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Abstract—Internet of Vehicles (IoV) systems, while offering
significant advancements in transportation efficiency and safety,
introduce substantial security vulnerabilities due to their highly
interconnected nature. These dynamic systems produce massive
amounts of data between vehicles, infrastructure, and cloud
services and present a highly distributed framework with a wide
attack surface. In considering network-centered attacks on IoV
systems, attacks such as Denial-of-Service (DoS) can prohibit the
communication of essential physical traffic safety information
between system elements, illustrating that the security concerns
for these systems go beyond the traditional confidentiality, in-
tegrity, and availability concerns of enterprise systems. Given
the complexity and volume of data generated by IoV systems,
traditional security mechanisms are often inadequate for accu-
rately detecting sophisticated and evolving cyberattacks. Here, we
present an unsupervised autoencoder method trained entirely on
benign network data for the purpose of unseen attack detection in
IoV networks. We leverage a weighted combination of reconstruc-
tion and triplet margin loss to guide the autoencoder training
and develop a diverse representation of the benign training set.
We conduct extensive experiments on recent network intrusion
datasets from two different application domains, industrial IoT
and home IoT, that represent the modern IoV task. We show
that our method performs robustly for all unseen attack types,
with roughly 99% accuracy on benign data and between 97%
and 100% performance on anomaly data. We extend these results
to show that our model is adaptable through the use of transfer
learning, achieving similarly high results while leveraging domain
features from one domain to another.

Index Terms—Internet of Vehicles, Internet of Things, anomaly
detection. machine learning, traffic security.

I. INTRODUCTION

VEHICULAR networks help realize real-time communi-
cations between vehicles, infrastructure, and other es-

sential components of a transportation system. The onset of
Internet of Things (IoT) systems marks the implementation of
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data-rich, persistent interconnections between various sensing
devices designed for the monitoring and automation of various
tasks. From industrial monitoring mechanisms designed to
detect production deficiencies [1] to battlefield warnings gen-
erated via collected data [2], IoT systems provide key ways in
which safety and efficiency can be increased within a variety of
systems. The Internet of Vehicles (IoV) has emerged from the
IoT as a way by which we can create intelligent transportation
systems (ITS) to provide this persistent and data-rich inter-
connectivity between vehicles. Despite the advantages of such
systems, security for the IoV is an open challenge [3]. Given
the physical safety and sensitive data risks that can be caused
by attacks on interconnected vehicles, it is paramount that
these systems are secured using methods capable of robustly
detecting attacks.

Attacks on distributed and decentralized systems like inter-
connected vehicles can have widescale impacts. In late 2016, a
botnet called Mirai designed for Distributed Denial of Service
(DDoS) attacks was utilized to take down a variety of websites
or online services, such as the security journalist Brian Krebs
and the Dynamic DNS provider Dyn [4], [5]. Mirai was able
to achieve this by targeting IoT devices with ARC processors
running the Linux operating system and attempting to log into
the device with default credentials. An estimated half a million
IoT devices were utilized to carry out Mirai’s attacks and,
in the case of Krebs’ attack, an estimated $323,973 of costs
were inflicted on device owners in considering energy and
bandwidth costs [6].

Generalizability is a particular concern in attack detection
systems. While some methods are well suited for particular
attacks or environments, a robust anomaly detection method
should be capable of detecting various attacks in different
environments with high degrees of accuracy. One key is-
sue underneath this umbrella of generalizability in practical
applications of anomaly detection methods is unseen attack
detection to mitigate zero-day, or unknown, attacks. Ideally,
an anomaly detection method should be able to detect new
attack types as deviations from the norm when they occur.
The Mirai attack is a key example of this need as it was an
unknown attack capable of operating undetected on a massive
number of decentralized devices. The ability for a model to
not only perform well on an individual dataset but to perform
well across datasets and to be generalizable through domain
adaptation methods, such as transfer learning, is critical in
the application of attack detection models across different
environments.

https://arxiv.org/abs/2505.21703v1
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While machine learning (ML) methods perform well on
labeled sets of network data, they typically fail to detect data
unseen during their training process and struggle to specifically
capture the fine-grain spatial and temporal features of the
input data [7], [8] From this, various artificial intelligence
(AI)-based methods have been developed for network attack
detection. Some pre-existing intelligent approaches to the
anomaly detection task are entirely supervised, where all of the
incoming data stream is labeled as anomalous or benign. While
supervised methods generally achieve high performance, they
are unrealistic for the network security task as raw traffic flows
are not inherently labeled as benign or malicious that may not
have pre-existing data for such new attacks. It can be time-
consuming, expensive, and potentially infeasible to collect real
attack data in new domains, such as an IoV scenario where
vehicles operate in a highly dynamic environment that cannot
be fully modeled ahead of time, creating a complicated and
unpredictable attack landscape. In this scenario, it is clear
that being able to leverage known benign data and/or the
performance of a model from another domain in a new domain
is critical in ensuring the safety of newly deployed systems
with no pre-existing attack knowledge.

To this end, this work focuses on the development of unsu-
pervised anomaly detection towards unseen attack detection.
We develop an unsupervised autoencoder-based approach,
where the model is trained on the aggregated sets of benign
network flows only and reconstruction error is leveraged as the
anomaly metric. In using reconstruction error alone, however,
the latent space representations of the benign class may be too
intertwined with the anomalies, leading to the reconstruction
of anomalous samples as benign. Additionally, reconstruction
error alone may struggle to capture discriminative features
necessary for the detection task as it is intended to capture
general patterns. Inspired by existing contrastive learning
approaches to the anomaly detection task, we modify the tra-
ditional reconstruction-based autoencoder training to address
this by including a triplet margin loss to strengthen the latent
space representation of the benign set from the encoder. This
loss allows us to address the previous issues by introducing
additional samples that represent similarity and dissimilarity
into the model loss to both capture more relevant features
of the benign class, which in turn helps strengthen the latent
space representation boundaries of the benign class. We can
also extend this diversification of the latent space through
this loss as it relates to domain transference, in which clearly
defined boundaries between the anomaly and benign classes
out of a particular domain’s training can then be leveraged
in a target domain. It allows us to easily adapt the model to
that new domain without needing to conduct the full training
process, as we show with the use of transfer learning in our
evaluations.

To the best of our knowledge, this work is the first in
the IoV domain to perform entirely unsupervised anomaly
detection via only training on the benign sample and utilizing
two datasets that are application distinct from one another
while also being well representative of modern IoV traffic
patterns. This is especially critical in the context of zero-
day attack detection, as every attack is effectively treated as

a zero-day attack by our method, given that no pre-existing
attack data is used for training. We show that our model is
high performing despite the application differences on these
datasets and is not specialized to detecting any one attack
type, instead being capable of detecting a wide breadth of
potential attacks. Considering that the transference of attack
knowledge from domain-to-domain is also highly important
for zero-day attack detection in new environments, we also
present results showing that our model is adaptable across
application domains through the use of transfer learning.

Our contributions can be summarized as follows:
• We develop a joint reconstruction error-triplet loss based

approach for an autoencoder for attack detection in IoT
networks. This method trains the autoencoder to recon-
struct the feature sequences of network flow data with a
high degree of accuracy without overfitting to the benign
set via the addition of the triplet loss.

• We present a novel method specifically for the task of
unseen attack detection in IoV networks. By training
entirely on the benign set of traffic data, our method is
entirely unsupervised and performs detection independent
of the specific attack occurring, instead focusing on
capturing the behaviors of the benign system traffic and
detecting deviations. As such, our method is highly suit-
able for the unseen attack detection task in IoV networks.

• We evaluate our method on two recent and distinct
datasets that well capture the traffic patterns of IoT net-
works. We argue that these datasets are better represen-
tatives of modern IoV problems compared to commonly
used intrusion datasets across the current literature and
have been underutilized in the development of robust
network intrusion detection mechanisms in IoV works.

• We also illustrate the capabilities of our model as a
generalizable method towards unseen attack detection
in new IoV environments via transfer learning. This
work is one of the first to explore this capability of an
anomaly detection specific model while using data that
is appropriate for the modern IoV task.

II. RELATED WORKS

A. ML versus AI for AD

In the context of IoT systems, we specifically consider the
task of time-series anomaly detection, which is critical for
maintaining the security and functionality of these systems.
Machine learning (ML) methods are commonly used for this
task [9]–[11]. While ML performs well for some datasets, as
data grows larger and more complex, ML may fail to catch the
unique patterns within the data. Because deep learning (DL)
can likely capture such patterns to outperform ML approaches
[12], DL approaches have become popular for the development
of new anomaly detection methods.

Unsupervised DL methods are broadly classified into two
categories: prediction-based and reconstruction-based mech-
anisms. In prediction-based methods, regression models are
trained on historical data to forecast future values of the
system [13]. If the observed values deviate significantly from
the predictions, they are considered to be anomalous. [14]
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proposes a joint LSTM-Gaussian Naive Bayes model for
industrial IoT (IIoT) anomaly detection, leveraging LSTM’s
forecasting capabilities and Gaussian Naive Bayes for outlier
detection. This work leverages the forecasting capabilities
of the LSTM model in order to generate the future time
predictions and the Gaussian Naive Bayes model to perform
outlier detection on the prediction error. Similarly, [15] uses
a GRU-based RNN for online anomaly detection, accounting
for natural shifts in the data distribution.

In contrast, reconstruction-based methods involve training
generative models, such as autoencoders or GANs, on benign
data to learn the normal data distribution. These models,
once trained, use the learned distribution to reconstruct new
data samples. Any significant deviation in the reconstruction
error indicates an anomaly. [16] discusses the use of LSTM-
based autoencoders for this purpose, while [17] explores the
application of GANs. Anomaly thresholds can be set either
as fixed numerical values or based on dynamic statistical
measures of the loss distribution, as demonstrated by [18].

B. Contrastive Learning for AI-Based AD and Its Relevance
to IoV Networks

Building on these techniques, contrastive learning has
emerged as a self-supervised approach that aims to ex-
tract meaningful representations from unlabeled data using
proxy tasks. This method has gained attention for its ability
to learn transformation-invariant representations, making it
highly effective for unsupervised representation learning. By
contrasting different views of the same sample (positive pairs)
against views from different samples (negative pairs), con-
trastive learning enhances the model’s capacity to distinguish
and understand data patterns. [19] proposes an Adversarial
Contrastive Autoencoder to improve multivariate time series
anomaly detection by learning transformation-invariant repre-
sentations through adversarial training. Positive and negative
sample pairs are generated using multi-scale timestamp masks
and random sampling. A 1D-CNN-based encoder extracts la-
tent features from the samples, and composite features are cre-
ated from positive and negative sample pairs while a discrimi-
nator decomposes these features. [20] focuses on multi-grained
contrasting and data augmentation by integrating contrastive
learning into an autoencoder framework for anomaly detection,
leveraging both window-level and pixel-level contrastive tasks
to learn normal patterns. An LSTM decoder is utilized for
data reconstruction and calculation of anomaly scores based
on reconstruction errors. Contextual and instance contrasting
are combined with attention mechanisms to learn temporal
features and invariant features from augmented views.

In IoV, however, reconstruction-based anomaly detection
has been widely applied, with autoencoders leveraging re-
construction loss to identify sensor anomalies [21], detect
anomalous driving behaviors [22], and pinpoint location in-
consistencies in CAVs [23]. These methods rely solely on
reconstruction quality without enforcing clear separation be-
tween normal and anomalous samples. Contrastive loss is
well-suited for this dynamic environment as it learns repre-
sentations based on similarity relationships rather than fixed

decision boundaries. By continuously adapting to shifting
network conditions and mobility patterns, it ensures that
normal behaviors remain well-clustered while anomalies, even
subtle or context-dependent ones, are effectively separated.
This flexibility makes contrastive learning particularly robust
against the inherent variability of IoV networks.

C. Adaptive Anomaly Detection in Vehicle Systems

Vehicular networks, part of the emerging IoV, face nu-
merous challenges related to security and anomaly detection.
Due to the real-time data exchange between vehicles and
infrastructure, anomaly detection mechanisms must account
for domain shifts across different environments, vehicle types,
and driving conditions. This is particularly important in iden-
tifying malicious activities or system failures that may affect
vehicle performance or safety. Several significant works have
addressed these challenges (Table I), and we will examine
them in relation to our contribution. By putting these existing
solutions into context with our own, we aim to show how our
approach advances the field by enhancing domain adaptation
and security in IoV systems.

One approach, as discussed in [24], focuses on detecting
anomalies in Vehicular Ad-hoc Networks (VANETs) using
supervised AI models while addressing the challenge of
their ”black-box” nature. To enhance the transparency of
these models, the framework integrates two key explainability
techniques: Shapley Additive Explanations (SHAP) and Lo-
cal Interpretable Model-agnostic Explanations (LIME). SHAP
provides global insights by quantifying the contribution of
each feature to the overall model predictions, while LIME
offers local interpretations by explaining individual model
decisions on a per-sample basis.

The framework is evaluated on two real-world autonomous
driving datasets: the VeReMi dataset and a custom sensor
dataset. The VeReMi dataset, specifically designed for misbe-
havior detection in VANETs, simulates various cyber-attacks,
including DoS, Sybil attacks, and message falsification, cov-
ering a total of 225 scenarios. Complementing VeReMi, the
sensor dataset captures vehicular behaviors using data from ten
distinct sensors, recording parameters such as location, speed,
lane alignment, and headway time. These diverse features
enable the model to detect abnormal vehicle behaviors that
may indicate cyber-attacks or system malfunctions. In the
context of anomaly detection, the framework is tested against
five different types of attacks, encompassing both traditional
attack types (like DoS) and more specific vehicular misbehav-
ior attacks.

In addition to this framework, [25] proposes an anomaly
detection model for VANETs using a GRU-based deep learn-
ing architecture. The model introduces a semi-supervised
technique called SEMI-GRU, which integrates GRU neural
networks with the Synthetic Minority Oversampling Technique
(SMOTE) oversampling technique to improve anomaly de-
tection accuracy and reduce false positives. The GRU archi-
tecture is particularly advantageous for capturing long-term
dependencies in sequential data while using fewer parameters
than traditional Long Short-Term Memory (LSTM) networks,
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TABLE I
COMPARISON OF RELEVANT WORKS IN ANOMALY DETECTION FOR VANETS AND AUTONOMOUS DRIVING SYSTEMS

References Learning Method Dataset Supports Domain
Shift? Attack Types

Nazat et al. [24] Supervised VeReMi, Sensor Dataset No DoS, Sybil Attacks, Message Falsification
ALMahadin et al. [25] Semi-supervised NSL-KDD Yes DDoS, Phishing Attacks, Password Attacks, R2L, U2R
Nissar et al. [26] Unsupervised NSL-KDD Yes DDoS, Phishing Attacks, Password Attacks, R2L, U2R
This paper Unsupervised ACI-2023, WUSTL-2021 Yes DoS, SQL Injection, Reconnaissance, Backdoor, Dictionary Brute Force, ARP Spoofing

resulting in faster training. Furthermore, combining GRU with
feed-forward neural networks (FNN) enhances feature extrac-
tion, leading to more refined anomaly detection. The SEMI-
GRU method addresses key challenges in anomaly detection,
such as handling imbalanced datasets and detecting unknown
cyber-attacks in VANET traffic. To combat class imbalance,
the model employs the SMOTE, which generates synthetic
samples for underrepresented attack types in the dataset. The
model is evaluated using the NSL-KDD dataset [24], which
contains 42 features and several types of network attacks,
including Denial of Service (DoS), Probe, Remote-to-Local
(R2L), and User-to-Root (U2R). Furthermore, [26] presents
an unsupervised approach for anomaly detection in VANETs
using Variational Autoencoders (VAEs) optimized with multi-
objective evolutionary algorithms, such as AGE-MOEA and
R-NSGA-III. This framework focuses on detecting zero-day
attacks and handling high-dimensional vehicular network traf-
fic, making it particularly suitable for dynamic and evolving
VANET environments. By learning latent data representations,
the VAE model is capable of identifying novel intrusions
without needing labeled data, which addresses one of the key
limitations of supervised models. Unlike [25] that used the
NSL-KDD dataset primarily to handle class imbalances in
a semi-supervised setup, this framework employs the same
dataset but focuses on unsupervised anomaly detection, lever-
aging the entire feature set to optimize detection accuracy
across multiple objectives.

III. IOV NETWORK TRAFFIC DATASETS

Analyzing the landscape of intrusion detection in the Inter-
net of Vehicles (IoV), we observe a significant shortage of
publicly available datasets explicitly designed for vehicular
network security. Many works resort to using general IoT
datasets as proxies for IoV traffic, which can be problematic
given the fundamental differences between traditional IoT
and vehicular environments. IoV systems introduce unique
temporal patterns, mobility constraints, and attack surfaces,
making it crucial to carefully assess dataset applicability.

Unlike traditional network intrusion datasets, such as NSL-
KDD and its predecessor KDD Cup’99, IoV datasets must
capture both network-based and mobility-induced anomalies.
As depicted in Table II, NSL-KDD refines the KDD Cup’99
dataset by reducing redundancy and mitigating class imbalance
issues. It has removed redundant and duplicate records to avoid
biased learning and overfitting during model training, leading
to faster and computationally more feasible model training
and evaluation while still retaining the complexity needed for
network intrusion detection tasks. Unlike the KDD Cup’99
dataset, it does not suffer from class imbalance, as certain

attack types were overrepresented, which hindered the ability
of models to generalize well, particularly for underrepresented
attack types. Despite these improvements, NSL-KDD and
KDD Cup’99 do not entirely capture more modern attack types
or the dynamic nature of traffic found in current IoV systems.
Additionally, while NSL-KDD addressed class imbalance to
some extent, challenges remain with underrepresented attack
categories such as Remote-to-Local (R2L) and User-to-Root
(U2R) attacks.

To address these limitations, datasets such as VeReMi have
been developed specifically for vehicular anomaly detection.
Unlike NSL-KDD, VeReMi integrates spatiotemporal fea-
tures, such as GPS data, vehicle speed, and direction, mak-
ing it highly relevant for detecting falsified positioning data
and misbehavior attacks in vehicular networks. The VeReMi
dataset, used in more recent vehicular network research (e.g.,
[24]), focuses on threats unique to IoV, including Denial-of-
Service (DoS) attacks on vehicular messaging, Sybil attacks
where multiple fake vehicles compromise decision-making,
and message falsification attacks that could manipulate vehicle
responses. The dataset encompasses 225 distinct attack scenar-
ios, providing a richer representation of adversarial behaviors
in vehicular networks. However, VeReMi primarily focuses on
vehicle-to-vehicle (V2V) communication anomalies and does
not adequately capture network-side attacks, where adversaries
exploit vulnerabilities within V2X infrastructure (e.g., roadside
units (RSUs), edge servers, or core network elements) to
launch large-scale disruptions.

For addressing network-side attacks, we find that the ACI-
IoT-2023 and WUSTL-IIoT-2021 datasets provide broader
coverage of IoV-relevant cyber threats compared to VeReMi
and NSL-KDD. ACI-IoT-2023 includes brute-force and Ad-
dress Resolution Protocol (ARP) spoofing attacks, which target
authentication and network integrity—key components of V2X
security. ARP spoofing, for instance, can redirect vehicle
communication within IoV networks, potentially leading to
man-in-the-middle attacks where adversaries can modify or in-
tercept safety-critical messages. Similarly, WUSTL-IIoT-2021
introduces command injection and reconnaissance attacks,
both of which are highly relevant to securing real-time vehicle
control systems against unauthorized commands and stealthy
data gathering.

A key limitation of existing vehicular anomaly detection
datasets is that they often assume an attacker operates exter-
nally, either by injecting fake GPS signals or spoofing nearby
vehicles. However, a sophisticated attacker could compromise
the IoV network itself, blending into the system while exe-
cuting malicious actions at strategically critical moments. For
example, an adversary could send falsified GPS data to the
V2X infrastructure, misleading the network into believing a
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vehicle is in a different location. At a later time, they could
remotely manipulate vehicle commands, such as triggering
unintended acceleration or disabling braking systems, leading
to catastrophic safety failures.

To fully model network-based IoV attacks, datasets must
encompass not only message anomalies but also network-
layer attacks where adversaries leverage V2X communica-
tion channels to systematically manipulate vehicular behavior.
While ACI-IoT-2023 and WUSTL-IIoT-2021 capture network-
oriented attack types, further work is needed to bridge the gap
between mobility-driven threats and network-layer intrusions.
The next generation of IoV anomaly detection datasets should
integrate real-time network telemetry, vehicular control data,
and multimodal sensor fusion to improve the detection of
stealthy, coordinated attacks within V2X ecosystems.

By structuring the discussion around these key differences,
we highlight why IoV anomaly detection presents challenges
distinct from traditional time-series datasets. The combination
of dynamic mobility, real-time constraints, cross-layer attacks,
and adversarial deception techniques makes IoV security an
evolving research challenge that demands novel detection
mechanisms beyond conventional network intrusion models.

Figure 1 presents the t-SNE visualization of the ACI-IoT-
2023 dataset’s network flows, revealing a highly clustered
and heterogeneous structure, with distinct regions of data
points interspersed with well-separated groups. This suggests
a dataset containing diverse traffic patterns, likely representing
a wide range of attack behaviors and benign communications.
The clear separation of clusters indicates that network activ-
ities exhibit distinct behavioral patterns, which aligns with
ACI-IoT-2023’s inclusion of authentication-based threats like
brute force attacks and ARP spoofing. These types of attacks
can create sharp deviations in feature space, reinforcing the
importance of anomaly detection models that can effectively
distinguish between normal and compromised network states.

Conversely, Figure 2 depicts the t-SNE visualization of the
WUSTL-IIoT-2021 dataset’s network flows, which displays
a more continuous and densely packed distribution of data
points. Unlike ACI-IoT-2023, this dataset appears to have less
distinct clustering, suggesting that the data contains gradual
variations between normal and anomalous traffic patterns,
rather than sharply delineated attack signatures. This structure
aligns with command injection and reconnaissance attacks,
which can be more subtle and progressively influence network
behavior over time. The overlapping nature of the data also
suggests that anomalies in this dataset may be more chal-
lenging to detect, requiring methods capable of learning fine-
grained distinctions within benign and malicious activity.

The differences between ACI-IoT-2023 and WUSTL-IIoT-
2021 emphasize the need for robust anomaly detection frame-
works that can handle both highly clustered, distinct attack
patterns (ACI-IoT-2023) and continuous, stealthy attack behav-
iors (WUSTL-IIoT-2021). By leveraging advanced contrastive
learning and domain adaptation techniques, we can develop
intrusion detection methods that generalize effectively across
these varying IoV environments.

Fig. 1. t-SNE visualization of the ACI-IoT-2023 dataset

Fig. 2. t-SNE visualization of the WUSTL-2021 dataset

IV. METHODOLOGY

A. Problem Definition

We consider the development of a network attack detection
system for an IoV system. In this system, we collect network
data in the form of network flows, which are records of
network key performance indicators (KPIs) aggregated over a
period of time. In this scenario, we do not have prior knowl-
edge or data collected of potential attacks, but do have network
flows of benign traffic for a particular system. This presents an
unsupervised and unseen attack detection problem. Given this
challenge, we focus on the development of an attack detection
system that is capable of learning the benign behavior with a
high degree of accuracy and detecting deviations from that
benign behavior.

A multivariate time series is a sequence of vectors observed
at successive time points. Consider X = (x1, x2, x3, ..., xN ) ∈
Rm×n, where X is a collection of univariate time series, m is
the length of the multivariate time series, and n is the number
of variables. X contains a sequence of m feature vectors,
xt ∈ Rm. In an IoV network, we consider that collected
network KPI flows are such sequential multivariate time series
that may vary in duration, leading to unevenly spaced data.
Here, while the flows themselves may be unevenly spaced in
this way, we consider that we can take equal-sized sequential
collections of the flows to perform benign behavior base-lining
and anomaly detection. We do this division of data based
on several considerations. Firstly, we consider the case such
that IoV networks may be computational resource limited and
unable to perform continuous real-time inference on every
network flow collected. Secondly, given the typical sustained



IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, XXXX XXXX 6

TABLE II
IOT INTRUSION DATASETS

Dataset Observation # Attacks Duration Device # Year
KDD Cup 99 4,418,358 DoS, Probe, R2L, U2R 9 weeks unknown 1999

NSL-KDD 160,367 DoS, Probe, R2L, U2R 9 weeks (subset of KDD Cup 99) unknown 2009
WUSTL-2021 1,194,464 SQL Injection, DoS, Recon, Backdoor 53 hours 10 2021
ACI-IoT-2023 1,231,411 DoS, Recon, Brute Force 5 Days 49 2023

duration of attacks upon a system, it is unlikely a singular
flow will be representative of an entire attack. If the majority
of attacks within a flow can be considered as anomalous, the
sequence should be flagged. Similarly, we consider that we can
better learn overall network behavioral patterns when looking
at flows collected over periods of time. This is particularly
important when attempting to establish short-term and long-
term benign traffic behaviors.

B. Analytical Framework for Cybersecurity Threat Models

To effectively design and evaluate anomaly detection mech-
anisms, it is crucial to formally define the attack models the
system aims to defend against. In this context, we provide
mathematical formulations for the primary cyber threats con-
sidered in this study: Brute Force Attacks, Denial of Service
(DoS) Attacks, and Reconnaissance Attacks. These formal
definitions establish a rigorous foundation for analyzing the
model’s detection capabilities and guiding the development of
robust defense strategies.
A brute force attack systematically attempts all possible com-
binations to guess passwords or cryptographic keys. Let:

• N be the total number of possible combinations: N =
Ak, where A is the alphabet size and k is the password
length.

• T be the time to attempt one guess.
• p be the number of parallel processors used.

The expected time to success is:

Tavg =
N

2p
× T (1)

The probability of success after time t is:

Psuccess(t) =
r × t

N
(2)

where r = 1
T is the guessing rate.

A DoS attack overwhelms system resources, making services
unavailable. Let:

• C be the system’s capacity.
• Rlegit be the legitimate request rate.
• Rattack be the attack request rate.

The system overloads when:

Rlegit +Rattack > C (3)

The probability of overload in a queuing model is:

Poverload =
λlegit + λattack

µ
(4)

where µ is the service rate.
Recon attacks gather system information for future exploita-
tion. Let:

• N be the number of IPs, P the number of ports, and S
the number of services.

• rscan be the scanning rate.
• d be the detection threshold.

The total search space is:

Ω = N × P × S (5)

The probability of detection over time is:

pdetect(T ) = 1− e−β·rscan·T (6)

The probability of successfully finding a vulnerability is:

Psuccess = 1−
(
V − v

V

)rscan·T

(7)

C. Rationale for Joint Autoencoder Based on Analytical
Framework

The analytical framework presented in Section IV-B cat-
egorizes cyber threats into dimensions with distinct charac-
teristics, such as high-intensity DoS attacks and stealthier
reconnaissance activities. Given the significant impacts that
these diverse attack types can cause, particularly when trying
to protect new and emerging systems that do not possess
significant labeled attack data, a motivated technical approach
that can adequately address the attacks detailed in the analyt-
ical framework is needed.

Our methodology is based on two primary assumptions
from our framework: 1) Different attacks will present as
statistically distinguishable deviations from learned benign
network patterns that have been captured in sequential network
flows. 2) The robust detection of zero-day attacks or detection
of attacks in new environments with no preexisting attack data
calls for the use of unsupervised learning based on benign data.
This means that any method used must be trained on benign
data, focusing on deviations from benign data performance as
opposed to specific attack signatures.

Based on these assumptions, we propose a joint reconstruc-
tion error-contrastive loss approach that is designed to detect
the threats outlined in our analytical framework. A typical
reconstruction loss (LREC) is used to train the autoencoder on
benign data samples only to model and accurately reconstruct
normal network patterns. Sequences with significant deviations
from the benign network traffic patterns, such as the abrupt
change in traffic patterns originating from DoS attacks, will
result in a high reconstruction error of those samples because
the model is only trained to reconstruct samples from the
benign data distribution.

However, being able to adapt to shifts in benign data distri-
butions over time so benign data points are not misclassified as
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Fig. 3. Proposed joint triplet-reconstruction loss autoencoder architecture utilizing LSTM layers.

anomalies, calls for the additional of elements that can provide
fine-grain discrimination to these subtle changes. To achieve
this, we utilize a contrastive loss (here, triplet margin loss,
denoted as LTML). This loss explicltly encourages the model
to learn more discriminative latent space representations by
causing separation between benign representations that were
collected at different points in time during a system’s operation
while clustering similar variations (versions of benign samples
augmented with subtle noise) closer together. This helps
diversify the latent space of the benign representations in a
way that reconstruction loss alone might overlook, allowing
for the highest reconstruction errors to be isolated on true
attack samples. By combining these two losses, our model is
designed to effectively monitor for a wide range of anomalous
behaivors that address the different dimensions of our threat
framework to promote robustness for unseen attack detection.
The specific technical details for implementing this model are
detailed in Section IV-D.

D. Autoencoder Architecture

We opt for an autoencoder-based approach to the anomaly
detection task. Specifically, we develop an autoencoder with a
traditional encoder-decoder architecture designed to deal with
a multivariate time-series data from collected IoT network
flows. Our architecture focuses on the loss values and data
structures necessary for the robust detection of network at-
tacks. The architecture is depicted in Figure 3.

1) Encoder-decoder architecture: Here, we utilize LSTM
layers for both the encoder, gϕ and decoder, fθ. We add an
additional linear layer at the output of the decoder.

[27] provides an introduction to the larger formulations
behind autoencoders. We summarize the general representa-
tions of the encoder-decoder structure here. We can generically
represent a encoder by the formulation:

hi = gϕ(xi) (8)

where hi is the latent feature representation of sample xi

generated by the encoder gϕ. From this, we can generally
represent a decoder by:

x̂i = fθ(hi) = fθ(gϕ(xi)) (9)

where x̂i is the reconstructed input generated by the decoder,
fθ.

2) Losses: Our interest strongly lies in the loss functions
utilized for the autoencoder-based approach for anomaly detec-
tion. Given that our application domain is one that is entirely
unsupervised, we are unable to directly use some supervised
training methodologies or loss functions. This assumption of
a limited scope of data guides our training process as we
aim to design a method that can accurately learn the benign
representations without over-fitting such that the model is too
sensitive to small benign changes or too agnostic to changes
indicating anomalous behavior.

Traditionally, autoencoders have trained on a reconstruction
loss, LREC such that the model is tuned to the reconstruction
task. This loss can be defined generally as:

LREC =
1

N

N∑
i=1

L(xi, x̂i) (10)

where xi is a input sample, x̂i is the reconstructed sample,
L is the chosen loss function for reconstruction loss, and N
is the number of samples. The chosen loss function can vary
based upon task, but is often the mean squared error (MSE)
loss or mean absolute error (MAE) loss.

While we still utilize the reconstruction task and loss for
anomaly detection, we consider that the benign data may
have temporal fluctuations that lead to false-positive results for
benign network behavior sequences. In an attempt to diversify
the latent space while taking into account the necessity for
clear boundaries between benign and anomalous behavior, we
include a triplet margin loss factor, LTML, in our training
process to help guide the training process. This loss has been
used in the vision domain for tasks such as face recognition
[28]–[30], but we adopt it for the time-series classification task
in this work. It is defined as:

LTML = max{d(ai, pi)− d(ai, ni) +m, 0} (11)

where m is the margin value, ai is an anchor sequence, pi is a
positive example for the anchor sequence, and ni is a negative
example for the anchor sequence. d(xi, yi) is defined as:

d(xi, yi) = ∥xi − yi∥2 (12)
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Here, we specifically feed the latent representations of the
anchor, positive, and negative sequences produced from the
encoder to our triplet margin loss in order to isolate on the
purpose of latent space diversification.

In this unsupervised setting, we do not want to utilize
samples from the anomaly class for the negative samples in
the triplet margin loss. Because we are utilizing the triplet
margin loss to help the model capture intra-class variability,
we opt for the positive samples to be versions of the anchor
sample augmented with random noise, ϵ. This helps to learn
the diversity of samples within the class while ensuring that the
resulting positive sequence is somewhat similar to the anchor.
For our negative samples, we select a different sequence within
the benign set. We consider the value of this selection for the
negative to be that while the negative is in the same class, it is
a distinct different sequence and forces the model to learn the
more fine-grained distinctions within the benign set. Through
our sequencing methodology, we also ensure that there is a
temporal difference between the anchor and negative sequence
by picking another sequence in the set. We can leverage the
similarities of samples for the positive samples generated while
attempting to find the fine-grained distinctions between those
similarities with the negative class.

We also experiment with weighting the loss terms using
weights denoted as λREC and λTML. Our overall loss term
is then defined as:

L = λTML ∗ LTML + λREC ∗ LREC (13)

E. Anomaly detection thresholding

In line with previous autoencoder-based anomaly detection
methods, we train the autoencoder on benign data samples.
After training, we first set how an anomaly is detected. Based
on the training set, a reconstruction error threshold is set. We
note here that we only utilize the reconstruction error in the
threshold selection and we do not scale it with the λREC value.

As opposed to setting the threshold to a static number, we
utilize percentile values of the reconstruction errors generated
from the benign set to allow for flexibility in threshold value
based on training performance. We provide analysis results
for percentile values between 90% and 100% to illustrate
how percentile values may impact performance and set the
percentile value to 99% in all other trials.

If the reconstruction error of a sample is below this thresh-
old, the sample is benign. Otherwise, the sample is considered
anomalous. Here, we utilize the L2 norm/mean squared error
(MSE) as our reconstruction error metric.

V. EVALUATION

1) Pre-processing: We utilize Min-Max normalization on
both datasets. Given the data imbalance favoring the per-
centage of the ACI attack data, which is an inverse of the
traditional imbalance problem within anomaly detection tasks,
we investigate the inclusion and exclusion of the SMOTE
[31] oversampling technique. When SMOTE is utilized, we
are specifically oversampling the original network flows prior
to sequence building. Outside of the sequence length variation
trials, we fix the sequence length to 25 for all tables. For

triplet generation, we fix the noise augmentation for positive
sequence generation to 0.01. The triplet building process is
visualized in Figure 4.

Fig. 4. Sequencing for IoT network flows

2) Implementation Details: For both datasets, we utilize
80% of the benign set for training purposes and 20% of the
benign set for testing benign data. We sweep across the range
of λTML = [0, 1] and λREC = [0, 1] in increments of 0.1 to
identify the ideal combinations of these weights and present
the results for these ideal values unless otherwise noted.

A. Accuracy metricing

To provide a comprehensive understanding of the model’s
performance, we formally define the core evaluation metrics
used in this study. These metrics are essential to accurately
assess the ability of the model to distinguish between benign
and anomalous behaviors.
Benign Accuracy (BA): Measures the model’s ability to
correctly classify benign (normal) traffic.

BA =
True Negatives (TN)

True Negatives (TN) + False Positives (FP)
(14)

Anomaly Accuracy (AA): Measures the model’s ability to
correctly detect anomalous (attack) traffic.

AA =
True Positives (TP)

True Positives (TP) + False Negatives (FN)
(15)

Precision (P): Represents the proportion of correctly identified
anomalies among all detected anomalies.

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)
(16)

Recall (R): Represents the proportion of detected anomalies
among all actual anomalies.

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN)
(17)

F1 Score (F1): Provides a balance between Precision and
Recall by computing their harmonic mean.

F1 = 2× Precision × Recall
Precision + Recall

(18)

We provide brief benchmarking results on an unsupervised
ML method to illustrate why ML is insufficient for application
scenario of having no attack data in the training set. We
leverage the isolation forest ML algorithm, which is designed
to isolate anomalies from the decision trees it generates for
each dataset. Table III gives the results for this scenario. We
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observe, in consideration of the benign-anomaly imbalances,
near-random accuracy performance and imbalanced precision-
recall values for both datasets. This performance motivates the
need to develop more sophisticated models, as proposed in this
paper.

TABLE III
ISOLATION FOREST RESULTS, TRAINED ONLY ON BENIGN SAMPLES

Dataset Accuracy Precision Recall
ACI-2023 13.3338 0.8984 0.0952

WUSTL-2021 91.6900 0.4662 1.0000

Additionally, we utilize PyOD [32], a Python toolbox used
for detecting anomalies in multivariate data, for the intrusion
detection task on our utilized datasets. PyOD provides a
variety of state-of-the-art outlier detection models for bench-
marking outlier detection model performance. We provide
results for a Deep One-Class Classifier with AutoEncoder
(DeepSVDD) [33] model and a Gaussian Mixture Model
(GMM) [34] in Table IV. These models are trained in the same
manner as our approach, where we use only benign samples
for training and both benign and attack samples for testing.

We also provide results on an autoencoder utilizing only
reconstruction error during the training process to highlight
why our modifications to the traditional autoencoder are
necessary. Table IV presents the results for both the WUSTL
and ACI datasets. While we found that a traditional approach
could perform well on the WUSTL dataset, the model was
unable to correctly capture the ACI dataset’s benign behavior
leading to poor anomaly detection accuracy results. This
highlighted that the reconstruction error approach alone was
not adaptable to other IoV representative datasets, which was
a key consideration for our work. Additionally, we found that
our proposed method could help boost the WUSTL dataset’s
accuracy values, as illustrated in the following sections.

1) ACI: Table IV shows the benign test set accuracy,
anomaly set accuracy, overall precision, and overall recall val-
ues for the ACI dataset given the identified ideal λTML, λREC

pair. We find that our joint AE approach outperforms all
baselines in every metric except for benign accuracy, but we
still see 99% accuracy in this metric.

Table V breaks down the classification accuracy for ACI,
without and with SMOTE, across attack categories. That is,
given the three overall attack days/categories of brute force,
DoS, and reconnaissance, we evaluate the individual accuracy
for each category. We see the highest performance for the
brute force attacks at 100% detection accuracy and the worst
performance for the DoS attacks at 91% detection accuracy.
We note that we have the same benign accuracy values
from Table IV. Given the lower performance for DoS-specific
detection, we also explore if utilizing SMOTE in our training
process increases the multi-category detection performance of
our model. Table V shows the accuracy metricing for the
multi-category detection task utilizing SMOTE. We note that
while there are some minimal decreases in the metrics for
the brute force and reconnaissance attacks, there is a 4%
increase in the overall accuracy for DoS attack detection and a
subsequent increase in the precision value for the DoS attacks.

2) WUSTL: Table IV shows the same metrics for the
WUSTL dataset. Notably, the anomaly accuracy here is 100%,
but we reiterate that the number of anomaly samples is small
within the WUSTL dataset compared to the benign set, which
can lead to such high performance due to the imbalance.
Nonetheless, we see high performance on the precision and
accuracy values as well for traffic within the WUSTL dataset.
Here, we find that the AE-based models outperform the
traditional multivariate detection schemes utilized from PyOD.

3) Impact of oversampling: Considering the imbalance of
the ACI dataset representing an inverse imbalance compared
to traditional anomaly detection datasets, it allows us to
explore the role of oversampling in IoT network anomaly
detection. Given an environment where benign samples may
be limited for various reasons (adverse conditions, limited
computation resources, etc), oversampling available data or
generating synthetic samples can help diversify the benign
training set. Here, we evaluate the use of Synthetic Minority
Oversampling Technique (SMOTE) [31] to develop a more
robust data distribution for the benign training data with our
method.

Table VI shows the overall accuracy metricing on ACI with
and without utilizing SMOTE. We observe that resolving the
benign imbalance issue with SMOTE helps boost the benign
test, anomaly test, and overall precision values at the cost of
a small decrease in overall recall.

We also observe that utilizing oversampling helps overcome
sensitivity to λREC and λTML values. In Table VII, we see
that the average accuracy metric values across all loss weight
values but recall are higher when utilizing SMOTE.

We find that, overall, SMOTE is useful in developing a more
robust benign training set when an IoV system’s pre-collected
benign data may be limited. In this specific application, given
that there is a variety of environments and system configu-
rations that may be present in IoV, we emphasize techniques
such as SMOTE to help ensure the best system performance.
This is also with a minimal amount of fine-tuning needed,
represented by its reduction in sensitivity to the loss weights.

4) Sequence Length Variations: Given that our approach
relies on the sequencing of data, it is relevant to discuss how
variations in sequencing can impact the overall results and
what the sequence length value represents in a practical setting.
Table VIII shows the results for sequence lengths of 10, 25, 50,
and 100 on the ACI dataset. For fairness, we average across
all loss weight pairs to present these results.

We find that, generally, the model performs better as we
increase the sequence length, although there is some be-
nign accuracy degradation between the 50 and 100 sequence
lengths. However, a shorter sequence length translates to a
higher periodicity in the detection system, which could have
broader implications for overall system security. For more
safety and time-critical systems, such as an IoV system, a
higher periodicity that the compute capabilities of the systemc
can support is preferred. We also note that while we use
averaging for fairness, we still see high performing individual
trials with small sequence sizes if the proper loss weights
are utilized. For a sequence length of 10, the trial with
λREC = 0.6 and λTML = 0.7 achieved 96% benign accuracy
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TABLE IV
ACCURACY METRICS FOR ACI-2023 AND WUSTL-2021 DATASETS ACROSS DIFFERENT MODELS.

ACI-2023 WUSTL-2021
AE Joint VAE Joint AE DeepSVDD [33] GMM [34] AE Joint VAE Joint AE DeepSVDD [33] GMM [34]

Benign Acc. 99.94 96.22 99.06 88.31 88.31 94.97 99.13 99.09 99.96 100.00
Anomaly Acc. 66.64 96.91 97.28 77.80 76.82 99.99 100.00 100.00 90.07 90.10

Precision 0.6664 0.9691 0.9729 0.9994 0.9994 0.9999 1.0000 0.9775 0.7982 0.7988
Recall 0.9999 0.9998 1.0000 0.7780 0.7682 0.9975 0.9784 0.9886 0.9960 1.0000
F-one 0.7998 0.9843 0.9862 0.8749 0.8687 0.9987 0.9891 0.9830 0.8876 0.8881

TABLE V
ACI METRICS FOR MULTI-CLASS CLASSIFICATION, WITH AND WITHOUT

SMOTE.

Category SMOTE? Anom. Acc. Precision Recall
Brute Force N 100.0000 1.000 0.9961
Brute Force Y 98.3408 0.9834 0.9915

DoS N 91.7481 0.9175 0.9998
DoS Y 98.3408 0.9834 0.9915

Recon N 99.0946 0.9909 1.0000
Recon Y 98.3408 0.9834 0.9915

TABLE VI
ACI (SMOTE) METRICS FOR JOINT AUTOENCODER.

λREC = 0.8, λTML = 0.9, THRESHOLD = 99TH PERCENTILE

Benign Acc. Anom. Acc. Precision Recall
99.9110 98.3408 0.9834 0.9915

TABLE VII
ACI METRICS AVERAGE ACROSS ALL λREC , λTML , PAIRS (NO SMOTE

VERSUS SMOTE), THRESHOLD = 99TH PERCENTILE

SMOTE? Benign Acc. Anom. Acc. Precision Recall
Y 99.7066 98.2166 0.9822 0.9994
N 94.1081 95.7319 0.9573 0.9998

TABLE VIII
ACI METRICS AVERAGE ACROSS ALL λREC , λTML , PAIRS (VARYING

SEQUENCE LENGTH), THRESHOLD = 99TH PERCENTILE

Length Benign Acc. Anom. Acc. Precision Recall
10 96.4495 85.5202 0.8552 0.9998
25 94.1081 95.7319 0.9573 0.9998
50 99.3654 97.2389 0.9724 0.9999

100 96.2238 98.1101 0.9811 0.9999

and 98% anomaly accuracy on the ACI dataset. Thus, while
higher sequence lengths are less sensitive to the loss weights,
lower sequence lengths can be balanced to fit an environment’s
specific needs.

B. Ablation Studies

1) Transfer Learning: Given the importance of generaliz-
ability as it relates to attack detection across diverse envi-
ronments, we also highlight our model’s performance for the
transfer learning task. In the IoV security setting, we consider
that we may need zero-day detection systems for a given
environment that has no pre-collected attack data. As such,
leveraging the performance our model trained on data from a
different environment on a new environment’s data is a useful
consideration of the adaptability of our model.

Given the different application domains of the WUSTL
and ACI datasets, we explore the viability of training on the

WUSTL dataset, freezing model weights, and fine-tuning on
the ACI dataset. For our pre-trained cases, we set the triplet
margin loss weight to 0 and the reconstruction loss to 1.
Through this, we evaluate whether the latent space learning
process introduced through the triplet margin loss for the
WUSTL dataset positively impacts the reconstruction error for
anomaly detection task.

Table IX shows the experimental results for transfer learning
freezing all but the input and output layer WUSTL-trained
weights for the model with the ideal loss weights from the
WUSTL pre-training (λREC = 0.6, λTML = 1.0). Table X
shows the experimental results for transfer learning freezing
the encoder weights for the model.

TABLE IX
ACI (NO SMOTE) METRICS FOR JOINT AUTOENCODER, PRETRAINED ON

WUSTL AND FREEZING ALL BUT INPUT AND OUTPUT LAYERS.
λREC = 0.6, λTML = 1.0, THRESHOLD = 99TH PERCENTILE

PT? Benign Acc. Anom. Acc. Precision Recall
Y 99.0566 96.1830 0.9618 1.0000
N 90.5661 97.4403 0.9755 0.9996

TABLE X
ACI (NO SMOTE) METRICS FOR JOINT AUTOENCODER, PRETRAINED ON

WUSTL AND FREEZING THE ENCODER ONLY.
λREC = 0.6, λTML = 1.0, THRESHOLD = 99TH PERCENTILE

PT? Benign Acc. Anom. Acc. Precision Recall
Y 99.0566 96.3717 0.9637 1.0000
N 90.5661 97.4403 0.9755 0.9996

In both, we see an increase in the overall detection accuracy
for the benign sets as well as an increase in the recall values
while we see a decrease in the anomaly accuracy and the pre-
cision value. This indicates the transfer learning was valuable
for decreasing the number of false negatives at the trade-
off of increased false positives. Freezing only the encoder
yields slightly higher results between the two pre-trained cases,
indicating performance benefits from letting the decoder train
fully on a specific environment’s reconstruction task. These
results establish our model’s generalizability capabilities and
show that no attack data is needed in the source or target
environment to detect any attack type in our method.

2) Variational autoencoder (VAE): Variational Autoen-
coders (VAEs) are generative models that learn a structured
latent space by imposing a probabilistic distribution (typically
Gaussian) on the latent variables. VAEs introduce stochasticity
through reparameterization. This makes VAEs particularly use-
ful for tasks anomaly detection. However, VAEs can struggle
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Fig. 5. ACI precision-recall curve across percentile values for joint
AE and joint VAE

with producing sharp reconstructions compared to AEs be-
cause of the trade-off between reconstruction accuracy and la-
tent space regularization. Additionally, if the prior distribution
is poorly chosen or the KL divergence term is too dominant,
VAEs may produce overly blurred outputs or fail to capture
fine details, whereas AEs, being purely deterministic, often
achieve better reconstruction fidelity. The chosen distribution
is particularly important in our context as our attack datasets
are not guaranteened to be inherently Gaussian and assuming
a fixed distribution could skew detection results. However, due
to their potential benefits, we perform an ablation study on the
modification of our model architecture to a VAE, so we utilize
contrastive, reconstruction, and regularization loss. We present
the results in Table IV. We find that the joint VAE performs
well but does not outperform the joint AE for the ACI-2023
dataset. Conversely, we find it performs similarly and, in some
metrics, better than the joint AE for the WUSTL-2021 dataset.

3) Robustness Analysis Across Percentiles: To further eval-
uate model robustness, we analyze performance across differ-
ent percentile thresholds of anomaly scores. By varying the
decision thresholds, we assess how sensitive the model is to
detecting anomalies at different operating points. This analysis
provides insight into the model’s stability and consistency,
revealing how changes in the percentile threshold impact
detection performance. We present these results numerically
in Table XI for ACI and show corresponding precision-recall
curves in Figure 5 for ACI-2023 and Figure 6 for WUSTL-
2021. We find that our overall benign accuracy increases dra-
matically as we increase our percentile while our other metrics
have minor increases or decreases. Because the thresholding
is intended to find the outliers from the reconstruction error
distribution, as the percentile grows, only those extreme out-
liers should be flagged as anomalies. This leads to less benign
samples being misclassified as attacks (ie, false positives).

TABLE XI
ACI (NO SMOTE) METRICS FOR JOINT AUTOENCODER ACROSS DIFFERING

PERCENTILE VALUES

Benign Acc. Anom. Acc. Precision Recall F-one
90% 78.30 98.08 0.9808 0.9992 0.9899
95% 86.79 97.79 0.9779 0.9994 0.9886
99% 99.06 97.29 0.9729 1.000 0.9862

Fig. 6. WUSTL precision-recall curve across percentile values for
joint AE and joint VAE

Fig. 7. Benign representations with and without contrastive loss.

4) Impact of Contrastive Loss on Benign Representations:
Given our utilization of contrastive loss with the intent of
creating better cohesion among benign representation samples,
we explicitly highlight that the use of contrastive does help
to boost benign representation cohesion. To evaluate this,
we train our joint autoencoder method with and without
contrastive loss. For fairness, we train the model with the
same LREC value (0.9) for both models. We then plot the
benign representations derived from these two models in the
latent space to observe with what level of cohesiveness the
individual clusters of points are grouped. This is plotted in
Figure 7. Here, we qualitatively see that the latent space
representations for benign data produced with contrastive loss
have better cohesion around the center of that cluster of points.
Quantitatively, we can use a measure of the average length
along the axes to capture how wide the plotted points are in
all directions. These results are provided in Table XII. We
find that the overall average length is smaller for the benign
representations created using contrastive loss, indicating better
cohesion.

TABLE XII
AVERAGE LENGTH ALONG AXES FOR BENIGN REPRESENTATIONS

With contrastive loss 0.2000
Without contrastive loss 0.7244
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VI. CONCLUSION

Here, we presented a unique autoencoder method for net-
work attack detection in IoV environments. We conducted ex-
tensive metricing on two state-of-the-art datasets that are well
representative of modern networking patterns in distributed
networked systems. We show that this method can achieve
high benign and anomaly test accuracy while having no
attack data within the training set. These results demonstrate
our model’s capabilities for unseen attack detection in IoV
environments. Additionally, we show that our model works as
an adaptable attack detection mechanism for detection across
different environments, as proven by our transfer learning
study. Our work has key implications for improving the secu-
rity of these emerging and safety-critical automotive systems
via the presentation of a highly robust unseen attack detection.
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