
ar
X

iv
:2

50
5.

21
62

0v
1

 [
cs

.C
R

]
 2

7
M

ay
 2

02
5

VideoMarkBench: Benchmarking Robustness of Video Watermarking

Zhengyuan Jiang1 Moyang Guo1 Kecen Li2 Yuepeng Hu1

Yupu Wang1 Zhicong Huang2 Cheng Hong2 Neil Zhenqiang Gong1

1Duke University 2Ant Group
{zhengyuan.jiang, moyang.guo, yuepeng.hu, yupu.wang, neil.gong}@duke.edu

likecen2023@ia.ac.cn, zhicong303@gmail.com, vince.hc@antgroup.com

Abstract
The rapid development of video generative models has led to a surge in highly realistic synthetic videos,

raising ethical concerns related to disinformation and copyright infringement. Recently, video watermarking
has been proposed as a mitigation strategy by embedding invisible marks into AI-generated videos to
enable subsequent detection. However, the robustness of existing video watermarking methods against both
common and adversarial perturbations remains underexplored. In this work, we introduce VideoMarkBench,
the first systematic benchmark designed to evaluate the robustness of video watermarks under watermark
removal and watermark forgery attacks. Our study encompasses a unified dataset generated by three state-
of-the-art video generative models, across three video styles, incorporating four watermarking methods and
seven aggregation strategies used during detection. We comprehensively evaluate 12 types of perturbations
under white-box, black-box, and no-box threat models. Our findings reveal significant vulnerabilities in
current watermarking approaches and highlight the urgent need for more robust solutions.

Code: https://github.com/zhengyuan-jiang/VideoMarkBench

Data: https://www.kaggle.com/datasets/zhengyuanjiang/videomarkbench

1 Introduction
Recent advancements in video generative models have enabled the creation of highly realistic synthetic
videos that are nearly indistinguishable from authentic videos of real individuals. Despite their remarkable
technological achievements, these generative capabilities introduce significant risks, including the spread of
misinformation and potential copyright violations [4]. For instance, video generative models were used to
create convincing deepfake footage of Ukrainian President Volodymyr Zelenskyy surrendering during the
ongoing conflict, illustrating how synthetic videos can be weaponized to spread political misinformation and
undermine public trust [1].

Thus, it is important to detect whether a video containing sensitive information is AI-generated. Water-
marks can be employed as a detection mechanism [13]. Specifically, a watermarking method consists of
two stages: watermark insertion and detection. In the insertion stage, the watermark is embedded into the
AI-generated video during or after the generation process, producing a watermarked video. In the detection
stage, a decoder extracts the watermark from the video and compares it with the ground-truth watermark. The
video is detected as watermarked–and therefore AI-generated–if the similarity exceeds a predefined detection
threshold.

Current video watermarking methods [30, 26, 7, 10] are capable of embedding a watermark into a video
and accurately decoding it in the absence of perturbations. However, videos often undergo common editing
operations, such as MPEG-4 compression and cropping. Moreover, in adversarial settings, an attacker
may deliberately introduce perturbations to remove or forge the watermark [14, 17, 23, 2, 31, 19, 12, 11],
thereby evading detection. Despite this, the robustness of existing video watermarking methods against those
perturbations has been largely underexplored.

1

https://github.com/zhengyuan-jiang/VideoMarkBench
https://www.kaggle.com/datasets/zhengyuanjiang/videomarkbench
https://arxiv.org/abs/2505.21620v1

VideoMarkBench

Watermarking
Methods

Common
Perturbations

Adversarial
Perturbations

Goals

Removal
Forgery

Black-Box:

SVD
Sora

Hunyuan

REVMark
StegaStamp

VideoSeal
VideoShield

Image-based: JPEG, Gaussian, Blurring, Cropping

 Video-based: MPEG-4, Frame Average, Frame Swap…

Score-based: Square attack

Label-based: Triangle attack

All frames with bounded perturbations

Subset of frames with arbitrary perturbations
White-Box:

Aggregation
Methods

Logit level
Bit level
BA lavel

Detection level

Video
Models

Figure 1: Summary of our VideoMarkBench.

Our work: In this work, we aim to bridge this gap by introducing VideoMarkBench (Video Watermarking
Benchmark), the first systematic study that evaluates the effectiveness, utility, efficiency, and robustness of
existing video watermarking methods. Figure 1 summarizes VideoMarkBench. We conduct a comprehensive
evaluation of watermark robustness against both removal and forgery perturbations, where perturbations are
added to cause a watermarked video to be misclassified as unwatermarked, or an unwatermarked video to be
falsely detected as watermarked, respectively.

- Dataset: In addition to the real-world video dataset Kinetics-400 [15], we construct a new AI-
generated dataset, VideoMarkData, using three state-of-the-art video generative models. The video samples
in VideoMarkData vary in style, length, and content, providing a diverse testbed for future research to explore
the unique characteristics of AI-generated videos.

- Systematic benchmarking: We introduce the first systematic benchmark for evaluating the robustness
of four state-of-the-art video watermarking methods against 12 types of perturbations used in watermark
removal and forgery across different threat models. Our benchmark includes four adversarial perturbations in
the white-box and black-box settings and eight common video perturbations in the no-box setting. Further-
more, we extend image watermarking methods to the video domain by treating each frame as an individual
image, and we propose seven aggregation strategies to combine detection results across frames.

- Observations: We summarize several key takeaways. First, current video watermarking methods
perform accurately in the absence of perturbations. Second, existing video watermarking methods are broken
against both watermark removal and forgery attacks in the white-box setting. Third, while these methods are
relatively robust against forgery perturbations, they are vulnerable to adversarial removal perturbations in
the black-box setting with a sufficient number of queries to the detection API and certain common removal
perturbations in the no-box setting. Fourth, logit-level aggregation generally outperforms other aggregation
strategies, and aggregation strategies based on median are more robust than those based on mean.

2 Video Watermarking Methods
Existing video watermarking methods can be broadly categorized into two types: post-generation and pre-
generation. Post-generation methods [30, 26, 7] embed a ground-truth watermark wg (a bitstring) into a video
x using a watermark encoder E, resulting in a watermarked video xw, i.e., xw = E(x,wg). These methods
then employ a watermark detector D to detect whether a test video xt has the watermark wg. In contrast,
pre-generation methods [29, 10] do not use a dedicated watermark encoder. Instead, watermark insertion
is integrated into the generative model itself, and the watermark is embedded during the video generation

2

process. For detection, these methods use techniques such as DDIM Inversion [6] to extract the embedded
watermark.
REVMark: REVMark [30] treats the video as a whole during both watermark insertion and detection.
Specifically, the watermark encoder takes 8 cropped frames (the first 8 frames, each of size 128 × 128)
as input and outputs their watermarked versions. Given a test video xt, REVMark crops its first 8 frames
into 8 consecutive frames of size 128× 128, and then uses a watermark decoder Dec to extract watermark
logits from these frames, which are subsequently rounded to produce the decoded watermark w. If the
bitwise accuracy (BA)—defined as the fraction of matching bits between the decoded watermark w and the
ground-truth watermark wg—is no less than a predefined detection threshold τ , i.e., BA(w,wg) ≥ τ , the
video is detected as watermarked; otherwise, it is considered unwatermarked. To enable fair comparison with
other frame-level methods, we extend REVMark to operate across all frames of the video. We apply the
decoder to each consecutive group of 8 frames and take the BA average for those decoded watermarks to
obtain the final decision.
StegaStamp: StegaStamp [26] is a state-of-the-art image watermarking method, which we extend to video
watermarking by treating each video frame as an individual image. Specifically, the watermark encoder E
embeds the watermark wg into each frame of the video. During detection, given a test video xt, the watermark
decoder Dec extracts watermark logits from each frame in xt, and these logits are then aggregated to produce
the final detection result. We discuss various aggregation strategies in Section 2.1.
VideoSeal: VideoSeal [7] is a state-of-the-art video watermarking method. Unlike approaches that embed the
watermark into every frame, VideoSeal uses the watermark encoder E to embed the watermark into selected
frames at a fixed interval. The perturbations introduced during watermark insertion are then propagated to
neighboring frames. During detection, the watermark decoder extracts a watermark from each frame and
computes the bitwise accuracy (BA) for each. These BA scores are then aggregated by taking their average to
produce the final detection result.
VideoShield: VideoShield [10] is a state-of-the-art video watermarking method designed specifically for
videos generated by diffusion models. It embeds the watermark into the Gaussian noise image used during
generation by modifying its sign. During detection, VideoShield applies DDIM Inversion [6] to estimate the
original Gaussian noise image from the input video and then extracts the watermark from the sign of the
estimated noise.

2.1 Aggregation Strategies for Frame-level Watermark Extraction
For frame-level watermark extraction methods–such as StegaStamp and VideoSeal–the outputs consist of
logits decoded from each individual video frame. To derive a per-video detection result, we propose seven
aggregation strategies that combine these per-frame outputs, as detailed below:

(1) Logit-mean: We compute the average of the decoded logits across all frames to obtain aggregated
logits. These aggregated logits are then rounded to a bitstring and compared with the ground-truth watermark
to determine the final detection result. (2) Logit-median: Given F frames and their corresponding F vectors
of decoded logits, we compute the geometric median of these F vectors using the Powell method [22]. The
resulting median vector is treated as the aggregated logits. (3) Bit-median: We first round the decoded logits
from each frame to bitstrings, and then take a majority vote (0 or 1) across frames for each bit position to
form the aggregated decoded watermark. (4) BA-mean: We compute the bitwise accuracy (BA) between the
decoded watermark and the ground-truth for each frame, and then take the average BA across all frames. The
final detection decision is made by comparing this average with the detection threshold τ . Note that BA-mean
aggregation was originally adopted by VideoSeal. (5) BA-median: Similar to BA-mean, we compute BA

3

for each frame, but take the median BA across all frames and compare it with the threshold τ for detection.
(6) Detection-median: For each frame, we compute BA and compare it with the detection threshold τ to
obtain a binary detection result (watermarked or not). The final video-level decision is then obtained by
taking the majority vote across all frame-level decisions. (7) Detection-threshold: We compute the detection
result for each frame as in Detection-median. If the number of frames detected as watermarked is no less
than a predefined threshold, the video is detected as watermarked. A detailed explanation is provided in the
Appendix A.2

3 Perturbations for Video Watermarking
Watermark removal adds a perturbation δ to a watermarked video xw such that the perturbed version xw + δ is
falsely classified as unwatermarked. In contrast, watermark forgery adds a perturbation δ to an unwatermarked
video xu such that the detector falsely detects xu + δ as watermarked.

3.1 White-box Perturbations
In the white-box setting, we assume an attacker has full access to the watermark detector, including its
parameters. Perturbations are strategically crafted by solving an optimization problem to evade detection.
Depending on the attacker’s capabilities, we consider two scenarios, as described below.
Attacking each frame with bounded perturbations: In this scenario, we assume the attacker can add
perturbations to all frames, but the perturbation size is bounded to preserve the visual quality of each frame.
Specifically, the attacker crafts an adversarial perturbation δ [25] to remove the watermark wg by solving the
following optimization problem via Projected Gradient Descent (PGD) [18]:

min
δ

l(Dec(I + δ), wg), s.t.||δ||∞ ≤ ϵ, (1)

where l is a loss function that measures the distance between two vectors, Dec is the watermark decoder, I
is a video frame, and ϵ is the perturbation bound. For REVMark, which does not operate on a single frame
during detection, I corresponds to a stack of 8 frames of size 128 × 128, and δ represents the optimized
video-level perturbation. To perform a watermark forgery attack, the objective is reversed to maximize the
loss on an unwatermarked video.
Attacking a subset of frames with arbitrary perturbations: In this scenario, we assume that certain
frames in the video are critical and must be preserved without perturbation, while the attacker is allowed to
apply arbitrarily large perturbations to the remaining non-critical frames. Such an attack can be strategically
designed to break logit-mean aggregation, as this strategy can be dominated by logits with large absolute
values. Specifically, if some frames are perturbed so that their decoded logits attain extremely large values,
the aggregated result may be skewed, making it easier to evade video-level detection. Our optimization
objective is to reduce the decoded logit values as much as possible for bits where the ground-truth watermark
wg is 1, and to increase them as much as possible where wg is 0. To achieve this, we formulate the following
optimization problem over the decoded logits Dec(I+δ) to remove the watermark: minδ −

∑︁n
i=1(sign(wg−

0.5) ∗Dec(I + δ))i, where n is the watermark length, sign(·) extracts the sign of each element, ∗ denotes
element-wise multiplication, and (·)i indicates the i-th element of the vector. To forge a watermark, we
instead maximize this loss on an unwatermarked video.

4

3.2 Black-box Perturbations
In the black-box setting, the watermark detector is treated as an API: the attacker submits a video and observes
the detection result without access to the internal workings of the detector. Specifically, the attacker iteratively
refines the perturbation by repeatedly querying the detection API based on the feedback received. Black-box
attacks can be categorized as either score-based or label-based, depending on the type of information available
to the attacker from the detection API.
Score-based (Square Attack [3]): For score-based black-box perturbations, each query to the detection
API returns a score indicating the likelihood that the input video contains a watermark. Square Attack [3]
is a representative score-based method for images, and we extend it to videos by aggregating detection
results across individual frames; implementation details are provided in the Appendix A.3. Specifically,
Square Attack searches for a perturbation δ that removes or forges a watermark by strategically decreasing or
increasing the score.
Label-based (Triangle Attack [27]): For label-based black-box perturbations, the detection API returns
only a binary label (watermarked or unwatermarked) for each query. We extend Triangle Attack [27]—a
label-based attack originally designed for images—to videos by flattening the video frames and treating it
as a large image. Specifically, Triangle Attack begins with an initial sample that has the desired label but
may contain a large perturbation relative to the target test video, and then iteratively searches for a smaller
perturbation that maintains evasion by querying the detection API. The implementation details are provided
in the Appendix A.3.

3.3 Common Perturbations
We consider both image-based and video-based common perturbations, which correspond to common
image/video editing operations. Note that these perturbations can be applied by attackers or regular users. We
apply the image-based perturbations to each frame of the video to perturb the entire video.
Image-based perturbations: (1) JPEG: a widely used image compression standard that reduces image size
with a quality factor of Q. (2) Gaussian Noise: adding random noise to the image, following a Gaussian
distribution with a mean of 0 and a standard deviation of σ. (3) Gaussian Blur: blurring the image with the
gaussian kernel with a standard deviation of σ. (4) Cropping: cropping the image with a proportion of c and
then resize the cropped image to the original size.
Video-based perturbations: (1) MPEG-4: a widely used video compression standard that reduces video size
with a quality factor of Q. (2) Frame Average: for each frame, computing the mean of its adjacent N frames
in the temporal dimension, with N = 1 indicating no change. (3) Frame Swap: for each frame, a random
exchange with an adjacent frame (either the previous or the next frame) is conducted with a probability p. (4)
Frame Removal: removing each frame from the video with a probability p.

4 Collecting Datasets

AI-generated, watermarked videos: To conduct a comprehensive evaluation of video watermarking
methods across diverse visual styles and temporal dynamics, we construct a balanced benchmark dataset,
VideoMarkData. It consists of videos generated by three state-of-the-art models: Stable Video Diffusion
(SVD) [24], Sora [21], and Hunyuan Video [16]. And we embed watermarks into those AI-generated videos.
For each model, we generate videos in three styles—realistic, cartoon, and sci-fi—capturing a broad range
of visual characteristics. Temporal variation is explicitly controlled by specifying either slow or fast frame

5

Table 1: Details of our VideoMarkData.

Video Generative Model #Frames Resolution (H×W) Style #Samples per Style
Stable Video Diffusion (SVD) 14 576×1024 Realistic, Cartoon, Sci-Fi 200

Sora 150 720×1280 Realistic, Cartoon, Sci-Fi 50
Hunyuan Video 61 576×1024 Realistic, Cartoon, Sci-Fi 200

transitions within each style to modulate motion complexity. To ensure content consistency, a shared set of
prompts is used across all models and styles. We use GPT-4 [20] to generate those base prompts for us and
turn them into different styles. Example prompts are shown in Table 4 in the Appendix. Each prompt is
annotated with its intended style, scene content, and motion type (i.e., speed of frame transitions), allowing
us to evaluate watermark robustness across different generative models, contents, and styles.

Due to OpenAI’s API query limitations, we collect 50 videos per style for Sora. For both SVD and
Hunyuan Video, we collect 200 videos per style. In all cases, we maintain a 1:1 ratio of fast to slow motion
videos, ensuring balanced temporal coverage. Table 1 shows details of VideoMarkData.
Non-AI-generated, unwatermarked videos: We use the Kinetics-400 dataset [15] for non-AI-generated
videos—a widely used benchmark for video understanding. It contains approximately 240,000 YouTube clips
across 400 diverse human actions, with variations in background, lighting, camera angle, and motion. Videos
average 10 seconds in length and range from 240p to 1080p, offering a comprehensive reflection of real-world
video diversity.

5 Benchmark Results

Evaluation metrics: We evaluate the robustness of video watermarking methods against watermark removal
and forgery perturbations using False Negative Rate (FNR) and False Positive Rate (FPR). FNR is defined as
the proportion of (perturbed) watermarked videos that are falsely classified as unwatermarked, while FPR is
the proportion of (perturbed) unwatermarked videos falsely detected as watermarked. Lower FNR and FPR
indicate better robustness against removal and forgery perturbations, respectively.

To assess the visual quality of watermarked videos, we report the average Peak Signal-to-Noise Ratio
(PSNR) [9] and Structural Similarity Index Measure (SSIM) [28], where higher values denote better visual
similarity to the original (non-watermarked) videos. We also include the temporal LPIPS (tLP) [5], which
quantifies perceptual consistency across consecutive video frames. Lower tLP values suggest smoother
temporal transitions and better preservation of temporal coherence.
Selection of detection threshold τ : REVMark [30] and VideoSeal [7] use a 96-bit watermark. The
detection threshold τ is set to 67

96 , which guarantees a theoretical FPR of less than 0.01% [14] (detailed in
the Appendix A.4). StegaStamp [26] employs a 32-bit watermark, with the detection threshold τ set to 27

32 .
VideoShield [10] employs a 448-bit watermark, with the detection threshold τ set to the maximum detection
score of 1,000 unwatermarked videos.

5.1 Results under No Perturbation
Table 5 and Table 6 in the Appendix present the FNRs and FPRs of different video watermarking methods
and aggregation strategies on the three AI-generated video datasets and real video dataset, under the setting
where no perturbations are added to remove or forge the watermarks. We highlight two key observations
from the results: First, the FNRs and FPRs of existing video watermarking methods are consistently near

6

Table 2: Visual quality of watermarked video.

REVMark StegaStamp VideoSeal VideoShield

PSNR ↑ 37.13 37.91 37.85 7.945

SSIM ↑ 0.948 0.945 0.942 0.264

tLP ↓ 2.762 0.198 0.145 6.674

zero, demonstrating their effectiveness in distinguishing watermarked from non-watermarked videos in
the absence of perturbations. Second, although certain aggregation strategies—such as BA-mean and BA-
median—occasionally yield non-zero FNRs, the performance across different aggregation strategies remains
comparable.

Table 3: Average time cost (ms) per video.

REVMark StegaStamp VideoSeal VideoShield

Encoding 26.66 14.99 157.6 1.598

Decoding 20.88 1.460 45.68 1.089×104

Total 47.54 16.45 203.3 1.090×104

Table 2 reports the visual quality of watermarked
videos for four video watermarking methods. Over-
all, post-generation watermarking methods generally
preserve high visual quality. VideoShield–the only
in-generation watermarking method–exhibits lower
PSNR and SSIM values, likely due to the watermark
being inserted during the video generation process,
which can lead to more perceptible alterations in
the video content. Table 3 presents the time costs
associated with watermark embedding and extraction. Among all methods, StegaStamp is the most efficient,
requiring the least time for both encoding and decoding. In contrast, VideoShield incurs the highest time cost,
primarily because its detection process involves DDIM inversion, which is computationally intensive.

5.2 Robustness against White-box Video Perturbations
Note that the inverse DDIM process used in VideoShield leads to gradient accumulation, resulting in excessive
GPU memory consumption during white-box attacks. Due to our limited computational resources, we exclude
VideoShield from our evaluation in the white-box setting.

5.2.1 First Scenario: Attacking Each Frame with Bounded Perturbations

In the first scenario, an attacker adds perturbations to each frame to remove or forge the watermark. To
preserve the video’s visual quality, the perturbations are constrained by an ℓ∞-norm bound. Unless otherwise
specified, comparisons across watermarking methods use the best-performing aggregation strategy for each
watermarking method (StegaStamp or VideoSeal) where aggregation strategy is applicable, with results
averaged over different generative models and video styles. When comparing aggregation strategies, we
average the results across generative models and styles for StegaStamp or VideoSeal. For comparisons across
generative models, we average results over all watermarking methods using various aggregation strategies
and video styles. Similarly, when comparing across video styles, we average results over all watermarking
methods with different aggregation strategies and generative models.
Comparison across watermarking methods: Figure 2a and 3a present the results of both watermark
removal and forgery attacks across three watermarking methods. We have several observations. First, all
existing video watermarking methods fail under the white-box setting—both FNR and FPR reach 1 even
with small perturbations. This indicates that an attacker can effectively remove or forge a watermark while

7

.001 .002 .003 .004 .005 .01
-norm Perturbation Budget

.
.2
.4
.6
.8

1.0

FN
R

REVMark
VideoSeal
StegaStamp

(a) Watermarking

.001 .002 .003 .004 .005 .01
-norm Perturbation Budget r

.
.2
.4
.6
.8

1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(b) Aggregation

.001 .002 .003 .004 .005 .01
-norm Perturbation Budget r

.
.2
.4
.6
.8

1.0

FN
R

Hunyuan
Sora
SVD

(c) Model

.001 .002 .003 .004 .005 .01
-norm Perturbation Budget r

.
.2
.4
.6
.8

1.0

FN
R

Cartoon
Realistic
Sci-Fi

(d) Style

Figure 2: White-box watermark removal results in the first scenario.

maintaining the video’s visual quality. Second, among the three watermarking methods, VideoSeal has better
robustness against watermark removal attacks, while StegaStamp is consistently more robust against forgery
attacks. Third, the perturbations required for forgery attacks are significantly smaller than those needed
for removal attacks, suggesting that watermark forgery is easier in the white-box setting. This is primarily
because the watermark encoder and decoder are adversarially trained to resist removal perturbations, but
forgery perturbations are largely ignored during training.

1e-4 2e-4 5e-4 8e-4 1e-3
-norm Perturbation Budget

.
.2
.4
.6
.8

1.0
FP

R

REVMark
VideoSeal
StegaStamp

(a) Watermarking

1e-4 2e-4 3e-4 4e-4 8e-4 1e-3
-norm Perturbation Budget

.
.2
.4
.6
.8

1.0

FP
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(b) Aggregation

Figure 3: White-box watermark forgery results in the
first scenario.

Comparison across aggregation strategies: We
evaluate seven aggregation strategies on StegaStamp
and VideoSeal, whose watermark decoder work on
frame-level. Figure 2b and 3b present the results
for StegaStamp. Results for VideoSeal are shown in
Figure 8 in the Appendix. We highlight several key
observations. First, logit-level aggregation strategy
consistently outperforms BA-level aggregation. Sec-
ond, the detection-threshold aggregation strategy is
the most robust against removal attacks, but it is the
least robust against forgery attacks. This is because
this strategy detects a video as watermarked as long
as a predefined number of frames are detected as such. Therefore, a successful removal attack must target
most frames in the video, whereas a successful forgery attack requires only a few frames to be falsely detected
as watermarked. Third, detection-median aggregation is the most robust strategy against forgery attacks, as
an attacker must successfully alter about half of the frames to influence the median-based detection result.
Comparison across generative models and styles: Figures 2c and 2d present the results of watermark
removal attacks across videos generated by different models and different video styles, respectively. Forgery
results are not applicable in this case, as our real-world dataset is not generated by models and does not
include style labels. We observe notable robustness gaps against watermark removal attacks both across
models and across video styles. To statistically validate these differences, we conduct two-tailed t-tests
under the null hypothesis that there is no difference in FNRs. We use a significance level of α = 0.05. The
calculated p-value for differences among models ≈ 0.038 < α, and the p-value for differences among video
styles ≈ 0.029 < α. These results indicate that the observed robustness gaps across both models and video
styles are statistically significant.

5.2.2 Second Scenario: Attacking a Subset of Frames with Arbitrary Perturbations

In the second scenario, an attacker adds arbitrary perturbations to a fraction of frames in the video to remove
or forge the watermark. The attack objective is to manipulate the decoded logits of the perturbed frames

8

to be extremely large or small, thereby dominating the final detection result. Since both REVMark and
StegaStamp use a sigmoid activation in the logit layer—constraining their output logits to the range [0,1]—we
only evaluate VideoSeal in this scenario.

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
Fraction of video frames

.
.2
.4
.6
.8

1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(a) Removal

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
Fraction of video frames

.
.2
.4
.6
.8

1.0

FP
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(b) Forgery

Figure 4: White-box attack results in the second scenario with
different aggregation strategies.

Comparison across aggregation strate-
gies for VideoSeal: Figure 4 presents
VideoSeal’s performance under white-
box attacks in the second scenario. The x-
axis represents the fraction of frames per-
turbed by the attacker. We have several
observations. First, the logit-mean and
BA-mean aggregation strategies are the
least robust against watermark removal
attacks. This vulnerability arises because
the attacker optimizes the logits to have
signs opposite to wg − 0.5, which results
in low bitwise accuracy for the perturbed
frames. Second, logit-mean and detection-threshold aggregation strategies are the most vulnerable to wa-
termark forgery attacks. In these cases, the attacker only needs to successfully perturb a small number of
frames—exceeding the detection threshold—to forge a watermark. Third, BA-median and detection-median
aggregation strategies demonstrate relatively strong and stable performance. This robustness comes from
the fact that perturbing a subset of frames does not significantly affect the overall median, making these
aggregation strategies based on median more robust.

5.3 Robustness against Black-box Video Perturbations
In the black-box setting, the watermark detection API is queried multiple times with perturbed video to
iteratively find an adversarial perturbation based on the feedback. VideoShield is excluded from this evaluation
due to the inefficiency of its detection process, which relies on time-consuming DDIM inversion. Since
black-box attacks are computationally expensive, we use a subset of videos to conduct experiments (40 videos
per model and style). For removal attacks in this setting, by default, we only evaluate on videos generated by
SVD and realistic style, using BA-mean aggregation.
Square Attack (score-based): In our experiments, we follow the default settings of Square Attack [3],
with perturbations constrained by an l∞ bound of 0.05. Figure 5 presents the results of Square Attack for
watermark removal; results for forgery attacks are provided in the Appendix A.5. We summarize four key
observations: First, VideoSeal is significantly more vulnerable to removal attacks compared to StegaStamp
and REVMark. This is primarily because VideoSeal is less robust to Gaussian noise, as shown in Figure 13b
in the Appendix, and the perturbations introduced by Square Attack exhibit noise-like patterns that mimic
the effect of Gaussian noise, making them particularly effective against the less noise-robust VideoSeal.
StegaStamp and REVMark require larger perturbations for successful watermark removal, as shown in
Figure 9 in the Appendix. Second, among aggregation strategies, detection-threshold aggregation is the most
robust against watermark removal, and logit-level aggregation consistently outperforms BA-level aggregation,
which aligns with our findings in the white-box setting. Third, across generative models, videos generated
by SVD exhibit greater robustness to watermark removal attacks, whereas videos generated by Sora are
more vulnerable. Fourth, videos in the cartoon style are more robust, while those in the sci-fi style are more
vulnerable to watermark removal attacks.

9

0 200 400 600 800
Number of Query

0.0
0.2
0.4
0.6
0.8
1.0

FN
R REVMark

StegaStamp
VideoSeal

(a) Watermarking

0 200 400 600 800
Number of Query

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(b) Aggregation

0 200 400 600 800
Number of Query

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

SVD
Sora
Hunyuan

(c) Model

0 200 400 600 800
Number of Query

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Realistic
Cartoon
Sci-fi

(d) Style

Figure 5: Square Attack watermark removal results. Perturbations are l∞ bounded by 0.05.

0 200 400 600 800 1000
Number of Query

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rtu

rb
at

io
n

l
-n

or
m

REVMark
StegaStamp
VideoSeal

(a) Watermarking

0 200 400 600 800 1000
Number of Query

0.0

0.2

0.4

0.6

0.8

1.0
Pe

rtu
rb

at
io

n
l

-n
or

m Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(b) Aggregation

0 200 400 600 800 1000
Number of Query

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rtu

rb
at

io
n

l
-n

or
m SVD

Sora
Hunyuan

(c) Model

0 200 400 600 800 1000
Number of Query

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rtu

rb
at

io
n

l
-n

or
m Realistic

Cartoon
Sci-fi

(d) Style

Figure 6: Triangle Attack watermark removal results.

90 80 60 40 20
Quality Factor Q

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(a) JPEG

0.01 0.05 0.10 0.15 0.20
Standard Derivation

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(b) Gaussian Noise

0.98 0.96 0.94 0.92 0.90
Cropping Ratio c

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(c) Cropping

1 10 20 30 40
Quality Factor Q

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(d) MPEG-4

Figure 7: Common perturbation watermark removal results for StegaStamp with different aggregation.

Triangle Attack (label-based): In our experiments, we extend Triangle Attack [27] to the video setting and
follow its default configuration. Figure 6 shows the results for watermark removal; results for watermark
forgery are provided in the Appendix A.5. We summarize several key findings: First, VideoSeal requires much
smaller perturbations to be successfully attacked, primarily due to the initialization process. We iteratively add
Gaussian noise to the watermarked videos until an initial perturbed video is misclassified as unwatermarked.
Since VideoSeal is not robust to Gaussian noise, the l∞ norm of the initial perturbation tends to be relatively
small. Second, we observe similar trends across aggregation strategies as in previous experiments. Third,
videos generated by Sora are more robust against watermark removal under Triangle Attack. Fourth, the
perturbation size decreases most significantly within the first 100 queries, after which it drops slowly. We
observe no significant difference in robustness across different video styles.

5.4 Robustness against Common Video Perturbations
Figures 7 and Figure 13–19 in the Appendix present results under common video perturbations. We summarize
several key observations: First, existing video watermarking methods are generally robust to common video
perturbations, particularly when video quality is preserved or the perturbation type is included in adversarial
training [8]. For example, all evaluated methods are robust to Gaussian blurring, as this perturbation maintains
visual quality and is commonly used during adversarial training. Second, the robustness of watermarks

10

varies across different types of perturbations. Specifically, all methods are robust to frame averaging, frame
switching, and frame removal perturbations, as these operations minimally alter the video content and the
watermark detection are not heavily dependent on temporal consistency. In contrast, watermarking methods
are more vulnerable to both frame-level and video-level compression such as JPEG and MPEG-4. Third, when
perturbations are large enough to noticeably degrade visual quality, video watermarks can be removed. This
is because large perturbations can distort the watermark structure, making it difficult for the decoder to extract
the correct watermark. For instance, when MPEG-4 compression is applied with a quality factor of Q = 40,
the FNR begins to increase for all methods. Fourth, existing watermarking methods are robust to watermark
forgery using common perturbations, as shown in Figure 18 in the Appendix. In particular, the FPRs remain
near zero regardless of the applied perturbation. This robustness is likely because the added perturbations do
not mimic the structural patterns of valid watermarks, making watermark forgery substantially more difficult
than watermark removal in the no-box setting. A more detailed analysis can be found in Appendix A.6.

6 Conclusion
In this work, we introduce VideoMarkBench, the first systematic benchmark for evaluating the robustness
of video watermarking methods against both watermark removal and forgery perturbations. Our study
includes a comprehensive AI-generated dataset called VideoMarkData, created using three video generative
models. We evaluate four state-of-the-art video watermarking methods under 12 types of perturbations across
white-box, black-box, and no-box threat scenarios. Experimental results show that existing video watermarks
are not robust to a wide range of perturbations. In addition, we extend image watermarking methods to the
video domain and propose seven aggregation strategies, among which logit-level aggregation consistently
outperforms BA-level aggregation. This benchmark fosters further research toward developing more robust
video watermarking.

References
[1] Bobby Allyn. Deepfake video of zelenskyy could be ’tip of the iceberg’ in info

war. https://www.npr.org/2022/03/16/1087062648/deepfake-video-zelenskyy-experts-war-manipulation-
ukraine-russia. Online; accessed March 16, 2022.

[2] Bang An, Mucong Ding, Tahseen Rabbani, Aakriti Agrawal, Yuancheng Xu, Chenghao Deng, Sicheng
Zhu, Abdirisak Mohamed, Yuxin Wen, Tom Goldstein, et al. Waves: Benchmarking the robustness of
image watermarks. In International Conference on Machine Learning, 2024.

[3] Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square attack: a
query-efficient black-box adversarial attack via random search. In European Conference on Computer
Vision, 2020.

[4] Mihai Christodorescu, Ryan Craven, Soheil Feizi, Neil Gong, Mia Hoffmann, Somesh Jha, Zhengyuan
Jiang, Mehrdad Saberi Kamarposhti, John Mitchell, Jessica Newman, et al. Securing the future of genai:
Policy and technology. arXiv, 2024.

[5] Mengyu Chu, You Xie, Jonas Mayer, Laura Leal-Taixé, and Nils Thuerey. Learning temporal coherence
via self-supervision for gan-based video generation. ACM Transactions on Graphics (TOG), 2020.

11

[6] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Conference
on Neural Information Processing Systems, 2021.

[7] Pierre Fernandez, Hady Elsahar, I Zeki Yalniz, and Alexandre Mourachko. Video seal: Open and
efficient video watermarking. arXiv, 2024.

[8] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations, 2015.

[9] Alain Hore and Djemel Ziou. Image quality metrics: Psnr vs. ssim. In International Conference on
Pattern Recognition, 2010.

[10] Runyi Hu, Jie Zhang, Yiming Li, Jiwei Li, Qing Guo, Han Qiu, and Tianwei Zhang. Videoshield:
Regulating diffusion-based video generation models via watermarking. In International Conference on
Learning Representations, 2025.

[11] Yuepeng Hu, Zhengyuan Jiang, Moyang Guo, and Neil Gong. Stable signature is unstable: Removing
image watermark from diffusion models. arXiv, 2024.

[12] Yuepeng Hu, Zhengyuan Jiang, Moyang Guo, and Neil Gong. A transfer attack to image watermarks.
In International Conference on Learning Representations, 2025.

[13] Zhengyuan Jiang, Moyang Guo, Yuepeng Hu, and Neil Zhenqiang Gong. Watermark-based detection
and attribution of ai-generated content. arXiv, 2024.

[14] Zhengyuan Jiang, Jinghuai Zhang, and Neil Zhenqiang Gong. Evading watermark based detection of
ai-generated content. In ACM SIGSAC Conference on Computer and Communications Security, 2023.

[15] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan,
Fabio Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman, and Andrew Zisserman. The
kinetics human action video dataset. arXiv, 2017.

[16] Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li, Bo Wu,
Jianwei Zhang, et al. Hunyuanvideo: A systematic framework for large video generative models. arXiv,
2024.

[17] Nils Lukas, Abdulrahman Diaa, Lucas Fenaux, and Florian Kerschbaum. Leveraging optimization for
adaptive attacks on image watermarks. In International Conference on Learning Representations, 2024.

[18] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. To-
wards deep learning models resistant to adversarial attacks. In International Conference on Learning
Representations, 2018.

[19] Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash Vahdat, and Animashree Anandkumar.
Diffusion models for adversarial purification. In International Conference on Machine Learning, 2022.

[20] OpenAI. Gpt-4. https://chatgpt.com/. Online; accessed March 14, 2023.

[21] OpenAI. Sora. https://sora.chatgpt.com/explore. Online; accessed November 21, 2023.

[22] Michael JD Powell. An efficient method for finding the minimum of a function of several variables
without calculating derivatives. The Computer Journal, 1964.

12

[23] Mehrdad Saberi, Vinu Sankar Sadasivan, Keivan Rezaei, Aounon Kumar, Atoosa Chegini, Wenxiao
Wang, and Soheil Feizi. Robustness of ai-image detectors: Fundamental limits and practical attacks. In
International Conference on Learning Representations, 2024.

[24] Stability-AI. Stable video diffusion. https://github.com/Stability-AI/generative-models. GitHub;
accessed November 21, 2023.

[25] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In International Conference on Learning
Representations, 2014.

[26] Matthew Tancik, Ben Mildenhall, and Ren Ng. Stegastamp: Invisible hyperlinks in physical photographs.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.

[27] Xiaosen Wang, Zeliang Zhang, Kangheng Tong, Dihong Gong, Kun He, Zhifeng Li, and Wei Liu.
Triangle attack: A query-efficient decision-based adversarial attack. In European Conference on
Computer Vision, 2022.

[28] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
error visibility to structural similarity. IEEE Transactions on Image Processing, 2004.

[29] Yuxin Wen, John Kirchenbauer, Jonas Geiping, and Tom Goldstein. Tree-ring watermarks: Fingerprints
for diffusion images that are invisible and robust. In Conference on Neural Information Processing
Systems, 2023.

[30] Yulin Zhang, Jiangqun Ni, Wenkang Su, and Xin Liao. A novel deep video watermarking framework
with enhanced robustness to h. 264/avc compression. In ACM International Conference on Multimedia,
2023.

[31] Xuandong Zhao, Kexun Zhang, Zihao Su, Saastha Vasan Vasan, Ilya Grishchenko, Christopher Kruegel,
Giovanni Vigna, Yu-Xiang Wang, and Lei Li. Invisible image watermarks are provably removable using
generative ai. In Conference on Neural Information Processing Systems, 2024.

[32] Jiren Zhu, Russell Kaplan, Justin Johnson, and Li Fei-Fei. Hidden: Hiding data with deep networks. In
European Conference on Computer Vision, 2018.

13

A Appendix

A.1 Experiments Compute Resources
We conduct our experiments on 18 NVIDIA-RTX-6000 GPUs, each with 24 GB memory. The complete set
of experiments requires about 300 GPU-hours to execute.

A.2 A Detailed Explanation for Aggregation Strategies
In image watermark detection, given an image I , the watermark decoder Dec extracts a vector of logits y
from the image I , i.e., y = Dec(I). These logits are then rounded to obtain the decoded watermark bitstring
w:

w = I (y ≥ 0.5) , w ∈ {0, 1}n (2)

where I(·) denotes the element-wise indicator function, and both w and y have length n. The bitwise accuracy
(BA) between the decoded watermark w and the ground-truth watermark wg is compared against a predefined
detection threshold τ : the image I is detected as watermarked if BA(w,wg) ≥ τ , and as unwatermarked
otherwise.

In frame-level video watermark detection, given a video x with F frames, each frame is treated as an
individual image. The watermark decoder Dec is applied to each frame to decode logits yi, where yi denotes
the logits decoded from the i-th frame, for i ∈ {1, 2, . . . , F}. To obtain a final video-level detection result,
we propose seven aggregation strategies based on different ways of aggregating these frame-level decoded
logits.
Logit-mean: The watermark decoder Dec extracts decoded logits yi from the i-th frame of the video x, and
we compute the average of these logits to obtain the aggregated logits:

y =
1

F

F∑︂
i=1

yi,

then, the decoded watermark w is obtained using Equation 2. The video x is detected as watermarked if
BA(w,wg) ≥ τ ; otherwise, it is considered unwatermarked.
Logit-median: The watermark decoder Dec extracts decoded logits yi from the i-th frame of the video x,
and we compute the geometric median of these logits to obtain the aggregated logits:

y = arg min
z∈Rd

F∑︂
i=1

|z− yi|2 ,

we then apply the same procedure as in logit-mean to obtain the decoded watermark w and make the final
detection decision.
Bit-median: The watermark decoder Dec extracts decoded logits yi from the i-th frame of the video x, and
each set of logits is rounded to obtain a decoded watermark bitstring for that frame:

wi = I (yi ≥ 0.5) , wi ∈ {0, 1}n, (3)

we then take a majority vote across frames at each bit position to produce the final decoded watermark:

w[j] =

{︄
1, if

∑︁F
i=1 wi[j] ≥ F

2

0, otherwise
, ∀j ∈ {1, . . . , n},

14

the video x is detected as watermarked if BA(w,wg) ≥ τ ; otherwise, it is considered unwatermarked. Note
that majority voting yields the same result as taking the median for binary values.
BA-mean: The watermark decoder Dec extracts decoded logits yi from the i-th frame of the video x. These
logits yi are rounded to obtain the decoded watermark wi, as defined in Equation 3. We then compute the
bitwise accuracy BA(wi, wg) between wi and the ground-truth watermark wg for each frame, and take the
average of these bitwise accuracy scores:

BA =
1

F

F∑︂
i=1

BA(wi,wg),

then the video x is detected as watermarked if BA ≥ τ or unwatermarked otherwise.
BA-median: Following the same procedure as in BA-mean aggregation, we calculate the bitwise accuracy
BA(wi, wg) between wi and the ground-truth watermark wg for the i-th frame, and then take the median of
these bitwise accuracy values:

BA = median{BA(w1,wg), BA(w2,wg), . . . , BA(wF,wg)},

where median denotes the statistical median over the F per-frame accuracy values. The video x is detected
as watermarked if BA ≥ τ ; otherwise, it is considered unwatermarked.
Detection-median: Following the same procedure as in BA-mean, we calculate the bitwise accuracy
BA(wi, wg) between wi and the ground-truth watermark wg for the i-th frame. We then compare each
BA(wi, wg) with the detection threshold τ to obtain the detection result di for the i-th frame:

di =

{︄
1, if BA(wi,wg) ≥ τ

0, otherwise
, (4)

we then take a majority vote among the frame-level detection results di, for i ∈ {1, 2, . . . , F}, to obtain the
aggregated video-level detection result. That is, the video x is classified as watermarked if

∑︁F
i=1 di ≥

F
2 .

Detection-threshold: In this aggregation strategy, we set a detection-level threshold k. Specifically, a video
x is detected as watermarked if at least k frames are detected as watermarked. Following the same procedure
as in detection-median, we obtain the frame-level detection results di using Equation 4, and classify the image
x as watermarked if

∑︁F
i=1 di ≥ k.

The value of k is selected to ensure a low theoretical false positive rate (FPR), which is kept below
0.01% in this work. We assume that the probability of a non-watermarked frame being falsely detected as
watermarked is P (details on how to compute P given τ are provided in Appendix A.4). Based on this
assumption, the value of k is determined as follows:

k = arg min
m∈{0,1,...,F}

{︁
Pr(B ≥ m) ≤ 10−4

}︁
,

where B follows binomial distribution with parameter F and P , i.e., B ∼ Binomial(F, P).

A.3 Implementation Details for Aggregation Strategies in Black-box Perturbations
Square Attack [3] and Triangle Attack [27] were originally developed for image classification tasks. To
adapt them to the video watermark removal and forgery setting, we introduce two key modifications for each
method.

15

Square Attack: First, Square Attack’s official implementation takes a batch of images and an image classifier
as input, perturbs each image individually, and aims to mislead the classification results. In our adaptation,
the attack takes a video and a video watermark detector as input. The video is treated as a batch of frames,
and a video-level perturbation is crafted to either remove or forge a watermark.

Second, Square Attack is a score-based attack that iteratively crafts perturbations based on score feedback.
In its original form, the scores correspond to class probabilities output by an image classifier. In our
experiments, video watermark detection is a binary classification task, and we redefine the scoring function
according to the aggregation strategy used. For logit-level, bit-level, and BA-level aggregation strategies,
we define the score as the bitwise accuracy BA after aggregation. For detection-level aggregation strategies,
the score is defined as the number of frames detected as watermarked. We then optimize the perturbation to
minimize the score for watermark removal, or maximize it for watermark forgery.
Triangle Attack: First, the original Triangle Attack takes an image of shape [1, C,H,W] and an image
classifier as input for each attack iteration, where C is the number of channels (typically C = 3 for RGB
images), and H and W denote the height and width of the image, respectively. In the video setting, a video
has shape [F,C,H,W], where F is the number of frames. To adapt to this format, we reshape the video
into a tensor of shape [1, F × C,H,W], effectively treating the video as an image with an extended channel
dimension. We then search for a video-level perturbation to remove or forge the video watermark.

Second, as a label-based attack, Triangle Attack crafts perturbations by checking whether the perturbed
input retains or flips a desired target label. In our setting, watermark detection is a binary classification
problem with labels "watermarked" and "unwatermarked". The detection label is produced by the watermark
detector via different aggregation strategies. For watermark removal, we start with an initial video that is
classified as unwatermarked and iteratively search for a smaller perturbation that preserves this label. For
watermark forgery, we perform the reverse: we begin with a video that is classified as watermarked and aim
to iteratively reduce the perturbation magnitude while ensuring the perturbed video remains classified as
watermarked.

A.4 Selecting Detection Threshold τ

In image (or frame-level) detection, given an image x, the watermark decoder Dec extracts a decoded
watermark w from it. The image is classified as watermarked if the bitwise accuracy between the decoded
watermark and the ground-truth watermark wg satisfies BA(w,wg) ≥ τ , where τ is a predefined detection
threshold. A key consideration is how to select the threshold τ such that the false positive rate (FPR)—the
probability that an unwatermarked image is incorrectly classified as watermarked—is bounded by a small
target value η (e.g., η = 10−4).

To introduce randomness, we assume that the watermarking service provider randomly selects the ground-
truth watermark wg. As a result, for an unwatermarked image, the decoded watermark w is independent of
wg, and each bit matches with probability 0.5. Consequently, the bitwise accuracy BA(w,wg) follows a
scaled binomial distribution: BA(w,wg) ∼ 1

n · Binomial(n, 0.5), where n is the watermark length. Given a
detection threshold τ , the theoretical FPR can be computed as:

FPR(τ) = Pr(BA(w,wg) > τ) =

n∑︂
k=⌈nτ⌉

(︃
n

k

)︃
1

2n
,

where n is the watermark length. To ensure that the FPR is less than a desired threshold η, the detection

16

threshold τ can be selected as follows:

τ = argmin
c

n∑︂
k=⌈nc⌉

(︃
n

k

)︃
1

2n
< η.

For instance, given η = 10−4, the detection threshold τ should be set to 67
96 when n = 96, and to 27

32 when
n = 32.

A.5 Forgery Results for Black-box Perturbations
For forgery attacks, we evaluate on the real-world Kinetics-400 dataset. To maintain consistency with the
removal attack setting described in the main text, we conduct experiments on 40 videos. Each video is
trimmed to 14 frames—the same number used for videos generated by SVD—and BA-mean aggregation
is used by default. We find that existing video watermarking methods are robust against watermark forgery
perturbations in the black-box setting.
Square Attack: Figure 10 presents the results of Square Attack for watermark forgery, where the perturbation
size is bounded by an l∞ norm of 0.05. We observe that all current video watermarking methods—including
VideoSeal with different aggregation strategies—maintain FPRs close to zero, even after 1,000 queries. An
intuitive explanation is as follows: If watermark detection is viewed as a binary classification task with
"watermarked" and "non-watermarked" classes, the decision space corresponding to the "non-watermarked"
class is likely much larger than that of the "watermarked" class. This makes it relatively easier to remove a
watermark by crafting a sufficiently large perturbation. In contrast, forging a watermark becomes substantially
more difficult, as it requires the attacker to precisely locate the decision boundary between the two classes.
Triangle Attack: Figure 11 presents the results of Triangle Attack for watermark forgery. Since Triangle
Attack requires a watermarked video as the starting point to perturb a target unwatermarked video, we assume
that the attacker does not have access to the watermark encoder but may use unrelated watermarked videos for
initialization. Specifically, we generate a random video and embed a watermark into it using the watermark
encoder to serve as the initialization.

Across the three evaluated video watermarking methods, all demonstrate robustness against forgery
perturbations. The average l∞-norm of perturbations for StegaStamp and VideoSeal remains consistently at
1, indicating that Triangle Attack completely fails to forge watermarks for these methods. For REVMark,
the average l∞-norm of perturbations decreases as the number of queries increases; however, a value of 0.6
still reflects a large perturbation that significantly degrades the video’s visual quality. Among VideoSeal with
different aggregation strategies, only the detection-threshold strategy shows a slight decrease in perturbation
norm, as it is the least robust to forgery attacks (as previously discussed). Nonetheless, all aggregation
strategies for VideoSeal remain robust overall against Triangle Attack in the forgery setting. Figure 12 presents
the results of Triangle Attack when watermarked versions of the target videos are used as initialization. While
this setting is rarely practical—since an attacker with access to the watermark encoder could directly generate
watermarked videos—it serves to highlight the importance of initialization in the attack process. The results
demonstrate that Triangle Attack is highly sensitive to initialization and that finding a suitable starting point
is significantly more challenging in watermark forgery than in watermark removal.

A.6 Detailed Analysis for No-box Perturbations

Comparison across watermarking methods: Figure 13 in the Appendix shows FNR results under various
common perturbations for different video watermarking methods. The FNR values are computed by aver-

17

aging over different aggregation strategies, generative models, and video styles. We highlight several key
observations: Overall, VideoShield appears to be more robust against various video perturbations. However,
in some cases—particularly under cropping and Gaussian noise perturbations—its FNR is higher than that of
REVMark. VideoSeal performs well when video quality is preserved, but its FNR increases dramatically
under strong Gaussian noise perturbations. For instance, the FNR approaches 1 when Gaussian noise with
standard deviation σ = 0.15 is applied. REVMark and StegaStamp are generally robust against common
perturbations such as blurring and frame manipulation but show vulnerability to JPEG and MPEG-4 compres-
sion, even when the visual quality of the video is preserved. Cropping is found to be a particularly effective
perturbation for watermark removal. Among all methods, only VideoSeal demonstrates robustness against
cropping-based attacks.
Comparison across aggregation strategies: Figure 7 in the main text, along with Figures 14 and 15 in the
Appendix, presents FNR results under various video perturbations using different watermark aggregation
strategies. The FNR values are averaged across generative models, and video styles for StegaStamp and
VideoSeal. Surprisingly, although BA-level aggregation strategies are commonly used in image watermark-
ing [26, 7], they exhibit the lowest robustness in the context of video watermarking, as indicated by their higher
FNRs. In contrast, detection-threshold aggregation achieves the lowest FNR among all strategies. Given that
the false positive rate (FPR) remains close to zero across all strategies, detection-threshold aggregation may
be considered the most robust approach—despite its known vulnerability to forgery attacks in adversarial
settings. Beyond detection-threshold, logit-level aggregation strategies also yield lower FNRs compared to
BA-level strategies, further highlighting their relative robustness in video watermarking applications.
Comparison across generative models: Figure 16 in the Appendix presents FNR results under various video
perturbations across different generative models. The FNR values are averaged over different watermarking
methods, aggregation strategies, and video styles. Overall, we do not observe significant differences in
FNR among AI-generated videos from different generative models. More specifically, videos generated by
Hunyuan Video tend to be more robust against cropping and MPEG-4 compression, but are more vulnerable
to JPEG and Gaussian noise perturbations. In contrast, videos generated by Stable Video Diffusion show
greater robustness to Gaussian noise but are more susceptible to cropping and MPEG-4 compression. Despite
these differences, there is no consistent or significant gap in robustness across the generative models.
Comparison across styles: Figure 17 in the Appendix presents FNR results under various perturbations
for different video styles. The FNR values are averaged across different watermarking methods, aggregation
strategies, and generative models. We observe that videos in the realistic and sci-fi styles exhibit nearly
identical FNRs, which is consistent with the design goal of watermarking methods to be content-independent.
However, videos in the cartoon style show noticeably higher FNRs under JPEG and MPEG-4 compression.
This can be attributed to the fact that cartoon frames are typically simpler, with less texture and lower pixel
variability, making the subtle pixel-level changes introduced by watermarks more susceptible to removal
during compression.

A.7 Discussion and Limitations

Adversarial robustness of frame-based detection: In this work, we extend an existing image watermarking
method (StegaStamp) to the video domain by applying it at the frame level, and we similarly treat VideoSeal
as a frame-based method. We evaluate the robustness of these approaches against adversarial perturbations in
both white-box and black-box settings. Our findings show that frame-based video watermarking methods
inherit the (non-)robustness of their underlying image watermarking counterparts. For example, image
watermarking methods such as StegaStamp and HiDDeN [32] (which forms the foundation of VideoSeal)

18

Table 4: Example base prompts from VideoMarkData. To generate videos in different styles, we prepend the
base prompts with style-specific prefixes: "In the realistic style, ", "In the cartoon style, ", or "In the sci-fi
style, ".

Index Prompts

Fast Motion

1 Generate a dynamic video with rapid frame changes featuring a massive volcanic eruption with lava flows and ash clouds.
2 Generate a dynamic video with rapid frame changes featuring a high-speed car crash with flying debris and shattered glass.
3 Generate a dynamic video with rapid frame changes featuring a dazzling fireworks display with vibrant explosions.
4 Generate a dynamic video with rapid frame changes featuring stormy ocean waves crashing against cliffs in a chaotic sequence.
5 Generate a dynamic video with rapid frame changes featuring an urban chase scene with vehicles weaving through traffic.

Slow Motion

1 Generate a slow, evolving video with subtle frame changes featuring a pond with fish making subtle ripples.
2 Generate a slow, evolving video with subtle frame changes featuring a timelapse of fog rolling into a valley.
3 Generate a slow, evolving video with subtle frame changes featuring a slow timelapse of a bustling market square.
4 Generate a slow, evolving video with subtle frame changes featuring grasses moving softly in a light breeze.
5 Generate a slow, evolving video with subtle frame changes featuring the gradual formation of frost on a window.

are vulnerable in the white-box setting and fail to withstand black-box removal attacks when the attacker is
allowed multiple queries. These vulnerabilities are consistent with our observations in this video watermarking
benchmark. To mitigate these weaknesses, future video watermarking methods may need to incorporate
temporal information across frames, rather than relying solely on frame-level detection, to achieve better
robustness.
Adversarial perturbations: Our results show that adversarial perturbations are significantly more effective at
removing or forging watermarks compared to common video perturbations. However, these attacks typically
require more knowledge about the watermarking system or computational resources. For example, white-box
attacks assume access to the internal parameters of the watermark detector, which may only be feasible
if the detection model is publicly released by the service provider or if the attacker is an insider. Despite
these constraints, evaluating robustness in the white-box setting provides valuable insight into the worst-case
vulnerability of a watermarking method. In contrast, black-box attacks require only query access to the
watermark detector’s API. While such attacks are query-expensive and time-consuming, they remain practical
and highly effective—especially in scenarios where an attacker aims to target a specific video rather than
performing large-scale attacks.
More robust video watermarks: Our experimental results show that while existing video watermarking
methods are generally robust when there are no perturbations, they remain vulnerable to adversarial perturba-
tions and certain common video perturbations such as MPEG-4 compression and cropping. These findings
highlight the need for designing more robust video watermarking techniques that can withstand both common
and adversarial perturbations in real-world scenarios.

19

Table 5: Watermark removal results (measured by FNR) for different video watermarking methods using
various aggregation strategies under no perturbations. REVMark and VideoShield do not perform frame-level
watermark extraction, so aggregation strategies are not applicable to them. Note that VideoShield relies on
access to DDIM inversion of the video generative model; thus, it is only evaluated on videos generated by
SVD.

Methods
SVD Sora HunyuanVideo

Realistic Cartoon Sci-fi Realistic Cartoon Sci-fi Realistic Cartoon Sci-fi
REVMark 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

StegaStamp

logit-mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
logit-median 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
bit-median 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BA-mean 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000

BA-median 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
detection-threshold 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
detection-median 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

VideoSeal

logit-mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
logit-median 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
bit-median 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BA-mean 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000

BA-median 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000
detection-threshold 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
detection-median 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000

VideoShield 0.000 0.000 0.000 - - - - - -

Table 6: Watermark forgery results (measured by FPR) for different video watermarking methods using
various aggregation strategies under no perturbations. FPRs are computed on 1,000 real videos from the
Kinetics-400 dataset. The term "default" refers to the aggregation strategy originally used in each method.
StegaStamp does not have a default strategy, as it is designed for image watermarking. VideoSeal uses
BA-mean as its default aggregation strategy.

Method default logit-mean logit-median bit-median BA-mean BA-median detection-threshold detection-median

REVMark 0.000 - - - - - - -

StegaStamp - 0.000 0.000 0.000 0.000 0.000 0.000 0.000

VideoSeal 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

VideoShield 0.000 - - - - - - -

20

.001 .002 .003 .004 .005 .01
-norm Perturbation Budget r

.
.2
.4
.6
.8

1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(a) Removal Attack

1e-4 2e-4 3e-4 4e-4 8e-4 1e-3
-norm Perturbation Budget

.
.2
.4
.6
.8

1.0

FP
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(b) Forgery Attack

Figure 8: White-box attack results for VideoSeal using different aggregation strategies in the first scenario.

0 200 400 600 800
Number of Query

0.0
0.2
0.4
0.6
0.8
1.0

FN
R 0.1

0.2
0.4
0.8

(a) REVMark

0 200 400 600 800
Number of Query

0.0
0.2
0.4
0.6
0.8
1.0

FN
R 0.1

0.2
0.4
0.8

(b) StegaStamp

Figure 9: Square Attack watermark removal results with larger perturbation bounds. Legend indicates the l∞
bound of perturbations.

0 200 400 600 800
Number of Query

0.0
0.2
0.4
0.6
0.8
1.0

FP
R

REVMark
StegaStamp
VideoSeal

(a) Watermarking

0 200 400 600 800
Number of Query

0.0
0.2
0.4
0.6
0.8
1.0

FP
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(b) Aggregation

Figure 10: Square Attack watermark forgery results. Perturbations are l∞ bounded by 0.05.

21

0 200 400 600 800 1000
Number of Query

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rtu

rb
at

io
n

l
-n

or
m

REVMark
StegaStamp
VideoSeal

(a) Watermarking

0 200 400 600 800 1000
Number of Query

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rtu

rb
at

io
n

l
-n

or
m

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(b) Aggregation

Figure 11: Triangle Attack watermark forgery results.

0 200 400 600 800 1000
Number of Query

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pe
rtu

rb
at

io
n

l
-n

or
m Logit-mean

Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

Figure 12: Triangle Attack watermark forgery results when watermarked versions are used as initialization.

90 80 60 40 20
Quality Factor Q

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

REVMark
StegaStamp
VideoSeal
VideoShield

(a) JPEG

0.01 0.05 0.10 0.15 0.20
Standard Derivation

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

REVMark
StegaStamp
VideoSeal
VideoShield

(b) Gaussian Noise

0.98 0.96 0.94 0.92 0.90
Cropping Ratio c

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

REVMark
StegaStamp
VideoSeal
VideoShield

(c) Cropping

1 10 20 30 40
Quality Factor Q

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Realistic
Cartoon
Sci-fi

(d) MPEG-4

0.1 0.5 1.0 1.5
Standrad Derivation

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

REVMark
StegaStamp
VideoSeal
VideoShield

(e) Gaussian Blur

1 2 3 4 5
Num of Frame N

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

REVMark
StegaStamp
VideoSeal
VideoShield

(f) Frame Average

0.00 0.05 0.10 0.15 0.20
Probability p

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

REVMark
StegaStamp
VideoSeal
VideoShield

(g) Frame Switch

0.00 0.05 0.10 0.15 0.20
Probability p

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

REVMark
StegaStamp
VideoSeal

(h) Frame Removal

Figure 13: Common perturation watermark removal results for different video watermarking methods. For
StegaStamp and VideoSeal, we report results using their best-performing aggregation strategies. FPRs are
averaged over videos generated by three generative models and across different video styles. Note that
VideoShield does not report results for Frame Removal, as this perturbation changes the video’s shape,
rendering the perturbed video invalid as input for VideoShield’s detection.

22

0.1 0.5 1.0 1.5
Standrad Derivation

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(a) Gaussian Blur

1 2 3 4 5
Num of Frame N

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(b) Frame Average

0.00 0.05 0.10 0.15 0.20
Probability p

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(c) Frame Switch

0.00 0.05 0.10 0.15 0.20
Probability p

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(d) Frame Removal

Figure 14: Other common perturbation watermark removal results for StegaStamp with different aggregation
strategies.

90 80 60 40 20
Quality Factor Q

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(a) JPEG

0.01 0.05 0.10 0.15 0.20
Standard Derivation

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(b) Gaussian Noise

0.98 0.96 0.94 0.92 0.90
Cropping Ratio c

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(c) Cropping

1 10 20 30 40
Quality Factor Q

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(d) MPEG-4

0.1 0.5 1.0 1.5
Standrad Derivation

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(e) Gaussian Blur

1 2 3 4 5
Num of Frame N

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(f) Frame Average

0.00 0.05 0.10 0.15 0.20
Probability p

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(g) Frame Switch

0.00 0.05 0.10 0.15 0.20
Probability p

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(h) Frame Removal

Figure 15: Common perturbation watermark removal results for VideoSeal with different aggregation
strategies.

90 80 60 40 20
Quality Factor Q

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

SVD
Sora
Hunyuan

(a) JPEG

0.01 0.05 0.10 0.15 0.20
Standard Derivation

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

SVD
Sora
Hunyuan

(b) Gaussian Noise

0.98 0.96 0.94 0.92 0.90
Cropping Ratio c

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

SVD
Sora
Hunyuan

(c) Cropping

1 10 20 30 40
Quality Factor Q

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

SVD
Sora
Hunyuan

(d) MPEG-4

0.1 0.5 1.0 1.5
Standrad Derivation

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

SVD
Sora
Hunyuan

(e) Gaussian Blur

1 2 3 4 5
Num of Frame N

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

SVD
Sora
Hunyuan

(f) Frame Average

0.00 0.05 0.10 0.15 0.20
Probability p

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

SVD
Sora
Hunyuan

(g) Frame Switch

0.00 0.05 0.10 0.15 0.20
Probability p

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

SVD
Sora
Hunyuan

(h) Frame Removal

Figure 16: Common perturbation watermark removal results across videos generated by different generative
models. FNRs are averaged on all watermarking methods with various aggregation strategies and styles.

23

90 80 60 40 20
Quality Factor Q

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Realistic
Cartoon
Sci-fi

(a) JPEG

0.01 0.05 0.10 0.15 0.20
Standard Derivation

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Realistic
Cartoon
Sci-fi

(b) Gaussian Noise

0.98 0.96 0.94 0.92 0.90
Cropping Ratio c

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Realistic
Cartoon
Sci-fi

(c) Cropping

1 10 20 30 40
Quality Factor Q

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Realistic
Cartoon
Sci-fi

(d) MPEG-4

0.1 0.5 1.0 1.5
Standrad Derivation

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Realistic
Cartoon
Sci-fi

(e) Gaussian Blur

1 2 3 4 5
Num of Frame N

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Realistic
Cartoon
Sci-fi

(f) Frame Average

0.00 0.05 0.10 0.15 0.20
Probability p

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Realistic
Cartoon
Sci-fi

(g) Frame Switch

0.00 0.05 0.10 0.15 0.20
Probability p

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Realistic
Cartoon
Sci-fi

(h) Frame Removal

Figure 17: Common perturbation watermark removal results across video styles. FNRs are averaged on all
watermarking methods with various aggregation strategies and generative models.

90 80 60 40 20
Quality Factor Q

0.0
0.2
0.4
0.6
0.8
1.0

FP
R

REVMark
StegaStamp
VideoSeal
VideoShield

(a) JPEG

0.01 0.05 0.10 0.15 0.20
Standard Derivation

0.0
0.2
0.4
0.6
0.8
1.0

FP
R

REVMark
StegaStamp
VideoSeal
VideoShield

(b) Gaussian Noise

0.98 0.96 0.94 0.92 0.90
Cropping Ratio c

0.0
0.2
0.4
0.6
0.8
1.0

FP
R

REVMark
StegaStamp
VideoSeal
VideoShield

(c) Cropping

1 10 20 30 40
Quality Factor Q

0.0
0.2
0.4
0.6
0.8
1.0

FP
R

REVMark
StegaStamp
VideoSeal
VideoShield

(d) MPEG-4

0.1 0.5 1.0 1.5
Standrad Derivation

0.0
0.2
0.4
0.6
0.8
1.0

FP
R

REVMark
StegaStamp
VideoSeal
VideoShield

(e) Gaussian Blur

1 2 3 4 5
Num of Frame N

0.0
0.2
0.4
0.6
0.8
1.0

FP
R

REVMark
StegaStamp
VideoSeal
VideoShield

(f) Frame Average

0.00 0.05 0.10 0.15 0.20
Probability p

0.0
0.2
0.4
0.6
0.8
1.0

FP
R

REVMark
StegaStamp
VideoSeal
VideoShield

(g) Frame Switch

0.00 0.05 0.10 0.15 0.20
Probability p

0.0
0.2
0.4
0.6
0.8
1.0

FP
R

REVMark
StegaStamp
VideoSeal

(h) Frame Removal

Figure 18: Common perturbation watermark forgery results for different video watermarking methods. For
StegaStamp and VideoSeal, we report results using their best-performing aggregation strategies. FPRs are
averaged over 1000 real videos from Kinetics-400 dataset.

24

20

30

40

50

PS
NR

JPEG
Gaussian Noise
Gaussian Blur
Cropping
MPEG-4
Frame Average
Frame Switch

(a) PSNR

0.00

0.25

0.50

0.75

1.00

SS
IM

JPEG
Gaussian Noise
Gaussian Blur
Cropping
MPEG-4
Frame Average
Frame Switch

(b) SSIM

0

5

10

15

tL
P

JPEG
Gaussian Noise
Gaussian Blur
Cropping
MPEG-4
Frame Average
Frame Switch

(c) tLP

Figure 19: Common perturbation utility results. A missing point in the PSNR subfigure indicates a PSNR
value of ∞. We observe that Gaussian Noise, Cropping, and JPEG are the top-3 most impactful perturbations
in the no-box setting, as they degrade the video’s visual quality the most. In contrast, Frame Switch, Frame
Average, and Gaussian Blur preserve video quality best. Note that results for Frame Removal are not reported,
as this perturbation alters the video’s shape, making it incompatible with direct computation of utility metrics.

25

90 80 60 40 20
Quality Factor Q

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(a) JPEG

0.01 0.05 0.10 0.15 0.20
Standard Derivation

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(b) Gaussian Noise

0.98 0.96 0.94 0.92 0.90
Cropping Ratio c

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(c) Cropping

1 10 20 30 40
Quality Factor Q

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(d) MPEG-4

0.1 0.5 1.0 1.5
Standard Derivation

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(e) Gaussian Blur

1 2 3 4 5
Num of Frame N

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(f) Frame Average

0.00 0.05 0.10 0.20
Probability p

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(g) Frame Switch

0.00 0.05 0.10 0.20
Probability p

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(h) Frame Removal

Realistic video style

90 80 60 40 20
Quality Factor Q

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(i) JPEG

0.01 0.05 0.10 0.15 0.20
Standard Derivation

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(j) Gaussian Noise

0.98 0.96 0.94 0.92 0.90
Cropping Ratio c

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(k) Cropping

1 10 20 30 40
Quality Factor Q

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(l) MPEG-4

0.1 0.5 1.0 1.5
Standard Derivation

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(m) Gaussian Blur

1 2 3 4 5
Num of Frame N

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(n) Frame Average

0.00 0.05 0.10 0.20
Probability p

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(o) Frame Switch

0.00 0.05 0.10 0.20
Probability p

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(p) Frame Removal

Cartoon video style

90 80 60 40 20
Quality Factor Q

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(q) JPEG

0.01 0.05 0.10 0.15 0.20
Standard Derivation

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(r) Gaussian Noise

0.98 0.96 0.94 0.92 0.90
Cropping Ratio c

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(s) Cropping

1 10 20 30 40
Quality Factor Q

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(t) MPEG-4

0.1 0.5 1.0 1.5
Standard Derivation

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(u) Gaussian Blur

1 2 3 4 5
Num of Frame N

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(v) Frame Average

0.00 0.05 0.10 0.20
Probability p

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(w) Frame Switch

0.00 0.05 0.10 0.20
Probability p

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(x) Frame Removal

Sci-fi video style

Figure 20: More fine-grained watermark removal results for StegaStamp on videos generated by Stable Video
Diffusion.

26

90 80 60 40 20
Quality Factor Q

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(a) JPEG

0.01 0.05 0.10 0.15 0.20
Standard Derivation

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(b) Gaussian Noise

0.98 0.96 0.94 0.92 0.90
Cropping Ratio c

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(c) Cropping

1 10 20 30 40
Quality Factor Q

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(d) MPEG-4

0.1 0.5 1.0 1.5
Standard Derivation

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(e) Gaussian Blur

1 2 3 4 5
Num of Frame N

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(f) Frame Average

0.00 0.05 0.10 0.20
Probability p

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(g) Frame Switch

0.00 0.05 0.10 0.20
Probability p

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(h) Frame Removal

Realistic video style

90 80 60 40 20
Quality Factor Q

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(i) JPEG

0.01 0.05 0.10 0.15 0.20
Standard Derivation

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(j) Gaussian Noise

0.98 0.96 0.94 0.92 0.90
Cropping Ratio c

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(k) Cropping

1 10 20 30 40
Quality Factor Q

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(l) MPEG-4

0.1 0.5 1.0 1.5
Standard Derivation

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(m) Gaussian Blur

1 2 3 4 5
Num of Frame N

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(n) Frame Average

0.00 0.05 0.10 0.20
Probability p

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(o) Frame Switch

0.00 0.05 0.10 0.20
Probability p

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(p) Frame Removal

Cartoon video style

90 80 60 40 20
Quality Factor Q

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(q) JPEG

0.01 0.05 0.10 0.15 0.20
Standard Derivation

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(r) Gaussian Noise

0.98 0.96 0.94 0.92 0.90
Cropping Ratio c

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(s) Cropping

1 10 20 30 40
Quality Factor Q

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(t) MPEG-4

0.1 0.5 1.0 1.5
Standard Derivation

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(u) Gaussian Blur

1 2 3 4 5
Num of Frame N

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(v) Frame Average

0.00 0.05 0.10 0.20
Probability p

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(w) Frame Switch

0.00 0.05 0.10 0.20
Probability p

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(x) Frame Removal

Sci-fi video style

Figure 21: More fine-grained watermark removal results for StegaStamp on videos generated by Sora.

27

90 80 60 40 20
Quality Factor Q

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(a) JPEG

0.01 0.05 0.10 0.15 0.20
Standard Derivation

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(b) Gaussian Noise

0.98 0.96 0.94 0.92 0.90
Cropping Ratio c

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(c) Cropping

1 10 20 30 40
Quality Factor Q

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(d) MPEG-4

0.1 0.5 1.0 1.5
Standard Derivation

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(e) Gaussian Blur

1 2 3 4 5
Num of Frame N

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(f) Frame Average

0.00 0.05 0.10 0.20
Probability p

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(g) Frame Switch

0.00 0.05 0.10 0.20
Probability p

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(h) Frame Removal

Realistic video style

90 80 60 40 20
Quality Factor Q

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(i) JPEG

0.01 0.05 0.10 0.15 0.20
Standard Derivation

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(j) Gaussian Noise

0.98 0.96 0.94 0.92 0.90
Cropping Ratio c

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(k) Cropping

1 10 20 30 40
Quality Factor Q

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(l) MPEG-4

0.1 0.5 1.0 1.5
Standard Derivation

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(m) Gaussian Blur

1 2 3 4 5
Num of Frame N

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(n) Frame Average

0.00 0.05 0.10 0.20
Probability p

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(o) Frame Switch

0.00 0.05 0.10 0.20
Probability p

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(p) Frame Removal

Cartoon video style

90 80 60 40 20
Quality Factor Q

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(q) JPEG

0.01 0.05 0.10 0.15 0.20
Standard Derivation

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(r) Gaussian Noise

0.98 0.96 0.94 0.92 0.90
Cropping Ratio c

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(s) Cropping

1 10 20 30 40
Quality Factor Q

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(t) MPEG-4

0.1 0.5 1.0 1.5
Standard Derivation

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(u) Gaussian Blur

1 2 3 4 5
Num of Frame N

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(v) Frame Average

0.00 0.05 0.10 0.20
Probability p

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(w) Frame Switch

0.00 0.05 0.10 0.20
Probability p

0.0
0.2
0.4
0.6
0.8
1.0

FN
R

Logit-mean
Logit-median
Bit-median
BA-mean
BA-median
Detection-threshold
Detection-median

(x) Frame Removal

Sci-fi video style

Figure 22: More fine-grained watermark removal results for StegaStamp on videos generated by Hunyuan
Video.

28

(a) Prompt: Generate a dynamic video with rapid frame changes featuring a high-speed car crash with flying
debris and shattered glass.

(b) Prompt: Generate a dynamic video with rapid frame changes featuring a dazzling fireworks display with
vibrant explosions.

(c) Prompt: Generate a dynamic video with rapid frame changes featuring stormy ocean waves crashing
against cliffs in a chaotic sequence.

Figure 23: Video examples generated by Sora. The first, second, and third rows correspond to the realistic,
cartoon, and sci-fi styles, respectively.

	Introduction
	Video Watermarking Methods
	Aggregation Strategies for Frame-level Watermark Extraction

	Perturbations for Video Watermarking
	White-box Perturbations
	Black-box Perturbations
	Common Perturbations

	Collecting Datasets
	Benchmark Results
	Results under No Perturbation
	Robustness against White-box Video Perturbations
	First Scenario: Attacking Each Frame with Bounded Perturbations
	Second Scenario: Attacking a Subset of Frames with Arbitrary Perturbations

	Robustness against Black-box Video Perturbations
	Robustness against Common Video Perturbations

	Conclusion
	Appendix
	Experiments Compute Resources
	A Detailed Explanation for Aggregation Strategies
	Implementation Details for Aggregation Strategies in Black-box Perturbations
	Selecting Detection Threshold τ
	Forgery Results for Black-box Perturbations
	Detailed Analysis for No-box Perturbations
	Discussion and Limitations

