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Abstract—The growing complexity of encrypted network traf-
fic presents dual challenges for modern network management: ac-
curate multiclass classification of known applications and reliable
detection of unknown traffic patterns. Although deep learning
models show promise in controlled environments, their real-world
deployment is hindered by data scarcity, concept drift, and opera-
tional constraints. This paper proposes M3S-UPD, a novel Multi-
Stage Self-Supervised Unknown-aware Packet Detection frame-
work that synergistically integrates semi-supervised learning
with representation analysis. Our approach eliminates artificial
segregation between classification and detection tasks through
a four-phase iterative process: 1) probabilistic embedding gen-
eration, 2) clustering-based structure discovery, 3) distribution-
aligned outlier identification, and 4) confidence-aware model
updating. Key innovations include a self-supervised unknown
detection mechanism that requires neither synthetic samples nor
prior knowledge, and a continuous learning architecture that is
resistant to performance degradation. Experimental results show
that M3S-UPD not only outperforms existing methods on the few-
shot encrypted traffic classification task, but also simultaneously
achieves competitive performance on the zero-shot unknown
traffic discovery task.

Index Terms—Encrypted network traffic, multistage self-
supervised learning, unknown pattern discovery

I. INTRODUCTION

Nowadays, a vast number of network applications that em-
ploy encrypted traffic for communication continuously emerge,
leading to an increasingly complicated and diverse network
environment. The expanding types of traffic, coupled with
the deployment of encryption methods for privacy preserving,
pose challenges to network management and censorship. This
not only further underscores the critical role of encrypted
traffic classification, but also elevates practical demands on
its applications.

From an application-oriented perspective, encrypted traffic
classification (ETC) can be divided into two sub-tasks:

• The multi-classification task aimed at identifying various
traffic types. For example, controlling the quality of
service (QoS) and allocating network resources require
accurate and robust traffic classification.

• The detection task focused on discovering unknown traf-
fic that has not been observed by the classifier. In prac-
tical network management scenarios, intrusion detection
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and malicious traffic classification can be formulated as
unknown traffic detection tasks.

Existing Machine Learning (ML) and Deep Learning (DL)-
based ETC methods have proven their effectiveness on the
two tasks in laboratory settings. These methods focus on
efficient, accurate, and robust encrypted traffic classification
by leveraging the powerful feature extraction and learning
capabilities of DL-based classifiers. Although these methods
demonstrate notable classification performance, some practical
issues remain to be discussed.

1) Data Scarcity. Obtaining abundant labeled encrypted traffic
is challenging in the online learning context. The insuffi-
ciency of training data can lead to limited performance of
classifier. However, most DL-based models designed for
ETC are trained in a supervised manner, with an unrealistic
assumption that substantial labeled training data can be
obtained at a low cost (in terms of time and manpower).
Such scarcity in training dataset popes great difficulties
to the actual application of DL-based models for online
encrypted traffic classification.

2) Concept Drifting. Learning classifiers from real-world traf-
fic encounters the change in distribution and characteristics
of traffic, whose hidden data contexts and labels may vary
and become unknown to the model. Such phenomenon is
known as concept drifting. In online traffic classification,
the fluctuation of traffic labels is a common and challenging
type of concept drifting. The varying labels of online
traffic not only demands the classifier to be updatable, but
also efficiency in model training and deploying, which is
challenging for DL-based models with significant training
costs. Such issues become increasingly pressing with the
continuous growth in the types of network traffic.

3) Model Limitations. Existing ETC techniques achieve com-
mendable performance in specific laboratory settings, yet
still exhibit limitations in a real-world scenario. To address
challenges such as data scarcity and concept drifting,
data augmentation techniques and self-paced learning are
employed to generate pseudo-labels for unlabeled data and
simulate the distribution of unknown traffic. However, these
methods face multiple practical challenges. GAN-based
methods leverage the easily-obtained unlabeled traffic data
to boost classification performance, but their heavily relies
on the selection of hyper-parameters may limit the general
application in real-time and ever-changing online network
environments. Models that leverage self-supervised mech-
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anism enlarge the labeled training set and detect unknown
traffic based on model-learning results and sample verifica-
tion, but potentially suffer from low confidence of pseudo
labels, unreliable verification of samples, and potential
update inaccuracies.

Overall, multi-class traffic classification and unknown traffic
detection are comprehensive tasks faced with numerous chal-
lenges stemming from model limitations and intrinsic prop-
erties of real-world traffic. These challenges require models
to possess strong learning capabilities, efficient updates, and
convenient deployment. Furthermore, though always studied
separately by existing approaches, the multi-classification task
and detection task of online encrypted traffic are strongly
interconnected for the following reasons. First of all, they
are both classification problems, only with different classify-
ing outcomes. Second, the superior performance of classifier
for both tasks relies on the comprehensive understanding of
training data and the good transferability on acquired knowl-
edge, which indicates the similar inherent properties of the
two different application-oriented tasks. Finally, in an open-
world online context, traffic continuously flowing towards
the classifier inevitably contains unseen categories, which
indicates a reasonable and feasible application scenario for
detecting unknown traffic while classifying the known ones.
The inherent correlations of encrypted traffic classification and
unknown traffic discovery imply a possible unified approach
for addressing these two tasks simultaneously.

Based on the above considerations, we propose a self-
supervised training framework for encrypted traffic classifi-
cation and unknown traffic detection under the condition of
limited labeled training data in this paper. Starting with a
suboptimal classification model trained on limited labeled data,
which cannot identify unknown traffic, the proposed training
framework aims at incrementally boosting the original model’s
performance and gradually achieving accurate unknown traffic
detection via reasonable utilization of unlabeled traffic data.

Instead of using data augmentation methods to synthesize
unknown traffic samples for training the model, the proposed
framework does not rely on any prior knowledge of unknown
traffic and achieves a unified classification of known/unknown
traffic through multiple training steps, each consisting of four
stages. In the model preparing stage, a recently updated
classification model is used for generating classification prob-
ability distribution and data embeddings for unlabeled traffic.
Subsequently, in the embedding clustering stage, data embed-
dings of unlabeled traffic is clustered and divided to distinct
categories, representing the spatial distribution of unlabeled
traffic in the embedding space. Later, the unlabeled traffic
data in different clusters are aligned with known classes of
the training set in the spatial distribution aligning stage,
and assigned with corresponding auxiliary labels. Samples
fail to align will be initially classified as potential unknown
traffic. Finally, a consistency-check between classification
probabilities and aligning outcomes of unlabeled traffic is
conducted for reliable model updates. The training dataset
is expanded with unlabeled samples with highly confident
pseudo-labels, while unlabeled traffic samples that fail to align
and have abnormally low predicted classification probabilities

are identified as unknown traffic. The model is then updated
on the expanded dataset and proceeds to the next training step.

To conclude, this paper mainly contributes in three aspects:
• We propose a novel self-supervised training framework,

M3S-UPD, for encrypted traffic classification in a limited
labeled training data scenario, which poses a challenge
for existing DL-based methods. By gradually expanding
labeled training data with highly confident pseudo-labels
of unlabeled traffic, the performance of the initially
suboptimal model is incrementally improved.

• We enable the classification model for known traffic
categories to detect unknown traffic classes without any
prior knowledge and data augmentation. Through con-
sistency analysis of embedding-level spatial distribution
and model-level predicted outcomes, samples with dis-
crepancies between clustering patterns and classification
probabilities are accurately and efficiently identified as
unknown traffic.

• We conduct comprehensive experiments to evaluate our
proposed method on two public experimental datasets.
The proposed M3S-UPD demonstrates competitive per-
formance compared to state-of-the-art methods with lim-
ited training data in both closed world and open world
settings. Furthermore, extensive experiments incorporat-
ing moderate expert knowledge show that M3S-UPD
achieves fine-grained traffic classification and effectively
adapts to frequently updated datasets, where unknown
traffic classes are continuously identified, labeled, and
added.

The remainder of the paper is structured as follows: Sec-
tion II reviews related literature. Section III defines the prob-
lem and outlines three key challenges. Section IV introduces
our self-supervised learning framework for online encrypted
traffic classification and unknown traffic discovery. Section V
details the results of our evaluation. Section VI offers the
conclusion of the study.

II. RELATED WORK

A. Traffic Classification on Encrypted Traffic

Traffic Classification (TC) pertains to the task of associating
user traffic with the applications, services, and software gen-
erating them. This is widely employed for various purposes,
including quality-of-service (QoS) [1], [2] , network manage-
ment [3], [4], and intrusion detection and defenses [5]. Over
the past decades, numerous TC methods have been proposed,
such as port-based and deep packet inspection (DPI) methods
[6] that utilize default port numbers and application signatures.
However, these methods have become less effective due to
the proliferation of network address translation (NAT) [7] and
packet encryption [8].

Many machine learning methods have been introduced to
build traffic classifiers by extracting implicit patterns. AlSabah
et al. [9] extracted features like circuit lifetime, data trans-
ferred, cell inter-arrival times, and the number of cells sent
recently. They utilized Naı̈ve Bayes, Bayesian Networks, and
Decision Trees to classify browser, P2P, and media traf-
fic. Cuzzocrea et al. [10] employed Mann-Whitney test and
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Kolmogorov-Smirnov test to verify the significant difference
between the distribution of Tor traffic and normal traffic
features. Subsequently, they used machine learning algorithms
to classify seven Tor traffic types. Montieri et al. [11] extended
Tor traffic classification to the application level. Xu et al. [12]
transformed packet sequences into paths for the classification
of multiple encrypted traffic data. Some research utilized KNN
and SVM algorithms to identify websites of traffic, known as
Website Fingerprinting [13], [14] .

In recent years, scholars have introduced deep learning for
encrypted traffic classification. Liu et al. [15] input the packet
length sequence into a model using encoders, decoders, and
RNN to extract features and achieve TLS traffic classification.
Wang et al. [3] conducted fast traffic classification with a
Temporal Convolutional Network (TCN). Specifically, fast
classification was performed for flows accurately classified
with only the first few packets, while complex flows were
analyzed in detail. Their method enables efficient encrypted
traffic classification by extracting the payload length of packets
and constructing a TCN classifier. Zhao et al. [16] considered
the flow sequence as a graph, constructing the graph structure
with feature vectors including application and time. They then
extracted features using four residual graph neural network
(ResGCN) modules and a 3-layer multilayer perceptron to
achieve traffic classification. Several research building on deep
learning, introduced new mechanisms such as the self-attention
mechanism, multi-level self-attention, transformer, and en-
semble learning mechanism to further improve classification
performance [2], [17], [18], [19] . Although these methods
have shown high performance on experimental datasets, it’s
important to note that these models are fixed and cannot
recognize classes that have not been learned.

B. Model Update of Traffic Classifiers

To tackle the challenge of model inflexibility, several studies
aim to enhance the model’s ability to generalize, enabling it
to recognize samples it hasn’t encountered during training.
Ede et. al., [20] . devised a semi-supervised encrypted traffic
classification system. They clustered traffic of different ap-
plication types into distinct clusters based on time, device,
and destination features, constructing an app fingerprint for
traffic classification. Being unsupervised, their method can
identify apps not explicitly trained. Fu et al[21] . similarly
employed unsupervised learning for identifying unknown traf-
fic. They transformed interaction patterns between long and
short flows into graph structural features, detecting encrypted
malicious traffic by analyzing graph connectivity and sparsity.
Lifelong machine learning empowers models to continuously
accumulate new knowledge, saving classifier training costs
and mitigating concept drift. Attarian et al[22] . proposed
AdaWFPA, an adaptive online website traffic recognition
method. Upon the arrival of new training samples, the model
predicts, compares with true labels, and updates based on the
results. Zhang et al[23] . introduced a self-updating model
framework that judges unknown class packets based on the
classifier’s results, compares them with existing knowledge,
and annotates to form a new dataset for updates. The authors

further discuss trigger times for model updates in [21] ,
based on classification output instability, enhancing the update
framework’s performance. Current model updates often rely
on inferring unknown traffic from existing knowledge, facing
challenges of initial dataset comprehensiveness and potential
update inaccuracies.

C. Few-Shot Traffic Classification

Due to the challenge of obtaining abundant encrypted
training data, several studies are dedicated to addressing the
sparsity issue in training datasets. Wang et al[24] . assessed
the minimum training set needed to achieve high-performance
website fingerprinting. Remarkably, their research demon-
strated that a mere 6,800 samples could maintain highly
accurate recognition for 100 websites. Sirinam et al[25] .
introduced Triplet, a method that initially learns traffic dis-
tribution knowledge from a substantial amount of non-target
traffic. Subsequently, it utilizes a small number of target traffic
samples to train the target classifier, achieving website identifi-
cation with only 5 samples. Oh et al[26] . leveraged generative
adversarial networks to generate a substantial amount of ”fake”
data from a limited set of training samples, aiding in training
deep neural network classifiers. Zhou et al[27] . proposed
a website fingerprinting attack method capable of updating
the classifier with a small number of new samples. This
approach maps samples to the deep learning feature space,
clusters data samples based on training labels, and aligns the
clustering center of new samples with that of training samples,
facilitating classifier updates. Hu et al[28] . designed an
attribute-based zero-shot encrypted traffic classification frame-
work. They used a Temporal Convolutional Network (TCN)-
based feature embedding model and a Simple Recurrent Unit
(SRU)-based attribute embedding model to transform traffic
into joint embeddings of attribute values. The framework em-
ploys a Generative Adversarial Network (GAN)-based feature
generation model for recognizing unknown classes. While
small sample learning significantly reduces training costs,
some challenges persist, including reliance on knowledge from
the original training set for judgments and learning from
newly arrived samples, leading to verification difficulties and
potential update inaccuracies.

III. PROBLEM DEFINITION

This section defines the problem scenario of traffic
multi-class classification and unknown traffic identification
when only limited training data is available. Let D =
{(x1, y1), (x2, y2), . . . , (xn, yn)} be the training dataset that
contains M known traffic classes, i.e., yi ∈ C = {l1, l2, .., lM}
where xi represents the input feature vector corresponding to
training sample in traffic class yi and C is the set of labels for
known traffic categories. The classifier trained on dataset D
with scarce data potentially suffers from limited performance
on mapping input vector xi to the traffic label yi while lacking
the ability to identify unknown traffic patterns.

At time t, suppose the classifier F t has completed its
training on the previous dataset Dt−1 with known label
set Ct−1. For the incoming traffic flows N t = Kt ∪ U t,
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Kt represents the set of traffic with known labels and U t

represents the set of traffic whose labels haven’t appeared in
the known label set Ct−1. The classifier’s task is to predict the
specific classes of the traffic samples from Kt, i.e., mapping
the input vectors from Kt to certain labels in Ct−1 and to find
any traffic categories that have not appeared in Dt−1 from N t,
i.e., distinguish the traffic in U t from those in Kt.

To move on, the classifier needs to be updated in time for
classifying traffic and identifying unknown categories in the
coming traffic flows at t + 1. To be specific, a new training
dataset Dt = {Dt−1 ∪ Kt

′
|Kt

′
∈ Kt } is required for

updating the classifier F t. If possible, incorporating expert
knowledge can further enlarge training dataset by labeling
the previously unknown traffic categories and merge them to
the known label set Ct. In this way, the training dataset is
expanded as Dt = {Dt−1 ∪Kt

′
∪U t

′
|Kt

′
∈ Kt, U t

′
∈ U t}.

At this point, three subproblems emerge as we wish for the
classifier to continuously handle online traffic in a sustained,
robust and effective manner:

1) Limited training data. Obtaining substantial training data
can be unrealistic due to the challenges of data labeling
When only limited training data is available, classifiers
may struggle to effectively manage the continuous in-
flux of online traffic. Therefore, it is crucial to develop
strategies for gradually expanding Dt enhance model
performance.

2) Detection of unknown traffic. The classifier F t is trained
on dataset Dt−1 with a known traffic label set Ct−1,
making the transfer of this acquired knowledge to un-
known traffic a considerable challenges. It is essential
to devise methods for recognizing new traffic patterns
by leveraging insights gained from the locally labeled
training data.

3) Reliable model updates. Enabling the model to achieve
incremental known traffic classification as well as effec-
tive unknown traffic detection performance necessitates
reliable model updates throughout the training process.
On one hand, ensuring high confidence in newly assigned
labels when utilizing unlabeled traffic to expand the
labeled dataset poses challenges due to potential biases
from the model’s self-learning. On the other hand, the
lack of prior knowledge about unknown traffic compli-
cates the effective transfer of knowledge acquired from
known traffic data to achieve accurate and low false-
positive unknown traffic detection. Additionally, employ-
ing data augmentation techniques such as GANs to simu-
late unknown traffic training data results in high training
costs, potentially inaccurate data estimates, and unstable
model performance.

IV. METHOD

This section provides a detailed introduction to the proposed
framework (as shown in Fig. 1) designed to address these three
subproblems. With only scarce labeled data to learn from, a
classification model with constrained performance is trained,
temporarily failing to identify unknown traffic. Leveraging
the self-supervised learning paradigm, we aim to expand the

labeled training data with high confidence for model updates,
enabling accurate known traffic classification with facilitating
unknown traffic detection after a fixed number of training
steps. Accordingly, a training framework consisting of four
stages is presented.

In the first stage, the model trained in the previous step takes
unlabeled traffic as input to generate classification probabilities
and data embeddings. Subsequently, these embeddings are
used to generate embedding-space clusters that reflect the spa-
tial distribution of unlabeled traffic. By calculating distances
between these embedding clusters and each known class in
the training dataset, unlabeled traffic is temporarily aligned
with a specific known class, receiving corresponding auxiliary
labels. Finally, a consistency check is performed between
the classification probabilities distribution and the cluster-
level auxiliary labels to ensure reliable model updates. The
labeled training data is supplemented with samples whose aux-
iliary labels match with the highest classification probabilities.
Meanwhile, unlabeled traffic that fails to align and exhibits low
classification probabilities is identified as unknown traffic. If
necessary, these detected unknown traffic can be labeled with
the assistance of expert knowledge and added to the training
set for further fine-grained traffic classification.

A. Model Preparing

As we consider a realistic scenario where only limited la-
beled traffic data is available, existing DL-based traffic classifi-
cation methods with intrinsic data-intensive training processes
become inapplicable. Therefore, based on the self-supervised
learning paradigm, we aim to conduct high-confidence ex-
pansion of labeled training data for model updates to realize
accurate known traffic classification with further unknown
traffic discovery by exploiting sample classification probability
distribution and data embedding characteristics.

In the training pipeline guided by such idea, only a small
amount of labeled data is available at the beginning. We aim
to initially train a weak model then gradually boost its perfor-
mance on known traffic multi-classification and unknown traf-
fic detection. During the training process, the model receives
data samples with labels as inputs and maps raw features
to known classes’ classification distribution by minimizing
standard cross-entropy loss:

Ls(X) =
1

N

N∑
i=1

H(yi, y
′

i), (1)

where yi and y
′

i respectively refers to the ground-truth label
and predicted label of input data sample.

Once finishing loss minimization on labeled training data,
the model can generate classification probabilities and data
embeddings of given input traffic. Data embeddings are vec-
tors generated by transforming the original raw data inputs
into lower-dimensional representations for the model. With
optimized model network parameters, the input traffic data
can be transformed into lower-dimensional embeddings that
well capture the inner characteristics of traffic sequences. By
applying linear transformation on these embeddings, a raw
classification score vector of each class z = [z1, z2, . . . , zK ]
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Fig. 1: Overview of the proposed method.

is produced and later normalized with a softmax function to
generate final classification probabilities distribution:

σ(z)i =
ezi∑K
j=1 e

zj
for i = 1, . . . ,K (2)

To some extent, the maximum classification probability of
input traffic sample reflects the confidence that it belongs to
according known class.

B. Embedding Clustering

To tackle with limited training data, clustering technique
is utilized for aiding traffic labeling from an embedding
perspective. After generating data embeddings of unlabeled
traffic with trained model, a clustering process is conducted
to divide unlabeled traffic into different cluster categories in
the embedding space, instead of the original input space. Data
embeddings are high-level features generated by a trained
model with a specific architecture and optimized parameters,
which are utilized to derive the final predicted probability
distribution. Therefore, the spatial distribution of embeddings
obtained by the clustering process is highly related to the
predicted probability distribution of the model, and the two can
be integrated to expand labeled training data while detecting
unknown traffic with high confidence.

Specifically, unlike previous researches that apply K-Means
clustering algorithm, unlabeled traffic data is divided into dif-
ferent clusters with regard to density distribution by DBSCAN.
K-Means algorithm relies on manually selected hyperparam-
eter for specifying the number of clusters, which is difficult
to determine based on prior knowledge in the process of real-
world traffic classification. In real-world traffic classification
scenario, expert knowledge can be cooperated to identify
and label newly discovered traffic for updating local dataset,
resulting in dynamically varying sample labels of training data.
Considering fine-grained traffic classification and continuous
model updates, clustering unlabeled traffic into a predefined

number of clusters may result in suboptimal clustering out-
comes that inaccurately describes the spatial distribution of
data. Henceforth, DBSCAN is chosen for clustering traffic data
embeddings due to its property of automatically determining
the number of clusters.

C. Spatial Distribution Aligning

To reliably label unlabeled data in a self-supervised manner
for expanding training dataset, traffic data embeddings are
temporarily mapped to a certain known traffic class in the
training set by an aligning mechanism with corresponding
auxiliary labels. For a unlabeled traffic embedding cluster
ui and embeddings of a class in the training dataset km,
the distance between these two data embedding segments is
computed as:

d(ui, km) = ||vi − µm||2, (3)

where vi and µm represents the centroids of unlabeled em-
bedding cluster ui and labeled data embedding of class m
respectively.

By calculating such pair-wise distances between each cluster
in unlabeled traffic embeddings and each class in labeled traffic
embeddings, the auxiliary labels ỹi of unlabeled traffic data in
cluster ui is determined as follows.

ỹi =


Potential unknown if argmin

m
d(ui, km) ≥ t

argmin
m

d(ui, km) otherwise,

(4)
where t is a distance threshold. Any clusters of unlabeled traf-
fic data embeddings with a minimum distance from all known
classes exceeding a certain threshold t is considered potential
unknown traffic and will be excluded from alignment with any
known class labels in the training dataset. Otherwise, samples
within the clusters of unlabeled traffic data embeddings will
be temporarily assigned the label of the known class that is
closest to them.
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D. Reliable Model Update

In the final stage of the training framework, the current
model undergoes reliable updates, which consist of incremen-
tal improvements in two performance aspects:

• Classification performance on known traffic. Due to the
limited amount of data used for training, the initial model
exhibits constrained performance in classifying known
traffic. To address this, the unlabeled traffic in the training
data is reliably labeled based on the model’s learning
outcomes and the distribution patterns of traffic data
embeddings. These newly labeled samples are then added
to the training set to update the model. During the sub-
sequent training process, the classification performance
of the model will improve incrementally as the labeled
dataset continues to expand.

• Detection performance on unknown traffic. Unlike pre-
vious methods that leverage complex and challenging-
to-train adversarial generative networks to construct un-
known traffic samples for model training, the detection of
unknown traffic achieved in the proposed framework is
an efficient and low-overhead consequence of the model’s
reliable updates. Rather than enabling the model to clas-
sify unknown traffic by learning from synthetic samples,
the detection capability of the proposed framework arises
from the consistency check between the model’s learning
outcomes and the distribution of unlabeled traffic data
embeddings.

For a given unlabeled traffic data sample, the model outputs the
predicted classification probabilities for each known class. The
highest prediction probability can be considered an estimate of
the model’s prediction confidence. In self-supervised learning
methods based on self-labeling, assigning labels corresponding
to the highest predicted probabilities to unlabeled samples is
a common approach for expanding the training set. However,
such approach potentially suffer from biases in the model’s
self-learning process, leading to newly labeled samples with
low confidence, which ultimately results in inaccurate model
updates and suboptimal performance. Therefore, a consistency
check between the confidence of unlabeled traffic data and its
corresponding aligning outcomes is introduced for guarantee-
ing reliable self-labeling.

For successfully aligned unlabeled data, a sample will only
be added to the training set under the corresponding known
traffic class if its auxiliary label matches the label assigned
by the model to its highest predicted classification probabil-
ity. While focusing on high-confidence unlabeled samples to
achieve growth in the labeled dataset, efficient identification
of unknown traffic is achieved through the consistency check
between low-confidence samples and their alignment results.
For those samples that fail to align and are considered potential
unknown traffic, if their confidence, represented by the model’s
highest predicted classification probability, falls within the
lowest range of the overall unlabeled data distribution, these
samples are identified as belonging to the unknown traffic
class.

To improve the efficiency and effectiveness of the con-
sistency check, the unlabeled data is sorted by the model’s

classification confidence, and the top ttop and bottom tbottom
samples, with the highest and lowest confidence, respectively,
are selected as candidates for consistency checks. Other unla-
beled samples, with confidence scores falling in the middle of
the distribution, are not processed further as they do not exhibit
a clear known/unknown distinction in the model’s predictions,
and are deferred for checking in the next training iteration.

The underlying motivation for such consistency checks
stems from the idea that the model’s prediction confidence to
some extent reflects whether a traffic data sample belongs to a
known class or not. This is because the model is never trained
with unknown traffic during updates, leading to a lack of
strong classification ability for unknown traffic. As a result, the
lower the prediction confidence for an unlabeled sample, the
higher the likelihood that it belongs to an unknown class, while
higher prediction confidence suggests that the sample is likely
associated with a known class. By incorporating knowledge of
the data embedding distribution, bias that may arise from this
self-learning judgment is greatly mitigated by the alignment
results of the unlabeled traffic data. Furthermore, taking into
account real-world unknown traffic detection scenarios, the
proposed framework allows for the introduction of expert
knowledge to label unknown traffic identified during the train-
ing process. This enables the expansion of the local training set
with new traffic categories, facilitating continuous fine-grained
model updates to adapt to complex network environments and
the ongoing emergence of new traffic types.

V. EXPERIMENTAL EVALUATION

A. Dataset and Experimental Setup

In this section, we conduct extensive experiments to demon-
strate the efficacy of our proposed M3S-UPD in traffic
classification. Our experiments utilize the widely recognized
Tor public dataset, ISCXTor2016 [29], curated by Lashkari
and a Tor dataset that we collected ourselves, TDTor. The
ISCXTor dataset comprises over 8000 Tor samples spanning
8 traffic types: VoIP, P2P, FILE-Transfer, Browsing, Video,
Mail, Audio, and Chat amounting to a total size of 22.8 GB
with 85 PCAP files. The Tor dataset we collected comprises
over 12000 Tor samples spanning 7 traffic types. We removed
File-Transfer traffic because this type of traffic is not common
in Tor [30]. The distributions of ISCXTor and TDTor are
presented in Table I and Table II, respectively. It can be
observed that TDTor exhibits a more balanced distribution
compared to ISCXTor. The evaluation is conducted under a
realistic scenario where the attacker has only partial samples
from certain categories for model training but needs to identify
samples from all categories, including unknown traffic. The
original datasets ISCXTor and TDTor were partitioned into
training, validation, and test sets with a ratio of 6:2:2. To
investigate the effectiveness of our proposed method in various
scenarios of known/unknown attacks detection, we constructed
two scenarios with two data settings for both datasets as shown
in Table III.

• No-Expert: This scenario evaluates the recognition ability
of the model without introducing expert knowledge. In
this scenario, all non-known classes are categorized into
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unknown classes. In this scenario, initially only 30% of
each known class is selected for model training.

• With-Expert: This scenario evaluates the complete recog-
nition capability of our proposed model, which continu-
ously learns knowledge from new classes by introducing
expert knowledge. In this scenario, initially only 30% of
each known class is selected for model training.

• Setting1: We select three types as known classes and other
types as unknown classes. For the known classes, we
select 30% of the total samples as training samples. This
scenario explores the model’s recognition ability when
only a few known classes are available.

• Setting2: We select five types as known classes and other
types as unknown classes. For the known classes, we
select 30% of the total samples as training samples. This
scenario explores the model’s recognition ability when
most known classes are available and only a few unknown
traffic classes are unavailable.

Category Count Percentage

Audio 1026 7.1%
Browsing 2645 18.2%
Chat 485 3.3%
FILE-Transfer 1663 11.5%
Mail 497 3.4%
P2P 2139 14.7%
Video 1529 10.5%
VOIP 4524 31.2%

Total 12808 100%

TABLE I: Category Distribution in ISCXTor Dataset

Category Count Percentage

Audio 1474 5.4%
Broswer 5000 18.3%
Mail 5000 18.3%
Message 3597 13.1%
P2P 5000 18.3%
Video 2314 8.4%
VOIP 5000 18.3%

Total 27385 100%

TABLE II: Category Distribution in TDTor Dataset

Consequently, we have two scenarios named no Expert
and with Expert, and four new datasets named by ISCXTor
setting1, ISCXTor setting2, TDTor setting1 and TDTor set-
ting2. We selected several state-of-the-art (SOTA) methods
as evaluation baselines due to their strong performance in
previous work. which are referred as CVAE-EVT [31], Cls-
Anomaly [31] and EVM [32].

• CVAE-EVT proposes an intelligent intrusion detection
method which can classifying known attacks as well
as inferring unknown ones. It enables high-performance
hierarchical attacks detection by minimizing the empirical
risk and open-set risk.

• Cls-Anomaly proposes an anomaly detection model
which assemble a classification model and an anomaly
detection model. A random forest-based classification
model classifying a flow as benign or one of known

attacks and a SVM based anomaly detection model
identifying whether this classification is correct or not.

• EVM, as known as Extreme Value Machine, is novel
open-set designed classifier that supports variable band-
width incremental learning. This method utilize the EVM
for intrusion detection and measure the open set recog-
nition performance of identifying known and unknown
classes.

We first demonstrated the classification performance of the
above four data settings on the ISCXTor and TDTor dataset
in Section V-B to evaluate the effectiveness of our proposed
method for traffic classification, particularly its ability to
handle unknown traffic. Subsequently, in Section V-C, we
compare our method with multiple SOTA methods to evaluate
its effectiveness. Finally, we conducted ablation experiments
in Sections V-D and V-E, discussing the impact of the pro-
portion of pre-knowledge and training samples on recognition
performance, as well as the extent to which NDM improves
recognition ability in different models.

B. Performance Evaluation of Our M3S-UPD method

We first present the classification results of our proposed
M3S-UPD method in four experiment setting, in term of
normalized confusion matrix. Fig. 2 presents the classification
results of our method on ISCXTor and TDTor datasets, without
the use of expert knowledge. The raws of the confusion
matrix indicate the ground truth flow labels, and the columns
indicate the predicted labels. The elements on the diagonal
of the confusion matrix represent the classification accuracy,
while the other elements represent the classification error rate.
The darker the color on the diagonal line, the better the
classification result. From the diagonal elements in Fig. 2a,
we can see that our method achieves a high classification
accuracy of no less than 83% for all known classes in the
absence of expert knowledge on ISCXTor. Also, the classifier
recognizes most of the unknown traffic despite the fact that
it has never learned it. Similarly, as shown in Fig 2b, our
method achieving an accuracy of no less than 90% for all
known classes on TDTor. This proves the validity of our
spatial distribution alignment process. Although the classifier
does not learn any knowledge about the unknown traffic,
we greatly ensure the high confidence classification results
for the known traffic by evaluating the sample clustering
results and the confidence level of model classification results
during the consistency check process, thus identifying the
unknown traffic. Beyond this, we note that when the number
of known classes increases, the model’s ability to recognize
unknown traffic decreases. This is because the increase in the
number of known classes increases the model complexity and
therefore the difficulty of consistency checking. Nevertheless,
we achieve high classification accuracy for all known classes.

Fig. 3a shows the performance of our method for setting1
and setting2 where the number of known classes are 3 and
5, and the samples that fail in consistency check are labeled
by introducing the Expert Knowledge on ISCXTor. As can
be observed from the left panel (depicted in blue) that all
known classes (i.e., those classes with training samples) obtain
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TABLE III: Experimental data settings.

Setting1 no Expert Setting 1 no Expert Setting2 with Expert Setting 2 with Expert

ISCXTor

Known Unknown Known Unknown Known Unknown Known Unknown
VOIP Browsing VOIP Browsing VOIP, Video Browsing VOIP, Video Browsing
P2P Video, Mail P2P Video, Mail P2P, Chat Mail P2P, Chat Mail

FILE-Transfer Audio, Chat FILE-Transfer Audio, Chat FILE-Transfer Audio FILE-Transfer Audio

TDTor
Browser VoIP Browser VoIP Browser Video Browser Video

Mail Message Mail Message Mail, P2P Audio Mail, P2P Aduio
P2P Video, Audio P2P Video, Audio VoIP, Message VoIP, Message

a high-performance classification of no less than 83%. In
different settings, the model always obtains high accuracy for
VoIP, P2P and File-transfer traffic, no less than 96%. Also,
by introducing expert knowledge, the model could recognize
all unknown classes. We can see that the accuracy of the add
classes is not high although the consistency check process can
recognize many unknown classes when the number of known
classes is small on ISCXTor. In setting 1, where only VoIP,
P2P and File-transfer traffic are involved in initial training, the
model successfully learns Video, Browsing and Mail traffic,
obtaining accuracy of 97%, 60% and 61%. However, the model
seems to easily misclassify Chat as Mail traffic and Audio as
Browsing traffic. Things comes different when more classes
are known. In setting 2, VoIP, P2P, File Transfer, Video and
Chat traffic are involved in the training of the initial model.
During the model iteration, M3S-UPD successfully discovers
the remaining Browsing, Mail and Audio traffic and by in-
troducing expert knowledge, M3S-UPD correctly labels these
traffic and updates the original model with accuracy of 70%,
69% and 47%, which is a substantial improvement compared
to setting 1 for all unknown categories. This demonstrates
the effectiveness of our proposed M3S-UPD approach for
unknown traffic discovery and new class learning. Also, we
note that the model in setting 2 hardly misclassifies Chat traffic
as Mail traffic due to the knowledge of Chat traffic learned
during initial training. At the same time, the results of this
experiment to some extent indicate that the initial model has
different recognition abilities for different traffic flows, and if
it can learn traffic flows of easily confusing classes during the
initial training, the M3S-UPD will significantly improve the
recognition ability in the subsequent updates.

In the experiments detailed within the blue confusion ma-
trices, we consistently selected the class with the largest
sample size as the known classes. This approach operates
under the assumption that unknown classes are invariably
minority classes. Under this known class configuration, our
methodology demonstrated high accuracy for known classes
but exhibited poor recognition performance for individual
unknown classes. It is important to note that the difficulty of
recognizing different classes in the original dataset varies, with
some classes being inherently more challenging to identify.
To mitigate the influence of the known class configuration
on recognition outcomes, we redefined the known classes
by designating those that are more challenging to recognize
as the known classes. The right side (depicted in orange)
of Fig 3b illustrates the recognition outcomes following the
reclassification of known classes. The results indicate a marked
improvement in classification accuracy, with the lowest ac-

curacy for P2P traffic not falling below 60% in setting1,
and exceeding 78% across all categories in setting2. This
underscores the significant impact that the order of known
classes has on recognition outcomes. When the classifier is
pre-trained on classes that are difficult to recognize, the M3S-
UPD is sufficiently capable of identifying unknown classes.
This highlights the critical role of using known classes to
train the classifier. Furthermore, it is noteworthy that P2P
traffic, which is the most readily recognized as a known
class (with accuracy exceeding 99%), achieves an accuracy
of only 60% and 89% when treated as an unknown class in
setting1 and setting2, respectively. In contrast, FILE traffic is
consistently recognized with very high accuracy (exceeding
97%) regardless of its status as a known or unknown class.
This suggests that FILE traffic is distinctly separable from
other traffic types, rendering it easily recognizable as an
unknown class and readily learnable.

Fig 4 illustrates the performance of our method on TDTor
under the two settings, with expert knowledge incorporated. It
can be observed that our method consistently maintains a high
accuracy, with the accuracy for all known classes being no
less than 97% and for all unknown classes no less than 80%.
This contrasts with the situation in ISCXTor, where even when
the model has not learned information about easily confusable
classes, our method still performs well in distinguishing them
when expert knowledge is incorporated. This can be attributed
to the more balanced class distribution in TDTor compared
to ISCXTor, which suggests that, under a balanced class
distribution, our model is capable of accurately identifying
each class, even those that are inherently prone to confusion.

C. Performance comparisons with state-of-art benchmarks

To showcase the advanced capabilities of our proposed
method, we conducted a comparative analysis against a range
of state-of-the-art techniques. Given that these techniques lack
consistency checking and the integration of expert knowledge
processes, we focused solely on their ability to recognize un-
known traffic. Table IV and Table V present the classification
results for the ISCXTor and TDTor datasets under Setting
1 and Setting 2, respectively, excluding the introduction of
expert knowledge. Our proposed method surpasses the other
benchmarks in terms of accuracy, precision, recall, and false
positive rate (FPR), achieving an accuracy of 94.69% in ISCX-
Tor Setting 1, 84.56% in ISCXTor Setting 2, 94.28% in TDTor
Setting 1, and 91.49% in TDTor Setting 2, underscoring its
efficacy in distinguishing between known and unknown traffic.
EVM outperforms the other baselines in Setting 1, achieving
a maximum accuracy of 81.87% on ISCXTor and 72.41% on
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Fig. 2: Confusion matrix in setting1 and setting2 without expert.
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Fig. 3: Confusion matrix for ICSXTor dataset in setting1 and setting2 with expert for different known classes.
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Fig. 4: Confusion matrix for TDTor in setting1 and setting2 with expert

TDTor, due to its ability to efficiently learn class boundaries
with fewer known categories. Its use of Extreme Value Theory
(EVT) allows it to accurately identify known classes and
reject unknown ones, enhancing classification performance in
a setting with fewer classes. Notably, our method experiences

a pronounced decrease in performance in Setting 2 compared
to the CVAE-EVT and Cls-Anomaly methods, while EVM
also performs worse overall than both in Setting 2. This
discrepancy may be attributed to the CVAE-EVT and Cls-
Anomaly utilize a two-stage hierarchical detection framework
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designed to enhance overall recognition performance by min-
imizing the false alarm rate of benign traffic, which is more
effective in Setting 2 where there are more known categories
and a larger sample size, thereby enhancing overall accuracy.
Nonetheless, it is noteworthy that our method demonstrates
superior recognition of unknown traffic compared to all other
methods.

To further investigate the traffic classification capabilities
of our method compared to these state-of-the-art techniques
across various scenarios, we present in Fig 5 the classification
performance of these methods with varying proportions of
training samples from known classes in different settings
across two datasets. Our findings reveal that the proposed
M3S-UPD method consistently outperforms the other methods
in both accuracy and precision of unknown traffic as the
proportion of known samples increases. In all four figures, it is
evident that our method consistently achieves superior classi-
fication performance compared to CVAE-EVT, Cls-Anomaly,
and EVM when utilizing more than 10% of the known sample
proportion. This outcome substantiates the effectiveness of our
method in identifying unknown traffic.

Moreover, classifier performance exhibits a gradual im-
provement as the proportion of known samples increases. This
trend can be attributed to the fact that a higher proportion
of known samples enables the initial classifier to acquire
more comprehensive knowledge of the samples. Additionally,
we observe that in Figures 5a and 5c, 30% of the training
samples suffice for the classifier to attain stable classification
performance. Conversely, in Figures 5b and 5d, 50% of the
training samples are necessary for the classifier’s performance
to approach its maximum potential. This observation suggests
that when there are more original training categories, a greater
number of initial samples is required for the original classifier
to acquire sufficient classification knowledge.

D. Classification Performance with Different Number and
proportion of Known Classes

The experiment conducted has highlighted the efficacy of
our methodology in discerning unidentified network traffic
even with a limited knowledge base. To evaluate how the
volume of pre-existing knowledge influences the performance
of our method, we examined the effects of varying the number
of known and unknown classes used for training on the
identification results.

Fig 6 illustrates the identification outcomes, including met-
rics such as Accuracy, False Positive Rate (FPR), and the pro-
portion of expert knowledge introduced, across different quan-
tities of known class types, while maintaining a constant train-
ing set size of 30% within our comprehensive framework. Sim-
ilarly, Fig 7 shows the corresponding identification outcomes
on TDTor under the same conditions. A notable increase in
the accuracy of the Network Discovery Method (M3S-UPD)
is observed as the number of known classes increases. In
the ”Without Expert Knowledge” scenario depicted in Fig 6,
when utilizing a single known class, M3S-UPD achieves an
accuracy of 95.99%. In contrast, when employing seven known
classes, thereby reducing the scenario to a single unknown

class, M3S-UPD attains an accuracy of approximately 83.29%.
Similarly, in Fig 7, when utilizing a single known class,
M3S-UPD achieves an accuracy of 98.13%, when employing
six known classes, the accuracy is 90.54%. As the number
of known classes increases, the accuracy decreases because
more known classes result in more classification tasks and
decision boundaries. This increased complexity makes it more
challenging for the model to distinguish between categories.
However, as the number of known classes increases, the
accuracy of our method does not significantly decrease, this
demonstrates M3S-UPD’s capability to accurately recognize
known classes.

In the ”With Expert Knowledge” scenario depicted in Fig 6,
M3S-UPD achieves an accuracy of 71.43% on the ICSXTor,
necessitating 47.24% of expert knowledge when the number of
known classes is one. When employing seven known classes,
M3S-UPD registers an accuracy of 87.93%, with only 8.58%
of expert knowledge required for the unclassified categories.
As shown in Fig 7, M3S-UPD demonstrates similar perfor-
mance on the TDTor dataset, achieving an accuracy of 63.65%
when the number of known classes is one, requiring 40.14% of
expert knowledge. When the number of known classes is six,
the accuracy increases to 95.52%, with only 23.82% of expert
knowledge needed. This demonstrates M3S-UPD’s proficiency
in seamlessly integrating expert knowledge while simultane-
ously acquiring profound insights across various categories,
ultimately leading to the accurate classification of samples.
An upward trajectory in accuracy and precision is observed
alongside a reduction in the need for expert knowledge as the
number of known categories increases. This phenomenon can
be attributed to the model’s adeptness in assimilating traffic
knowledge from the identified categories. Notably, when three
known categories are used for initial model training, M3S-
UPD achieves an accuracy of 81.97% on ICSXTor, with the
proportion of expert knowledge required decreasing from over
47% to 33%. Similarly, on the TDTor, M3S-UPD achieves an
accuracy of 94.72%, with the proportion of expert knowledge
decreasing from 40.14% to 29.62%. Subsequently, a marginal
decline in the necessity for expert knowledge is observed as
the number of known categories increases. This suggests that a
minimum of three known categories is required for M3S-UPD
to effectively harvest traffic knowledge from the identified
categories.

We aimed to evaluate the impact of the number of samples
used in training the initial model on the final classification
performance of the classifier. Fig 8a and Fig 8b illustrates
the accuracy and False Positive Rate (FPR) as the proportion
of samples from the initial known classes is increased across
different settings for ISCXTor and TDTor, respectively. It is
evident that accuracy gradually improves with an increase in
training samples across various settings. Without the intro-
duction of expert knowledge, the accuracy of Setting 1 and
Setting 2 rises from 85.28% to 97.24% and from 78.63%
to 94.38%, respectively, as the percentage of known samples
increases from 10% to 90%. Similarly, on the TDTor dataset,
the accuracy of Setting 1 increases from 94.49% to 96.20%,
and the accuracy of Setting 2 rises from 85.9% to 95.49% as
the percentage of known samples increases from 10% to 90%.
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Fig. 5: Classification Results of different methods when varying the proportion of known classes in different settings.

10% 30% 50% 70% 90%
Known sample proportions

0%

20%

40%

60%

80%

100%

A
cc

ur
ac

y

10% 30% 50% 70% 90%
Known sample proportions

Pr
ec

is
io

n

10% 30% 50% 70% 90%
Known sample proportions

R
ec

al
l

10% 30% 50% 70% 90%
Known sample proportions

FP
R

CVAE-EVT Cls-Anomaly EVM Our Method

(a) ISCXTor setting1

10% 30% 50% 70% 90%
Known sample proportions

0%

20%

40%

60%

80%

100%

A
cc

ur
ac

y

10% 30% 50% 70% 90%
Known sample proportions

Pr
ec

is
io

n

10% 30% 50% 70% 90%
Known sample proportions

R
ec

al
l

10% 30% 50% 70% 90%
Known sample proportions

FP
R

CVAE-EVT Cls-Anomaly EVM Our Method

(b) ISCXTor setting2

10% 30% 50% 70% 90%
Known sample proportions

0%

20%

40%

60%

80%

100%

A
cc

ur
ac

y

10% 30% 50% 70% 90%
Known sample proportions

Pr
ec

is
io

n

10% 30% 50% 70% 90%
Known sample proportions

R
ec

al
l

10% 30% 50% 70% 90%
Known sample proportions

FP
R

CVAE-EVT Cls-Anomaly EVM Our Method

(c) TDTor setting1

10% 30% 50% 70% 90%
Known sample proportions

0%

20%

40%

60%

80%

100%

A
cc

ur
ac

y

10% 30% 50% 70% 90%
Known sample proportions

Pr
ec

is
io

n

10% 30% 50% 70% 90%
Known sample proportions

R
ec

al
l

10% 30% 50% 70% 90%
Known sample proportions

FP
R

CVAE-EVT Cls-Anomaly EVM Our Method

(d) TDTor setting2



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

TABLE IV: Comparison of different methods for different setting on ISCXTor.

setting1 no expert setting2 no expert
accuracy precision recall FPR accuracy precision recall FPR

CVAE-EVT 0.7381 0.7030 0.5665 0.1009 0.7650 0.6365 0.6079 0.0512
Cls-Anomaly 0.7991 0.7790 0.8256 0.0645 0.7791 0.6878 0.6443 0.0476

EVM 0.8187 0.8145 0.8046 0.0673 0.7733 0.7064 0.7710 0.0432
Our Method 0.9469 0.9480 0.9365 0.0204 0.8456 0.7812 0.8619 0.0289

TABLE V: Comparison of different methods for different setting on TDTor.

setting1 no expert setting2 no expert
accuracy precision recall FPR accuracy precision recall FPR

CVAE-EVT 0.6903 0.7152 0.7416 0.1100 0.8187 0.7009 0.7901 0.0367
Cls-Anomaly 0.7175 0.7475 0.7912 0.0961 0.8008 0.8119 0.7842 0.0395

EVM 0.7241 0.7794 0.6697 0.1158 0.7442 0.6951 0.7211 0.0517
Our Method 0.9428 0.9471 0.9409 0.0222 0.9149 0.9146 0.9067 0.0169
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Fig. 6: Accuracy, FPR and proportion of expert knowledge of
varying number of known classes on ISCXTor.
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Fig. 7: Accuracy, FPR and proportion of expert knowledge of
varying number of known classes on TDTor.

With the inclusion of expert knowledge, the accuracies for
Setting 1 and Setting 2 are 81.97% and 86.73%, respectively,
when using a 30% proportion of known samples. On the
TDTor dataset, the accuracies for Setting 1 and Setting 2
are 94.69% and 94.98%, respectively, when using a 10%
proportion of known samples. Beyond this point, increasing
the proportion of training samples does not lead to a significant
improvement in accuracy. This indicates that our proposed
M3S-UPD method can effectively extract knowledge from
existing samples and accurately identify unknown classes.
Additionally, by incorporating expert knowledge, our method
can label uncertain samples, thereby achieving stable traffic
classification.

E. Classification Performance with Different Number of Un-
known Classes

We sought to assess the impact of varying numbers of
unknown classes on categorization. Fig 9 displays the accuracy
and False Positive Rate (FPR) as the number of unknown
classes changes across different settings for two datasets.
To ensure the effectiveness of the initial training, we use 3
known classes for both datasets and 30% known samples for
each known class to train the initial classifiers. It is evident
that with a fixed number of known classes, increasing the
number of unknown classes results in a gradual decline in
overall accuracy. This phenomenon occurs in both datasets.
For ISCXTor dataset, when the number of known classes is
three, and no expert knowledge is introduced, increasing the
number of unknown classes from 1 to 5 leads to a slight
decrease in accuracy from 95.99% to 94.69%. In contrast,
when expert knowledge is incorporated, the accuracy decreases
from 97.51% to 81.97%, indicating a noticeable drop. For
TDTor dataset, the accuracy decrease from 96% to 94.28%
and 99.35% to 94.72%, separately. We observe that even
with an increase in the number of unknown classes, there
is only a slight decrease in overall recognition accuracy.
This phenomenon likely results from the enriched knowledge
base to which the initial model is exposed, allowing for
more precise judgments on unknown categories. When expert
knowledge is introduced to achieve fine-grained classification,
the increase in the number of unknown classes results in a
slightly more pronounced decrease in accuracy due to the
heightened recognition granularity. This underscores M3S-
UPD’s ability to effectively integrate expert knowledge in
identifying unknown network traffic, with the precision of the
initial training data being a crucial determinant of the quality
of the final identification outcomes.

VI. CONCLUSION

This paper presents M3S-UPD, a novel self-supervised
training framework designed to address the challenges of
encrypted traffic classification and unknown traffic detection
under limited labeled data conditions. By leveraging unlabeled
traffic data through iterative model refinement, our framework
incrementally improves classification performance while si-
multaneously identifying unknown traffic without relying on
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Fig. 8: Accuracy and FPR of varying proportion of known classes in different settings.
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Fig. 9: Accuracy and FPR of varying the number of unknown classes for different settings.
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prior knowledge or synthetic data augmentation. The key inno-
vation lies in the integration of embedding clustering, spatial
distribution alignment, and consistency-based pseudo-labeling,
which enables the model to distinguish between known and
unknown traffic categories effectively. Experimental results
on public datasets demonstrate that M3S-UPD achieves com-
petitive performance compared to state-of-the-art methods in
both closed-world and open-world scenarios. The framework’s
ability to adapt to concept drifting and continuously update
its knowledge base makes it particularly suitable for real-
world network environments where traffic patterns evolve
dynamically. The success of M3S-UPD highlights several
important directions for future research in encrypted traffic
analysis. Firstly, the potential integration of more advanced
clustering techniques could enhance the framework’s ability to
discern subtle differences between traffic categories. Besides,
the development of more efficient model update mechanisms
could further reduce the computational overhead associated
with continuous learning in real-time network environments.
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