
ar
X

iv
:2

50
5.

21
56

8v
2 

 [
cs

.S
D

] 
 3

0 
M

ay
 2

02
5

VoiceMark: Zero-Shot Voice Cloning-Resistant Watermarking Approach
Leveraging Speaker-Specific Latents

Haiyun Li1,2, Zhiyong Wu1,2,∗, Xiaofeng Xie3, Jingran Xie1, Yaoxun Xu1, Hanyang Peng2,∗

1Shenzhen International Graduate School, Tsinghua University, China
2Pengcheng Laboratory, China
3Independent Researcher, China

lihaiyun24@mails.tsinghua.edu.cn, zywu@sz.tsinghua.edu.cn, xiexiaofeng1926@gmail.com,
{xjr21, xuyx22}@mails.tsinghua.edu.cn, penghy@pcl.ac.cn

Abstract
Voice cloning (VC)-resistant watermarking is an emerging tech-
nique for tracing and preventing unauthorized cloning. Exist-
ing methods effectively trace traditional VC models by train-
ing them on watermarked audio but fail in zero-shot VC sce-
narios, where models synthesize audio from an audio prompt
without training. To address this, we propose VoiceMark, the
first zero-shot VC-resistant watermarking method that lever-
ages speaker-specific latents as the watermark carrier, allow-
ing the watermark to transfer through the zero-shot VC pro-
cess into the synthesized audio. Additionally, we intro-
duce VC-simulated augmentations and VAD-based loss to en-
hance robustness against distortions. Experiments on multi-
ple zero-shot VC models demonstrate that VoiceMark achieves
over 95% accuracy in watermark detection after zero-shot
VC synthesis, significantly outperforming existing methods,
which only reach around 50%. See our code and demos at:
https://huggingface.co/spaces/haiyunli/VoiceMark.
Index Terms: audio watermark, speech security, voice cloning

1. Introduction
Voice cloning (VC)-resistant watermarking is an emerging tech-
nique for tracing and preventing unauthorized cloning. Artists
can embed such watermarks into their copyrighted recordings,
ensuring that even if their voice is cloned into new audio, the
watermark remains intact, thereby tracing and preventing unau-
thorized cloning. Recent research [1] has explored this appli-
cation, confirming that most traditional VC models trained on
watermarked audio will synthesize audio that retains the water-
mark. However, with the rapid development of zero-shot VC
models such as CosyVoice [2], F5-TTS [3], and MaskGCT [4],
highly realistic cloned audio can now be synthesized without re-
quiring training, using only a few seconds of audio prompt. In
this new scenario, we cannot embed watermarks into VC mod-
els through training, as the watermarked audio is directly used
for inference, as illustrated in Figure 1. This means a zero-shot
VC-resistant watermark is needed — one that can be directly
transferred to the synthesized audio during zero-shot VC in-
ference using a single watermarked audio prompt. Currently,
zero-shot VC-resistant watermarking has not yet been studied.

Traditional audio watermarking has been developed over
many years, with techniques such as spread spectrum [5] and
echo hiding [6]. In recent years, more advanced deep learning-
based approaches have been proposed [7, 8], demonstrating
greater robustness compared to traditional methods. However,
these watermarking methods are mainly designed to resist tradi-
tional audio editing, such as noise addition, filtering, and com-
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Figure 1: Comparison of data flow for embedding watermarks
in traditional voice cloning and zero-shot voice cloning.

pression, with limited focus on resistance to VC models. Some
methods [1, 9] propose VC-resistant watermarking techniques
designed to resist traditional VC models. They validates that
training traditional VC models [10, 11, 12] or commercial tools
[13, 14] on watermarked audio enables robust watermark de-
tection from the resulting synthesized audio. However, in the
context of zero-shot VC-resistant watermarking, such methods
face several limitations:
• Inability to embed watermarks via training: Zero-shot VC

models eliminate the possibility of embedding watermarks
into model parameters through training, causing existing VC-
resistant watermarking methods to fail.

• Failure to retain watermarks during synthesis: Audio syn-
thesized by zero-shot VC models exhibits significant differ-
ences from the prompt, including changes in content, length,
and speed. These transformations disrupt or filter out the wa-
termark, making it undetectable in the synthesized audio.

These limitations hinder the direct application of existing wa-
termarking methods for traceability in zero-shot VC, exposing
individuals’ voices to the risk of unauthorized cloning.

To mitigate these risks, we aim to design a robust zero-
shot VC-resistant watermarking method that does not rely on
training VC models yet enables traceability for zero-shot VC.
We observe that in zero-shot VC, to clone a speaker’s voice,
models must extract speaker-specific information (timbre, pitch,
prosody, etc.) while discarding content from the audio prompt.
This process typically occurs in the latent space compressed by
neural codec-based methods [15, 16, 17] where the model im-
plicitly or explicitly disentangles the speaker-specific latents to
synthesize cloned audio. This implies that for higher speaker
similarity, the model must consistently transfer speaker-specific
latents from the original audio prompt to the synthesized audio.

Therefore, the key idea of our work is to leverage speaker-
specific latents as the watermark carrier by adopting a neural
codec model to disentangle them, embed the watermark, and
reconstruct watermarked audio. The watermark is then trans-
ferred along with the speaker-specific latents to the synthesized

https://arxiv.org/abs/2505.21568v2
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Figure 2: The overall architecture of our proposed VoiceMark.

audio during the zero-shot VC inference, thereby enabling ro-
bust zero-shot VC-resistant watermarking. To achieve this goal,
we must address two primary challenges: 1) Speaker-specific
latents span only speech-containing frames, while a large por-
tion of the audio consists of silence and voiceless frames, which
lack such latents. This makes conventional frame-by-frame em-
bedding methods ineffective in leveraging speaker-specific la-
tents. 2) The VC process alters content, duration, and speed
while also distorting speaker-specific latents, causing the water-
mark to remain in only certain frames and potentially be incom-
plete. This makes accurate watermark detection challenging.

In this paper, we propose VoiceMark, the first zero-shot
VC-resistant watermarking method that significantly improves
resistance across multiple zero-shot VC models compared to
state-of-the-art (SOTA) audio watermarking methods. Our main
contributions are summarized as follows:

• VoiceMark introduces a watermark embedder model based
on speaker-specific latents. It disentangles speaker-specific
latents using a pre-trained residual vector quantization (RVQ)
model, embed the watermark into these latents, and gener-
ates watermarked audio. We design a voice activity detection
(VAD)-based loss function to guide the model in identifying
frames containing speaker-specific latents and adaptively em-
bedding the watermark through cross-attention mechanisms.

• VoiceMark proposes a robust watermark decoder model. To
simulate the potential distortions of the zero-shot VC synthe-
sis on the watermark, its training incorporates augmentation
techniques, such as masking, shuffling, replacing, and neural
encoding/decoding. Using a global transformer, the decoder
recovers the watermark from the speaker-specific latents of
the entire audio to enable robust detection.

• We conduct extensive experiments on multiple zero-shot VC
models and traditional audio editing methods to evaluate the
effectiveness of VoiceMark. Our results demonstrate that
VoiceMark achieves over 95% accuracy in watermark detec-
tion after zero-shot VC synthesis, which significantly outper-
forms existing watermarking methods that reach around 50%.

2. Methodology
VoiceMark consists of three main components: an encoder-
decoder RVQ model, a cross-attention-based watermark em-
bedder, and a transformer-based watermark decoder, as shown
in Figure 2. The RVQ model disentangles speaker-specific la-
tents and reconstructs watermarked audio. The embedder em-
beds the watermark into speaker-specific latents. The decoder
extracts the watermark from latents of the synthesized audio.

2.1. Disentangling Speaker-Specific Latents

The RVQ model, inspired by SpeechTokenizer [17], leverages
HuBERT [18] latents as a semantic teacher to distill content
latents into the first VQ layer, thereby disentangling speaker-
specific latents into the remaining layers (VQ 2 to 8).

Given an input audio x, the encoder compresses it into a
latent sequence l = E(x), where l ∈ Rt×d, t is the num-
ber of frames, and d is the latent dimension. The sequence is
then quantized by an 8-layer RVQ model, producing a set of
quantized latents {z1, z2, . . . , z8}, where z1 represents content
latents and {z2, . . . , z8} correspond to speaker-specific latents.
The content latents z1 remain unmodified, while the speaker-
specific latents are used for subsequent watermark embedding.

2.2. Watermark Embedding

Given the speaker-specific latents {z2, . . . , z8} and an n-bit wa-
termark, the watermark is first converted into a hexadecimal se-
quence w ∈ {0, 1, . . . , 15}n/4 to reduce its length. The se-
quence w is then projected into the latent space of dimension
d, resulting in w′ ∈ R(n/4)×d. The speaker-specific latents
z2, . . . , z8 and w′ are then fed into a 4-layer cross-attention em-
bedder We(·, ·) based on the transformer decoder [19], which
produces the watermarked speaker-specific latents:

{ẑ2, . . . , ẑ8} = We({z2, . . . , z8}, w′). (1)

Here, {z2, . . . , z8} serve as queries, while w′ serves as keys
and values. After embedding the watermark, all latents are ag-



gregated as ẑ = z1 +
∑8

i=2 ẑi, where ẑ represents the water-
marked latents. These are then passed into the decoder D(ẑ) to
reconstruct the watermarked audio x̂.

2.3. VC-Simulated Augmentation

The zero-shot VC synthesis process can significantly distort wa-
termarked audio. To enhance the model’s robustness, we intro-
duce several augmentations that simulate these distortions:

1. No watermark in silent frames. We mask certain frames to
zero with a probability of 20%.

2. Completely different content. We randomly shuffle the au-
dio in 50 ms windows with a 50% probability.

3. Partial watermark filtering. We replace 50 ms segments
with the original audio at a probability of 50%.

4. Neural codec encoding and decoding. We encode and de-
code the audio using EnCodec [15].

5. Audio perturbation. We apply speed perturbation, ampli-
tude scaling, filtering, or resampling with 10% probability.

This process generates augmented audio x̃ to train the model
and improve its robustness against distortions.

2.4. Watermark Decoding

The watermark decoder, denoted as Wd(·), is a transformer
model for extracting the watermark from speaker-specific la-
tents. During inference, it processes audio synthesized by zero-
shot VC models, while during training, it learns from aug-
mented audio x̃ without exposure to any VC models. The in-
put audio is first compressed into latents l. The content latents
from the first VQ layer (z1) are subtracted from l to obtain the
speaker-specific latents, denoted as ls = l − z1.

For watermark decoding, we use learnable CLS tokens, de-
noted as c ∈ R(n/4)×d, corresponding to the n/4-length hex-
adecimal watermark. These tokens are concatenated with ls and
fed into Wd(·), which employs self-attention to extract water-
mark information from ls:

(ŵ, p̂) = Wd(c⊕ ls), (2)

where ⊕ denotes the concatenation operation, ŵ ∈ R(n/4)×16

is the decoded hexadecimal watermark, with each row repre-
senting a softmax probability distribution over 16 categories,
p̂ ∈ Rt is the sigmoid probability of a frame containing both
speech and a watermark (p̂ = 1) or neither (p̂ = 0). The de-
coded hexadecimal watermark is first processed with argmax,
then converted into an n-bit binary sequence.

2.5. Training Loss

We design multiple loss functions to ensure accurate watermark
detection while preserving audio quality:

VAD-based Loss. We use a dual-threshold VAD
method [20] to compute binary cross entropy Lvad on p̂. Frames
containing both speech and a watermark are labeled as 1, while
silent, masked or replaced frames are labeled as 0. This guides
the embedder and decoder to focus on watermarked speech.

Quality Loss. We preserve speaker consistency with a co-
sine similarity loss Lcos between speaker-specific latents before
and after watermark embedding. For perceptual quality, we ap-
ply a multi-scale Mel spectrogram loss Lmel and an adversarial
loss Ladv to refine the reconstructed audio x̂ [15].

Decoding Loss. The watermark decoding loss Ldec is com-
puted using the cross-entropy loss on ŵ, ensuring accurate re-
covery of the hexadecimal watermark.

The total loss is a weighted sum of these components:

L = λvadLvad +λcosLcos +λmelLmel +λadvLadv +λdecLdec, (3)

where λvad, λcos, λmel, λadv, λdec are hyperparameters.

3. Experiments
3.1. Implementation Details

For the RVQ model, we use the pretrained SpeechTokenizer*.
We employs a 4-layer, 1-head, 256-dimensional Transformer
Decoder, while Wd adopts an 8-layer, 1-head, 512-dimensional
Transformer Encoder [19]. The watermark bit length is set to
16. Hyperparameters are set as: λvad = 1, λcos = 2, λmel = 2,
λadv = 1, and λdec = 1, with larger weights for λcos and λmel

to preserve audio quality. The model is trained for 30 epochs
using Adam [21] optimizer with a learning rate of 5e−5.

3.2. Baselines

We compare VoiceMark with three SOTA watermarking meth-
ods: AudioSeal [8], WavMark [7], and Timbre [1]. The related
method [9] is not included since the code is not public.

3.3. Datasets

We use the VCTK [22] (train and test) and Librispeech [23]
(test) datasets. The test set consists of 2,000 unseen VCTK
samples and 2,600 Librispeech samples, totaling 4,600 samples
from 150 speakers.

3.4. Metrics

We evaluate watermark detection using two metrics: bitwise
accuracy (ACC) and False Attribution Rate (FAR). ACC is the
ratio of correctly decoded bits to the total number of bits. FAR
simulates real-world multi-candidate identification by compar-
ing the Hamming distance of each decoded watermark to 100
candidates (1 ground truth and 99 random). A false attribution
occurs if the closest match is not the ground truth.

For audio quality, we assess objective metrics including
perceptual evaluation of speech quality (PESQ) [24], scale-
invariant signal-to-noise ratio (SI-SNR), and short-time objec-
tive intelligibility (STOI) [25]. Subjective evaluation is con-
ducted using similarity mean opinion score (SMOS), where 15
subjects rate 40 samples on a 1-5 scale. A SMOS of 4 or higher
indicates high similarity to the original audio.

3.5. Performance Evaluation

Table 1 compares VoiceMark’s watermark detection perfor-
mance with other SOTA methods under zero-shot VC models
(CosyVoice [2], F5-TTS [3], and MaskGCT [4]) and traditional
audio editing. The text prompts for zero-shot VC are randomly
selected from the test set.

For zero-shot VC models, VoiceMark consistently outper-
forms all methods. Other approaches exhibit an ACC close to
0.5 and an FAR near 1.0, indicating near-random decoding in
zero-shot VC scenarios. This demonstrates that existing meth-
ods fail to retain the watermark in zero-shot VC, whereas Voice-
Mark ensures robust watermark traceability.

For traditional audio editing, we use AudioCraft’s imple-
mentation† with default parameters, where Amplitude is the av-
erage of boost and duck, and Filter is the average of band, high,

*https://huggingface.co/fnlp/SpeechTokenizer
†https://github.com/facebookresearch/audiocraft



Table 1: Performance Evaluation on Zero-Shot VC Models and Traditional Editing.

Zero-Shot VC Models (ACC ↑ / FAR ↓) Traditional Editing (ACC ↑ / FAR ↓)

Method CosyVoice [2] F5-TTS [3] MaskGCT [4] EnCodec [15] Resample Amplitude Filter White MP3

AudioSeal (2024) [8] 0.508/0.979 0.513/0.977 0.506/0.973 0.936/0.052 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000
WavMark (2023) [7] 0.499/1.000 0.499/1.000 0.499/1.000 0.498/1.000 1.000/0.000 1.000/0.000 0.711/0.289 0.938/0.058 1.000/0.000
Timbre (2024) [1] 0.499/0.981 0.539/0.954 0.527/0.966 0.696/0.726 1.000/0.000 1.000/0.000 0.989/0.022 1.000/0.000 1.000/0.000
VoiceMark (Ours) 0.964/0.112 0.979/0.070 0.957/0.141 0.985/0.044 0.988/0.049 0.995/0.014 0.987/0.036 0.965/0.109 0.973/0.102

and low-pass filters. The results show that VoiceMark performs
comparably to other methods and outperforms them after En-
Codec processing. We observe that VoiceMark doesn’t achieve
1.0 ACC, likely due to our training solely on the VCTK dataset.
VCTK has many speakers suitable for VC-related tasks, but it
is a relatively small, clean dataset, and the distorted audio from
editing may degrade our performance.

Table 2: Ablation Study

Method ACC ↑ FAR ↓

AS-Emb + VM-Dec 0.663 0.906
VoiceMark 0.964 0.112

w/o VAD-base Loss 0.478 0.980
w/o Augmentation 0.626 0.924

3.6. Ablation Study

VoiceMark incorporates three key innovations: speaker-specific
latents watermarking, VC-simulated augmentation, and VAD-
based loss. We conduct ablation studies on CosyVoice [2] to
validate their necessity, as shown in Table 2.

To assess the impact of speaker-specific latents watermark-
ing, we keep other modules unchanged but replace the water-
mark embedder with the AudioSeal embedder [8] (AS-Emb +
VM-Dec), which is based on a generic architecture, where the
synthesized watermark is directly added to the original wave-
form. Results show that our latent-based design significantly
enhances zero-shot VC resistance. Additionally, removing VC-
simulated augmentation and VAD-based loss causes a perfor-
mance drop, confirming the necessity for robust watermarking.

3.7. Audio Quality Assessment

Table 3 presents the audio quality evaluation results for differ-
ent methods. AudioSeal directly adds the generated watermark
to the original audio waveform, while EnCodec and SpeechTok-
enizer are neural codec models that reconstruct the audio from a
latent space. VoiceMark, leveraging a neural codec architecture
for watermarking, integrates the watermarking process within
the codec framework.

The results show that while VoiceMark’s audio quality is
lower than AudioSeal’s, it performs comparably to SpeechTok-
enizer and significantly outperforms EnCodec.

3.8. Case Study

To directly observe the impact of watermarking on audio, we
visualize the mel spectrograms of different watermarking meth-
ods, as shown in Figure 3.

VoiceMark embeds the watermark within speaker-specific
latents, subtly altering harmonics and formants, making it more
difficult for attackers to detect. In contrast, spectrograms from

Table 3: Audio Quality Assessment. (W): General watermark-
ing directly added to original waveforms. (N): Neural codec
models. (W-N): Watermarking using neural codec architecture.

Method PESQ ↑ SI-SNR ↑ STOI ↑ SMOS ↑

AudioSeal (W) [8] 4.32 26.69 0.99 4.67±0.10

EnCodec (N) [15] 1.62 -0.62 0.80 2.21±0.15
SpeechTokenizer (N) [17] 2.58 1.64 0.89 4.63±0.10
VoiceMark (W-N) 2.20 2.01 0.89 4.25±0.13

(a) Original (b) AudioSeal [8] (c) WavMark [7]

(d) Timbre [1] (e) VoiceMark (Ours)

Figure 3: Visualization of Mel Spectrograms.

other methods exhibit visible watermarking artifacts in certain
frequency bands (highlighted in red boxes), which attackers can
exploit to detect or remove the watermark.

In addition, we visualize watermark probability detected by
VoiceMark as a top color band, with red for high and blue for
low probability. In VoiceMark’s watermarked audio, the de-
tected probability aligns precisely with speech segments, while
no watermark appears in other samples, confirming its effective
embedding within speech features.

4. Conclusion
In this work, we propose VoiceMark, the first zero-shot VC-
resistant watermarking method that embeds watermarks into
speaker-specific latents to achieve resistance to zero-shot VC
models. Additionally, we incorporate VC-simulated augmenta-
tions and VAD-based loss to further enhance the robustness of
VoiceMark. Experimental results show that VoiceMark signif-
icantly outperforms SOTA watermarking methods in retaining
watermarks across multiple zero-shot VC models.
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