.

4 status: experimental

5 author: Alessio Di Santo

6 date: 2024-11-26

7 logsource:

8 category: process_creation

9 product: windows

10 detection:

11 selection:

12 Image: ’*\powershell.exe’

13 CommandLine|all:

14 - ’ad.anynet.pwd_hash=’

15 - ’ad.anynet.pwd_salt=’

16 - ’ad.anynet.token_salt=’

17 - ’taskkill /IM anydesk.exe /F’

18 condition: selection

19 fields:

20 - CommandLine

21 - ParentCommandLine

22 - ParentImage

23 - Image

24 - User

25 level: high

26 tags:

27 - attack.persistence

28 - attack.t1562.001

29 - attack.t1098

30 falsepositives:

31 - Legitimate administrative maintenance involving AnyDesk

32 mitre:

33 - T1562.001

34 - T1098
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1 title: Detection of Suspicious Scheduled Task for Runtime Broker.exe

2 id: abcd1234-efgh-5678-ijkl-9012mnopqrst

3 description: Detects the creation of a scheduled task targeting Runtime Broker

.exe located in %APPDATA%\Microsoft\Windows\Applications for persistence.

4 status: experimental

5 author: Alessio Di Santo

6 date: 2024-11-26

7 logsource:

8 category: process_creation

9 product: windows

10 detection:

11 selection:

12 Image: ’*\powershell.exe’

13 CommandLine|all:

14 - ’New-ScheduledTaskAction -Execute’

15 - ’Register-ScheduledTask’

16 - ’TaskName "Runtime Broker"’

17 - ’LogonType Interactive’

18 - ’*\Microsoft\Windows\Applications\Runtime Broker.exe’

19 condition: selection

20 fields:

21 - CommandLine

22 - ParentCommandLine

23 - ParentImage

24 - Image

25 - User

26 - FileName

27 level: high

28 tags:

29 - attack.persistence

30 - attack.t1053.005

31 falsepositives:

32 - Legitimate scheduled task creation by administrators targeting similar

paths

33 mitre:

34 - T1053.005
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1 title: Detect Specific Windows Firewall Rule Exclusions

2 id: 5678abcd-ef01-2345-ghij-klmnopqrstuv

3 status: experimental

4 description: Detects suspicious Windows Firewall rule additions that include

specific paths for exclusion, such as ‘Runtime Broker.exe‘, ‘msedge.exe‘,

and ‘System Runtime Monitor.exe‘.

5 author: Alessio Di Santo

6 date: 2023-11-26

7 logsource:

8 product: windows

9 service: sysmon

10 detection:

11 selection:

12 EventID: 1

13 CommandLine|contains|all:

14 - ’netsh advfirewall firewall add rule’

15 - ’action=allow’

16 CommandLine|contains:

17 - ’\System Runtime Monitor.exe’

18 - ’\Microsoft\Windows\Applications\Runtime Broker.exe’

19 - ’\Microsoft\Windows\Applications\msedge.exe’

20 - ’C:\Users\*\AppData\Local\Temp\Runtime Broker.exe’

21 condition: selection

22 fields:

23 - CommandLine

24 - Image

25 - ParentCommandLine

26 - User

27 - HostName

28 falsepositives:

29 - Legitimate configuration of Windows Firewall rules for trusted

applications.

30 - Administrative scripts for deploying or updating legitimate software.

31 level: high

32 tags:

33 - attack.defense-evasion

34 - attack.t1562.004

35 - windows-firewall

36 - netsh

37 - known-folder-paths

38 modifications:

39 - Tailored rule to focus on known suspicious paths being excluded via

firewall rules.

40 - Excludes benign patterns based on environment-specific baselines.
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1 title: Detection of Malicious Windows Defender Exclusion Paths

2 id: 5678efgh-1234-abcd-ijkl-9012mnopqrst

3 description: Detects suspicious usage of the Add-MpPreference PowerShell

command to add specific paths to Windows Defender exclusion list.

4 status: experimental

5 author: Alessio Di Santo

6 date: 2024-11-26

7 logsource:

8 category: process_creation

9 product: windows

10 detection:

11 selection:

12 CommandLine|contains:

13 - "Add-MpPreference -ExclusionPath"

14 paths:

15 CommandLine|contains:

16 - "\System Runtime Monitor.exe"

17 - "\Microsoft\Windows\Applications\Runtime Broker.exe"

18 - "\Microsoft\Windows\Applications\msedge.exe"

19 condition: selection and paths

20 fields:

21 - CommandLine

22 - ParentCommandLine

23 - ParentImage

24 - Image

25 - User

26 level: high

27 tags:

28 - attack.persistence

29 - attack.t1562.001

30 - attack.defense_evasion

31 falsepositives:

32 - Legitimate administrative usage

33 mitre:

34 - T1562.001

35 - T1070.006

36 - T1098
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1 title: Malicious System Information Collection via WMIC and Registry Queries

2 id: e3b8c5f4-1d2e-43d9-8748-82b8cbe3c28a

3 description: Detects suspicious WMIC and registry queries used for system

reconnaissance or enumeration. Intended for use with SIEM aggregation to

identify all activities over time.

4 status: experimental

5 author: Alessio Di Santo

6 date: 2024-11-26

7 logsource:

8 category: process_creation

9 product: windows

10 detection:

11 selection_wmic_processor_name:

12 CommandLine|contains: ’wmic path Win32_Processor get Name’

13 selection_wmic_processor_cores:

14 CommandLine|contains: ’wmic path Win32_Processor get NumberOfCores’

15 selection_wmic_videocontroller:

16 CommandLine|contains: ’wmic path Win32_VideoController get Name’

17 selection_wmic_os:

18 CommandLine|contains: ’wmic os get Caption’

19 selection_reg_query_productid_32bit:

20 CommandLine|contains: ’reg query "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\

Windows NT\CurrentVersion" /v ProductID’

21 selection_reg_query_productid_64bit:

22 CommandLine|contains: ’reg query "HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\

Microsoft\Windows NT\CurrentVersion" /v ProductID’

23 condition: selection_wmic_* or selection_reg_*

24 fields:

25 - CommandLine

26 - ParentCommandLine

27 - ParentImage

28 - Image

29 - User

30 level: high

31 tags:

32 - attack.discovery

33 - attack.t1082

34 falsepositives:

35 - Legitimate administrative tools or scripts

36 mitre:

37 - T1082
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A.3 Infection Chain
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A.4 Diamond Model

November 26, 2024


	Executive Summary
	Introduction
	Objective
	Infection Chain

	Methodology
	Static Analysis
	Dynamic Analysis

	Analysis Results
	Malware Distribution
	First-Stage
	Code Obfuscation
	Code Analysis - error.js

	Second-Stage
	Code Obfuscation
	Code Analysis - sys_info.py

	Third-Stage
	Code Obfuscation
	Code Analysis - mlip
	Code Analysis - pay
	Code Analysis - bow

	Fourth Stage
	Code Obfuscation
	Code Analysis - any.py
	Code Analysis - Windows Update Script.pyw

	Fifth Stage
	Code Obfuscation
	Code Analysis - TSUNAMI PAYLOAD
	Executable Analysis - TSUNAMI INSTALLER

	Sixth Stage
	Code Obfuscation
	Code Analysis - tsunami_payload.exe


	Additional Analysis of Attacker's Infrastructure
	Mitigation Strategies
	Conclusion
	Appendix
	IoCs, TTPs & Yara Rules
	Sigma Rules
	Infection Chain
	Diamond Model


