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Preventing Adversarial AI Attacks Against Autonomous Situational

Awareness: A Maritime Case Study
Mathew J. Walter, Aaron Barrett, and Kimberly Tam

Abstract—Adversarial artificial intelligence (AI) attacks pose a
significant threat to autonomous transportation, such as maritime
vessels, that rely on AI components. Malicious actors can exploit
these systems to deceive and manipulate AI-driven operations.
This paper addresses three critical research challenges associated
with adversarial AI: the limited scope of traditional defences,
inadequate security metrics, and the need to build resilience
beyond model-level defences. To address these challenges, we
propose building defences utilising multiple inputs and data
fusion to create defensive components and an AI security
metric as a novel approach toward developing more secure AI
systems. We name this approach the Data Fusion Cyber
Resilience (DFCR) method, and we evaluate it through real-
world demonstrations and comprehensive quantitative analyses,
comparing a system built with the DFCR method against single-
input models and models utilising existing state-of-the-art de-
fences. The findings show that the DFCR approach significantly
enhances resilience against adversarial machine learning attacks
in maritime autonomous system operations, achieving up to a
35% reduction in loss for successful multi-pronged perturbation
attacks, up to a 100% reduction in loss for successful adversarial
patch attacks and up to 100% reduction in loss for successful
spoofing attacks when using these more resilient systems. We
demonstrate how DFCR and DFCR confidence scores can reduce
adversarial AI contact confidence and improve decision-making
by the system, even when typical adversarial defences have
been compromised. Ultimately, this work contributes to the
development of more secure and resilient AI-driven systems
against adversarial attacks.

Index Terms—Adversarial AI; Multi-Input AI, Maritime Au-
tonomous Systems; MAS; MASS; Secure AI, Defence Data
Fusion, Adversarial Machine Learning, Situational Awareness.

I. INTRODUCTION

ARTIFICIAL intelligence (AI) is rapidly permeating var-
ious aspects of our lives, offering significant benefits

through task automation. This includes automating cyber-
physical systems, such as transportation and industrial opera-
tions. The maritime sector is one of several domains embracing
AI to capitalise on many benefits, ensuring organisations
remain competitive. The International Maritime Organisation
(IMO) categorises autonomy into four degrees, with the high-
est levels being degrees three and four. The proposed benefits
of higher degrees of autonomy include significant operational
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benefits such as reduced crew and greater payload capacity,
military utilisation in dangerous, contested, or Global Naviga-
tion Satellite System (GNSS) degraded/denied environments,
greater automated decision making as well as increased safety
and social benefits [1]–[8].

Whilst AI can provide significant operational benefits, cur-
rent research shows that AI models can harbour a significant
number of vulnerabilities unique to AI systems and processes
if they are not developed to be resilient. The terms adversarial
AI (AAI) and adversarial machine learning (AML) were
coined to describe these vulnerabilities [9], [10]. Organisations
have acknowledged this threat by formulating measures such
as OWASP’s machine learning vulnerabilities top 10, NIST’s
AI Risk Management Framework (AI RMF), and MITRE’s
Adversarial Threat Landscape for Artificial-Intelligence Sys-
tems (ATLAS) threat modelling. Globally, government or-
ganisations, such as the United Kingdom’s National Cyber
Security Centre (NCSC), contributed to this cause with the
“Guidelines for Secure AI System Development” in 2023 [11].
A significant emphasis was placed on adopting a secure-by-
design development approach [11], [12].

Many of the AAI concerns have already materialised within
the domains of AAI and explainable AI (XAI) [13], [14], in-
cluding adversarial attacks against autonomous vehicles [15]–
[17]. Furthermore, attacks against AI within critical national
infrastructure (CNI) and transportation have the potential for
devastating consequences, resulting in a significant loss of
money, reputation and life [18]. Such threats become increas-
ingly likely with the exponential-like uptake in AI, greater
reliance on AI for critical decision-making, and more effective
AAI methods expanding the threat landscape.

The defence and resilience of AI systems remains an under-
developed field with numerous key challenges. The limitations
of AAI defences can be grouped into three main categories,
which we aim to address in this work:

1) Limited Scope of Traditional Defences: Traditional
AAI defences are often restricted to countering a single
type of attack. They can lack consistent accuracy, and
many operate effectively within limited or restricted
conditions. Therefore, we explore the development of
defences that are effective across multiple attack types.

2) Inadequate Security Metrics: Existing metrics, such as
model confidence, offer limited insight into attacks and
are insufficient for integrating security into the system’s
decision-making process. Existing metrics to measure
and understand risks from AAI are very limited. We
emphasise the need for security and robustness metrics,
such as the security-inclusive confidence score proposed
in this paper.

https://arxiv.org/abs/2505.21609v1
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3) Resilience Beyond Model Defences: Existing tradi-
tional defences do not consider resilience, the ability to
continue functioning during an attack, which is critical
for autonomy. By adopting a defence-in-depth approach,
we investigate whether it is possible to create a more
robust system to mitigate the effects of attacks — even
if the model’s defences are bypassed.

This work proposes and evaluates a novel approach, the
Data Fusion Cyber Resilience (DFCR) method, to build more
secure AI systems by using multiple input sources, data fusion
methods, and defence-oriented components tailored to the spe-
cific application and environment to address these challenges.
This approach enhances system security and resilience, effec-
tively overcoming the aforementioned limitations compared to
single AAI defence methods such as input image compression
or adversarial training. Moreover, we demonstrate how the
proposed method can provide defence over a range of attacks,
rather than being limited to mitigating a single type of attack,
unlike most AAI defence methods. It can also be utilised
to generate metrics which incorporate system security and
develop more resilient AI systems. In this paper, we emphasise
an important terminology distinction between AI models and
AI systems. AI models refer specifically to standalone models,
while AI systems incorporate the model as part of a broader
framework, including processes such as data preprocessing,
feature extraction, model defences and post-processing.

We measured the impact of the DFCR method in two
ways. First, we conducted sea trials for both AAI and AAI
defences to evaluate their real-world practicality. This was
a critical aspect of the study, as previous research [19],
[20] highlighted that evaluations conducted in low-entropy
laboratory settings often exhibit different behaviours when
applied in the complex and dynamic conditions of real-world
environments. To enhance the realism of the evaluations, we
employed maritime autonomous systems (MAS) during these
trials. Since real-world environments are the ultimate intended
operational domain for AI tools, to better understand the
actual effects of attacks and defences, this study emphasised
evaluating defences in situ. Sea trials enabled one to consider
and compare attacks on both operational and theoretical levels,
providing insights into the limitations and practicality of the
methods under real-world conditions and revealing notable
disparities between laboratory-based and in situ AAI research.
The second method of impact measurement quantitatively
evaluated the DFCR approach by comparing it against existing
state-of-the-art defences and single-input models to assess the
attack success rate.

Through these methods of assessing impact, we are able to
evaluate and demonstrate the paper’s novel contributions:

1) Building defences utilising multiple inputs and data
fusion to create defensive components (DFCR), and a
novel AI security metric.

2) Using real-world data collected by MAS at sea, show
how effective the system and metric are against AML
attacks for MAS operations (e.g., object detection).

3) Comprehensive quantitative evaluation of the security-
accuracy trade-off of the DFCR approach against non-

secure and single-input models and existing state-of-the-
art defences.

The remainder of this paper is structured as follows. In
Section II, we review the relevant literature regarding maritime
data fusion, AI security, and maritime AI security. Section III
contains the methodology implemented for creating the DFRC
system and the DFCR security metric. The experimental
setup and equipment details are contained in Section IV. The
results and analysis are highlighted in Section V. Finally, we
discuss future work in Section VI and provide a conclusion in
Section VII.

II. EXISTING BACKGROUND

1) AI Security Overview: In the early works of [21]–
[23], adversarial attacks were first introduced against spam
filters. Significant attention was raised when [10] showed how
computer vision neural networks (convolutional neural net-
works) were vulnerable to adversarial examples and introduced
the Large-BFGS method to create adversarial perturbations.
Biggio et al. [24] was also a key author in the initial ex-
ploration of neural network vulnerabilities. The work of [9]
formulated the fast gradient sign method (FGSM) to attack
computer vision models with open-box (white-box) gradient-
based attacks. In [25], FGSM was adapted to create three new
variants; these included the One-step Target Class method to
optimise the adversarial example toward a particular class, the
Basic Iterative Method (BIM), which could generate multiple
examples via an iterative method, and the Iterative Least-
likely Class Method which iteratively perturbed the adversarial
example toward the weakest recognised class.

Papernot et al. [26] proposed the Jacobian saliency maps
attack (JSMA), which utilised the Jacobian of a model to
perturb the solution toward a desired output (i.e., how a
pixel change affects the predicted output). Papernot et al. also
proposed a method to find a sensitivity direction by using the
Jacobian matrix of the model. Similarly, [27] showed an attack
method which only required the change of one pixel in the
image. The work of [28] proposed a method to minimise the
loss between the target function and three norms L0, L2, Linf

between the adversarial example and the original image. The
work of [29] utilised projected gradient descent (PGD) to
minimise a loss function and project the adversarial example
into the space of legal solutions. Deepfool was proposed in
[30], which created untargeted adversarial examples within a
L2 norm.

Non-evasion attacks include poisoning-based attacks [31]–
[33] and privacy-based attacks, e.g., model inversion attacks
against APIs [34], property inference [35], membership infer-
ence [36], [37] and model extraction attacks [38].

Transformer security has gained significant attention, es-
pecially adversarial attacks on Large Language Models
(LLMs), including poisoning, prompt injections, Denial-of-
service (DoS), jailbreaking, data extraction, and membership
inference [39]–[41]. Studies [42], [43] also suggest that Vision
Transformers (ViTs) may be more robust than convolutional
neural networks (CNNs) in tasks like object detection and
classification, as their self-attention mechanism captures global
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features, enhancing resistance to noise and adversarial at-
tacks. However, [44] finds ViTs can still be vulnerable under
certain conditions (global feature perturbation) using specific
transformer-based attacks, though generally more robust to
existing attacks. Recent research highlights energy-focused
attacks on ViTs. For example, [45], [46] introduce “Pay No
Attention” (PNA) and “PatchOut” attacks, which enhance
transferability and diversity in adversarial approaches for ViTs.
Additionally, [47] presents “SlowFormer”, a universal patch
that increases computational load and energy consumption.
Similarly, [48] describes the “DeSparsify Attack” targeting
ViTs with token sparsification methods (e.g., ATS, AdaViT,
A-ViT) to raise computational demands without disrupting
classification.

2) Maritime AI Security: There have been few academic
papers regarding maritime AI security compared to more
established AI topics, with most released in recent years.
This indicates that this is a novel area of research, and
also a quickly developing one within maritime cyber security
research [49]. AI cyber security or resilience for MAS is
becoming increasingly important with the increasing use of
AI in MAS and into the future.

The work of [50] considers potential attacks on future AI
maritime autonomous vessels, whereas [19] showcased some
of the first preliminary adversarial AI test cases/attacks against
MAS. Other works, including [51], propose poisoning-based
adversarial AI attacks against MAS. Adversarial waypoint
injection attacks against MAS were proposed in the work of
[52], while [53] discussed threats to autonomous agents such
as MAS from adversarial AI attacks. Similar works to consider
adversarial perturbation attacks against maritime radar are
[54] and [55]. In the optical domain (e.g., digital cameras),
the works of [56]–[58] have developed adversarial patches to
camouflage ships from single-source AI detection models.

Unlike previous papers examining existing attacks, The
work of [20] used these findings to propose the RedAI frame-
work to support red team evaluations of the cyber security of
MAS AI. This is one of the first works to provide a mechanism
to help the industry find and mitigate maritime adversarial
AI threats. This work provided a test use case to showcase
the framework for locating and patching numerous real AAI
vulnerabilities in real MAS operating in its true environment.
Other security frameworks exist to evaluate the broader state
of autonomous cargo ships [59], or audit physical safety [60]
and develop safe AI in MAS [61].

3) Maritime Data Fusion: Integrating multiple input
sources into decision-making processes can yield more robust
and potentially more secure models by encompassing a more
comprehensive range of information. In marine applications,
data is often spatial (e.g., GNSS, sonar, satellite imagery) or
temporal (e.g., marine traffic flow) and can be fused using a va-
riety of architectures [62]. Data fusion techniques are classified
into low-, intermediate-, and high-level fusion based on the
processing stage at which information integration occurs [63].
Low-level data fusion involves combining raw data sources
prior to prediction; intermediate-level fusion extracts features
from the data for model prediction; high-level fusion entails
combining inferences or results from multiple sources to reach

a final decision.
Common techniques employed in marine AI data fusion

include Bayesian methods [64], [65], deep learning models
[66]–[68], fuzzy logic-based fusion [69], [70], and Kalman
filters or extended Kalman filters [71]. These methods help
to overcome uncertainty in noisy, real-world, data. Typical
applications involve utilising homogeneous data streams for
marine object detection and classification [72], [73], marine
environment monitoring [74], [75], and marine navigation and
tracking [66], [76]. However, most of the current literature on
marine AI data fusion focuses on achieving greater precision
and reliability for specific marine applications rather than
considering data fusion for cyber defence.

Several real-world autonomous ships exemplify the appli-
cation of these data fusion techniques. Projects such as Rolls-
Royce’s Advanced Autonomous Waterborne Applications Ini-
tiative (AAWA) [77] considers fusing LiDAR, thermal and
visual optic data, amongst other sensor data, for AI to enhance
autonomous operations. Further, the Mayflower Autonomous
Ship is reportedly an AI-powered vessel that uses data fusion
from various sensors for transatlantic voyages, sailing the
Atlantic autonomously in 2020 [78]. Companies like Robosys
are implementing AI and data fusion in maritime systems for
autonomous operations. The work of [79] developed an AI
situational awareness module for remote vessel communica-
tion loss. The Yara Birkeland [4] is the world’s first fully
autonomous container ship, utilising data fusion for automated
coastal hopping. Additionally, the U.S. Department of Defense
is also exploring autonomous maritime vehicles to enhance
missions.

III. SYSTEM ARCHITECTURE

A. Data fusion for Situational Awareness
Across all four IMO degrees of maritime autonomy, there

are various applications for AI. Currently degree four, i.e., full
autonomy, is defined theoretically, as many legal and technical
challenges still have not been overcome. We also note that
only some systems need to be fully AI-controlled as this can
be a high-risk strategy. In this work, we considered marine
AI systems applied to augment a human crew’s situational
awareness while operating degree three autonomy vessels from
a remote operations centre (ROC).

Real-world AI implementations for situational awareness
are more common than other forms of AI for maritime
autonomy. Data augmentation and situational awareness are
often used to support conventional and remote vessels. There
are a plethora of advantages to using these types of AI systems
to support remote-controlled vessels where the operator’s situ-
ational awareness is significantly impaired [80]. We, therefore,
base our initial system on various situational awareness soft-
ware currently used by real-world vessel operators. This sys-
tem also allows one to create visual demonstrations to enhance
scientific communication. We also highlight the distinction in
terminology between the DFCR method, which refers to the
overarching approach of utilising multiple data sources and
fusion techniques to develop defensive AI components, and
the term DFCR system, which specifically refers to the system
evaluated in this paper, created using the DFCR method.
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Fig. 1. The DFCR system topology shows the defensive components and DFCR confidence output.

After proving their effectiveness, AI-supported situational
awareness may be able to make higher degrees of autonomy
more viable in future. For example, this cyber resilient, data
fusing system could be used for navigation with a risk model
to make the system’s decisions more robust and build security
into the decision-making process.

When using AI for high-risk applications (e.g., within CNI,
aerial, or marine applications), using a single input source
(e.g., optics only) or single modal AI may not be a robust way
to operate. The AI model will only use a limited fraction of the
information spectrum to make a decision, which may not factor
in many important variables (e.g., conditions, environment,
security, traffic, political, and social factors), providing a
very limited decision. In contrast, a ship’s crew use multiple
sources of information to make decisions, such as Electronic
Chart Display and Information System (ECDIS), visual, radar,
Automatic Identification System (AIS), audio cues, and Very
High Frequency (VHF) radio. Therefore, AI should also utilise
multiple inputs for high-risk decision-making, considering
as much relevant information as possible before making a
decision. Such information should also be verified where
possible to check authenticity and reduce noise.

To integrate multiple data inputs within the DFCR system,
we explored data fusion methods that leverage multiple inputs
to inform decision-making. These methods enhance system
robustness, as single-input models are more vulnerable to
being deceived by targeted spoofs or adversarial patches.
Since simultaneously spoofing multiple inputs across different
sources (e.g., AIS, optics, radar) is significantly more chal-
lenging. Nevertheless, the results show that DFCR not only
mitigates all single-source attacks but also addresses some of
the more complex multi-source attacks.

We test the DFCR system architecture using the RedAI
framework [20] to assess its vulnerabilities. We discover
how multi-pronged attacks can still fool the data-fused AI
system, such as a coordinated spoofing of well-positioned
AIS messages and a small object’s (such as a buoy) radar
and optical detections against a basic data fusion system.
We, therefore, consider data fusion as a basis for developing
more secure systems but build on this work to strengthen the
architecture further in the pursuit of creating defence-oriented
systems to prevent more sophisticated attacks.

B. Deriving Defensive Components for AI Systems

There are many established defensive methods designed to
prevent AAI attacks, such as adversarial training [9], [29] (i.e.,
a model is trained on adversarial examples) or input prepro-
cessing (e.g., JPEG compression to remove small adversarial
perturbations in an image [81]). It is important to note that
privacy or model-stealing methods are out of this work’s scope
as they are less relevant to this particular application.

While many of these defensive methods have been shown
to be effective against some attacks, there are often sev-
eral limitations when facing current adversarial AI methods.
Firstly, traditional adversarial AI defences are often restricted
to countering a single type of attack. They can lack consistent
accuracy, and many only operate effectively within limited or
restricted condition (e.g., perturbation size).

Second, existing metrics that consider security are also
limited. Metrics such as model confidence offer limited insight
into attacks and are insufficient for integrating security into
the system’s decision-making process. Existing metrics to
measure and understand risk from AAI are very limited, which
makes it difficult for developers to improve AAI defences.
Furthermore, many current defences are not robust enough
to mitigate the effects of attacks at later stages in an AI’s
system, failing to offer a defence-in-depth approach that is
essential for resilient systems. Thirdly, many adversarial AI
methods do not address conventional spoofing-based attacks.
This oversight leaves systems vulnerable to traditional forms
of deception that can compromise system integrity without
relying on sophisticated adversarial techniques.

To address these challenges, we have developed a suite of
defensive components to create a robust defensive system for
the AI system. This approach follows a two-step process:

1) Identify potential threats and vulnerabilities: thoroughly
analyse the system to identify potential threats specific
to AI/ML applications. This includes understanding ad-
versarial attacks, data poisoning, model extraction, and
other vulnerabilities unique to AI/ML systems. Utilising
a red team framework allows one to simulate attacks and
proactively discover weaknesses.

2) Diversify and enrich system inputs: to mitigate the
identified threats, we aim to maximise the diversity
and range of data fed into the machine learning sys-
tem. In the DFCR system, we integrate multiple data
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sources—including radar, AIS, and optical data, to en-
hance the system’s environmental understanding. This
diversity makes it more challenging for an attacker to
deceive the system, as they would need to manipulate
multiple data types simultaneously.

For others using this process, step one involves conducting
a comprehensive threat assessment to understand the risks
pertinent to their specific domains. Identifying these threats
to the system enables one to develop defensive components
which aim to mitigate these threats. For step two, AI/ML
developers should identify and incorporate relevant and diverse
data sources pertinent to their specific application areas.

Once these two steps are complete, one can then develop
defensive components that utilise the diverse multi-input data
to mitigate the identified threats. For example, we can validate
and authenticate sensor inputs. To further enhance the system’s
resilience, we implement robust validation and authentication
mechanisms for all input data. This involves verifying the
authenticity and consistency of data across multiple sensors
and sources. By cross-referencing inputs from radar, AIS, and
optical sensors, we can detect anomalies and inconsistencies
that may indicate adversarial manipulation and provide a type
of anomaly detection.

For example, consider an attacker attempting a poisoning
attack by inserting a backdoor into a model during training and
then attaching an optical backdoor trigger resembling an oil
tanker to a buoy. With the defensive architecture highlighted
in Figure 1, this attack is less likely to be successful due to
several components:

• Multisensor validation: Poisoning a single sensor is not
sufficient to fool multisensor situational awareness.

• Position validation: The poison trigger would have to be
validated against other sensor data, such as positional.

• Metadata validation: A trigger designed to mimic an oil
tanker would fail if the radar contact does not correspond
to that of an actual oil tanker.

In another example of data fusion for cyber resilience, a
second identified threat might be system accessibility, where
defence components focused on redundancy, using diverse
inputs, could be implemented to mitigate availability attacks. A
third example might include addressing a lack of resilience by
enhancing defence-in-depth by utilising the input information
and threat assessment to strengthen various layers of the sys-
tem. By incorporating multiple layers of defence and diverse
data sources, the system becomes more robust against attacks
that aim to exploit single points of failure. These components
could range from simple hard-coded rules to more complex
deep neural networks.

Whilst we use a range of models for each of the three sensor
inputs, the DFCR system differs from an ensemble approach
as it incorporates multiple input data sources, in addition to
a data fusion and a security-orientated system backend. We
also only use a single model per input source for the initial
classification task as well as multiple diverse data sources.
This is unlike an ensemble approach, which would instead run
a single data point through multiple object detection models
and take a weighted average.

C. The Experimental Defence Components
The DFCR system for MAS situational awareness is shown

in Figure 1. It considers three types of model inputs, each
from a different input: AIS, optical, and radar. This data is
captured in sequential frames and transmitted to the machine
learning system, where a single image displaying the three
inputs is generated. This image is then passed through the
optical model, the radar model, and the AIS model, which are
all object detection models for MAS situational awareness.

For object detection, we utilise YOLOv8 (nano) — open-
source models with state-of-the-art benchmark scores [82].
We fine-tuned these pre-trained models to recognise AIS,
radar, and optical contacts specific to maritime applications.
While YOLO models were utilised in this work, the DFCR
method is model-agnostic and can be applied to any set
of machine learning models, including Vision Transformers
(ViTs) such as DeTR [83]. YOLO models were selected due to
their widespread adoption and prominence as object detection
models.

After model inference, each model produces a vector con-
taining information for every detection in each image in
the series of images during a voyage. This vector includes
class information (Class), confidence scores (C), and bounding
boxes (BB) for all contacts. This information is compiled into
feature vectors of the form:

x = [Cm,i, BBm,i, Classm,i],

For each contact i for model m,where i ∈ N, and m ∈
N \ {0}. In the case of this work, m is fixed at three sensors
and, hence, three models. We then pass these vectors to
the defensive components, detailed below, which ultimately
recalculate the confidence scores to produce new scores that
take into account system security and robustness.

In this work, we utilise three defensive components (po-
sition validation, multisensor validation, and metadata vali-
dation), as detailed in the following sections. Examples of
contacts can be seen in Figures 2 and 3.

1) Contact Position Validation and Multisensor Validation:
Once the feature vector x has been computed by the object
detection model, the homography and sector mapping vali-
dation component considers the likely positions of detected
contacts across different sensor spaces for authentication of
contact. If contacts are verified as likely to be the same, for
example, radar and corresponding AIS contacts, then their
positions within a shared coordinate system should be very
close. Contacts may also exist in the optical domain, and a
data fusion method known as a homography matrix can be
used to map the positions of contacts between these different
spaces. The homography matrix can be formally defined as:

A homography matrix H is a 3x3 matrix that defines a
transformation from one projective plane to another. Given a
point p = (x, y, 1)⊤ in homogeneous coordinates on the first
plane, the corresponding point p′ = (x′, y′, 1)⊤ on the second
plane is obtained by:

p′ = Hp,

where:
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(a) True radar contact
(surrounded by a red

bounding box) in the AIS and
radar coordinate space.

(b) Radar contact transformed
into the optical coordinate

space using the homography
mapping. Projection is shown

as a red bounding box.

Fig. 2. Comparison of radar contacts in different coordinate spaces. (a) shows
the true radar contact in the AIS and radar space, while (b) shows the radar
contact transformed into the optical space using the homography mapping.

(a) A true AIS and radar
contact in the AIS and radar

coordinate space.
(b) A true optical contact in
the optical coordinate space.

Fig. 3. The image shows AIS, radar, and optical spaces. A well-verified
contact can be seen in both spaces, and this is reflected in improved DFCR
confidence scores.

H =

h11 h12 h13

h21 h22 h23

h31 h32 h33

 .

Alternatively, one could develop a more basic coordinate
space mapping by splitting the space into sectors and mapping
between the two.

Verifying contacts across multiple inputs and ensuring their
positions align within a probabilistic expected range can
significantly enhance robust decision-making. For example,
when an AIS contact and a radar contact are located in
close proximity, the DFCR confidence score increases by
incorporating this mutual verification. Conversely, if an AIS
signal is spoofed, its reported position may not correspond
to any radar contact. This scenario would be highly unlikely
(if within radar range) unless there is a malfunction of the
radar system, the vessel is being spoofed, or it possesses
radar return-reducing properties (such as a stealth ship). Such
discrepancies would serve as red flags in the decision-making
process of the DFCR system.

As seen in Figure 2, radar contacts are transformed using
a homography matrix to approximate their positions in the
optical space. Given that this method is susceptible to errors,
we employ a probabilistic approach to measure confidence
levels, utilising a two-dimensional normal distribution centred

around each contact. For the DFCR Multisensor Validation
component, if contacts that should have corresponding detec-
tions (e.g., an AIS report of a ship within radar range) are
missing or if contact positions are significantly or unusually
misaligned, the system outputs a lower robust confidence score
for that object detection. The system first performs multisensor
validation by checking for multiple object contacts (e.g., ship)
when appropriate and then validates their positions using the
contact position.

2) Metadata validation: Despite utilising multiple inputs
to validate each other, it is important to recognise that an
attacker could potentially compromise multiple inputs and
models simultaneously. For example, an attacker might spoof
the AIS signal of an oil tanker and use a strategically placed
buoy to create a corresponding radar signature. This scenario
highlights the necessity of the metadata validation component
in the DFCR system.

The metadata validation component leverages metadata in-
formation, such as a vessel’s length and width, from AIS
contacts and the signature properties (e.g., size) of the radar
contacts, to determine whether these contacts correspond to
the same vessel. In the case of a spoofed AIS signal paired
with a physical buoy, if the AIS data indicates the contact
should be an oil tanker, which is typically a large vessel,
the corresponding radar signature would not match as it
would indicate a smaller object. In the DFCR system, such
a discrepancy would be flagged as unusual.

For scenarios such as this, a DFCR component decodes AIS
sizing information and compares it with radar size information
to assess whether the data may have been compromised. By
cross-validating metadata from multiple sensors, the system
enhances its ability to identify inconsistencies that may indi-
cate adversarial attacks targeting multiple inputs.

Building upon the critical role of cross-validating metadata
from multiple sensors to detect and prevent anomalous activi-
ties, we define a system that leverages these multiple inputs for
enhanced detection capabilities. During implementation, we
considered corresponding contacts from the contact position
and multisensor validation check. From this, the matrix D was
produced, where each row contains the corresponding contacts
previously matched, and each column contains the relevant
metadata features (e.g., contact size). This matrix is fed into
a Support Vector Machine (SVM). While alternative decision
agents such as decision trees, neural networks, random forests,
or reinforcement learning algorithms could be used, the SVM
provides an effective means of correlating contacts detected
by different sensors for this application.

The objective of the SVM is to determine the probability
that each matched contact is either anomalous or plausible by
correlating detections across sensor inputs. The SVM classifier
can be developed by optimising the loss/objective function to
minimise weights w and bias b:

min
w,b

1

2
∥w∥2 + C

n∑
i=1

max (0, 1− yi (w · xi − b)) .
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Here, C is the regularisation parameter that balances the
trade-off between correctly classifying each training example
and maximising the separation (margin) between classes.
Then, using the optimised w and b, the SVM classifier can
compute inputs using the decision function:

f(x) = sgn(w ·D+ b),

where w is the weight vector that defines the hyperplane,
and b is the bias term, a scalar that offsets the hyperplane.
The sign function, sgn, returns +1 if the argument is positive
and -1 if the argument is negative, representing the two
classes (verified contact or anomalous contact). The classifier
produces a prediction of either verification or anomaly, which
is subsequently integrated into the final DFCR confidence
score. The SVM calculates a decision boundary across a
range of features, demonstrating how the SVM differentiates
between genuine contacts and potential spoofing attempts.

Robust systems should not only utilise multiple inputs but
also leverage information from these inputs to verify the
authenticity of the data. By cross-referencing inputs from dif-
ferent sensors, the DFCR approach enhances the system’s abil-
ity to detect inconsistencies and potential adversarial attacks
targeting multiple inputs. This integrated approach improves
overall decision-making and resilience against sophisticated
threats, as shown in the experimental results (Section V).

D. Secure Metric for AI Defence

After input data passes through various defensive compo-
nents, the system calculates and displays the DFCR score
passively rather than blocking anomalous contacts. This score,
a model confidence metric, integrates security, robustness,
situational, and environmental factors into decision-making.
For high-risk applications, this information and secure score
are relayed to the remote operator to flag unusual behaviour
that may require further investigation, helping them or a
secondary algorithm make informed decisions.

The defence component assesses each contact’s trustwor-
thiness by outputting a probability or binary result (normal
or anomalous), adjusting the confidence score based on a
user-defined mapping. For example, if a radar contact aligns
with AIS and optical contacts, confidence may increase by
0.3. These adjustments, defined by the developer, consider
behaviour probability and unusualness, with certain behaviours
penalised more than others. We display this score in Figure 3B.

As seen in Figure 3, the unverified AIS contact confidence
is similar to the baseline model confidence. However, the
verified radar, AIS, and optical contact for the detected boat
have DFCR confidence values that are much higher than
the baseline model, reflecting a successful validation through
multiple system components. In the visual demonstration, the
bounding boxes of multiple authenticated or matched contacts
turn green. Further information and visuals could be projected
to the operator in future work. We recognise a balance between
maximising information and situational awareness without
overwhelming the operator [84]; however, we do not attempt
to optimise this in the current work. The DFCR confidence

score generation can be seen in pseudocode in Algorithm 1
and can be calculated by:

1) Initial System Outputs: For each model m in the set of
models {AIS,Radar,Optic}, when an image is passed through
the system, we obtain:

• Confidence Score: C(0)
m

• Bounding Box: BBm

• Class Label: Classm
2) Validation Components: The initial confidence scores

are sequentially provided to three validation components:

Component 1: Multisensor Validation
Objective: Verify consistency among different models.
Passing Criteria: Model m passes if its bounding box
BBm and class Classm sufficiently match those from
other models.

Component 2: Contact Position Validation
Objective: Confirm that the detected contact is within
expected positional parameters.
Passing Criteria: Model m passes if the contact’s
position aligns with known or plausible locations.

Component 3: Metadata Validation
Objective: Validate additional data associated with the
contact.
Passing Criteria: Model m passes if the metadata (e.g.,
vessel size) is correct and consistent. Each component ad-
justs the confidence score by either penalising or adding
a fixed value based on whether the model’s output passes
the validation.

3) Confidence Adjustment Mechanism:
Adjustment Amount: Let δ(k) denote the fixed adjust-
ment value for component k, where δ(k) > 0.
Passing Indicator: For each model m and component k,
define the passing indicator:

s(k)m =

{
+1, if model m passes component k
−1, if model m fails component k

Confidence Update Equation: The DFCR confidence
score of model m after passing through component k is
updated as:

C(k)
m = C(k−1)

m + δ(k) · s(k)m

Clamping Confidence Scores: To ensure that confidence
scores remain within the valid range [0, 1]:

C(k)
m = min

(
max

(
C(k)

m , 0
)
, 1
)

4) Final DFCR Confidence Score (Combining all updates):

Cfinal
m = min

(
max

(
C(0)

m +

3∑
k=1

δ(k) · s(k)m , 0

)
, 1

)
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Algorithm 1 Adjusted DFCR Confidence Calculation for the
Defence AI System.
Require: Models M = {AIS,Radar,Optic}

Initial confidences C
(0)
m for each model m ∈M

Validation components K = {1, 2, 3}
Adjustment amounts δ(k) > 0 for each component k ∈ K

Passing indicators s(k)m ∈ {+1,−1} for each model m and
component k

Ensure: Final adjusted DFCR confidences Cfinal
m for each

model m ∈M
1: for all models m ∈M do
2: Initialise confidence: Cm ← C

(0)
m

3: for k = 1 to 3 do
4: Update confidence: Cm ← Cm + δ(k) × s

(k)
m

5: Clamp confidence: Cm ← min (max (Cm, 0) , 1)
6: end for
7: Store final adjusted DFCR confidence: Cfinal

m ← Cm

8: end for
9: return Cfinal

m for each model m ∈M

IV. EXPERIMENTAL SETUP

One of the objectives of this work is to develop defensive
components that contribute to the generation of a DFCR
score. These components and the DFCR score were evaluated
through two distinct methodologies. Firstly, a series of real-
world demonstrations were conducted to assess the practical
impacts of attacks and defences on these systems. The prac-
tical findings and limitations fed into the analysis provided
in the experimental section and discussion. Secondly, a set of
controlled experiments were performed to quantitatively evalu-
ate the defensive systems as practical defence methods. These
experiments compare the DFCR approach against single-input
models and models utilising existing state-of-the-art defences.

The defences selected for this study are the most established
and commonly used methods, tailored to be applicable to
specific attack types. For instance, JPEG compression defences
are not considered for defending against AIS spoofing attacks,
as such an approach lacks logical applicability. The chosen
defences are relevant to each targeted attack. These defences
include compression and input preprocessing (e.g., JPEG
compression) and adversarial training applied to the single-
input models. This selection allows for a comparison and
benchmarking of the defensive system’s effectiveness against
some of the most popular current state-of-the-art defences.

The DFCR system and models were tested against a range
of the most prevalent and pertinent attacks identified in the
background literature. Privacy-based attacks are excluded from
this study as they fall outside the scope of the model, data, and
application context. We utilised the RedAI framework [20] to
identify AI vulnerabilities and attacks that could be used to
evaluate the DFCR system.

From RedAI, the attacks considered to test the situa-
tional awareness AI include adversarial patches, adversar-
ial perturbations, and sensor spoofing (AIS and radar jam-
ming/reflection/electronic warfare simulations). These attack
types will constitute four separate experiments intended to

Fig. 4. The USV Bauza.

assess the DFCR system developed for MAS situational aware-
ness. During these attacks, the confidence values of different
systems and models, including the DFCR confidence score,
will be compared to measure the effectiveness of the defences.

A. Marine Dataset and Equipment

All data utilised in this study was collected using the
Uncrewed Surface Vessel (USV) Bauza (C-Enduro), an au-
tonomous experiment platform operated by the University
of Plymouth. Typically managed remotely from a ROC, the
vessel’s operation inherently limits the operator’s situational
awareness. The system developed in this work aims to enhance
crew situational awareness by leveraging and combining the
vessel’s sensor capabilities. USV Bauza (see Figure 4) serves
dual purposes: it is the source of training and validation
data and the platform for evaluating model inference and
conducting real-world AI defence simulations.

Data collection was conducted in the Cawsand USV range
at Plymouth Smart Sound, a distinctive body of water within
UK territory that facilitates the safe deployment of marine
autonomous equipment. Data acquisition spanned multiple
days (2022-2024) and encompassed a variety of scenarios
to ensure a comprehensive and diverse dataset. The dataset
comprises screen recordings of radar, 4K optical (camera),
navigational charts, and AIS data. All data was manually
labelled, with the detection confidence initially set to the
default YOLO value of 0.3. Most experimental parameters
remained at their default settings unless adjustments were nec-
essary; any modifications and their justifications are detailed
in the experimental section. For real-world application of the
defences and models, considerations regarding risk appetite
and specific use cases should guide parameter settings.

V. EXPERIMENTAL RESULTS

Four experiments were conducted to demonstrate the ef-
fectiveness of the DFCR method. The attacks used to test
defences were derived from the RedAI framework to find the
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most appropriate AAI attacks for evaluation. The experiments
were conducted using the following hardware configurations:

• Primary Inference System: Intel Core i9-13900H CPU,
16 GB DDR5 RAM, and NVIDIA RTX 4070 GPU.

• Development Environment: Google Colab with an Intel
Xeon CPU at 2.20 GHz, NVIDIA A100-SXM4-40GB
GPU, and 51 GB system RAM.

A key terminology clarification for the upcoming sections
is that DFCR system confidence refers to the confidence
output from the DFCR-enhanced system. In contrast, baseline
model confidence refers to the confidence derived from the
standalone models (i.e., the same object detection model but
without the DFCR defensive components).

A. Experiment 1: Clean Performance

This experiment measured differences (improvement or
depreciation) between the baseline model confidence score
and the newly proposed DFCR confidence score in normal
operating conditions (whilst not being attacked). We selected
300 distinct scenarios, represented by screenshots (images) of
the optical and navigational interfaces, and processed each sce-
nario through both the DFCR system and the baseline model.
The resulting DFCR system confidence and baseline model
confidence scores were recorded for analysis and comparison.

We used a range of metrics centred around loss. Loss is
the difference between what is true (e.g., there is a real boat
contact in range of the MAS situational awareness AI) and
what has been predicted by the system (i.e., predicting a high
confidence of boat contact). Therefore, a lower loss value is
more desirable, as the system prediction would be as similar
as possible to the truth. This is different from raw values
(raw confidence), which will depend on whether or not a true
contact exists. For example, if a contact is spoofed, a better
system should produce a lower contact score for that spoof
while producing high confidence values for the true contacts.

The confidence scores of the baseline model and the DFCR
system for each metric are presented in Table I. The loss values
are either nearly identical to or lower for the DFCR confidence
score, indicating that the DFCR system performs better. Each
scenario includes a number of correct contacts; therefore, a
lower loss score signifies that the system is more effective at
providing confidence for true contacts. In this work, we display
both Mean Squared Error (MSE) and Mean Absolute Error
(MAE). MSE penalises larger errors more severely, whilst
MAE penalises errors in a more linear way. However, another
developer may choose to pay particular attention to one metric
or the other depending on the risk/attention to larger errors.

As seen in the initial test, both the DFCR system and base-
line models exhibit low loss values, indicating that the baseline
model already performs well in these conditions. However,
the DFCR system’s confidence achieves a 30% reduction in
MSE loss (0.12) compared to the baseline model (0.17) due
to the increased availability of information, such as a higher
number of contacts and multiple input modes. This abundance
of data allows the system to utilise its defensive components.
Additionally, the MAE and Root Mean Squared Error (RMSE)
are approximately one-quarter lower for the DFCR system’s
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Fig. 5. Elevated y−values (raw confidence values) correspond to superior
detection capabilities, as all detections are genuine.

TABLE I
COMPARISON OF METRICS BETWEEN DFCR CONFIDENCE AND BASELINE

MODEL CONFIDENCE. (LOWER VALUES ARE BETTER) UNDER NORMAL
CONDITIONS.

Metric DFCR Conf Baseline
Conf

MSE Loss 0.1211 0.1713
RMSE Loss 0.3480 0.4139
Median of Differences 0.2195 0.3035
Range of Differences 0.7747 0.6188
Std Dev of Differences 0.2421 0.1692
MAE 0.2500 0.3777

confidence, underscoring a significant improvement in the
detection and verification of contacts. In Figure 5, the box plot
shows the improved y − axis scores for the DFCR system’s
confidence.

Given the presence of outliers and the non-normal distribu-
tion of the data, we employed the Wilcoxon signed-rank test,
a non-parametric method that uses ranks to assess the median
differences between two related groups. This approach pro-
duced a p-value of 7.291× 10−75, far below the conventional
significance threshold of 0.05. These results strongly suggest
that the observed improvements are not due to random chance,
confirming the statistically significant differences between the
two methods.

In situations of low-activity scenarios, we anticipate that the
DFCR confidence and traditional confidence scores will be
more similar, as situations with few contacts and verifications
do not fully capitalise on the DFCR confidence components,
such as verification, resulting in the system operating at
reduced defence effectiveness. The analysis from these tests
demonstrates that the DFCR system generally outperforms the
baseline model across various metrics. Specifically, the DFCR
system’s confidence exhibits lower errors in MSE, RMSE
and MAE. These findings underscore the effectiveness of the
DFCR method in improving legitimate detection and verifi-
cation capabilities in normal-activity environments, thereby
providing a more reliable and robust system.
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Fig. 6. An evolutionary algorithm (EA) evolving adversarial patches for
perturbation attacks, illustrating the average fitness score of 50 individuals
over 500 iterations.

B. Experiment 2: Perturbation Attack Defence

Building upon the benchmark comparison between the
baseline model and the DFCR system using benign data, which
demonstrated the DFCR system’s robustness under normal
operating conditions, experiment two evaluated the DFCR
system’s performance under adversarial AI attack scenarios.
We generated adversarial perturbations on the input image,
which would fool the system into detecting objects (e.g., a
radar contact) that do not really exist. The objective of the
attacker may be to fool the AI vessel into detecting objects
that do not exist in real space and, hence, confuse or change
the trajectory of the vessel. We then tested the DFCR system to
see if it could flag adversarial perturbations added to inputs by
providing a very low or zero confidence score to the operator.

Various methods exist for generating adversarial perturba-
tions. Open-box methods, such as the Fast Gradient Sign
Method (FGSM) and Projected Gradient Descent (PGD),
require access to the model’s gradients [9], [29]. Conversely,
we employ a black-box or closed-box approach using an
evolutionary algorithm (EA), specifically NSGA-III [85], to
generate adversarial perturbations without necessitating gradi-
ent calculations [86].

The perturbation generation process utilises image pixels as
the parameter space and the model confidence scores for AIS
and radar as the objective (fitness) functions, with the goal of
maximising these confidence scores. NSGA-III was selected
for its robust capability to identify the Pareto front in many-
objective optimisation problems, allowing for the expansion
of objectives to include more nuanced criteria if needed.
Figure 6 illustrates an example of the EA evolving solutions
to maximise the combined model confidence. Table II outlines
the hyper-parameter settings of the EA used in this study to
facilitate reproducibility.

The perturbations generation can be formulated as a multi-

TABLE II
HYPER-PARAMETER SETTINGS FOR THE OPTIMISATION ALGORITHM.

Hyper-Parameter Value

Number of Iterations (Max) 500
Number of Iterations (Min) 50
Population Size 50
Perturbation Size (ϵ) 50
Decay Factor for Epsilon 0.9
No Improvement Threshold 30
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Fig. 7. A box plot illustrating the preliminary confidence scores of systems
and models subjected to various defence mechanisms. Lower y-values indicate
reduced confidence means, with a score of 0 representing optimal performance
during adversarial perturbation attacks.

objective optimisation problem. More formally,

Maximise F(x) = (f1(x), f2(x), . . . , fM (x))

Subject to x ∈ Ω

where x = (x1, x2, . . . , xn) is the decision vector, F(x) is the
objective vector consisting of M objective functions (for this
work M = 2, and Ω is the feasible decision space defined by
constraints. Before each solution in the population is evaluated,
a 0-255 clip is applied to ensure the perturbation values remain
within an appropriate range. The number of generations is
randomly selected for each situation between 50 and 500
generations.

This evaluation involves comparing the DFCR system’s
confidence against the baseline model confidence, as well as
against a set of baseline models that incorporate state-of-the-
art adversarial defences from the literature. These defences
include sterilisation and compression methods seek to elim-
inate adversarial perturbations from inputs by reducing their
resolution, thereby potentially removing noise and distortions.

The DFCR system’s confidence, the confidence of the
baseline model and the confidence of the baseline model with
defences are provided in Figure 7 and Table III. In this context,
lower loss values indicate better performance, as they reflect
reduced or negligible confidence in adversarial attacks, thereby
rendering the attacks unsuccessful or diminishing their impact
on the system. The defences implemented in this study include
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TABLE III
COMPARISON OF METRICS BETWEEN DIFFERENT SYSTEMS AND MODEL CONFIDENCE (LOWER VALUES ARE BETTER) DURING AN ADVERSARIAL

PERTURBATION ATTACK.

Metric Baseline Con-
fidence

Secure Confi-
dence

JPEG
Confidence

Noise
Confidence

MSE Loss 0.4994 0.3231 0.1951 0.4985
RMSE Loss 0.7066 0.5684 0.4417 0.7061
Median Difference 0.7591 0.4554 0.3952 0.7587
Range of Differences 0.7746 0.9229 0.6729 0.7812
Std Dev of Differences 0.1326 0.1908 0.2985 0.1335
MAE 0.6941 0.5354 0.3256 0.6933

JPEG compression and Gaussian noise addition techniques. In
these experiments, we utilised a sample size of 100 scenarios.

As illustrated in Figure 7 and Table III, the DFCR confi-
dence was one of the better defences in all metrics. Specifi-
cally, the JPEG compression defence was the only alternative
that effectively reduced attack perturbations; however, its
efficacy was limited to perturbation-based attacks alone. The
raw confidence standard deviation of the JPEG compression
defence is illustrated in Figure 7 and can be seen to be
around three times higher than that of other systems and hence
less consistent. Other compression algorithms demonstrated
reduced effectiveness, likely due to the perturbations being
too large, allowing their effects to persist even after defence
application. While it is theoretically possible to increase the
level of compression to eliminate larger perturbations, such
an approach would likely compromise the quality of the
original images, thereby negatively impacting the detection of
legitimate contacts. In contrast, the method we propose offers
the advantage of maintaining original image quality, thereby
preserving the accuracy of benign detections.

In marine detection applications, objects at a distance typ-
ically appear small due to the camera’s focal length and the
challenges inherent in operating within expansive, open-water
environments. Compression algorithms, particularly those de-
signed to reduce image size and bandwidth, often achieve this
by minimising less noticeable details, which can include small
objects in the background. Consequently, essential detections,
such as distant vessels or buoys, may be compressed into the
background and go undetected. This issue poses a significantly
larger problem than adversarial attacks, as it directly affects the
system’s core functionality and reliability. Furthermore, work
in [87] developed JPEG-resistant adversarial images, limiting
the impact of the JPEG-compression defence.

The Wilcoxon test yielded a p-value of 3.412 ×10−8. Sim-
ilar to Experiment 1, the Wilcoxon test value suggests that the
DFCR system’s median confidence differs from the baseline’s
median confidence. These results indicate that the observed
differences between the DFCR system and baseline model
confidence are statistically significant at the conventional alpha
level of 0.05. Overall, the DFCR method shows meaningful
improvements in performance metrics. Furthermore, the DFCR
system exhibits lower errors in MSE, RMSE, and MAE than
the baseline model, along with comparable or lower values for
other performance metrics.

C. Experiment 3: Patch Attack Defence
We now consider the system’s robustness against adversarial

patch attacks. An attacker could use a digital or physical
adversarial patch to manipulate the vessel’s behaviour, poten-
tially causing it to change its trajectory or take an unusual
action. The attacks for this experiment were generated with the
Projected Gradient Descent (PGD) method [29]. We assume
an open-box adversarial setting where the attacker has access
to the model’s gradient to carry out the PGD attack. The PGD
attack can be formulated such that the adversarial example
xadv is crafted as:

xadv = x+ ϵ sgn (∇xJ(θ, x, y)) .

Here, x represents the original image, ϵ is the perturbation
size, and sgn (∇xJ(θ,x, y)) indicates the direction of the
gradient aimed at maximising the model’s confidence for the
given input so that the model detects non-existent detections.
The objective of the PGD attack is to maximise the model’s
confidence (or equivalently minimise the loss) as follows:

Minimise F(δ) = (−J(θ, x+ δ, y), ∥δ∥p) ,
Subject to x+ δ ∈ Ω,

where:
• δ is the perturbation.
• −J(θ, x+ δ, y) aims to maximise the loss.
• ∥δ∥p measures the magnitude of the perturbation.
• Ω ensures inputs remain within a valid domain.

This experiment focuses on attacking only the optical de-
tection model with adversarial patches generated using PGD.
We employ PGD parameters with α = 0.05, ten iterations, and
ϵ = 0.3. To defend against such attacks, we use adversarial
training, where an additional 197 adversarial patches are
generated and incorporated into the training dataset of the
optical detection model. This defence method improves the
model’s robustness by introducing training data representative
of adversarial examples. Specifically, about 10% of the training
dataset consists of adversarial data. The model was retrained
for 100 epochs with a batch size of eight, enhancing its ability
to withstand adversarial patch attacks.

Table IV summarises the results of experiment three. The
three table columns represent the baseline model confidence,
the DFCR confidence, and the adversarially trained model con-
fidence. The DFCR confidence exhibits the smallest squared
error (0.00) by a significant margin, indicating that the sys-
tem’s loss during an adversarial optical patch attack was
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TABLE IV
COMPARISON OF METRICS BETWEEN THE BASELINE MODEL CONFIDENCE,

THE DFCR SYSTEM CONFIDENCE, AND THE ADVERSARIAL TRAINED
MODEL CONFIDENCE DURING AN ADVERSARIAL PATCH ATTACK.

Metric Baseline DFCR Adversarial
Trained

MSE Loss 0.2542 0.0000 0.1990
RMSE Loss 0.5042 0.0000 0.4461
Median of Differences 0.4910 0.0000 0.4380
Range of Differences 0.3741 0.0000 0.6425
Std Dev of Differences 0.0699 0.0000 0.1141
MAE 0.4993 0.0000 0.4313

the lowest. This suggests that the DFCR system effectively
disregarded or was robust to, these adversarial attacks. The
adversarial model demonstrated the second most effective per-
formance but only showed an improvement of approximately
0.06 in MSE loss compared to the baseline confidence model.
These trends are consistent across other metrics and raw
values.

Furthermore, the statistical Wilcoxon test to compare me-
dian differences between the baseline model and the DFCR
system yield p-values of 8.329× 10−18, which confirms that
the observed differences are statistically significant and not
due to random chance.

Furthermore, while the adversarially trained defence did
lead to a slight reduction in the normal accuracy of the
model, the DFCR method did not alter the original model
performance, unlike adversarial training, which usually re-
quires a trade-off to improve robustness to adversarial attacks
at the cost of lower model accuracy on true detections. Hence,
the initial model detection accuracy did not diminish in the
DFCR system. Much of the DFCR system’s defence likely
relies on the absence of corresponding AIS or radar inputs to
validate contacts identified by the optical model. Consequently,
contacts without radar verification, despite being large enough
and within the radar’s range, were effectively disregarded by
the DFCR system.

In summary, the analysis shows that the DFCR system
provides the best performance. The DFCR system’s confidence
metrics all returned zero, effectively disregarding these adver-
sarial inputs. The adversarially trained model does improve
upon the baseline model confidence by reducing certain types
of errors but introduces greater variability in others. Overall,
the DFCR system achieved the highest accuracy and the least
error across the tested metrics.

D. Experiment 4: AIS and Radar Spoof Defence

In this final experiment, we evaluate the system’s resilience
to AIS and radar spoofing. AIS spoofing involves injecting
false AIS signals directly into the MAS system, while radar
spoofing entails adding deceptive radar contact signals to
the scenarios/images. Details on AIS spoofing in the marine
domain can be found in [88]. The unsecured nature of the
AIS protocol, based on NMEA protocols, makes AIS spoofing
one of the most straightforward attacks to develop and test.
Defending against AIS and radar spoofing is particularly
challenging, as conventional defences such as compression or

adversarial training are ineffective against these types of at-
tacks. Therefore, we focus solely on evaluating the system’s in-
trinsic defensive components without comparing them against
external defence mechanisms. Each spoofed AIS or radar
signal that does not match the correct probabilistic signature
results in a lower loss score, as the metadata validation process
should penalise detections with significant mismatches.

This experiment was designed to introduce a range of radar
and AIS spoofed signals per scenario to maximise detection
potential and enable the system’s defensive components to
perform verification checks. The total number of AIS and
radar detections per scenario is limited to one, three and five.
Each test comprises 100 examples for each number of spoofed
signals to ensure statistical robustness.

As presented in Table V, when attacked by a single spoofed
contact, the MSE of the DFCR system’s confidence (0.00) is
significantly better than the baseline model confidence (0.51).
This is likely due to missing but expected corresponding
contacts that can validate the spoofed contact. This indicates
that the DFCR method has significantly reduced the impact of
spoof attacks attempting to fool the AI system.

We can observe that as the number of spoofed contacts
increases, the DFCR system receives more information for
decision-making, such as additional verification data, allowing
the defensive components to operate more effectively, im-
proving the system’s performance metrics (enhancing defence
effectiveness), as reflected in Table V. Furthermore, the statis-
tical analyses yield a Wilcoxon test p-value of 1.16× 10−39,
which confirms that the observed differences are statistically
significant.

A key assumption underlying this system is that spoofing
radar signals is highly challenging. For instance, an attacker
attempting to spoof the AIS of a large vessel, such as an oil
tanker, would need to generate a radar contact that matches
the vessel’s probabilistic signature. While it is theoretically
possible to use an object of identical size to the intended
AIS spoof, this approach offers minimal practical benefit and
significantly increases the difficulty of successfully executing
such an attack. Consequently, the DFCR system’s confidence
effectively penalises mismatched spoofed signals, enhancing
the overall robustness of the system against adversarial spoof-
ing attempts and outperforming baseline confidence models.

VI. DISCUSSION

This work aimed to address three critical challenges asso-
ciated with adversarial AI: (1) the limited scope of traditional
defences, (2) the inadequacy of current security metrics, and
(3) the need for resilience that goes beyond model-based
defences. To tackle these, we proposed developing AI defences
with an approach (DFCR) to utilise multi-inputs and data
fusion to create integrated defensive components.

The DFCR system addresses Challenge 1 by demonstrating
its capability to defend against a range of attacks while
reducing the limitations of traditional defences, which often
compromise input quality through methods like input sani-
tation or degrade model accuracy through adversarial train-
ing. Instead, the DFCR approach preserves the input quality
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TABLE V
COMPARISON OF PERFORMANCE METRICS BETWEEN THE DFCR SYSTEM’S CONFIDENCE AND THE BASELINE MODEL CONFIDENCE UNDER CONDITIONS

WITH 1, 3, AND 5 AIS/RADAR SPOOFED SIGNALS. LOWER VALUES INDICATE IMPROVED PERFORMANCE, SIGNIFYING REDUCED CONFIDENCE IN
ADVERSARIAL ATTACKS AND ENHANCED MODEL/SYSTEM ROBUSTNESS.

Metric 1 Combination 3 Combinations 5 Combinations

DFCR
Confidence

Baseline Confi-
dence

DFCR
Confidence

Baseline Confi-
dence

DFCR
Confidence

Baseline Confi-
dence

MSE Loss 0.0000 0.5128 0.5136 0.6446 0.4441 0.6217
RMSE Loss 0.0000 0.7161 0.7167 0.8028 0.6664 0.7885
Median of Differences 0.0000 0.7408 0.7745 0.8359 0.5581 0.8310
Range of Differences 0.0000 0.7069 0.8086 0.7427 0.9146 0.8327
Std Dev of Differences 0.0000 0.1198 0.1777 0.1043 0.1839 0.1272
MAE 0.0000 0.7060 0.6943 0.7960 0.6406 0.7781

while enhancing defence robustness, ensuring that essential
information remains intact for decision-making. For Challenge
2, we derived a novel AI security metric from this system,
enabling the integration of security assessments directly into
the decision-making process and offering a standardised way
to measure the system’s resilience. Finally, for Challenge 3, the
DFCR defence-in-depth strategy enhances system resilience by
layering DFCR defences; even if the input sanitation defence
is bypassed, the system is still capable of rejecting adversarial
data through alternative validation checks, ultimately strength-
ening protection against adversarial attacks.

Although poison-based attacks were excluded from this
study, it is plausible to infer that the DFCR system’s resilience
could mitigate such threats. Suppose an optical detection
model was poisoned to misidentify a target (e.g., confusing
a buoy for a tanker). In that case, the system should flag
this as anomalous if radar signatures do not match the optical
contact. This highlights a potential capability for mitigating
data poisoning effects. Likewise, this multi-source approach
and defensive components could aid in detecting adversarial
patches that aim to obscure or alter object identification.

The evaluation included rigorous testing through real-world
scenarios and a comprehensive quantitative analysis. We com-
pared the DFCR approach against single-input models and
models utilising existing state-of-the-art defences. We assessed
its performance against a suite of common open-box and
closed-box attacks, including adversarial image perturbations,
patch attacks, and sensor spoofing. The results demonstrated
substantial resilience improvements: up to a 35% reduction
in the loss for multi-source perturbation attacks, 100% for
adversarial patch attacks, and 100% for spoofing attacks. Many
attacks failed entirely, as indicated by a confidence of zero,
meaning the system successfully rejected these adversarial
inputs.

Unlike some traditional defences, which can reduce de-
tection accuracy, the DFCR approach maintained high de-
tection reliability, a critical factor for real-world, high-risk
applications where environmental noise could lead to increased
false positives or negatives. The DFCR system also overcame
biases seen in other state-of-the-art defences, such as input
compression (dependent on preset compression value), which
tends to remove only small perturbations, degrade the quality

of the input image and, in the case of adversarial training,
reduce normal model detection accuracy. Instead, the DFCR
system validated diverse inputs to remove both small and
large perturbations, as shown in Figure 7 as it is focused
on validating different diverse inputs to make decisions. The
DFCR system also did not degrade the original model per-
formance, unlike adversarial training, or the quality of the
input data, unlike input compression defence. In contrast, if
current adversarial defence limitations are adequate for the
application, existing state-of-the-art adversarial defences could
be used in combination with the system, which is likely to
extract further accuracy and robustness improvements.

Beyond maritime autonomy, this approach holds promise
for securing a range of high-risk applications. As dataset avail-
ability, software, and hardware continue to advance, this multi-
input DFCR approach could be useful for future resilient AI
systems. Similar to humans integrating diverse sensory inputs
(e.g., spatial, temporal, visual, audio) for decision-making,
AI systems could achieve greater resilience by incorporating
varied data sources. This research underscores that single-
input model object detection remains highly vulnerable to
adversarial attacks, which has policy implications for critical
infrastructure and high-risk domains. For such applications, we
advocate for initially integrating AI to assist human operators,
allowing for safer operations and establishing trust before full
automation.

This work does have limitations. The DFCR system’s re-
liance on greater computational resources compared to single-
model defences could pose challenges for deployment on
resource-constrained edge devices. During the evaluation, the
baseline model achieved an average inference time of 9.83×
10−2 seconds, while the DFCR system recorded an average
inference time of 2.784 × 10−1 seconds over a 4.870 × 102

seconds scenario. Although the DFCR system, implemented
in Python and not yet optimised, performed adequately on the
hardware used in this study, it is important to note that other
implementations tailored to specific applications — such as
aerial systems — may require alternative defence components
(and optimisation), potentially resulting in a faster or slower
performance than the system implemented in this study.

We do not aim to guarantee an “un-hackable” system, as
no system can ever be completely immune to compromise.
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Instead, by utilising a range of defensive components, the
goal is to make it so costly (in resources, time, money, effort,
and sophistication) for attackers that it becomes economically
unviable, reducing attacker interest and risk [89].

Future work could explore the effects of this approach for
AI on the edge. Additionally, while we demonstrated robust
defence mechanisms, no defence is entirely foolproof; further
research is needed to assess the DFCR approach’s resilience
against a broader array of attacks and diverse data sources
for decision-making, such as accessibility attacks (although
new defence components may need to be developed). Recent
attacks also consider edge computing-based attacks and re-
source exhaustion-based attacks [90]. For instance, an attacker
could overwhelm the model’s/system’s heavy processes, such
as correlation or the feedforward process, by introducing
numerous contacts to the screen, potentially causing the device
to crash. However, this type of attack is not considered within
the scope of this work but may be considered in future work.

VII. CONCLUSIONS

This study advances the development of secure, resilient
systems against adversarial AI. As AI becomes more integral
to high-risk sectors, developing diverse multi-input defence
mechanisms (DFCR), as proposed in this work, will be crucial
in safeguarding cyber-physical, transportation systems against
increasingly sophisticated adversarial threats.
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