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Abstract. One-way functions (OWFs) form the foundation of modern cryptography, yet their uncon-
ditional existence remains a major open question. In this work, we study this question by exploring
its relation to lossy reductions, i.e., reductions R for which it holds that I(X;R(X)) ≪ n for all dis-
tributions X over inputs of size n. Our main result is that either OWFs exist or any lossy reduction
for any promise problem Π runs in time 2Ω(log τΠ/ log log n), where τΠ(n) is the infimum of the run-
time of all (worst-case) solvers of Π on instances of size n. More precisely, by having a reduction with
a better runtime, for an arbitrary promise problem Π , and by using a non-uniform advice, we con-
struct (a family of) OWFs. In fact, our result requires a milder condition, that R is lossy for sparse
uniform distributions (which we call mild-lossiness). It also extends to f -reductions as long as f is
a non-constant permutation-invariant Boolean function, which includes And-, Or-, Maj-, Parity-,
Modk-, and Thresholdk-reductions.
Additionally, we show that worst-case to average-case Karp reductions and randomized encodings are
special cases of mildly-lossy reductions and improve the runtime above as 2Ω(log τΠ ) when these map-
pings are considered. Restricting to weak fine-grained OWFs, this runtime can be further improved
as Ω(τΠ). Intuitively, the latter asserts that if weak fine-grained OWFs do not exist then any instance
randomization of any Π has the same runtime (up to a constant factor) as the best worst-case solver
of Π .
Taking Π as kSat, our results provide sufficient conditions under which (fine-grained) OWFs exist as-
suming the Exponential Time Hypothesis (ETH). Conversely, if (fine-grained) OWFs do not exist, we
obtain impossibilities on instance compressions (Harnik and Naor, FOCS 2006) and instance random-
izations of kSat under the ETH. Moreover, the analysis can be adapted to studying such properties of
any NP-complete problem.
Finally, we partially extend these findings to the quantum setting; the existence of a pure quantum
mildly-lossy reduction for Π within the runtime 2o(log τΠ/ log log n) implies the existence of one-way state
generators, where τΠ is defined with respect to quantum solvers.
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1 Introduction

One-way functions (OWFs) are essential cryptographic tools and can be viewed as the minimal as-
sumption required for cryptography. Informally, a function is called one-way if it is easy to compute
but hard to invert. The existence of one-way functions implies that of many cryptographic primi-
tives such as pseudorandom generators and functions [BM82,Yao82,HILL99,GGM86], commitments
schemes [Nao91] and zero-knowledge proofs [GMW91]. Given their centrality, numerous works are
dedicated to constructing OWFs. Although it is unknown whether they unconditionally exist, sev-
eral candidate constructions have been proposed assuming the hardness of concrete computational
problems such as discrete logarithm [DH76], lattice-based problems [Ajt98,MR07,Reg09], and more.
Instead of depending on the hardness of specific problems, the pinnacle result in this direction
would be to construct OWF from minimal computational complexity assumptions such as NP 6= P,
or NP 6⊆ BPP, or NP 6⊆ non-uniform-P. However, many works [FF93,BT06,AGGM06,BB15] have
shown barriers in this direction.1

A possibly more feasible direction, therefore, is to slightly relax the above conditions by replac-
ing P (and BPP and non-uniform-P) with subexponential-time algorithms. This is because, despite
the huge effort that has been made in the literature, no subexponential-time algorithms is known
for NP-complete problems and most notably for the variants of Sat. Recall that the kSat problem
asks to decide whether a CNF formula of N variables and M clauses, where each clause has k vari-
ables, has a satisfiable assignment. The subexponential-time hardness of NP-complete problems has
been formulated in the variants of the Exponential Time Hypothesis (ETH). Informally, the expo-
nential time hypothesis states that there is no algorithm that can solve kSat in time subexponential
in the number of variables N . This leads us to the following question:

Do one-way functions exist under the exponential time hypothesis (ETH)?
Otherwise, what would be the implications for the hardness of Sat?

Ball, Rosen, Sabin and Vasudevan [BRSV17] have asked a similar question about the existence
of weak fine-grained one-way functions from ETH, which remains open. A weak fine-grained one-
way function requires (i) an attacker to fail in inverting the function with non-negligible probability
(as opposed to negligible probability for OWFs) and (ii) that there exists a fixed polynomial gap
(as opposed to super-polynomial for OWFs) between the runtime of the function and that of the
attacker.

1.1 Our Contribution

Trying to answer the above question, we study lossy reductions. A reduction R is lossy if it loses
information about its input; it should hold that the mutual information between the input and
output of R is very small, i.e., I(X;R(X)) ≪ n for all distributions X on inputs of size n. For
example, a special type of lossy reductions is compressions that map n bits into λ ≪ n bits. In
this work, we consider a less restrictive notion that we call mild-lossiness: it requires that the same
inequality holds for sparse uniform distributions X over inputs of size n.2 We prove the following
(informal) theorem:

1We briefly explain these works later in this section.
2More precisely, the distribution X has a support of size 2o(n). In fact, for our results to hold, X can be even more

sparse depending on the upper bound on the runtime of R. See section 4 for more details.
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Result 1 (OWFs from Mildly-Lossy or Worst-to-Average-Case Reductions). Let Π be a promise
problem, and let τ be the infimum of the runtime of all worst-case solvers of Π. We construct
a family of non-uniform functions FΠ , such that either FΠ is a one-way function, or (i) any
mildly-lossy Karp reduction from Π (to any other problem), given an input instance of size n,
has runtime 2Ω(log τ/ log logn), and (ii) any worst-case to average-case Karp reduction from Π (to
any other problem), given an input instance of size n, has runtime 2Ω(log τ).

In the above statement, the worst-case to average-case Karp reduction from Π can be replaced
by randomized encodings for Π. Moreover, we obtain a variant of the above statement regarding
weak fine-grained one-way functions.

Result 2 (Weak Fine-Grained OWFs fromWorst-to-Average-Case Reductions). Let Π be a promise
problem, and let τ be the infimum of the runtime of all worst-case solvers of Π. We construct a
family of non-uniform functions FΠ , such that either FΠ is a weak fine-grained one-way function or
any worst-case to average-case Karp reduction from Π (to any other problem) runs in time Ω(τ).

In other words, the above statements assert that if one-way functions do not exist, then ran-
domizing or compressing the worst-case instances of a problem Π has roughly polynomially-better
runtime as solving these instances. In the case of non-existence of fine-grained one-way functions,
randomizing worst-case instances takes roughly the same time as solving them.

Our results are quite flexible in different ways. Firstly, we prove the above statements for the
general set of f -reductions. More precisely, Drucker [Dru15] defines these reductions as follows: let Π
be a promise problem, and let χΠ be the characteristic function ofΠ, i.e., for an input x, χΠ(x) = 1 if
x is a YES instance ofΠ, and 0 otherwise. For a function f : {0, 1}m → {0, 1}, an f -reduction R from
Π to Π ′ is such that on input m instances of Π, the output R(x1, . . . , xm) is a YES instance of Π ′

iff f(χΠ(x1), · · · , χΠ(xm)) = 1. Our results hold with respect to f -reductions for any non-constant
permutation-invariant function f , such as Or, And, Maj, Parity, Modk, and Thresholdk.
Moreover, Π is not necessarily confined to NP problems. Finally, our proofs relativize; the theorems
hold even when all of the considered algorithms have access to a common arbitrary oracle.

Our results are obtained by proposing clear and generic definitions that facilitate analysis and
by closely analyzing the mild-lossiness of special well-known reductions, including instance com-
pressions, worst-case to average-case reductions and randomized encodings. precisely, we relate the
concrete mild-lossiness of these cases to, among others, the error of the reduction, the privacy of the
randomized encoding, or the distance of the output distribution of the worst-case to average-case
reduction from the average-case distribution. Our analysis allows a wide range of parameters. For
instance, for the aforementioned theorems to hold, the error of the randomized encoding or worst-
to-average reductions can be any constant smaller than 2−19 and the privacy or distance from the
average-case distribution can be as large as ≈ 2−1.5 log(τ) (see Section 9 for more details).

We can then use these general results to study the existence of OWFs from kSat (and other
NP-complete problems).

Result 3 (OWFs from Mildly-Lossy or Worst-to-Average-Case Reductions from kSAT). We con-
struct a family of non-uniform functions FkSat such that, under the ETH, either FkSat is a one-
way function or for any non-constant permutation-invariant function f , (i) any mildly-lossy Karp
f -reduction from kSat (to any other problem), given an input instance of size n, has runtime
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2Ω(n/(log n·log logn)), and (ii) any worst-case to average-case Karp f -reduction from kSat (to any
other problem), given an input instance of size n, has runtime 2Ω(n/ logn).

For a better comparison, note that kSat has a worst-case solver that runs in time 2O(n/ logn) but
assuming ETH it cannot be solved in time 2o(n/ logn) (see Section 9 for more details). Interestingly,
the first item implies that if one-way functions do not exist, then for any ε < 1, any f -compression
reduction [Dru15] of kSat that maps mn bits to mnε bits runs in nearly exponential time.

We also instantiate Result 2 with kSat.

Result 4 (Weak Fine-Grained OWFs from Worst-to-Average-Case Reductions from kSAT). We
construct a family of non-uniform functions FkSat such that, under the ETH, either FkSat is a weak
fine-grained one-way function or for any non-constant permutation-invariant function f , any worst-
case to average-case Karp f -reduction from kSat (to any other problem), given an input instance of
size n, has runtime Ω(2cn/ logn), for some constant c. Note that c is such that any solver for kSat
runs in time Ω(2cn/ logn) by the ETH.

Again, in both Results 3 and 4, one can replace worst-case to average-case reductions by random-
ized encodings. Moreover, these results can be adapted to any of the following problems: Clique,
VertexCover, IndependentSet, kSetCover, or kColorability. This is a direct consequence
of NP-completeness under subexponential-time reductions (e.g., see [IPZ98]).

Result 4 opens up a new direction for non-uniform constructions of fine-grained one-way func-
tions by discovering “slightly better than trivial” instance randomizations of NP-complete problems
(see Theorem 9, and Corollary 7 for the details). This draws a new approach to address the afore-
mentioned question raised by Ball, Rosen, Sabin and Vasudevan [BRSV17], regarding the existence
of weak fine-grained OWFs from the ETH.

Additionally, we answer an open question raised by Drucker [Dru15] regarding the f -compression
reductions of 3Sat. The main result of Drucker is refuting strong Or or And compressions for 3Sat
under the assumption that NP 6⊆ SZK/Poly, and their techniques cannot directly exclude more
general functions. Recall that SZK is the class of all languages that have an interactive proof where
a malicious verifier learns almost nothing beyond the membership of the instance in the language.
The extension of their result, using the techniques of [FS08], to f -compression reductions for any
function f that depends on all of its input bits for each input length, have some caveats. For an
arbitrary f , the compression must be to another problem in NP, unless f is monotone, and at the
same time the range of covered parameters are somewhat weaker than those of Or and And. In
this work, we show the following:

Result 5 (f -Compression Implies SZK). If a problem Π has a f -compression reduction that maps
m instances of n bits to mλ bits, then Π can be reduced to SZK/Poly in time 2O(λ+log n). In this
case, there is no compressing f -compression reduction of 3Sat for any non-constant permutation-
invariant functions f with the same range of parameters from [Dru15], unless NP ⊆ SZK/Poly.

We notice that our result gives a framework to study f -compression reductions of NP-complete
problems under superpolynomial-time algorithms, and we leave as an open question exploring this
direction.

Quantum Settings We initiate the study of cryptographic implications of quantum mildly-lossy
reductions. A quantum reduction R is said to be mildly-lossy when Iq(X;R(X)) ≪ n for all sparse

5



uniform distributions X on inputs of size n, where Iq is the quantum mutual information. Moreover,
such a reduction is said to be a pure-outcome reduction if (i) for every instance x the outcome R(x)
is a pure quantum state (ii) and there exists a (possibly unbounded) binary quantum measurement
that, given R(x), decides x. We obtain partial results in the this regard. More precisely, we show
that such reductions imply one-way state generators (OWSGs); a type of quantum functions that
are easy to evaluate but hard to invert.

Result 6 (OWSGs from Quantum Mildly-Lossy Reductions). Let Π be a promise problem, and
let τQ be the infimum of the runtime of all quantum worst-case solvers of Π. We construct a family
of non-uniform quantum mappings GΠ , such that either GΠ is a one-way state generator, or any
quantum mildly-lossy pure-outcome Karp reduction from Π (to any other problem), given an input

instance of size n, has runtime 2Ω(log τQ/ log logn).

1.2 Technical Overview

In this section, we briefly present the core technical tools that we use.

The link between lossy reductions with the randomized encodings and worst-case to average-case
reductions was raised by [BBD+20], but the exact connection was left as an open question, which
we answer in a precise manner. We define a more inclusive type of lossy reductions: mildly-lossy f -
distinguisher reductions. Such reductions include randomized encodings, compressions, and a variant
of worst-case to average-case non-adaptive Turing reductions. We show that these weaker reductions
can also be used to build one-way functions. The full-fleged lossiness of randomized encodings and
worst-case to average-case reductions is only satisfied in a very restricted regime of parameters, e.g.,
when the error is zero and the privacy or distance is exponentially-small. Our new definition allows
to significantly relax the parameters (see Section 9 for more details).

f -distinguisher reductions. For a Boolean function f : {0, 1}m → {0, 1}, we define an f -
distinguisher reduction for a problem Π as a mapping R : {0, 1}∗ → {0, 1}∗ for which there exists
an unbounded distinguisher D that can distinguish between R(x1, . . . , xm) and R(x′1, . . . , x

′
m), also

given one of {xi}i’s at random, if f(χΠ(x1), · · · , χΠ(xm)) 6= f(χΠ(x′1), · · · , χΠ(x′m)). We show
that all non-adaptive Turing reductions, most importantly Karp reductions, are special cases of f -
distinguisher reductions. Moreover, f -distinguisher reductions contain f -compression reductions
that are studied in the context of parameterized complexity (e.g., see [HN06, FS08, Dru15]) and
randomized encodings [IK00,AIK06,App17] of the characteristic function χΠ are of this type. Our
results are therefore stated in terms of this general flavor of reductions.

Mild lossiness. Originally in [BBD+20] a multivariate mapping R is said to be t-lossy if the
quantity I((X1, · · · ,Xm);R(X1, · · · ,Xm)) is bounded above by t for all possible distributions Xi

over n-bit strings. We propose an alternative definition that we call mild lossiness.

Definition 1 (Informal). We say that R is (λ, γ)-mildly-lossy if

sup
X1,··· ,Xm

{I((X1, · · · ,Xm);R(X1, · · · ,Xm))} ≤ λm ,

where each Xi ranges over all uniform distributions of support-size roughly Õ(1/γ3).
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The parameter γ controls the sparseness of the distribution. In the original lossiness, γ is ex-
ponentially small, however, it can be fine-tuned depending on various parameters in our new set-
ting. Moreover, if R is an f -reduction for Π, each Xi in the supremum above can be either sup-
ported on ΠYES, the set of YES instances of Π, or ΠNO, the set of NO instances of Π. In other
words, {X1,X2, · · · ,Xm} can be split into ΠYES-supported and ΠNO-supported distributions.

An extended disguising lemma: We first enhance the disguising lemma of Drucker [Dru15].
Let R : {0, 1}∗ → {0, 1}∗ be a function and consider the problem of finding x given R(x). Fano’s
inequality gives a lower bound for the amount of information about x that an unbounded algorithm
can recover from R(x), for any choice of x. For instance, if R is compressing, i.e., it maps an input
of size n to an input of size λ < n, then R(x) loses information about x which makes it difficult to
recover the instance.

The original variant of the disguising lemma by Drucker [Dru15] is a distinguishing variant of
Fano’s inequality which states that assuming R is a compressing map, for any set S ⊆ {0, 1}n,
there exists a sparse distribution DS over S such that EDS

[‖R(y) − R(DS)‖1] ≤ δ∗ for all y ∈ S.
Here, δ∗ ≈ 1− 2−λ−2 if R compresses n-bit instance to λ bits.

We improve the disguising lemma by showing that mild-lossiness of R, instead of compression,
suffices to obtain a similar result. In order to sketch our improvements, we briefly go over the proof
of this lemma in the following. The proof of Drucker’s lemma essentially consists of showing that
as long as R is sufficiently compressing, it has the following property: Let Y be any distribution
and let (y,D) be a distribution obtained by sampling d+1 instances from Y, setting y to be one of
them at random, and D to be the uniform over the d remaining samples. Then, we have

EY⊗d[‖R(y)−R(D)‖1] ≤ δ∗ . (1)

The proof then proceeds by swapping the quantifiers of the above statement using the minimax the-
orem; more precisely, consider a simultaneous-move two-player game where one player chooses the
distribution D (subject to be uniform over some multiset of size d) and the other player chooses the
element y, and let the payoff be ‖R(y)−R(D)‖1. For any strategy Y for choosing y, let (y,D) be as
explained earlier with Y being the base distribution. Then, Equation (1) bounds the expected payoff
from above. By minimax theorem, there must exist a distribution DS , not necessarily sparse, that
bounds the quantity ED∼DS

[‖R(y)−R(D)‖1] for every choice of y. However, note that DS can be not
sparse. The final step of this proof, therefore, uses a result by Lipton and Young [LY94, Theorem 2] to
freely set DS to be a uniform distribution over a sparse number of possible D’s. In fact, the theorem
of [LY94, Theorem 2] roughly states that in a two-player simultanous-move zero-sum game, restrict-
ing the strategies of Player 1 to uniform strategies with support size ln(#{choices of Player 1})/γ2
only changes the optimal expectation payoff with an additive factor γ. 1 This indeed sparsifies the
support of DS . On the other hand, one loses at most an additive factor γ in the expectation bound
in Equation (1) and obtains δ∗ + γ.

Let us now focus on Equation (1). Drucker [Dru15] shows that this inequality holds if R is
compressing. The work of [BBD+20] instead obtains Equation (1) by considering R to be, more
generally, lossy. Recall that a mapping R is said to be λ-lossy if for all distribtions X, it holds
that I(X;R(X)) ≤ λ, where I denotes the mutual information. We relax the requirement on R
even further and show that mild-lossiness of R suffices to obtain a similar result. More precisely,

1The same holds for Player 2.
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we show that if the lossiness only holds with respect to the uniform distributions with support
size Õ(1/γ3), then one looses nothing but an(other) additive factor γ in the expectation bound.
This relies on a double use of the result by Lipton and Young [LY94, Theorem 2]; we apply it
once for Player 2 and once more for Player 1. More precisely, before using the minimax theorem,
we restrict the base distribution Y to be uniform distributions with support size Õ(1/γ3), and we
choose d ≈ 1/γ. By showing that Equation (1) remains correct even with this new restriction, we
obtain an additive γ-approximation of the value of the game (first use of [LY94, Theorem 2] for
Player 2). Following the minimax theorem, and sparsifying DS (second use of [LY94, Theorem 2]
for Player 1), we conclude the final upper bound δ∗ + 2γ. We note that this step is crucial for
our results, otherwise, we could not sufficiently bound the lossiness of worst-case to average-case
reductions or randomized encodings.

To be more precise, all of the above has been analyzed by Drucker [Dru15] in the setting where
R is multivariate, e.g., taking m instances as input. In this setting the disguising lemma, proved by
Drucker, bounds the distance of R(DS , · · · , y, · · · ,DS) (where there are m− 1 samples of DS and
exactly one y in a random place) from R(DS , · · · ,DS) (where there are m samples of DS), when
R is a compression. In a similar way as above, we extend the disguising lemma in the multivariate
setting, by relaxing the condition on R and showing that the distance of the two aforementioned
distributions are bounded by δ∗ + 2γ when R is mildly lossy, i.e., lossy for the sparse uniform
distributions.1

Furthermore, [BBD+20] shows that the inputs can follow two distinct distributions and that
the set S can be replaced by two sets S0, S1. Consequently, the type of each input can be set
to either S0 or S1. Then, for any choice of 0 ≤ p ≤ m, there exist two sparse distributions DS0

and DS1 of inputs such that, for every y ∈ S0, the distance between R(π(DS0 , · · · , y, · · · ,DS1))
and R(π(DS0 , · · · ,DS0 , · · · ,DS1)) is at most δ∗ + 2γ in expectation, where the number of DS0

and DS1 samples in the input of the latter is respectively p and m − p, and π is a uniformly
random permutation. Similar result holds for replacing one of DS1 ’s with an arbitrary y ∈ S1. In
other words, R(π(·)) remains roughly within the same distance (in expectation) if one of the input
distributions DSi is replaced with an arbitrary y ∈ Si (note the constraint that y must have the
same support as the distribution that it replaces). Our variant of disguising lemma with mildly-lossy
reductions also extends to this setting (see Section 3 for more details). For simplifying the notation,
we define

Rp[⋆] := R(π(DS0 , · · · , ⋆, · · · ,DS1)) , (2)

where the number of DS0 and DS1 samples in the input is respectively p− 1 and m− p, and ⋆ can
posses a fixed quantity or a random variable.

The disguising lemma forms the core of the following results. We start with showing, similarly to
Drucker [Dru15], that a mildly-lossy problem, i.e., a problem that admits a mildly-lossy reduction,
has a reduction to SZK. The runtime of the reduction is determined by the amount of mild-lossiness.
In comparison to [Dru15], our result holds for any non-constant permutation-invarinat function,
requires less restricted notion of mild-lossiness (as opposed to lossiness that is required in [Dru15]),
and allows superpolynomial-time reductions.

Reduction to the statistical difference (SD) problem. In the statistical difference (SD)
problem, the description of two circuits (C0, C1) is given with the promise that on uniformly random
inputs their induced distributions are either at least 2/3-far or at most 1/3-far, with respect to the

1In fact, m possibly changes the upper bound, but by tuning d ≈ m/γ, one can keep the bound the same.
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statistical distance. The question asks to decide which one is the case. This problem is complete
for SZK under polynomial-time reductions. The parameters 1/3 and 2/3 can be replace by any real
numbers α, β ∈ (0, 1) as long as β2 > α. We sketch how mildly-lossy problems reduce to SD.

Let Π be a decision problem and R be any lossy function over m instances x1, · · · , xm of Π.
Let S0 := ΠN ∩ {0, 1}n and S1 := ΠY ∩ {0, 1}n. By the disguising lemma, for any 0 ≤ p ≤ m,
there exist two sparse distributions DS0 and DS1 such that E[‖Rp[y] − Rp[DS0 ]‖1] ≤ δ∗ + 2γ for
all y ∈ S0 (recall Rp[⋆] as per Equation (2)). What is this quantity if y ∈ S1? We show that it is
large if R is an f -distinguisher reduction for some particular set of functions f : {0, 1}m → {0, 1}.
Assume that f is a non-constant permutation-invariant function, i.e., a non-constant function that
is invariant under permuting its inputs. Let fi be the evaluation of f over the inputs with i number
of 0’s. In fact, since f is permutation-invariant, only the number of 0’s in the input determines the
output. In the sequence f0, f1, · · · , fm, there must be an index 1 ≤ p ≤ m such that fp−1 6= fp,
because otherwise f is constant. Now, let us go back to our question. What is the expectation value
if y ∈ S1? In this case, the number of NO instances in the argument of Rp[y] is equal to p − 1
while in Rp[DS0 ] is p (note that DS0 is supported on NO instances). Therefore, if R is also an f -
distinguisher reduction with error µ∗, for all y ∈ S1, it must hold that E[‖Rp[y]−Rp[DS0 ]‖1] ≥ 1−µ∗.
Putting these two properties of R together, one can conclude that an instance y of Π can be reduced
to two circuits1 (Rp[y], Rp[DS0 ]) such that

- if y is a NO instance, the two circuits have statistical distance at most δ∗ + 2γ,
- and if y is a YES instance, the two circuits have statistical distance at least 1− µ∗.

This gives a reduction to SZK as long as (1−µ∗)2− (δ∗+2γ) is a positive constant. The details
of the extension to smaller quantities is discussed in Section 5.

One-way functions and one-way state generators: The circuits Rp[DS0 ] and Rp[y] use an
internal randomness to sample from DS0 and DS1 . More precisely, they are two circuits that given
uniformly random strings, sample elements from DS0 and DS1 , and return the evaluation of R.
Since both these distributions are uniform over some given multisets of size d ≈ m/γ with n-bit
elements, sampling one element requires O(log(m/γ)) number of bits and, with an appropriate data
structure, runs in O(mn/γ) time. Moreover, if TR is the runtime of the reduction, the total runtime
(or size) of each circuit will be O(TR+(mn/γ)m). This is because there are approximately m inputs
to be sampled, each of which requires O(mn/γ) operations. We let C0 and C1 to be circuits, taking
as input uniform bit strings, that denote respectively Rp[DS0 ] and Rp[y]. When it is needed, we
use C1[y] to denote the dependence of C1 on y.

In [BBD+20], it is shown that when the reduction is perfect and Π is worst-case hard (with
respect to polynomial-time algorithms), C0(·) is a weak one-way function. We propose an alternative
construction as follows:

F(b, r) :=

{
C0(r) if b = 0 ,

C1[y
∗](r) if b = 1 ,

(3)

when y∗ is also sampled from DS0 (supported on NO instances of Π). This function frequently
appears in the SZK literature (e.g., see [SV]) and was used in [BDRV19] to build one-way functions
from the average-case hardness of the statistical difference problem.

We sketch the proof of one-wayness of F. Let A be an inverter for F. We show how A can be
used to decide Π. One can use A to decide every instance ŷ of Π as follows. Compute C0, C1[ŷ],

1From here forward we call them circuits instead of functions.
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sample b at random, and feed A with Cb(r). If b = 0, then A receives an instance of the function
F and can therefore invert it. However, this does not help us with solving Π. Let us now focus on
when b = 1. We have two cases: If ŷ is a NO instance, C1[ŷ] would be roughly close to C1[y

∗], as
discussed earlier. Therefore, A would succeed to invert it. On the other hand, if ŷ is a YES instance,
then C0 and C1[ŷ] are far from each other. We also know that C0 and C1[y

∗] are close. Hence, C1[y
∗]

and C1[ŷ] must be far. Consequently, the image spaces of C1[y
∗] and C1[ŷ] have small intersection.

Therefore, if b = 1 and ŷ is a YES instance, then there would be no pre-image (except with a small
probability) for the value that A tries to invert. We can therefore run this test several times on A
and decides ŷ by observing the success rate of A.

The detailed proof substantially relies on a fine-grained analysis. Recall that µ∗ is the error of the
reduction, δ∗ is determined in the disguising lemma depending on the amount of mild-lossiness of
the reductions, and γ is the sparseness factor as per Definition 1. Let θowf := (1−µ∗)−(δ∗+2γ). For
all θowf = Ω(γ), we can show the following: if the success probability of A is at least 1−θowf/2, then
the runtime of the aforementioned reduction of deciding Π to inverting F will be poly(1/γ) ·O(TR +
TA+m2n). Now, if the mildly-lossy reduction R ofΠ and the adversary A both run in time TR, TA =
poly(1/γ,m, n), and Π is worst-case hard for all algorithms than run in poly(1/γ,m, n), then A
cannot succeed with probability more than 1−θowf/2. This is because when TR, TA = poly(1/γ,m, n),
one can use A as above to decide Π in time poly(1/γ,m, n). Therefore, if Π is worst-case hard for
all algorithms than run in poly(1/γ,m, n), the aforementioned reduction should not be able to
decide Π in this time, meaning that A cannot succeed with probability more than 1 − θowf/2.
By setting κ := mn/γ as the security parameter, one can see that F runs in time poly(κ) but no
algorithm A of runtime poly(κ) can invert it with probability better than 1− 1/poly(κ). This gives
a weak one-way function, which can be leveraged to build one-way functions using the standard
hardness amplification techniques.

Although we give a detailed analysis of the proposal of [BBD+20], we find our construction more
sound, since we can extend to one-way state generators without much extra effort. In fact, when the
circuits are quantum, there are only two more technical details to fix: (i) showing that the image
spaces of two quantum circuits C1[y

∗] and C1[ŷ] have small intersection even in the quantum case,
(ii) computing the success rate of A. The latter uses SWAP test and requires that for any fixed
randomness r, the outputs of C0(r) and C1(r) be pure.

Hardness vs one-wayness. In what we discussed earlier, the parameter γ > 0 is not fixed and can
be chosen freely subject to the condition θowf = Ω(γ). In fact, to obtain one-way functions, it suffices
that γ be roughly bounded by poly(1/TR, 1/n), where TR is the runtime of the reduction. Let Π be
a polynomially-hard problem, and let τΠ be the infimum of the runtime of all solvers of Π.1 Note
that τΠ is superpolynomial. We set γ such that 1/γ = o(τΠ). From the earlier discussion, recall that
ifΠ is poly(1/γ,m, n)-hard and if it admits a mildly-lossy reduction with the same runtime, then the
function we built in Equation (3) is one-way. By the choice of γ, Π is indeed poly(1/γ,m, n)-hard.
Therefore, if Π admits a mildly-lossy reduction with runtime poly(1/γ,m, n), one-way functions
exist.

On the other hand, the non-existence of one-way functions,2 implies that Π does not admit a
mildly-lossy reduction with runtime poly(1/γ,m, n). Since this argument applies to every 1/γ =

1In Section 9, τΠ is defined slightly differently.
2More precisely, infinitely often one-way functions. See Section 9 for more details.
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o(τΠ), one can set log 1/γ := log τΠ/ log log n. Therefore, any mildly-lossy reduction for Π must
have runtime 2Ω(log τΠ/ log logn).

Mild lossiness of worst-case to average-case reductions. Essentially, a worst-case to average-
case reduction from a problem1 Π to a problem Σ maps any instance of Π to an instance of Σ whose
distribution is efficiently-samplable. In this work we compute the lossiness of worst-case to average-
case reductions, and find the specifics of such reductions that can contribute to building one-way
functions. Roughly speaking, such reductions are highly midly lossy, which allows to strengthen
the previous general results. We also focus on f -distinguisher reductions. Recall that the common
concept of reductions, including non-adaptive Turing and Karp reductions, are captured by the
notion of f -distinguisher reductions.

Firstly, we discuss Karp reductions. We define a worst-case to average-case reduction as follows:
A reduction R from Π is worst-case to average-case if there exist a small d < 1 and a distribution
D = {Dn}n∈N over {0, 1}∗, such that:

∀x ∈ Π ∩ {0, 1}n : ∆ (R(x),D) ≤ d . (4)

This definition can be viewed as a generalization of worst-case to average-case reductions in the
sense that (i) the reduction is oblivious to the target average-case problem, and (ii) the reduction
maps inputs to a distribution that is not necessarily efficiently samplable. The latter does not impose
any issues in our setting, since we are only discussing lossiness of the reductions.

Intuitively, worst-case to average-case reductions should lose information about their inputs
as the distribution D is independent from the input instance. However, the proof is not direct.
Firstly, note that, thanks to our extended disguising lemma, proving the mild-lossiness of these
reductions suffices for using them to build OWFs. Next, recall that to prove the mild-lossiness
of R, we need to bound the quantity supX{I(X;R(X))}, for all sparse uniform distributions X over
subsets of Π ∩ {0, 1}n of size Õ(1/γ3). In order to do so, we first translate the mutual information
I(X;R(X)) in terms of the KL-divergence, and then use an inverse Pinsker inequality. It is shown
by Sason [Sas15], that for every two random variables X and Y , we have

DKL (X‖Y ) ≤ log

(
1 +

2 ·∆(X,Y )2

αX

)
,

where αX = min
x

Pr(X = x) > 0. The term∆(X,R(X)) is bounded by the worst-case to average-case

property, therefore, it suffices to bound αX . Since the mild lossiness concerns uniform distributions
X with a support of size Õ(1/γ3), we can bound αX by Ω̃(γ3). More precisely, we bound the
mild-lossiness from above by

max

{
1, 13 + log

(
nd2

γ3

)}
.

Next, we discuss Turing reductions. Recall that a non-adaptive Turing reduction from Π to Σ,
is an algorithm that, given an instance x, outputs oracle queries y1, · · · , yk and a circuit C such
that C(y1,O(y1), · · · , yk,O(yk)) = χΠ(x), where O is an oracle solver for Σ. The common notion
of worst-case to average-case Turing reduction in the literature is that the marginal distribution

1Here, “problem” refers to the common concept of problem, search, decision or promise.
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of each yi alone follows a distribution that is independent of x. This is for instance the notion
used in the worst-case to average-case reductions for Permanent, 3Sum, or OV problems (e.g.,
see [Lip89,FF93,BRSV17]). However, the joint distribution of (y1, . . . , yk) might not be independent
of x. We therefore consider a variant of non-adaptive Turing reductions where all queries together
(y1, . . . , yk) follow a distribution that is roughly independent of x (as in Equation (4)), and C does
not leak much information about x either. Any worst-case to average-case Karp reduction is of this
type as well as reductions that require part of the instance or the random coins in the worst-case to
average-case mapping. We show that such reductions are indeed mildly lossy . Thanks to generality
of our statement, one can also consider f -distinguisher non-adaptive Turing reductions.

Finally, we consider randomized encodings. Recall that a randomized encoding for a problem Π,
or more precisely for χΠ , is a function E such that E(x) encodes the value of χΠ(x), therefore, it
can be viewed as a reduction for Π. Such an encoding further requires the existence of two efficiently
samplable distributions DYES and DNO for respectively simulating the encoding of YES and NO
instances of Π within the statistical distance d (that is called privacy). This requirement is in fact
similar to Equation (4). Calculating the lossiness follows the same argument as for the worst-case
to average-case reductions, however, it only implies the splitting mild-lossiness here.1 This is, in
fact, allowed by the extended disguising lemma. It is worth to mention that one can also consider
randomized f -encodings of Π, i.e., the mappings that encode the value of f(χΠ(x1), · · · , χΠ(xm)),
for any non-constant permutation-invariant choices of f : {0, 1}m → {0, 1}.

1.3 Background and Related Works.

As mentioned earlier, building one-way functions from assumptions like NP 6= P has been a chal-
lenging problem. Building upon the work of Feigenbaum and Fortnow [FF93], Bogdanov and Tre-
visan [BT06] show that, in the non-uniform setting – where algorithms can take some advice as
input – if there exists a non-adaptive Turing reduction from the worst-case complexity of a decision
problem Π to the average-case complexity of another (search or decision) problem, then Π has a
polynomial-time reduction to coNP/Poly. As a result, if there exists a non-adaptive Turing reduction
from the worst case of an NP-complete problem to inverting a one-way function on uniform inputs,
then NP reduces to coNP/Poly in polynomial-time, which is believed to be unlikely. Later, works of
Akavia, Goldreich, Goldwasser, and Moshkovitz [AGGM06], and Bogdanov and Brzuska [BB15] ex-
tend this impossibility to the uniform settings and adaptive Turing reductions, under the condition
that the one-way function is regular2 and has an efficiently recognizable range.

Ostrovsky [Ost91] linked the existence of one-way functions to the average-case hardness of the
statistical zero-knowledge (SZK) complexity class. Ostrovsky and Wigderson [OW93] showed that
if SZK is worst-case hard, then the (seemingly weaker) auxiliary-input one-way functions exist.3.

In an effort to base the existence of one-way functions on the worst-case complexity, Apple-
baum and Raykov [AR16] show that if there exists a worst-case hard language in the complexity
class SRE, then one-way functions exist. SRE is the class of problems whose characteristic function
admits polynomial-time randomized encodings [IK00,AIK06,App17]. This class is included in SZK,

1Since the simulation is split between YES and NO instances.
2A one-way function F : {0, 1}n → {0, 1}m is called regular if for all n and x, x′ ∈ {0, 1}n, the number of preimages

of x is equal to that of x′.
3This variant of one-way functions requires the existence of a polynomial p(·), such that for every family of

polynomial-size circuits {An}n, there exists a family of size p(n) circuits {Cn}n that An cannot invert Cn when given
the description of Cn as advice.
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but it is not known whether the inclusion is proper or not.

OWFs and lossy reductions. More recently, the existence of one-way functions have been linked
to lossy reductions of worst-case hard problems by Ball et al. [BBD+20]. Their techniques stem from
previous works of Harnik and Naor [HN06] and Drucker [Dru15]. In [HN06], the compressibility
of Sat is leveraged to construct collision-resistant hash functions from one-way functions. More
precisely, they show that if Sat admits a strong compression, then collision-resistant hash functions
can be built based on one-way functions, in a non-black-box way. A strong compression reduces an
instance of Sat with M clauses and N variables to an instance of size p(N) for a polynomial p(·).
Later, it was shown that such a compression does not exist unless the polynomial-time hierarchy
collapses (e.g., see [FS08,Dru15]). Notably, Drucker [Dru15] shows that if a (decision) problem has
a sufficiently compressing polynomial-time Orm-reduction to any other (decision) problem, then it
falls into SZK. Drucker [Dru15] showed that if a problem Π admits an Orm or Andm compressing
reduction in the sense that it mapsm instances of size n to an instance of size poly(n), thenΠ ∈ SZK.
Later, [BBD+20] observed that one can obtain the same result by replacing compression with
lossy reductions. Recall that a mapping R is said to be λ-lossy if for all distributions X, it holds
that I(X;R(X)) ≤ λ, where I denotes the mutual information. In particular, the work of [BBD+20]
shows that given a worst-case hard (decision) problem Π, one-way functions exist if there exists (i)
an m/100-lossy Orm reduction from Π to itself, or (ii) an m/100-lossy Majm-reduction from Π to
any other problem, or (iii) a perfect O(m log n)-lossy Orm-reduction from Π to any other problem.
However, they could not instantiate these results based on worst-case hardness of NP. In fact, such
results imply that Π ∈ SZK/Poly.

1.4 Open Questions

A candidate for Π is the GapSVP problem with constant approximation. If Gap-ETH1 holds,
then for every ℓp norm, there exists a constant γp such that γp-GapSVP cannot be solved in
subexponential-time as a function of the lattice dimension [AS18]. Therefore, our results about
3Sat can be adapted to O(1)-GapSVP (with the extra care about the size of the input versus the
dimension of the lattice). As a result, an interesting question to investigate is whether GapSVP ad-
mit mild-lossy f -distinguisher reductions with subexponential runtime. We expect that the structure
of lattices might help with answering this question.

Organization of the Paper

After introducing an overview of the context and results of our work in Section 1, we introduce
the notation and tools required for our work in Section 2. Then, in Section 3 we introduce the
notion of lossy mappings and state and prove our extended disgusing lemma. This constitutes the
foundation for linking lossiness to one-wayness (and more). In Section 4, we introduce the general
notion of f -distinguisher reductions, used to state and analyze our theorems, and prove that this
definition contains f -reductions and non-adaptive Turing and Karp reductions. We finally define
mildly-lossy problems at the end of the same section. Sections 5, 6, and 7, show that mild-lossiness

1There exists a constant α such that the following promise variant of 3Sat does not admit a non-uniform
subexponential-time algorithm: either the CNF formula is satisfiable or the maximum number of satisfiable clauses is
at most αm.
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can be leveraged to build zero-knowledge proofs, one-way functions, and one-way state generators,
respectively. In Section 8, we study the mild-lossiness of worst-case to average-case (Karp and
Turing) reductions as well as randomized encodings. Finally, Section 9 states all of results regarding
the relation between the hardness of problems and the existence of one-way functions and one-way
state generators.

2 Preliminaries

In this work, we always consider non-uniform algorithms. All classical algorithms are quantum
algorithms, therefore, we mostly use the quantum formalism for generalization and simplification.
When the distinction is necessary, we explicitly mention it in the beginning of a section or inside
an statement, and clearly distinguish between classical and quantum settings.

Notation. We let n denote the security parameter, and all variables are implicitly parametrized
by n. We let MSn denote the set of all mixed states over n qubits and we define MS∗ := ∪∞n=1MSn.
For a positive integer n, we let [n] denote {1, 2, · · · , n}. The set of all permutations over [n] isSn. We
abuse the notation and use the same symbol to refer to the uniform distribution over all permutations
of [n]. The set of natural numbers {1, 2, 3, · · · } is denoted by N. We denote by R

+ the set of positive
real numbers.
A collection of functions {fi}i∈I is said to be infinitely often if the index set I is an increasing
infinite sequence of N.

Uniform and S-Uniform Distributions. For any set S, we let US denote the uniform distribution
over S. A distribution is called s-uniform if it is sampled uniformly from a multiset of at most s
elements.

Boolean functions. A Boolean function f : {0, 1}m → {0, 1} is called non-constant if it is not
always 0 nor always 1.

Language. A language L is a subset of {0, 1}∗. The complement of L is defined as L := {0, 1}∗ \L.
Promise Problems. A Promise Problem Π consists of two disjoint sets ΠY ,ΠN ⊂ {0, 1}∗, respec-
tively referred to as the set of YES and NO instances. Problem Π asks to decide whether a given
instance, which is promised to lie in ΠY ∪ΠN , belongs ΠY or ΠN .

Definition 2 (Characteristic Function of a Promise Problem). For a promise problem Π,
the characteristic function of Π is the map χΠ(x) : {0, 1}∗ → {0, 1, ⋆} given by

χΠ(x) =





1 if x ∈ ΠY

0 if x ∈ ΠN

⋆ otherwise

.

Search Problems. We recall the definition of a search problem, inspired by that of [BG94]. We
define a search problemΠsearch as a binary relation over {0, 1}∗×{0, 1}∗. For any (x,w) ∈ Πsearch, we
call x an instance and w a witness. For any x ∈ {0, 1}∗, we defineΠsearch(x) = {w ∈ {0, 1}∗ | (x,w) ∈
Πsearch}. We refer to the sets Πsearch|Y = {x ∈ {0, 1}∗ | Πsearch(x) 6= ∅}, and Πsearch|N = {0, 1}∗ \
Πsearch|Y as the set of YES and NO instances, respectively.
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We say that an algorithm A solves Πsearch, if for any x ∈ {0, 1}∗ for which Πsearch(x) 6= ∅, A
returns some w ∈ Πsearch(x), and otherwise, outputs ⊥.

We denote the decision language defined by Πsearch as Π = {x ∈ {0, 1}∗ | ∃w ∈ {0, 1}∗, (x,w) ∈
Πsearch}. Each decision language Π can have multiple associated search problems, one for every
relation Πsearch that defines Π. Given x ∈ Π, the Πsearch-search problem consists on finding ω ∈
Πsearch(x).

Games. A two-player, simultaneous-move, zero-sum game is specified by a matrix M ∈ R
a×b.

Player 1 chooses a row index i ∈ [a] and Player 2 chooses a column index j ∈ [b], and Player 2
receives the payoff Mij from Player 1. The goal of Player 1 is minimizing the expected payoff, while
Player 2 opts to maximize it. The row and column indices are called the pure strategies of Player
1 and Player 2, respectively. The mixed strategies are distributions or possible choices of indices. A
mixed strategy is s-uniform if it is sampled uniformly from a multiset of at most s pure strategies.

Lemma 1 ( [vN28]). Let P and Q be two mixed strategies for Player 1 and 2, respectively. It
holds that minP maxj Ei∼P [Mij ] = maxQmini Ej∼Q[Mij ].

The value of the game, which we denote by ω(M), is the optimal expected value guaranteed
by the above lemma. The following lemma shows that each player has nearly-optimal s-uniform
strategy when s is chosen to be logarithm of the number of pure strategies of the opponent.

Lemma 2 ( [LY94, Theorem 2]). For any real ε > 0, any M ∈ R
a×b, and any integer s ≥

ln(b)/(2ε2), it holds that

min
P∈Ps

max
j

Ei∼P [Mij ] ≤ ω(M) + ε(Mmax −Mmin) ,

where Ps denotes the set of all s-uniform strategies for Player 1. Similar statement holds for Player
2, namely,

max
Q∈Qs

min
i

Ej∼Q[Mij ] ≥ ω(M)− ε(Mmax −Mmin) ,

where Qs denotes the set of all s-uniform strategies for Player 2.

Classical information. Given two probability distributions X and Y over Σ, their statistical
distance, also called total variation distance, is defined as

∆(X,Y ) :=
1

2

∑

x∈Σ
|Pr(X = x)− Pr(Y = x)| .

The Kullback–Leibler divergence or classical relative entropy of X with respect to Y is defined as

DKL(X||Y ) :=
∑

x∈Σ
Pr(X = x) log

(
Pr(X = x)

Pr(Y = x)

)
.

Quantum information. For a mixed state ρ, we let ‖ρ‖1 denote its 1-norm. We denote by Tr(ρ, σ)
the the trace distance between any two states ρ and σ, with Tr(ρ, σ) := ‖ρ−σ‖1/2. For an operator Φ,
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we let ‖Φ‖op denote its operator norm. Let R : {0, 1}n → MSm be any quantum mapping and X a
random variable supported over {0, 1}n. We let

ρX,R(X) :=
∑

x∈{0,1}n
Pr
X
(x) |x〉〈x| ⊗R(x) . (5)

For a mixed state ρ, we let S(ρ) := Tr(ρ log2 ρ) denote the Von Neumann entropy of ρ. The
quantum mutual information of two subsystems A and B is defined as follows. Let ρAB be their
joint state, then

Iq(A;B)ρ := S(ρA) + S(ρB)− S(ρAB) ,

where ρA = TrB(ρAB) and ρB = TrA(ρAB). For the sake of simplicity, we sometimes drop the
subscripts q and ρ in Iq. When working with quantum systems A,B, the notation I(A;B) implicitly
refers to Iq(A;B).

For two quantum states ρ and σ, the quantum relative entropy of ρ with respect to σ is

D(ρ‖σ) :=
{
Tr(ρ(log(ρ)− log(σ)) if Supp(ρ) ⊆ Supp(σ) ,

∞ otherwise .

Given a bipartite state ρAB with marginals ρA and ρB , the relative entropy can be written in terms
of the mutual information as

D(ρAB‖ρA ⊗ ρB) = Iq(A;B)ρ .

For a classical-quantum states ρXB :=
∑

x p(x) |x〉〈x|X ⊗ ρxB and σXB :=
∑

x q(x) |x〉〈x|X ⊗ σx
B, the

relative entropy takes the simpler form

D(ρXB‖σXB) =
∑

x

p(x)D(ρxB‖σx
B) +DKL(p‖q) , (6)

where DKL is the classical Kullback-Leibler divergence.

Lemma 3 ( [AE11, Theorem 1]). Let ρ and σ be two quantum states, let the smallest eigenvalue
of σ be uniformly bounded from below, i.e. there exists β > 0 such that λmin(σ) > β. Then the relative
entropy of ρ with respect to σ is bounded by

D(ρ‖σ) ≤ (β + T (ρ, σ)) log

(
1 +

T (ρ, σ)

β

)
.

We let S(ρ‖σ) := Tr(ρ(log(ρ) − log(σ)) denote the relative entropy. We define the quantum
conditional entropy of a two-system state ρAB as follows

S(A|B) := S(ρAB)− S(ρB) ,

The quantum mutual information in terms of conditional quantum entropy is

I(A;B)ρ = S(ρA)− S(A|B)ρ = S(ρB)− S(B|A)ρ .

Lemma 4. Let ρAB be a quantum state in two subsystems A and B, with marginal states ρA and ρB.
The following properties hold.
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1. The Von Neumann entropy is additive for tensor product states: S(ρA ⊗ ρB) = S(ρA) + S(ρB) .
2. Conditioning does not increase entropy: S(ρA) ≥ |S(A|B)ρ| .
3. The quantum entropy of a system is bounded by the dimension: S(ρA) ≤ dim(HA) .

Lemma 5 (Alicki–Fannes–Winter Inequality [Wil13]). Let ρAB, ωAB ∈ D(HA ⊗HB), then

|S(A|B)ρ − S(A|B)ω| ≤ 2Tr(ρ, σ) log dim(HA) + h(Tr(ρ, σ)) ,

where h(p) := −p log p− (1− p) log(1− p) is the binary entropy function.

The following lemma states that if the outcome of a measurement is close to deterministic, then
it must not alter much the state.

Lemma 6 (Gentle Measurement Lemma [Win99]). Let ρ be a mixed state and {Λ, I − Λ} a
two-outcome POVM with Tr(Λρ) ≥ 1− ε, then ‖ρ− ρ′‖1 ≤

√
ε, where ρ′ =

√
Λρ
√
Λ

Tr(Λρ) .

For two quantum states σ, ρ stored in two different registers A,B, the swap test is executed on
the registers A,B and a control register C initialized to |1〉〈1|. It applies Hadamard on C, swaps A
and B conditioned on C, and measures B on the Hadamard basis.

Lemma 7 (SWAP Test [BCWd01]). The SWAP test on input (σ, ρ) outputs 1 with probabil-
ity (1 + Tr(ρσ))/2, in which case we say that it passes the test. For pure states |σ〉 , |ρ〉, it equals to
(1 + | 〈ρ|σ〉 |2)/2.

Given that the trace distance of two pure states |σ〉 , |ρ〉 can be expressed in terms of the inner
product uniquely as

√
1− | 〈ρ|σ〉 |2, the SWAP test can also be used to calculate their trace distance.

Definition 3 (ℓ1 distance for classical distributions and quantum states). We use the
notation ‖X−Y ‖1 to refer to (i) either statistical distance ∆(X,Y ) when variables X,Y are classical
distributions (ii) or trace distance Tr(X,Y ) whe they are quantum states.

Worst-case hardness. In this work, we consider fine-grained worst-case hardness, as introduced
below.

Definition 4. For a function T : N → R
+, a promise problem Π is said to be T (n)-hard, if for

any non-uniform classical-advice algorithm A with runtime at most T (n) over n-bit inputs, and any
sufficiently large n ∈ N, there exists an input x ∈ (ΠY ∪ΠN )∩{0, 1}n such that Pr[A(x) = χΠ(x)] <
2/3.

One can without loss of generality assume that the size of the advice is not larger than the
runtime. By setting λ = log n, one recovers the regular definition of worst-case hardness.

Complexity class QSZK. We recall the quantum state distinguishability problem below. We refer
to [Wat02] for more details.

Definition 5 (Quantum State Distinguishability). Let α, β ∈ [0, 1] such that α < β. Given
two quantum circuits C0 and C1, let ρ0 and ρ1 be the (mixed) quantum states that they produce by
running on all-zero states with the promise that either ‖ρ0− ρ1‖1 ≥ β (corresponds to no instances)
or ‖ρ0 − ρ1‖1 ≤ α (corresponds to yes instances). The QSDα,β problem is to decide which one is
the case.
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The above problem enjoys a polarization property. The lemma below is adapted from [Wat02,
SV].

Lemma 8. Let n be a positive integer. Let α, β : N → [0, 1], and θ : R → (1,+∞) be functions
of n such that θ := β2/α. There exists a deterministic classical algorithm Polarize that given a
pair of (quantum) circuits (C0, C1) as well as a unary parameter 1n, outputs a pair of (quantum)
circuits (P0, P1) such that

‖C0 |0〉 − C1 |0〉 ‖1 ≤ α⇒ ‖P0 |0〉 − P1 |0〉 ‖1 ≤ 2−n ,

‖C0 |0〉 − C1 |0〉 ‖1 ≥ β ⇒ ‖P0 |0〉 − P1 |0〉 ‖1 ≥ 1− 2−n .

Moreover, the runtime and output size of Polarize are of O(n log(8n)(|C0|+ |C1|)/ log(θ)) when n→
+∞.

There are various equivalent definitions of the complexity class QSZK. The following definition
suffices for our purposes.

Definition 6 (QSZK). The class QSZK is consisted of all promise problems that have many-to-one
polynomial-time reductions to QSD1/4,3/4.

All definitions and lemmas above can be restricted to classical algorithms. In this case, we
let SZK denote the corresponding classical complexity class and SD denote the statistical difference
problem (classical variant of QSD).

Cryptographic primitives. One-way functions are defined as follows:

Definition 7 (Non-Uniform One-Way Functions). Let T : N → R
+ and θ : N → [0, 1].

A family of non-uniform PPT algorithms F := {Fn}n∈N is said to be a (T, θ)-one-way function
(OWF) if for all sufficiently large n and any T (n)-time algorithm A, it holds that

Pr
x∼U{0,1}n

[F(A(F(x))) = F(x)] ≤ θ(n) .

Furthermore, we say that F is a θ-OWF for an algorithm A if the above inequality holds without
imposing any bound on the runtime of A. If the above equation only holds for all n in an infinite
subset of the natural numbers, i.e. S ⊆ N, then we say that F is an infinitely-often OWF.

When T = poly(n) and θ = negl(n), the above definition corresponds to the common definition of
one-way functions. If θ is 1− 1/nc for some constant c, this corresponds to weak one-way functions.
It is shown by [Yao82] that weak one-way functions imply one-way functions.

Below, we define efficiently samplable statistically far but computationally indistinguishable
quantum states (EFI).

Definition 8 (Non-Uniform EFI). Let T : N → R
+ and d,D : N → [0, 1] be functions. A non-

uniform (T,D, d)-EFI scheme is a QPT algorithm EFIh(1
n, b) that is given a classical poly(n)-size

advice h and a bit b, outputs a quantum state ρb, such that for any sufficiently large n ∈ N has the
following specifications:
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1. Computational indistinguishability. For all non-uniform (possibly quantum) T (n)-time al-
gorithms A:

∣∣∣Pr [A(ρ0) = 1]− Pr [A(ρ1) = 1]
∣∣∣ ≤ d(n).

2. Statistical Distance. ‖ρ0 − ρ1‖1 ≥ D(n).

Furthermore, we say that EFI is a (D, d)-EFI for an algorithm A, if the computational indistin-
guishability holds for A without requiring any bound of the runtime of A.

Remark 1. When restricted to classical algorithms, EFI pairs with D − d ≥ 1/poly(n) and T =
poly(n) imply the existence of one-way functions (e.g., see [Gol90,NR06, BDRV19]). The state of
the art for the quantum EFI pairs is more restricted. More precisely, an EFI pair with mixed
states and D2−

√
d ≥ O(1) implies quantum bit commitment (see [BQSY24, Corollary 8.8] for EFI

polarization and [BCQ23] for the generic transformation to construct quantum bit commitments
from EFI pairs).

In this work, we consider the inefficient-verifier one-way state generators.

Definition 9 (Non-Uniform One-Way State Generators). Let T : N→ R
+ and θ : N→ [0, 1].

A (T, θ)-one-way state generator (OWSG) is a tuple of algorithms G := (KeyGen,StateGen,Ver) with
the following specification:

- KeyGenh(1
n) → k: is a QPT algorithm that given the security parameter 1n and a poly(n)-size

classical advice h, outputs a classical string k ∈ {0, 1}n;
- StateGen(k) → ρk: is a QPT algorithm that given a classical string k, outputs an m-qubit
quantum state;

- Ver(k, ρ) ∈ {0, 1}: is a (possibly unbounded) algorithm that given a classical string k and a
quantum state ρ outputs either 0 or 1.

Further, they satisfy the following properties:

1. Correctness. Outputs of the samplers (KeyGen,StateGen) pass the verification with overwhelm-
ing probability, i.e.,

Pr
k←KeyGenh

ρk←StateGen(k)

[Ver(k, ρk) = 1] ≥ 1− negl(n) .

2. Security. For every non-uniform T (n)-time adversary A, and any polynomial t(n)

Pr
k←KeyGenh

ρk←StateGen(k)

k′←A(ρ⊗t
k ;h)

[
Ver(k′, ρk) = 1

]
≤ θ(n) .

Furthermore, we say that G is a θ-OWSG for an algorithm A if the inequality concerning security
(Property 2) holds for A without requiring any bound on the runtime of A. If the above inequality
only holds for all n in an infinite subset of the natural numbers, i.e. S ⊆ N, then we say that F is
an infinitely-often OWSG.
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A weak OWSG can be recovered by the above definition for T = poly(n) and θ = 1 − 1/nc for
some constant c. It is shown in [MY24] that weak OWSGs imply OWSGs.

Fine-Grained primitives. In fine-grained one-way functions, there is at most a polynomial gap
between the runtime of the function and runtime of the adversary.

Definition 10 (Fine-grained OWF). Let η > 0 be a real number and θ : N→ [0, 1]. A family of
non-uniform algorithms F := {Fn}n∈N is said to be a (η, θ)-fine-grained one-way function (FGOWF)
if for any O(T 1+η

F )-time algorithm A, for all sufficiently large n, it holds that

Pr
x∼U{0,1}n

[F(A(F(x))) = F(x)] ≤ θ(n) ,

where TF is the runtime of F. If θ is constant, we simply say that F is a weak η-FGOWF.

3 Lossy Mappings and Disguising Lemma

[Dru15] derives a quantitative approach (called disguising distribution lemma) to measure how
much information can be recovered from the ouput of a compressing mapping about its input,
based on the compression size; a distinguishing variant of Fano’s inequality. Such mappings are
indeed a special type of lossy mappings, an observation upon which Ball et al. [BBD+20] develop
their work.

In this section, we focus on variants of lossy mappings and their properties, and extend the
disguising lemma. In our analysis, we consider both randomized functions and quantum mappings.
All the statements hold with respect to both cases. For simplicity and generality, we only refer to
quantum mappings. We explicitly highlight the distinction when the analysis requires to distinguish
between the two cases.

Classically, a randomized function R : {0, 1}∗ → {0, 1}∗ is said to be ℓ-lossy for a class of
distributions X = {Xn}n∈N if I(Xn;R(Xn)) ≤ ℓ(n). Below, we also consider general mappings with
classical input and quantum output.

Definition 11 (Lossy Mapping). Let ℓ : N → R
+. Let R : {0, 1}∗ → S be a mapping, where

S = {0, 1}∗ (classical mapping) or S = MS∗ (quantum mapping). We say that R is ℓ-lossy for a
class of distributions X = {Xn}n∈N over {0, 1}∗, if it holds that

I(Xn;R(Xn)) ≤ ℓ(n) .

For the sake of simplicity, we say that R is ℓ-lossy, if it is ℓ-lossy for all distributions.

The results by [Dru15,BBD+20] rely on the lossiness of the mapping for all distributions. Such a
condition seems quite strong, in particular, for the multi-variate mappings over m-tuple input. We
simplify this condition in two different directions. First, we consider lossy mappings over a particular
class of distributions as follows:

Definition 12 (Splitting Lossy Mapping). Let ℓ : N→ R
+, m ∈ N and S0, S1 ⊆ {0, 1}∗ be two

disjoint sets. A mapping R is splitting ℓ-lossy supported on (S0, S1) if it is ℓ-lossy for the class of
distributions X = (X1, . . . ,Xm) such that for each i ∈ [m], either Supp(Xi) ⊆ S0 or Supp(Xi) ⊆ S1.
In other words, {X1,X2, · · · ,Xm} splits into S0-supported and S1-supported distributions.
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Remark 2. A lossy mapping as per Definition 11 is also a splitting lossy mapping.

Later, for the lossy reductions of a problem Π, we choose S0 and S1 as the sets ΠN and ΠY.
Splitting the distribution in such a way allows us to precisely calculate the lossiness of randomized
encodings.

In the rest of this section, we discuss the generalization of disguising distribution lemma in [Dru15]
and its improvement by [BBD+20]. In both of these results, the lossiness (compression in the for-
mer and lossiness in the latter) is considered as in Definition 11 with respect to all possible input
distributions. Instead, we adapt it for splitting lossy maps where the input distribution is uni-
form over a sparse set. This is obtained by a more refined analysis but yet very similar to those
of [Dru15,BBD+20]. Below, we have the main lemma of this section.

Lemma 9 (Extended Disguising Lemma). Let n,m,m0,m1 be positive integers such that m =
m0 +m1 + 1, and R : {0, 1}∗ → MS∗ be any quantum mapping. Further, let S0, S1 ⊆ {0, 1}n be two
disjoint sets, d be a positive integer, ε > 0 be real, and s := ⌈n ln 2/(2ε2)⌉.

For any choice of positive real ℓ, if R is splitting ℓ-lossy for all ds-uniform distributions supported
on (S0, S1), then there exist two collections K1, · · · ,Ks and T1, · · · , Ts of multisets of d elements
respectively contained in S0 and S1, such that

- for any y ∈ S0, it holds that

Ea∼U[s],π∼Sm

[∥∥∥R
(
π
(
U⊗m0
Ka

, y,U⊗m1
Ta

))
−R

(
π
(
U⊗(m0+1)
Ka

,U⊗m1
Ta

))∥∥∥
1

]
≤ δ +

2(m+ 1)

d+ 1
+ 2ε ;

- and for any y ∈ S1, it holds that

Ea∼U[s],π∼Sm

[∥∥∥R
(
π
(
U⊗m0
Ka

, y,U⊗m1
Ta

))
−R

(
π
(
U⊗m0
Ka

,U⊗(m1+1)
Ta

))∥∥∥
1

]
≤ δ +

2(m+ 1)

d+ 1
+ 2ε ,

where

δ := min

{√
ℓ ln 2

2m
, 1− 2−

ℓ
m
−2
}
.

Note that the states inside the trace distance are mixed states since the inputs of R are ran-
domized classical distributions.

The proof requires some background definitions and lemmas. Similar to [Dru15,BBD+20], we
define distributional stability as follows.

Definition 13. Let n,m,m0,m1 be positive integers such that m = m0+m1+1. For a real δ ∈ [0, 1],
a quantum mapping R : {0, 1}mn → MS∗ is said to be δ-quantumly-distributionally stable (δ-QDS)
with respect to two distributions (D0,D1) over {0, 1}n if the following holds:

Ey∼D0,π∼Sm

[∥∥∥R
(
π
(
D⊗m0

0 , y,D⊗m1
1

))
−R

(
π
(
D⊗(m0+1)

0 ,D⊗m1
1

)) ∥∥∥
1

]
≤ δ .

Note that the order of the pair (D0,D1) matters. Furthermore, when m1 = 0, we simply say that
the mapping is δ-QDS with respect to D0.
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Below, we recall an adaptation of [Dru15, Lemma 8.10].

Lemma 10. Assume that R : {0, 1}m·n → MS∗ satisfies the properties in Lemma 9 for m1 = 0.
Then R is δ-QDS with respect to any ds-uniform distribution D0 supported on either S0 or S1.

In the original lemma from [Dru15], compression is used to bound the entropy of the mutual
information. However, note that this can be argued directly from splitting lossiness, and that any
restriction on the input distributions will give a result for the same restricted case.

The following lemma is the generalization of the above one.

Lemma 11. Assume that R : {0, 1}mn → MS∗ satisfies the properties in Lemma 9. Then R is δ-
QDS with respect to any ds-uniform independent distributions (D0,D1) each supported on either S0

or S1.

Proof. The proof is similar to that of [BBD+20, Proposition B.1]. Let π ∈ Sm be a fixed permuta-
tion. One can rewrite it as the composition of two partial permutations π0 and π1, i.e., π = π0 ◦ π1,
such that π1 only acts on the last m1 arguments of the input. Let ρπ(y) be as follows

ρπ(y) := R
(
π
(
D⊗m0

0 , y,D⊗m1
1

))
.

For y, y′ ∼ D0, two independent random variables, and π ∼ Sm, we want to prove that

Ey,π

[∥∥∥ρπ(y)− ρπ(y
′)
∥∥∥
1

]
≤ δ .

Note that it is enough to bound the conditional distributions since

Ey,π

[∥∥∥ρπ(y)− ρπ(y
′)
∥∥∥
1

]
= Eπ

[
Ey,π|π1

[∥∥∥ρπ(y)− ρπ(y
′)
∥∥∥
1

]]
,

by the law of total probability.
LetR′(x1, x2, · · · , xm0+1) be the mapping that first samples π then evaluates R

(
π1
(
x1, x2, · · · , xm0+1,D⊗m1

1

))
.

For any fixed π1, we show that R′ is splitting ℓ-lossy for all ds-uniform distributions over either S0

or S1. Indeed, let (X1, · · · ,Xm0+1) be independent ds-uniform random variables with Supp(Xi) ⊆ S0

or Supp(Xi) ⊆ S1 for each i ∈ [m0+1], and (Z1, · · · ,Zm1) ∼ D⊗m1
1 , thus Supp(Zi) ⊆ Supp(D1) ⊆ Sj

for all i ∈ [m1] and some j ∈ {0, 1}. By the splitting lossiness of R for any ds-uniform distribution,
we can bound the loss of R′:

ℓ ≥ Iq(π1(X1, · · · ,Xm0+1,Z1, · · · ,Zm1);R(π1(X1, · · · ,Xm0+1,Z1, · · · ,Zm1)))

= Iq(X1, · · · ,Xm0+1,Z1, · · · ,Zm1 ;R(π1(X1, · · · ,Xm0+1,Z1, · · · ,Zm1)))

≥ Iq(X1, · · · ,Xm0+1;R(π1(X1, · · · ,Xm0+1,Z1, · · · ,Zm1))).

Finally, by Lemma 10 a splitting lossy map must also be δ-QSD, thus

Ey,π|π1

[∥∥∥ρπ(y)− ρπ(y
′)
∥∥∥
1

]
= Ey,π|π1

[∥∥∥R
(
π
(
D⊗m0

0 , y,D⊗m1
1

))
−R

(
π
(
D⊗m0

0 , y′,D⊗m1
1

)) ∥∥∥
1

]

= Ey,π0

[∥∥∥R′
(
D⊗m0

0 , y
)
−R′

(
D⊗m0

0 , y′
) ∥∥∥

1

]

≤ δ .
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If a mapping is distributionally stable with respect to a pair of distributions, then one can
“sparsify” the distributions while nearly keeping the stability.

Lemma 12. Let n,m,m0,m1, ℓ, S0, S1, R and δ be as in Lemma 9. Let D0 and D1 be two indepen-

dent distributions with supports over S0 and S1, respectively. Let {x(0)i }i∈[d+1] and {x(1)i }i∈[d+1] be

independent samples from D0 and D1, respectively. For each j ∈ {0, 1}, let y∗j := x
(j)
i∗ be uniformly

chosen from {x(j)i }i∈[d+1] and let D̂j be the uniform distribution over the multiset {x(j)i }i∈[d+1]\{i∗}.
Then it holds that

Eπ∼Sm

[∥∥∥R
(
π
(
D̂⊗m0

0 , y∗0 , D̂⊗m1
1

))
−R

(
π
(
D̂⊗(m0+1)

0 , D̂⊗m1
1

)) ∥∥∥
1

]
≤ δ +

2m0 + 1

d+ 1
,

Eπ∼Sm

[∥∥∥R
(
π
(
D̂⊗m0

0 , y∗1 , D̂⊗m1
1

))
−R

(
π
(
D̂⊗m0

0 , D̂⊗(m1+1)
1

)) ∥∥∥
1

]
≤ δ +

2m1 + 1

d+ 1
.

Proof. We prove the first statement. The other one is implied similarly. Let D̃0 denote the uni-

form distribution over {x(0)i }i∈[d+1]. For any fixed set of of multisets as above and any choice of
permutation π and quantum mapping R, we have

∥∥∥R
(
π
(
D̃⊗(m0+1)

0 , D̂⊗m1
1

))
−R

(
π
(
D̂⊗(m0+1)

0 , D̂⊗m1
1

)) ∥∥∥
1

≤
∥∥∥D̃⊗(m0+1)

0 ⊗ D̂⊗m1
1 − D̂⊗(m0+1)

0 ⊗ D̂⊗m1
1

∥∥∥
1

≤
∥∥∥D̃⊗(m0+1)

0 − D̂⊗(m0+1)
0

∥∥∥
1

≤ (m0 + 1)
∥∥D̃0 − D̂0

∥∥
1
,

where we used the quantum data processing inequality for the first two upper bounds, and the
property of tensor product for the last one. Since both D̂0 and D̃0 are classical, their trace distance
coincides with their statistical distance. Therefore, we have

∥∥D̃0 − D̂0

∥∥
1
=

1

2

∑

x∈{x(0)
i }i∈[d+1]

|Pr
D̃0

(x)− Pr
D̂0

(x)|

=
1

2(d+ 1)
+

1

2

∑

x∈{x(0)
i }i∈[d+1]\{i∗}

∣∣∣∣
1

d+ 1
− 1

d

∣∣∣∣

=
1

d+ 1
.

Similarly, it holds that

∥∥∥R
(
π
(
D̃⊗m0

0 , y∗0 , D̂⊗m1
1

))
−R

(
π
(
D̂⊗m0

0 , y∗0 , D̂⊗m1
1

)) ∥∥∥
1
≤ m0

d+ 1
.
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From the triangle inequality, it follows that
∥∥∥R
(
π
(
D̂⊗m0

0 , y∗0, D̂⊗m1
1

))
−R

(
π
(
D̂⊗(m0+1)

0 , D̂⊗m1
1

)) ∥∥∥
1

≤
∥∥∥R
(
π
(
D̂⊗m0

0 , y∗0, D̂⊗m1
1

))
−R

(
π
(
D̃⊗m0

0 , y∗0, D̂⊗m1
1

))∥∥∥
1

+
∥∥∥R
(
π
(
D̃⊗m0

0 , y∗0 , D̂⊗m1
1

))
−R

(
π
(
D̃⊗(m0+1)

0 , D̂⊗m1
1

)) ∥∥∥
1

+
∥∥∥R
(
π
(
D̃⊗(m0+1)

0 , D̂⊗m1
1

))
−R

(
π
(
D̂⊗(m0+1)

0 , D̂⊗m1
1

)) ∥∥∥
1

<
∥∥∥R
(
π
(
D̃⊗m0

0 , y∗0, D̂⊗m1
1

))
−R

(
π
(
D̃⊗(m0+1)

0 , D̂⊗m1
1

)) ∥∥∥
1
+

2m0 + 1

d+ 1
.

Recall that R is splitting ℓ-lossy with respect to all ds-uniform distributions supported on (S0, S1).
Therefore, by Lemma 11 it is δ-QSD with respect to all ds-uniform pair of distributions each
supported on either S0 or S1, including (D̃0, D̂1). Finally, by taking expectation from both sides
above with respect to π, and using the fact that R is δ-QSD with respect to (D̃0, D̂1), one obtains
the claimed upper bound.

Proof of Lemma 9. Consider the following two-player, simultaneous-move, zero-sum game:

- Player 1: chooses a pair of multisets K ⊆ S0 and T ⊆ S1, each of size d.
- Player 2: chooses an element y ∈ S0 ∪ S1

- Payoff: if y ∈ S0, Player 2 gains

Eπ∼Sm

[∥∥∥R
(
π
(
U⊗m0
K , y,U⊗m1

T

))
−R

(
π
(
U⊗(m0+1)
K ,U⊗m1

T

))∥∥∥
1

]
,

otherwise, Player 2 gains

Eπ∼Sm

[∥∥∥R
(
π
(
U⊗m0
K , y,U⊗m1

T

))
−R

(
π
(
U⊗m0
K ,U⊗(m1+1)

T

))∥∥∥
1

]
.

Consider a ds-uniform strategy for Player 2, i.e. a distribution Y of y that is uniform over a
multiset of pure strategies of size ds. We explain a strategy (K,T ) for Player 1 that bounds the
expected payoff. Player 1 chooses K by sampling d independent instances of the restriction of Y
to S0, and chooses T by sampling d independent instances of the restriction of Y to S1. The expected
payoff is

E := Pr
y∼Y

(y ∈ S0) Eπ,K,T

[∥∥∥R
(
π
(
U⊗m0
K , y,U⊗m1

T

))
−R

(
π
(
U⊗(m0+1)
K ,U⊗m1

T

))∥∥∥
1

∣∣∣y ∈ S0

]

+ Pr
y∼Y

(y ∈ S1) Eπ,K,T

[∥∥∥R
(
π
(
U⊗m0
K , y,U⊗m1

T

))
−R

(
π
(
U⊗m0
K ,U⊗(m1+1)

T

))∥∥∥
1

∣∣∣y ∈ S1

]
.

Let x
(0)
1 , x

(0)
2 , · · · , x(0)d+1 and x

(1)
1 , x

(1)
2 , · · · , x(1)d+1 be d+ 1 independent samples from Y |S0 and Y |S1 ,

respectively. Sample i∗ $← [d + 1] and for j ∈ {0, 1}, let y∗j := x
(j)
i∗ . Let Ŷ0 and Ŷ1 be the uniform

distributions over the multisets {x(0)i }i∈[d+1]\{i∗} and {x(1)i }i∈[d+1]\{i∗}, respectively. For j ∈ {0, 1},
we have that (y∗j , Ŷ0, Ŷ1) ∼ (Y

∣∣
Sj ,K,T ). Then, by Lemma 12, we have

Eπ

[∥∥∥R
(
π
(
Ŷ⊗m0
0 , y, Ŷ⊗m1

1

))
−R

(
π
(
Ŷ⊗(m0+1)
0 , Ŷ⊗m1

1

)) ∥∥∥
1

∣∣∣ y ∈ S0

]
≤ δ +

2m0 + 1

d+ 1
,
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and

Eπ

[∥∥∥R
(
π
(
Ŷ⊗m0
0 , y, Ŷ⊗m1

1

))
−R

(
π
(
Ŷ⊗m0
0 , Ŷ⊗(m1+1)

1

)) ∥∥∥
1

∣∣∣ y ∈ S1

]
≤ δ +

2m1 + 1

d+ 1
.

Therefore, we obtain E ≤ δ + 2(m+ 1)/(d + 1).

Above, we showed that for every ds-uniform strategy for Player 2, there exists a strategy for
Player 1 that bounds the expected payoff by δ+2(m+1)/(d+1). Let M := [Mij ]i,j be the matrix
such that Mij corresponds to the payoff when Player 1 outputs i and Player 2 outputs j. By
Lemma 2, we have

δ + 2(m+ 1)/(d + 1) ≥ max
Q∈Qds

min
i

Ej∼Q[Mij ] ≥ ω(M)− ε(Mmax −Mmin) ≥ ω(M)− ε ,

where Qds is the set of all ds-uniform strategies for Player 2. It follows that ω(M) ≤ δ + 2(m +
1)/(d + 1) + ε.

Now we use Lemma 2 in other way around. In fact, the number of possible choices for Player 1
is |S0 ∪ S1| ≤ 2n. Therefore, Lemma 2 asserts that there exists a s-uniform strategy for Player 2
such that for any possibly mixed strategy for Player 1, the expected payoff is at most ε-far from
the value of the game ω(M). In other words, for this particular strategy of Player 1, the expected
payoff is always at most

ω(M) + ε ≤ δ + 2(m+ 1)/(d + 1) + 2ε .

Recall that a s-uniform strategy is, by definition, a uniformly sampled element from a size-s mul-
tiset of choices of the player. Note that Player 1 chooses a pair (K,T ). Therefore, this strategy is
essentially a uniform distribution over some multiset {(K1, T1), · · · , (Ks, Ts)}, which concludes the
proof.

4 Mildly-Lossy Problems

In this section, we first put forward a new abstraction, called f -distinguisher reduction, that is
suitable for our analysis and implies definitions of f -reductions (adapted from Drucker [Dru15]) as
well as Karp and non-adaptive Turing reductions. Then, by considering the lossiness property(as
defined in Section 3), we introduce mildly-lossy problems which will be the core of our analysis in
the subsequent sections. Our analysis applies to both classical and quantum reductions. For the
sake of simplicity and generality, we only refer to quantum reductions and we explicitly highlight
the distinction when necessary.

4.1 f-Distinguisher Reductions

A Karp decision-to-decision reduction R from Π to Σ has the following property: χΠ(x) = 1 if
and only if χΣ(R(x)) (up to some error). In our work, the target problem Σ is not restricted and
does not play any roles. Therefore, we consider the following more general notion: a mapping R is a
reduction if there exists a (possibly unbounded) distinguisher D that can tell R(x) and R(x′) apart,
when χΠ(x) 6= χΠ(x′) (up to some error). A reduction is therefore a mapping that preserves the
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distinguishing power of the unbounded algorithm. 1 In other words, it preserves some information
about the inputs. When the reduction is to a search problem, there must also exist an inverting
algorithm such that given x and the solution (or witness) of R(x), outputs χΠ(x). To include
such reductions, we generalize this definition once more by allowing the distinguisher to have one
and only one of the instances x or x′. To see how this helps, we give an example: the reduction
from ParamSat to MaxSat. In ParamSat, an instance x := (ϕ, k), with ϕ a CNF formula and k
an integer, is a YES instance if and only if at least k clauses of ϕ are satisfiable. The MaxSat

problem asks to find an assignment that satisfies the maximum number of clauses. Consdier the
decision-to-search reduction as follows: given an instance x := (ϕ, k) of ParamSat, the outputs of
the reduction is ϕ. By having k and an assigment wϕ satisfying the maximum number of clauses
of ϕ (solution of ϕ as a MaxSat instance), it computes χParamSat(x) by comparing k and the
number of satified clauses by wϕ. Note that it is necessary for the inverting algorithm to know k.
In this subsection, we show that such reductions can be captured by the generalized distinguisher
reductions:

Definition 14 (f -Distinguisher Reduction). Let n,m be positive integers, and µ : N → [0, 1]
be a function of n. Let f : {0, 1}m → {0, 1}, and Π be a promise problem. A (µ, fm)-distinguisher
reduction for Π is a mapping R : {0, 1}∗ → S, where S = {0, 1}∗ (classical) or S = MS∗ (quantum),
for which there exists an unbounded distinguisher D, such that for all (x1, · · · , xm) and (x′1, · · · , x′m)
in ((ΠY ∪ΠN ) ∩ {0, 1}n)m where f (χΠ(x1), · · · , χΠ(xm)) 6= f (χΠ(x′1), · · · , χΠ(x′m)), we have

Ei∼U[m]

∣∣Pr[1← D(hi, R(x1, · · · , xm))]− Pr
[
1← D(hi, R(x′1, · · · , x′m))

]∣∣ ≥ 1− 2µ(n) ,

where hi := (xi, {χΠ(xj)}j , {χΠ(x′j)}j). We call µ the error of the reduction.

f-Reductions

Drucker [Dru15, Definition 8.2] defines an f -compression reduction for a promise problem Π in
a somewhat similar fashion that we define f -distinguisher reductions: as a mapping that sends an
instances x1, · · · , xm of size n to a quantum state ρ, such that there exists a binary measurementM
(not necessarily efficient) that outputs f (χΠ(x1), · · · , χΠ(xm)) with probability more than 1 − µ.
We adapt this definition as below.

Definition 15 (f -Reduction). Let n,m be positive integers, and µ : N→ [0, 1] be a function of n.
Let f : {0, 1}m → {0, 1}, and Π be a promise problem. A (µ, fm)-reduction for Π is a mapping R :
{0, 1}mn → S, where S = {0, 1}∗ (classical) or S = MS∗ (quantum), for which there exists a family
of unbounded algorithms {Mk}k∈N, such that for all (x1, · · · , xm) ∈ ((ΠY ∪ΠN) ∩ {0, 1}n)m,

Pr [M(R(x1, · · · , xm)) = f (χΠ(x1), · · · , χΠ(xm))] ≥ 1− µ(n) ,

where the probability is taken over the randomness of R andM. We call µ the error of the reduction.2

In the following, we show that f -reductions are special cases of f -distinguisher reductions (per
Definition 14) when the hint hi is set to be empty.

1Note that and unbounded algorithm can always distinguish YES and NO instances of a problem by simply solving
them.

2When considering quantum mappings,M can be a binary quantum measurement.
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Lemma 13. Let f : {0, 1}m → {0, 1}, and Π be a promise problem. If R is a (µ, fm)-reduction
for Π, then R is also a (µ, fm)-distinguisher reduction for Π.

Proof. Recall that for an f -reduction there exists an algorithmM such that

Pr[M(R(x1, · · · , xm)) = f (χΠ(x1), · · · , χΠ(xm))] ≥ 1− µ(n) ,

which implies thatM can distinguishR(x1, · · · , xm) fromR(x′1, · · · , x′m) with probability at least 1−
2µ. Therefore, there exists an unbounded distinguisher D such that for hi per Definition 14, we have

Ei∼U[m]

∣∣Pr[1← D(hi, R(x1, · · · , xm))]− Pr
[
1← D(hi, R(x′1, · · · , x′m))

]∣∣

≥
∣∣Pr[1←M(R(x1, · · · , xm))]− Pr

[
1←M(R(x′1, · · · , x′m))

]∣∣ ≥ 1− 2µ ,

where for the first inequality we used the fact that revealing more information to the distinguisher
does not decrease its advantage.

Turing and Karp Reductions

In this part, we focus on (non-adaptive) Turing and Karp reductions, demonstrating that they
are f -distinguisher reductions. This supports the generality of Definition 14 and will be used in
Section 8.

In the following, we first recall the definition of Karp and (non-adaptive) Turing reductions in
Definitions 16 and 17, and prove in Lemmas 14 and 15 that the two are f -distinguisher reductions.

Definition 16 (Non-Adaptive Turing f -Reduction). Let n be a positive integer and µ : N→
[0, 1] be a function of n. Let f : {0, 1}m → {0, 1}, Π be a promise problem, and Σ be a promise
or search problem. A non-adaptive (µ, fm)-Turing reduction from Π to Σ consists of an algorithm
RTuring that on input (x1, . . . , xm), where xi ∈ {0, 1}n for i ∈ [m], outputs (y1, . . . , yk) ∈ {0, 1}∗ and
a circuit C such that

- if Σ is a promise problem:

Pr [C(y1, χΣ(y1), . . . , yk, χΣ(yk)) = f (χΠ(x1), . . . , χΠ(xm))] ≥ 1− µ(n) .

- if Σ is a search problem:

Pr [C(y1, wy1 , . . . , yk, wyk) = f (χΠ(x1), . . . , χΠ(xm))] ≥ 1− µ(n) ,

where wyi is the witness of yi in Σ for all i ∈ [k].

The definition above can be generalized in the following manner: yi’s can be instances of different
problems Σi’s instead of one single problem Σ. All our results also hold in this setting.

Definition 17 (Karp f -Reduction). Let n be a positive integer and µ : N→ [0, 1] be a function
of n. Let f : {0, 1}m → {0, 1} and Π be a promise problem and Σ be a promise or search problem. A
(µ, fm)-Karp reduction from Π to Σ consists of an algorithm RKarp and a circuit C, where RKarp

on input (x1, . . . , xm), where xi ∈ {0, 1}n for i ∈ [m], outputs y ∈ {0, 1}∗ such that
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- if Σ is a promise problem:

Pr [C(y, χΣ(y)) = f (χΠ(x1), . . . , χΠ(xm))] ≥ 1− µ(n) .

- if Σ is a search problem:

Pr [C(y,wy) = f (χΠ(x1), . . . , χΠ(xm))] ≥ 1− µ(n) ,

where wy is the witness of y in Σ.

Note that in a Karp reduction, the circuit C does not depend on the instance x. In fact, in a
standard definition of a Karp reduction to a promise problem, C simply outputs χΠ(x).

In the following lemma, we show that all non-adaptive Turing reductions are f -distinguisher
reduction.

Lemma 14 (Turing f -Reduction is f -Distinguisher Reduction). Let µ : N → [0, 1]. Let Π
be a promise problem and Σ be a promise or search problem. If RTuring is a non-adaptive (µ, fm)-
Turing reduction (Definition 16) from Π to Σ, then it is (µ, fm)-distinguisher reduction for Π.

Proof. The distinguisher D in Figure 1 satisfies the definition of (µ, fm)-distinguisher reductions
(Definition 14). This is because if B = ((y1, . . . , yk), C) is an output of RTuring(x1, . . . , xm), then
by the correctness of the reduction, it holds with high probability that
C(y1, χΣ(y1), . . . , yk, χΣ(yk)) = f (χΠ(x1), . . . , χΠ(xm)), if Σ is a promise problem, and simi-
larly C(y1, wy1 , . . . , yk, wyk) = f (χΠ(x1), . . . , χΠ(xm)), if Σ is a search problem.

Algorithm 1 Distinguisher D for non-adaptive Turing reductions.

Parameters: n,m, f,Π,Σ
Input: A pair (hi, B), where hi := (xi, {χΠ(xj)}j , {χΠ(x′

j)}j) for a uniformly random i ∈ [m] and B =
((y1, . . . , yk), C).

Promise: Either B ← R(x1, . . . , xm) or B ← R(x′
1, . . . , x

′
m) for some (x′

1, . . . , x
′
m) ∈ ({0, 1}n)m such

that f (χΠ(x1), . . . , χΠ(xm)) 6= f (χΠ(x′
1), . . . , χΠ(x′

m)).
Output: A bit b.

1: Parse hi := (xi, {χΠ(xj)}j , {χΠ(x′
j)}j) and B = ((y1, . . . , yk), C).

2: if Σ is a promise problem: then

3: Compute χΣ(y1), . . . , χΣ(yk).

4: Compute b̂← C(y1, χΣ(y1), . . . , yk, χΣ(yk)).
5: else

6: Compute the witnesses wy1 , . . . , wyk in Σ.

7: Compute b̂← C(y1, wy1 , . . . , yk, wyk).

8: if b̂ = f(χΠ(x1), . . . , χΠ(xm)) then
9: Return 1.
10: else

11: Return 0.

Lemma 15 (RKarp is f -Distinguisher Reduction). Let µ : N → [0, 1]. Let Π be a promise
problem and Σ be a promise or search problem. If RKarp is a (µ, fm)-Karp reduction (Definition 17)
from Π to Σ, then it is (µ, fm)-distinguisher reduction for Π.

Proof. Since any Karp reduction is a Turing reduction, the statement holds due to Lemma 14.
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4.2 Mildly-Lossy Problems

To analyze the lossiness of f -distinguisher reductions, we fix the set of functions f to those ones
that are invariant under permuting their inputs.

Definition 18 (Permutation-Invariant Boolean Function). A Boolean function f : {0, 1}m →
{0, 1} is called permutation-invariant if for every π ∈ Sm, it holds that f(π(b1, b2, · · · , bm)) =
f(b1, b2, · · · , bm).

This set of functions is of great interest. The functions And,Or, and Maj that were consid-
ered in [Dru15,BBD+20] are all non-constant permutation-invarant. Moreover, the (non-monotone)
functions Parity and Modk are of this type as well as Thresholdk.

We use the following technical lemma about non-constant permutation-invariant functions.

Lemma 16. Let f : {0, 1}m → {0, 1} be a non-constant permutation-invariant function. Then there
exists an integer 1 ≤ p ≤ m such that

f( 1, 1, · · · , 1︸ ︷︷ ︸
p−1

, 0, 0, · · · , 0) = 0 , and f( 1, 1, · · · , 1︸ ︷︷ ︸
p

, 0, 0, · · · , 0) = 1 .

We let p(f) denote the minimum choice of such an integer.

Proof. The set {0, 1}m can be partitioned into m+1 equivalence classes where each class consists of
strings with the same number of 1’s. We note that the result of a permutation on an input falls in the
same equivalence class. Therefore, since the function is permutation-invariant, then the evaluation
of f over each input is determined by its class. Because the function is non-constant, there must
exist two consecutive classes (the classes can be ordered by the number of 1’s that they represent)
with different evaluation under f . This completes the proof.

Finally, we introduce the notion of mildly-lossy problems which are promise problems that admit
lossy f -distinguisher reductions where f is a non-constant permutation-invariant function.

Definition 19 (Mildly-Lossy Problems). Let n,m be positive integers, λ, T, γ be positive reals,
and µ ∈ [0, 1/2). A promise problem Π is said to be (T, µ, fm, λ, γ)-mildly-lossy if there exists a non-
uniform (µ, fm)-distinguisher reduction R (per Definition 14) for Π with the following properties:

1. f is some non-constant permutation-invariant function f : {0, 1}m → {0, 1}, and
2. the reduction R runs in time T , and
3. and R is splitting mλ-lossy (per Definition 12) supported on (ΠY ,ΠN ), for all pairwise inde-

pendent (29mn/γ3)-uniform distributions over n-bit strings.

We explicitly mention the type of the reduction R (classical or quantum) when the distinction is
necessary. Also, we interchangeably say that the reduction R as above is mildly-lossy.

Note that the sparseness is controlled by the parameter γ. In the original full-fledged lossiness, γ
is exponentially small. However, to obtain one-way functions, it suffices that γ be roughly bounded
by poly(1/T, 1/n) (see section 9 for more details). When considering polynomial-time reductions,
the distribution in indeed very sparse, with a support of polynomial size.

Recall δ from the upper bound for splitting lossy functions in Lemma 9. We include it here for
clarity as it will be frequently used in all sections.
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Definition 20. We let δ : R+ → R
+ to be the following function

δ(λ) := min

{√
λ ln 2

2
, 1− 2−λ−2

}
.

5 Zero-Knowledgeness from Mildly-Lossy Problems

In this section, we show that lossy problems admit Karp reductions to the statistical difference prob-
lem or the quantum state distinguishability problem, depending on the type of the lossy reduction.
We provide a fine-grained analaysis. When restricted to polynomial-time And-compression reduc-
tions, this recreates the result of Drucker [Dru15, Theorem 8.14]: roughly, if a promise problem Π
has a (quantum) polynomial-time And-compression reduction, then Π must belong to SZK (resp.,
QSZK). Similar statement holds for the And- or Maj-lossy reductions (see [BBD+20]). We note
that our result holds for any non-constant permutation-invarinat function, requires less restricted
notion of lossiness, and allows superpolynomial-time reductions.

Theorem 1. Let Π be (T, µ, fm, λ, γ)-mildly-lossy. Assume that θszk := (1 − 2µ)2/(δ(λ) + γ) > 1,
with δ(λ) as in Definition 20. Then Π reduces to a problem in QSZK in time O((T+m2n)/(γ log θszk))
and with a classical advice of size 4mn/γ as described in Algorithm 2. Moreover, the reduction is
deterministic (but non-uniform) and Π reduces to SZK if Π is lossy with respect to a classical
reduction.

Algorithm 2 Reduction from Π to QSD1/4,3/4.

Parameters: n,m, µ, f, λ, γ,R,Π as in Definition 19. Further

S0 := ΠN ∩ {0, 1}
n, S1 := ΠY ∩ {0, 1}

n, ε :=
γ

4
, d :=

⌈
m+ 1

ε

⌉
, s :=

⌈
n ln 2

2ε2

⌉
,

and K1, · · ·Ks, T1, · · · , Ts as in Lemma 9.
Input: An instance y ∈ {0, 1}n.
Advice: p := p(f) as in Lemma 16, bY , bN ∈ {0, 1} respectively representing whether ΠY ∩ {0, 1}

n and ΠN ∩{0, 1}
n

are empty. Ka, Ta, π for some uniformly chosen a ∈ [s] and π ∈ Sm.
Output: A pair of circuits (C0, C1).

1: If bN = 1, return (Y0, Y1) where ‖Y0 − Y1‖1 ≤ 1/4.
2: If bY = 1, return (N0, N1) where ‖N0 −N1‖1 ≥ 3/4.

3: Let Ĉ0 be the following circuit: it samples x̃ ∼
(
U⊗m−p+1
Ka

,U⊗p−1
Ta

)
, then it outputs R(π(x̃)).

4: Let Ĉ1 be the following circuit: it samples x̃ ∼
(
U⊗m−p
Ka

, y,U⊗p−1
Ta

)
, then it outputs R(π(x̃)).

5: Compute (C0, C1)← Polarize(Ĉ0, Ĉ1, 1
2).

6: Return (C0, C1).

Remark 3 (Input-output type of the circuits). Consider the two circuits (Ĉ0, Ĉ1) in Algorithm 2,
Lines 3 and 4. When R is a randomized reduction, the two circuits are also randomized. Part
of their randomness input is used to sample x̃ and the other part is fed to R. Let κ be the size
of the total randomness. For r ∈ {0, 1}κ and any b ∈ {0, 1}, we let Ĉb(r) denote the outcome
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of Ĉb given the randomness r. On the other hand, when R is quantum, the circuits will be mixed
algorithms; classical randomness is required for sampling x̃. Let κ′ be the size of total randomness.1

For any r ∈ {0, 1}κ′
and any b ∈ {0, 1}, we let the mixed outcome of Ĉb be Ĉb |r,0〉 where |0〉 is some

appropriate-size ancilla, emphasizing its mixed classical-quantum nature. When it is not relevent,
we drop the dependency on r for simplification.

Proof of Theorem 1. In the following, we assume that R is quantum. The classical case is similar
with the only difference being the type of the inputs and outputs of (Ĉ0, Ĉ1).

Consider the case y ∈ ΠY . We bound the ℓ1 distance (per Definition 3) of the outcomes of Ĉ0

and Ĉ1 from below. Sample a uniform coin b ∼ U{0,1}, and let z ← Ĉb |r,0〉 where r follows
the uniform distribution. We drop the dependency on r for simplification. Let A be a (possibly
unbounded) distinguisher that takes z as input and guesses which circuit (Ĉ0 or Ĉ1) is used to
compute z. Let A be the quantum distinguisher of the (µ, fm)-distinguisher reduction (that comes
from Definition 19) forΠ. On the one hand, if z is computed by Ĉ0, we have that x̃ := (x1, · · · , xm) ∼(
U⊗m−p+1
Ka

,U⊗p−1Ta

)
with Ka ⊆ ΠN ∩ {0, 1}n and Ta ⊆ ΠY ∩ {0, 1}n. Then, since x̃ contains p − 1

YES instances by Lemma 16, for any π ∈ Sm, we have

f(π(χΠ(x1), · · · , χΠ(xm))) = 0 .

On the other hand, if z is computed by Ĉ1, we have that x̃ contains one more YES instance y ∈
ΠY ∩ {0, 1}n, therefore,

f(π(χΠ(x1), · · · , χΠ(xm))) = 1 .

Moreover, revealing π with the description of the circuits does not decrease the success probability
of the distinguisher, thus by the quantum f -distinguishability of the reduction, we have

‖Ĉ0 |0〉 − Ĉ1 |0〉 ‖1 ≥ Ei∼U[m]

∣∣∣Pr
[
1← D(xi, Ĉ0 |0〉)

]
− Pr

[
1← D(xi, Ĉ1 |0〉)

]∣∣∣
≥ 1− 2µ(n) .

Now, we discuss the case of y ∈ ΠN . We consider a modification of the distinguishing game where
the random variables a and π are also given to the distinguisher. Revealing a, π along with z does not
decrease the success probability of the distinguisher, thus we can bound the original distinguishing
probability by the distinguishing probability of the new task. It holds that

‖Ĉ0 |0〉 − Ĉ1 |0〉 ‖1 ≤
∥∥∥R
(
π
(
U⊗m−p+1
Ka

,U⊗p−1Ta

))
−R

(
π
(
U⊗m−pKa

, y,U⊗p−1Ta

))∥∥∥
1
,

By taking the expectation over a and π, we have

‖Ĉ0 |0〉 − Ĉ1 |0〉 ‖1 ≤ Ea∼U[s],π∼Sm

[∥∥∥R
(
π
(
U⊗m−p+1
Ka

,U⊗p−1Ta

))
(7)

−R
(
π
(
U⊗m−pKa

, y,U⊗p−1Ta

)) ∥∥∥
1

]
.

By our choice of ε, d, s, K1, . . . ,Ks, T1, · · · , Ts and Lemma 9, we conclude that

‖Ĉ0 |0〉 − Ĉ1 |0〉 ‖1 ≤ δ +
2(m− p+ 1)

d+ 1
+ 2ε ≤ δ + γ .

1Note that κ and κ′ are possibly different depending on how much classical randomness R requires.
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Let α := (δ+ γ) and β := (1− 2µ). Above, we proved that (Ĉ0, Ĉ1) is an instance of QSDα,β of

size (T+m2n)/γ. By assumption, we have θszk = β2/α. Therefore, the runtime of Polarize(Ĉ0, Ĉ1, 1
2)

and its output size are both of O((T +m2n)/(γ log θszk)) according to Lemma 8.

6 One-Way Functions from Mildly-Lossy Problems

In this section and in Section 7, we discuss how mildly-lossy problems can be used to build crypto-
graphic primitives. In Theorem 2, we construct EFI schemes. The statement allows both classical
reductions and quantum reductions. We immediately obtain one-way functions (or quantum bit
commitments if the reduction is quantum), by taking into account the known transforms from EFI
schemes (see Remark 1). However, the required condition on the lossiness is highly restrictive. More
precisely, λ must be a small constant. In Theorem 3 and 4, we explain how one can tackle this issue
using different constructions. The construction in Theorem 3 is inspired by [BBD+20], and resist
adaptations to the quantum settings. On the other hand, the construction in Theorem 4 is quite
flexible and allows obtaining one-way state generators. Finally, we note that the latter does imply
one-way functions, too, but for simplicity, we only discuss one-way state generators.

Theorem 2. Let Π be (T, µ, fm, λ, γ)-mildly-lossy. Assume that θefi := (1− 2µ)− 3(δ(λ) + γ) > 0,
with δ(λ) as in Definition 20. Then there exists an algorithm EFI that runs in O(T +m2nγ−1) and
an oracle algorithm C, such that for any algorithm A one and only one of the following statements
holds:

I. CA solves Π ∩ {0, 1}n in time O((T +m2nγ−1)θ−2efi ) with O(θ−2efi ) queries to A,
II. EFI is (1− 2µ, 1− 2µ − θefi/2)-EFI for A.

Moreover, if the mildly-lossy reduction of Π is classical, EFI would also be classical.

Remark 4. From the conditions of Theorem 2, it must hold that δ < 1/3, therefore, λ must be small.
Most notably, the statement does not include perfect 1-mildly-lossy reductions. However, this can
be overcome as follows: Let R be 1-mildly-lossy and perfect. Consider the new reduction R′ that
with probability 0.35 randomly outputs a YES or a NO instance of the target language (note that
instance can be given as advice). Otherwise, it applies R. The new reduction is 0.35-mildly-lossy
with error 0.375 which satisfies the condition (1− 2µ)− 3(δ(λ) + γ) > 0.

Proof. We prove the case where R is quantum. The classical case can be done similarly. Let Π be
the promised problem in the statement. Let F denote Algorithm 2 that returns the two circuits
in Lines 3 and 4, and h be its advice as follows: h := (Ka, Ta, p, bY , bN ) . The construction of the
non-uniform EFI is the following:

- EFIh(1
n, b): Sample y ∼ UTa . Compute (Ĉ0, Ĉ1)← F(y). Return the state Ĉb |0〉.

Note that Ta has only YES instances.

The two output states are statistically far. By Theorem 1, the pair of circuits (Ĉ0, Ĉ1)← F(y)
is a QSD1−2µ,δ+γ instance. Since y ∈ ΠY , then ‖Ĉ0 |0〉 − Ĉ1 |0〉 ‖1 ≥ 1 − 2µ. This concludes the
statistical distinguishability.
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On the computational indistinguishability, we will argue by contradiction. Assume there exists
an adversary A that distinguishes the EFI states Ĉb |0〉 with advantage ν that is to be determined
later. Let us consider an algorithm B targetting Π as follows: given an instance z ∈ {0, 1}n, it
first computes (C ′0, C

′
1) ← F(z), then it samples a uniform coin b ∼ U{0,1} and relays C ′b |0〉 to the

distinguisher A. Finally, B will return 1 if A returns b, and 0 otherwise.

Case z ∈ ΠY : Suppose that z has been sampled from UTa . Then, the (mixed) state C ′b |0〉 that
we deliver to the adversary A would be identical to the EFI state Ĉb |0〉. Therefore, from the ν-
distinguishability of EFI states for A, we would have

Pr(B(z) = 1) = Pr(A(Pb |0〉) = b) ≥ 1

2
+

ν

2
.

We know that z does not necessarily follow the distribution UTa . However, one can argue that Ĉb is
not far from C ′b by leveraging the disguising lemma. We have that

‖Ĉ0 ⊗ Ĉ1 |0,0〉 − C ′0 ⊗ C ′1 |0,0〉 ‖1 ≤ ‖Ĉ1 |0〉 − C ′1 |0〉 ‖1
≤ Ea∼U[s],π∼Sm

[∥∥∥R
(
π
(
U⊗m−pKa

,U⊗pTa

))

−R
(
π
(
U⊗m−pKa

, y,U⊗p−1Ta

)) ∥∥∥
1

]

≤ δ +
2(m+ 1)

d+ 1
+ ε

≤ δ + γ ,

where we used the fact that Ĉ0 = C ′0, properties of trace distance, and Lemma 9. Using the fact
that the trace distance is decreasing under partial trace, for any b ∈ {0, 1}, we obtain

‖Ĉb |0〉 − C ′b |0〉 ‖1 ≤ δ + γ .

The adversary A can thus distinguish the general C ′b with probability

Pr(B(z) = 1) = Pr
(
A(C ′b |0〉) = b

)
=

1

2
+

1

2

∣∣∣∣ Pr
x←C′

0

(A(x) = 1)− Pr
x←C′

1

(A(x) = 1)

∣∣∣∣

≥ 1

2
+

1

2

(∣∣∣∣ Pr
x←Ĉ0

(A(x) = 1)− Pr
x←Ĉ1

(A(x) = 1)

∣∣∣∣

−
∣∣∣∣ Pr
x←Ĉ0

(A(x) = 1)− Pr
x←C′

0

(A(x) = 1)

∣∣∣∣

−
∣∣∣∣ Pr
x←Ĉ1

(A(x) = 1)− Pr
x←C′

1

(A(x) = 1)

∣∣∣∣
)

≥ 1

2
+

ν

2
− δ − γ .

(8)

Case z ∈ ΠN : By Theorem 1, the two circuits (C ′0, C
′
1)← F(z) are close in trace distance, namely,

‖C ′0 |0〉 − C ′1 |0〉 ‖1 ≤ δ + γ .
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Recall that the trace distance provides the maximum distinguishability advantage for any distin-
guisher, including A, therefore

Pr(B(z) = 1) = Pr
(
A(C ′b |0〉) = b

)
≤ 1

2
(1 + ‖C ′0 |0〉 − C ′1 |0〉 ‖1) ≤

1

2
(1 + δ + γ) . (9)

Conclusion: We need one more algorithm that will leverage the capacity of B to decide Π. Let k ∈
N, and C be an algorithm that on instance z ∈ {0, 1}n, runs B(z) for k times independently.
Let b1, . . . , bk be k corresponding independent outputs of B(z). Then C returns as follows:

{
0 if

∣∣ 1
k

∑
i bi − 1

2

∣∣ ≥ τ,

1 otherwise,

where τ(n) is chosen such that

τ :=
ν

4
− 3(δ + γ)

4
. (10)

Then, we have

Pr(C(z) = 0|z ∈ ΠY ) = Pr

(∣∣∣∣∣
1

k

∑

i

bi −
1

2

∣∣∣∣∣ ≥ τ
∣∣∣ b1, . . . , bk ← B(z), z ∈ ΠY

)

≥ Pr

(
1

k

∑

i

bi ≥
1

2
+ τ

∣∣∣ b1, . . . , bk ← B(z), z ∈ ΠY

)

≥ Pr

(
1

k

(
∑

i

bi − E(Bi(z))
)
≥ −τ

∣∣∣ b1, . . . , bk ← B(z), z ∈ ΠY

)

≥ 1− exp
(
−2kτ2

)
,

where we used E(Bi(z)) − τ ≥ 1
2 + τ for z ∈ ΠY by Equation (8) in the second inequality, and

Hoeffding’s lemma in the last inequality. On the other hand, we have

Pr(C(z) = 1|z ∈ ΠN ) = Pr

(∣∣∣∣∣
1

k

∑

i

bi −
1

2

∣∣∣∣∣ < τ
∣∣∣ b1, . . . , bk ← B(z), z ∈ ΠN

)

= Pr

(∣∣∣∣∣
1

k

∑

i

bi −
1

k

∑

i

E(Bi(z))
∣∣∣∣∣ < τ

∣∣∣ b1, . . . , bk ← B(z), z ∈ ΠN

)

≥ 1− exp
(
−2kτ2

)
,

where we once again used Hoeffding’s lemma and Equation (9). For k := 1/τ2, any sufficiently
large n ∈ N, and any z ∈ (ΠY ∪ΠN ) ∩ {0, 1}n, it holds that

Pr(C(z) = χΠ(z)) ≥ 1− exp
(
−2kτ2

)
≥ 2

3
,

This breaks the worst-case hardness of Π.
Since θefi := (1− 2µ)− 3(δ+ γ), we can set ν := (1− 2µ)− θefi/2, and the number of repetitions

in the last step becomes

1/τ2 =
42

(ν − 3(δ + γ))2
=

43

θ2efi
.
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Runtime: We compute the runtime of EFI as follows. It first samples 2m instances from UKa (or UTa),
applies the permutations π twice to each half of the samplings, and computes R on each half. One
single sampling from UKa (or UTa) takes time O(dn), where d ≤ (m+1)/γ is the size of UKa and n
is the size of each element in UKa . The permutations can be applied in time O(m). Therefore, the
total runtime of EFI is O(T +m2n/γ).

Note that C runs B for O(1/θefi
2) times. Each execution of B evaluates Ĉb, queries A, and

performs an equality check. All of this takes O((T +m2n/γ)/θefi
2) with O(1/θefi

2) queries to A.

Next, we consider larger values of λ, for instance when λ = Ω(log n). The following concerns
only classical one-way functions.

Theorem 3. Let Π be (T, µ, fm, λ, γ)-mildly-lossy with a classical reduction. Assume that θowf :=
(1 − 10µ) − (δ(λ) + γ) > 0, with δ(λ) as in Definition 20. Then there exists an algorithm F that
runs in time O(T + m2nγ−1) and an oracle algorithm C, such that for any algorithm A one and
only one of the following holds:

I. CA solves Π ∩ {0, 1}n in time O((T +m2nγ−1)θ−2owf) with O(θ−2owf) queries to A,
II. F is a (1− θowf/2)-OWF for A.
Proof. Consider the circuit Ĉ0 in Line 3 of Algorithm 2. This circuit is independent of the input of
Algorithm 2 and is randomized. Part of its randomness is used to sample x̃ and the other part is fed
to R. Let κ be the size of the total randomness. For r ∈ {0, 1}κ, we let Ĉ0(r) be the outcome of the
circuit when it is given r as the randomness. We show that F, defined by Ĉ0(·) : {0, 1}κ → {0, 1}∗,
is a (θowf/2)-weak one-way function. This suffices for the proof since weak one-way functions imply
one-way functions.

The proof works by a reduction to the worst-case hardness of Π. Assume that we are given a
to-be-decided instance y of Π. Apply Algorithm 2 up to Line 4 to obtain (Ĉ0, Ĉ1). Assume that
there exists an adversary A that inverts Ĉ0(·) with probability more than 1− θowf/2. Consider the
following oracle algorithm BA:
- BA(Ĉ0, Ĉ1, y): samples a uniform r ∈ {0, 1}κ and a uniform b ∈ {0, 1}, and computes z := Ĉb(r).
Runs the adversary r′ ← A(z), and computes z′ = Ĉ0(r

′). If z = z′ it outputs 1, otherwise it
outputs 0.

We show that B can distinguish between the YES and NO instances ofΠ by analysing the probability
of outputting 1. More precisely, we study the following random variable:

X(Ĉ0, Ĉ1, y) :=
∣∣∣Pr
(
BA(Ĉ0, Ĉ1, y) = 1|b = 0

)
− Pr

(
BA(Ĉ0, Ĉ1, y) = 1|b = 1

)∣∣∣ .

Case y ∈ ΠY : We show the following bound for every y ∈ ΠY :

X(Ĉ0, Ĉ1, y) > 1− θowf/2− 10µ .

Instead of proving the inequality directly for the circuits (Ĉ0, Ĉ1), we will show it for two similar
circuits (C̃0, C̃1) with disjoint image sets. Let D̂0 and D̂1 be respectively the outcome distributions
of Ĉ0 and Ĉ1 when given uniform input, and A be the following set

A := {a | Pr
D̂0

(a) ≥ Pr
D̂1

(a)} .
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Let C̃0 be the restriction of Ĉ0 to A and C̃1 the restriction of Ĉ1 to Ac. We will show that

X(C̃0, C̃1, y) ≤ X(Ĉ0, Ĉ1, y) + 8µ.

Indeed in Theorem 1, we showed that for every y ∈ ΠY , the statistical distance between the
outcome distributions of Ĉ0 and Ĉ1 when given uniform input is at least 1− 2µ. Moreover, we have

‖D̂0 − D̂1‖1 =
1

2

∑

a

|Pr
D̂0

(a)− Pr
D̂1

(a)|

=
1

2

∑

a∈A
Pr
D̂0

(a)− Pr
D̂1

(a) +
1

2

∑

a∈Ac

Pr
D̂1

(a)− Pr
D̂0

(a)

=
1

2
(Pr
D̂0

(A)− Pr
D̂0

(Ac) + Pr
D̂1

(Ac)− Pr
D̂1

(A))

=
1

2
(Pr
D̂0

(A)− (1− Pr
D̂0

(A)) + Pr
D̂1

(Ac)− (1− Pr
D̂1

(Ac)))

= Pr
D̂0

(A) + Pr
D̂1

(Ac)− 1 .

It follows that PrD̂0
(A) + PrD̂1

(Ac) ≥ 2− 2µ. Therefore, we have

(Pr
D̂0

(A) ≥ 1− µ) ∧ (Pr
D̂1

(Ac) ≥ 1− 2µ) , or (Pr
D̂0

(A) ≥ 1− 2µ) ∧ (Pr
D̂1

(Ac) ≥ 1− µ) .

Then for either of cases above, we have

‖D̂0 − D̃0‖1 ≤ 2µ , and ‖D̂1 − D̃1‖1 ≤ 2µ , (11)

where D̃0 and D̃1 are respectively the outcome distributions of C̃0 and C̃1. Pretend that not only
does A invert F, but also tries to distinguish between Ĉb and C̃b for b ∈ {0, 1}. Consider the following
sequence of games that modifies BA:
Game G1: In this game B behaves originally as above.

Game G2: In this game B replaces Ĉ0 with C̃0. Note that A can distinguish this modification with
probability at most 2µ according to Equation (11). It follows that

X(C̃0, Ĉ1, y) =
∣∣∣Pr
(
BA(C̃0, Ĉ1, y) = 1|b = 0

)
− Pr

(
BA(C̃0, Ĉ1, y) = 1|b = 1

)∣∣∣

≤
∣∣∣Pr
(
BA(C̃0, Ĉ1, y) = 1|b = 0

)
− Pr

(
BA(Ĉ0, Ĉ1, y) = 1|b = 0

)∣∣∣

+
∣∣∣Pr
(
BA(Ĉ0, Ĉ1, y) = 1|b = 0

)
− Pr

(
BA(Ĉ0, Ĉ1, y) = 1|b = 1

)∣∣∣

+
∣∣∣Pr
(
BA(Ĉ0, Ĉ1, y) = 1|b = 1

)
− Pr

(
BA(C̃0, Ĉ1, y) = 1|b = 1

)∣∣∣

= X(Ĉ0, Ĉ1, y) + 4µ .
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Game G3: In this game, B replaces Ĉ1 with C̃1. Note that A can identify this modification with
probability at most 2µ. We obtain

X(C̃0, C̃1, y) =
∣∣∣Pr
(
BA(C̃0, C̃1, y) = 1|b = 0

)
− Pr

(
BA(C̃0, C̃1, y) = 1|b = 1

)∣∣∣

≤
∣∣∣Pr
(
BA(C̃0, C̃1, y) = 1|b = 0

)
− Pr

(
BA(C̃0, Ĉ1, y) = 1|b = 0

)∣∣∣

+
∣∣∣Pr
(
BA(C̃0, Ĉ1, y) = 1|b = 0

)
− Pr

(
BA(C̃0, Ĉ1, y) = 1|b = 1

)∣∣∣

+
∣∣∣Pr
(
BA(C̃0, Ĉ1, y) = 1|b = 1

)
− Pr

(
BA(C̃0, C̃1, y) = 1|b = 1

)∣∣∣

= X(C̃0, Ĉ1, y) + 4µ

≤ X(Ĉ0, Ĉ1, y) + 8µ .

To prove the inequality for the YES instances, it suffices to show that X(C̃0, C̃1, y) > 1−θowf/2−2µ.
Recall that

X(C̃0, C̃1, y) :=
∣∣∣Pr
(
BA(C̃0, C̃1, y) = 1|b = 0

)
− Pr

(
BA(C̃0, C̃1, y) = 1|b = 1

)∣∣∣ .

First, when b = 0 and hence z = C̃0(r) with ‖D̂0 − D̃0‖1 ≤ 2µ, the adversary A succeeds with
probability at least 1−θowf/2−2µ to invert C̃0, which is equal to the probability that BA outputs 1.
Second, when b = 1 and hence z = C̃1(r), since the supports of C̃0 and C̃1 are distinct, A never
succeeds to find an r′ such that C̃0(r

′) = C̃1(r), i.e., the probability of B outputting one is zero.
This completes the first part.

Case y ∈ ΠN : In Theorem 1, we also proved that for every y ∈ ΠN , the outcomes of the two

circuits (Ĉ0, Ĉ1) is at most δ + γ. Therefore, the adversary A cannot distinguish them with a
probability larger than δ + γ. The information processing inequality then implies that

X(Ĉ0, Ĉ1, y) ≤ δ + γ .

Conclusion: The quantity X(Ĉ0, Ĉ1, y) diverges for YES and NO instances of y. For our choice of
parameters, we know that

1− θowf/2− 10µ − (δ + γ) = θowf/2 .

We denote by CA an algorithm that runs B for O(1/θ2owf) many times, and approximates the quantity
above within error less than θowf/4. If this value is more than δ+ γ+ θowf/4, then y must be a YES
instance, otherwise it is a NO instance. Therefore, we finally obtain a algorithm that solves Π.

Runtime: The runtime of F can be computed as follows. It samples m instances from UKa (or UTa),
applies a permutation π, and computes R on top of it. Each time, sampling from UKa (or UTa) takes
time O(dn), where d ≤ (m + 1)/γ is the size of UKa and n is the size of each element in UKa. The
permutation can be computed in O(m). Therefore, the total runtime of F is O(T +m2n/γ).

For the runtime of CA, note that C runs B for O(1/θowf
2) times. Each execution of B evaluates Ĉb,

queries A, and performs an equality check. All of this takes O((T +m2n/γ)/θowf
2) with O(1/θowf

2)
queries to A.
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7 One-Way State Generators from Mildly-Lossy Problems

In the next theorem, we discuss the adaptation to the quantum settings, when λ is relatively large.

Theorem 4. Let Π be (T, µ, fm, λ, γ)-mildly-lossy with a pure-outcome reduction. Also assume
that θows := 1 − (δ(λ) + γ + 4

√
2µ) > 0 and τows := 1 − 2µ − (δ(λ) + γ) > 0, with δ(λ) as

in Definition 20. Then there exists an algorithm G = (StateGen,Ver) such that StateGen runs in
time O(T +m2nγ−1) and an oracle algorithm C, such that for every algorithm A one and only one
of the following statements holds:

I. CA solves Π ∩ {0, 1}n in time O((T +m2nγ−1 + τ−2ows)θ
−2
ows) with O(θ−2ows) classical queries to A,

II. G is a (1− θows/4)-OWSG for A.

Proof. Sample z ∼ UKa and apply Algorithm 2 up to Line 4 on input z to obtain the two cir-
cuits (C∗0 , C

∗
1 ). Note that the two circuits are mixed; a classical randomness is used to sample x̃ but

the algorihm R is a pure quantum circuit. Let κ be the size of the randomness of these circuits. For
any r ∈ {0, 1}κ and b ∈ {0, 1}, let C∗b |r,0〉 be the pure state obtained by sampling x̃ using r and
applying R to π(x̃) and a possibly ancilla |0〉 with an appropriate size. We show that G, defined as
follows:

- StateGen(r, b) : output C∗b |r,0〉.
- Ver((r, b), ρ) : If ‖C∗b |r,0〉 − ρ‖1 ≤ δ + γ output 1, otherwise output 0.

is a (θows/2)-weak one-way state generator.

Assume that there exists an adversary A that breaks the scheme above with probability more
than 1 − θows/4. We use A to construct an algorithm for Π. Consider the following oracle algo-
rithm BA:

- BA(Ĉ0, Ĉ1, y): computes (Ĉ0, Ĉ1(y)) as in Algorithm 2 up to Line 4 on input y. Samples a
uniform r ∈ {0, 1}κ and a uniform b ∈ {0, 1}, and computes ρ := Ĉb |r,0〉. Runs the adver-
sary (r′, b′)← A(ρ), and computes ρ′ = Ĉb′ |r′,0〉. If ‖ρ− ρ′‖1 ≤ δ+ γ it outputs 1, otherwise it
outputs 0.

We compute the advantage of B in distinguishing between YES and NO instances of Π by analyzing

the probability Pr
(
BA(Ĉ0, Ĉ1, y) = 1

)
.

Case y ∈ ΠY : We show that for every y ∈ ΠY , we have:

Pr
(
BA(Ĉ0, Ĉ1, y) = 1

)
≤ 1

2
+ 2
√

2µ .

Instead of proving the inequality directly for the circuits (Ĉ0, Ĉ1), we will show it for two similar
circuits (C̃0, C̃1) with disjoint images. Let ρ̂0 and ρ̂1 be respectively the mixed states Ĉ0 |r,0〉
and Ĉ1 |r,0〉 when r follows the uniform distribution. For any POVM M = {Mi}i, let us define
by AM the following set:

AM := {i | Tr(Miρ̂0) ≥ Tr(Miρ̂1)} .
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In Theorem 1, we showed that for every y ∈ ΠY , the statistical distance between ρ̂0 and ρ̂1 is at
least 1− 2µ. Moreover, we can rewrite the trace distance in terms of the POVMs as

‖ρ̂0 − ρ̂1‖1 = max
{Mi}i

1

2

∑

i

|Tr(Miρ̂0)− Tr(Miρ̂1)|

= max
{Mi}i

1

2


 ∑

i∈AM

(Tr(Miρ̂0)− Tr(Miρ̂1)) +
∑

i∈Ac
M

(Tr(Miρ̂1)− Tr(Miρ̂0))




= max
{Mi}i




∑

i∈AM

Tr(Miρ̂0) +
∑

i∈Ac
M

Tr(Miρ̂1)− 1



 .

It follows that there exists a particular POVMM, such that if we define the projections of Ĉ0

and Ĉ1 onto AM and Ac
M by C̃0 and C̃1 respectively, i.e.,

C̃0 =
∑

i∈AM

MiĈ0, and C̃1 =
∑

i∈Ac
M

MiĈ1 ,

we have Tr(ρ̃0) + Tr(ρ̃1) ≥ 2− 2µ, where ρ̃b is the mixed state C̃b |r,0〉 and r is uniform. Therefore

(Tr(ρ̃0) ≥ 1− µ) ∧ (Tr(ρ̃1) ≥ 1− 2µ) , or (Tr(ρ̃0) ≥ 1− 2µ) ∧ (Tr(ρ̃1) ≥ 1− µ) .

By the Gentle Measurement Lemma 6, for either of cases above, we have

‖ρ̂0 − ρ̃0‖1 ≤
√

2µ , and ‖ρ̂1 − ρ̃1‖1 ≤
√

2µ . (12)

Pretend that A also tried to distinguish between for Ĉb and C̃b for b ∈ {0, 1}, and consider the
following sequence of games that modifies BA.
Game G1: In this game B behaves originally as above.

Game G2: In this game B replaces Ĉ0 with C̃0. Note that A can distinguish this modification with
probability at most

√
2µ according to Equation (12). It follows that

Pr
(
BA(Ĉ0, Ĉ1, y) = 1

)
≤
∣∣∣Pr
(
BA(Ĉ0, Ĉ1, y) = 1

)
− Pr

(
BA(C̃0, Ĉ1, y) = 1

)∣∣∣

+ Pr
(
BA(C̃0, Ĉ1, y) = 1

)

≤
√

2µ+ Pr
(
BA(C̃0, Ĉ1, y) = 1

)
.

Game G3: In this game, B replaces Ĉ1 with C̃1. Note that A can identify this modification with
probability at most

√
2µ. We obtain

Pr
(
BA(Ĉ0, Ĉ1, y) = 1

)
≤
∣∣∣Pr
(
BA(Ĉ0, Ĉ1, y) = 1

)
− Pr

(
BA(C̃0, Ĉ1, y) = 1

)∣∣∣

+
∣∣∣Pr
(
BA(C̃0, Ĉ1, y) = 1

)
− Pr

(
BA(C̃0, C̃1, y) = 1

)∣∣∣

+ Pr
(
BA(C̃0, C̃1, y) = 1

)

≤ 2
√

2µ +Pr
(
BA(C̃0, C̃1, y) = 1

)
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Now, note that the projection onto the supports of C̃0 and C̃1 are orthogonal to each other. There-
fore, the adversary never succeeds when the bit b (chosen by B) is equal to 1; there exists no r′ such
that ‖C̃0 |r, |0〉〉 − C̃1 |r′,0〉 ‖1 ≤ δ + γ. So

Pr
(
BA(C̃0, C̃1, y) = 1

)
=

1

2

(
Pr
(
BA(C̃0, C̃1, y) = 1|b = 0

)
+ Pr

(
BA(C̃0, C̃1, y) = 1|b = 1

))
≤ 1

2
.

Case y ∈ ΠN : By Lemma 9, the trace distance of the outcomes of Ĉ1 and C∗1 is at most δ + γ.

Moreover, Ĉ0 is exactly the same as C∗0 . Therefore, if the bit b, chosen by B is equal to 0, then A
succeeds with probability at least 1− θows/4, and if b = 1, it succeeds with probability 1− θows/4−
(δ + γ). In total, we obtain

Pr
(
BA(Ĉ0, Ĉ1, y) = 1

)
≥ 1

2
(1− θows

4
) +

1

2
(1− θows

4
− (δ + γ)) = 1− θows

4
− (δ + γ)

2
.

Conclusion: We showed that the quantity of Pr
(
BA(Ĉ0, Ĉ1, y) = 1

)
diverges for YES and NO in-

stances of y. For our choice of parameters, we have

1− θows
4
− (δ + γ)

2
−
(
1

2
+ 2
√

2µ

)
=

1− (δ + γ + 4
√
2µ)

2
− θows

4

=
θows
4

.

Let C be an algorithm that runs B for O(1/θ2ows) many times, and approximates the quantity
above within error less than θows/4. If this value is more than 1−θows/4−(δ+γ)/2, then y must be a
NO instance, otherwise it is a YES instance. Therefore, we finally obtain a algorithm that solves Π.
Note that B verifies whether ‖Ĉb |r,0〉 − Ĉb′ |r′,0〉 ‖1 is smaller than δ+ γ. Since the reduction R is
pure and r, r′ are fixed, these states are pure, therefore B can perform a SWAP test for O(1/τ2ows)
number of times on them to approximate their ℓ1 distance.

8 Mild-Lossiness and Instance Randomization

In Section 4 we introduced mildly-lossy problems, promise problems that admit reductions that lose
some information about the input, and in Section 6 and 7 we constructed cryptography primitives
from these. In this section we show that mildly-lossy problems are not uncommon by proving that
both worst-case to average-case reductions and randomized encodings imply mild-lossiness, given a
classical reduction. An in the final subsection we prove that the former is also true for certain type
of quantum reductions.

8.1 Worst-Case to Average-Case Reductions

In this section we analyse the mild-lossiness of worst-case to average-case reductions. Since we discuss
mild-lossiness of such reductions, as motivated in Section 4, we focus on worst-case to average-
case f -distinguisher reductions (Definition 14). In Definition 21, we put forward the definition
of worst-case to distribution f -distinguisher reduction which can be viewed as a generalization of
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worst-case to average-case reductions in the sense that (i) the reduction is oblivious to the target
average-case problem (inherited from being f -distinguisher), and (ii) the reduction maps inputs to
a distribution that is not necessarily efficiently samplable. The latter does not impose any issues in
our setting, since we are only discussing mild-lossiness of the reductions, and not the hardness of the
problems. We then prove, in Theorem 5, that such reductions are lossy and specify the mild-lossiness
parameters. Combined with Theorem 3, this would yield in Corollary 1 that worst-case to average-
case reductions can be used to build one-way functions.

Definition 21 (Worst-Case to Distribution f -Distinguisher Reduction). Let Π be a promise
problem, n ∈ N, and d ∈ [0, 1]. We say that a reduction R is a (T, µ, fm, d)-worst-case to distribution
(WC-DIST) reduction for Π if

- R is a (µ, fm)-distinguisher reduction for Π (Definition 14), and
- for all x ∈ Π ∩ {0, 1}n, R(x) runs in time T (n), and
- there exists a distribution D = {Dn}n∈N over {0, 1}∗, such that

∀(x1, · · · , xm) ∈ (Π ∩ {0, 1}n)m :
1

2
‖R(x1, · · · , xm)−D‖1 ≤ d .

The upper bound d is called the distance of the reduction.
If there exist two distributions DY and DN over {0, 1}∗ such that for inputs x ∈ ΠY the distribu-

tion DY approximates R(x) up to error d, and for inputs x ∈ ΠN the distribution DN approximates
R(x) up to error d, we say that the reduction R is a (T, µ, fm, d)-worst-case to distribution splitting-
reduction for Π.

Theorem 5 (Mild-Lossiness of WC-DIST f -Distinguisher Classical Reductions). Let
Π = ΠY ∪ ΠN for two disjoint sets ΠY ,ΠN ⊂ {0, 1}∗. If there exists a (T, µ, fm, d)-WC-DIST
classical splitting-reduction R for Π (Definition 21), such that f is a non-constant permutation-
invariant function, then for any γ > 0, Π is (T, µ, fm, λ, γ)-mildly-lossy, where

λ = max

{
1, 13 + log

(
mnd2

γ3

)}
.

Proof. The proof consists of showing that the reduction R satisfies Definition 19. Let γ > 0. We
show that for all pairwise independent 29mn/γ3-uniform distributions Xn over n-bit strings,

I(Xn;R(Xn)) ≤ max

{
1, 13 + log

(
mnd2

γ3

)}
.

Dropping the subscript n for simplicity and writing pX(y) := Pr(X = y), we first rewrite the mutual
information in terms of Kullback-Leibler divergence.

I(X;R(X)) =
∑

y∈Supp(R)

pR(X)(y) ·DKL

(
pX|R(X)=y ‖ pX

)
. (13)

From a reverse Pinsker inequality due to [Sas15], the KL divergence of two distributions decreases
as their trace distance does, in particular

DKL

(
pX|R(X)=y ‖ pX

)
≤ log

(
1 +

2 ·∆(X|R(X)=y ,X)2

αX

)
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where αX = min
x

pX(x) > 0. If ∆(X|R(X)=y ,X) = 0, then I(X;R(X)) = 0.1 Otherwise, since for

any value a ∈ (0, 1], we have that log(1 + a) ≤ max{1, 1 + log(a)}, we can write

DKL

(
pX|R(X)=y ‖ pX

)
≤ max{1, 2 + 2 log

(
∆(X|R(X)=y ,X)

)
− log(αX)} ,

Substituting above in Equation 13 we obtain:

I(X;R(X)) ≤ max{1, 2− log(αX) + 2
∑

y∈Supp(R)

pR(X)(y) · log
(
∆(X|R(X)=y ,X)

)
} . (14)

We split the bound on the right-hand side of the Inequality 14 into two terms.

Bounding term1 = − log(αX): Since Xn is a 29mn/γ3-uniform distribution, we have αX ≥
γ3/29mn. Therefore − log(αX) ≤ 9 + log

(
mn/γ3

)
.

Bounding term2 =
∑

y∈Supp(R)

pR(X)(y) · log
(
∆(X|R(X)=y ,X)

)
: Firstly, for any y ∈ Supp(R), we have

∆(X|R(X)=y ,X) =
1

2

∑

x

|Pr (X = x|R(X) = y)− Pr(X = x)|

=
1

2

∑

x

∣∣∣∣
Pr (X = x ∧R(X) = y)

Pr(R(X) = y)
− Pr(X = x)

∣∣∣∣

=
1

2

∑

x

1

Pr(R(X) = y)
|Pr (X = x ∧R(X) = y)− Pr(X = x) · Pr(R(X) = y)|

=
1

Pr(R(X) = y)
·∆((X,R(X) = y),X · (R(X) = y)) . (15)

Rewriting term2 = ER(X)

[
log
(
∆(X|R(X)=y ,X)

)]
, we now have to bound

term2 = ER(X)

[
log∆(X|R(X)=y ,X)

]

≤ logER(X)

[
∆(X|R(X)=y ,X)

]
(by Jensen’s inequality)

= log


 ∑

y∈Supp(R)

Pr(R(X) = y) ·∆(X|R(X)=y ,X)




= log


 ∑

y∈Supp(R)

∆((X,R(X) = y),X · (R(X) = y))


 (by Equation 15) . (16)

1However, this is very unlikely!
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Analysing the term inside the logarithm above, we have

∑

y∈Supp(R)

∆((X,R(X) = y),X · (R(X) = y))

=
1

2

∑

y∈Supp(R)

∑

x∈X
|Pr(R(X) = y|X = x) · Pr(X = x)− Pr(R(X) = y) · Pr(X = x)|

=
1

2

∑

y∈Supp(R)

∑

x

Pr(X = x) · |Pr(R(x) = y)− Pr(R(X) = y)|

=
∑

x

Pr(X = x) ·∆(R(x), R(X))

≤ max
x

∆(R(x), R(X)) .

We therefore have that term2 ≤ max
x

log(∆(R(x), R(X))) . Finally, note that sinceR is a (T, µ, fm, d)-

WC-DIST reduction, for any x ∈ ΠY ∩ {0, 1}n, it holds that ∆(R(x),Dn,Y ) ≤ d. Therefore
∆(R(X),Dn,Y ) ≤ d for any distribution X over ΠY ∩ {0, 1}n. We conclude that for any x ∈
ΠY ∩ {0, 1}n, ∆(R(x), R(X)) ≤ 2d for any distribution X over ΠY ∩ {0, 1}n, which yields term2 ≤
1 + log(d) . Note that the same argument holds for x ∈ ΠN ∩ {0, 1}n and distributions Dn,N .

Combining upper bounds on term1 and term2, we finish by proving that

I(X;R(X)) ≤ max

{
1, 13 + log

(
mnd2

γ3

)}
,

for splitting lossy distributions X.

The following corollary is a direct result of combining Theorems 5 and 3.

Corollary 1 (OWFs from WC-DIST f -Distinguisher Reductions). Let Π be a promise
problem, and assume that there exists a (T, µ, fm, d)-WC-DIST splitting-reduction for Π.
Let θowf = (1−10µ)−(δ(λ)+γ) > 0, where γ > 0, λ = max

{
1, 13 + log

(
mnd2/γ3

)}
, and δ(λ) is the

function defined in Definition 20. Then there exists an algorithm F that runs in time O(T+m2nγ−1)
and an oracle algorithm C, such that for any algorithm A one and only one of the following holds:

I. CA solves Π ∩ {0, 1}n in time O((T +m2nγ−1)θ−2owf) with O(θ−2owf) queries to A,
II. F is a (1− θowf/2)-OWF for A.

WC-DIST Turing Reductions

All reductions in the rest of the work until Section 9.1 are classical. In this part, we give an
adapted version of the worst-case to distribution reduction (Definition 21) to the case of non-
adaptive randomized Turing reductions.

Definition 21 covers the notion of worst-case to average-case Karp reductions, that is the type of
most cryptographic reductions. However, in order to discuss the mild-lossiness of WC-DIST Turing
reductions, we have to slightly refine this definition; Recall from Section 4 that a non-adaptive
randomized Turing reduction from Π to Σ, maps an input x to (y1, . . . , yk), where each yi is an
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instance of Σ, as well as a Boolean circuit C. Since C depends on x, it can carry some information
about the input and affect the mild-lossiness. On the other hand, the requirement of Definition 21
requires analysing the joint distribution of ((y1, . . . , yk), C) that might be tedious. We therefore relax
the above definition to this case and discuss the mild-lossiness of randomized Turing reductions in
this relaxed setting.

Definition 22 (WC-DIST Non-Adaptive Randomized Turing f -Reductions). Let Π be
a promise problem. We say that RTuring is a (T, µ, fm, d, h)-worst-case to distribution (WC-DIST)
non-adaptive randomized Turing reduction for Π, if

- RTuring is a non-adaptive (fm, µ)-Turing reduction from Π to some promise or search problem
Σ (per Definition 16), and

- for all x ∈ Π ∩ {0, 1}n, RTuring(x) runs in time T (n), and

- there exists a distribution D = {Dn}n∈N over {0, 1}∗, such that:

∀x ∈ Π ∩ {0, 1}n : ∆((y1, . . . , yk),Dn) ≤ d ,

where ((y1, . . . , yk), C)← RTuring(x), and

- for all 29n/γ3-uniform distributions X over n-bit strings:

I ((X,Y1, . . . , Yk);C) ≤ h,

where ((Y1, . . . , Yk), C)← RTuring(X).

We now state the following lemma, on the mild-lossiness of worst-case to distribution Turing
reductions.

Lemma 17 (Mild-Lossiness of WC-DIST Non-Adaptive Randomized Turing Reduc-
tions). Let Π be a promise problem. If there exists a (T, µ, d, h)-WC-DIST non-adaptive random-
ized Turing reduction RTuring for Π (per Definition 22), then for any γ > 0, Π is (T, µ, id, λ, γ)-
mildly-lossy, where id : x 7→ x is the identity function and λ = max{1 + h, 13 + h+ log

(
nd2/γ3

)
}.

Proof. Similarly to the proof of Theorem 5, we show that for any γ > 0, the reduction RTuring

is λ-lossy for all pairwise independent 29n/γ3-uniform distributions over n-bit inputs, where λ =
max{1 + h, 13 + h+ log

(
nd2/γ3

)
}. In other words,

I(Xn;RTuring(Xn)) ≤ max

{
1 + h, 13 + h+ log

(
nd2

γ3

)}
,

for all n ∈ N and 29n/γ3-uniform distributions Xn over n-bit strings.

For any distribution Xn let ((Y1, . . . , Yk), C) denote the distribution of RTuring(Xn). Dropping
the subscript n for simplicity, we have

I (X; ((Y1, . . . , Yk), C)) ≤ I(X; (Y1, . . . , Yk)) + I((X, (Y1, . . . , Yk)); C)

≤ I(X; (Y1, . . . , Yk)) + h,
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where we used the inequality I((X, (Y1, . . . , Yk)); C) ≤ h imposed by the conditions. The rest of
the proof is similar to that of Theorem 5 and consists of using the condition ∆((y1, . . . , yk),Dn) ≤ d

to derive I(X; (Y1, . . . , Yk)) ≤ max
{
1, 13 + log

(
mnd2

γ3

)}
. It therefore concludes that

I(X;RTuring(X)) ≤ max

{
1 + h, 13 + h+ log

(
mnd2

γ3

)}
.

Corollary 2 (OWFs from WC-DIST Non-Adaptive Randomized Turing Reductions).
Let Π be a promise problem, and assume that there exists a (T, µ, d, h)-WC-DIST Turing reduction
for Π. Let θowf = (1 − 10µ) − (δ(λ) + γ) > 0, where γ > 0 and λ is defined in Lemma 17. Then
there exists an algorithm F that runs in time O(T +nγ−1) and an oracle algorithm C, such that for
any algorithm A one and only one of the following holds:

I. CA solves Π ∩ {0, 1}n in time O((T + nγ−1)θ−2owf) with O(θ−2owf) queries to A,
II. F is a (1− θowf/2)-OWF for A.

8.2 Randomized Encodings

We now discuss the mild-lossiness of randomized encodings [IK00, AIK06, App17]. In Lemma 18,
we show that a randomized encoding of a Boolean function is in fact a worst-case to distribution
reductions (Definition 21). Hence, we conclude the mild-lossiness of randomized encodings and their
utility in building one-way functions in Corollary 4.

We first recall the definition of randomized encodings.

Definition 23 (Randomized Encoding (Adapted from [AIK06])). Let µ, d ∈ [0, 1] and let
F : {0, 1}∗ → {0, 1}∗ be a function. We say that a function E : {0, 1}∗ → {0, 1}∗ is a (T, µ, d)-
randomized encoding of F , if

- for all x ∈ {0, 1}n, E(x) can be computed in time T (n), and

- (µ-correctness) there exists an algorithm Dec such that for all x ∈ {0, 1}n:

Pr [Dec(E(x)) 6= F (x)] ≤ µ ,

and

- (d-privacy) there exists an algorithm Sim such that for all x ∈ {0, 1}n:

∆(Sim(F (x)), E(x)) ≤ d .

Lemma 18. Let E : {0, 1}∗ → {0, 1}∗ be a (T, µ, d)-randomized encoding for a Boolean function
F : {0, 1}∗ → {0, 1}. Then E is a (T, µ, id, d)-worst-case to distribution splitting-reduction for Π,
where Π = ΠY ∪ΠN is a promise problem defined as ΠY = {x | F (x) = 1}, and ΠN = {x | F (x) =
0}, and id : x 7→ x is the identity function.

Proof. We start by showing that E(·,Um) is a (µ, id)-reduction for Π as in Definition 15, which
by definition implies that it is a (µ, id)-distinguisher reduction. Let x, x′ ∈ Π ∩ {0, 1}∗ such that
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χΠ(x) 6= χΠ(x′), i.e. without loss of generality we can assume that F (x) = 1 and F (x′) = 0. By
µ-correctness of the randomized encoding E, there is a distinguisher Dec such that

∣∣Pr(Dec(E(x)) = 1)− Pr
(
Dec(E(x′)) = 1

)∣∣
=
∣∣Pr(Dec(E(x)) = F (x))− Pr

(
Dec(E(x′)) 6= F (x′)

)∣∣
≥ (1− µ)− µ.

For x ∈ ΠY ∩ {0, 1}∗, we have F (x) = 1, thus Sim(1) = Sim(F (x)) is a distribution over the YES
instances, by a similar argument Sim(0) is a distribution over the NO instances. By d-secrery of the
randomized encoding, for every x ∈ ΠY ∩ {0, 1}∗, we have that

1

2
‖E(x) − Sim(1)‖1 ≤ d ,

and the same approximation holds for E(x) with instances x ∈ ΠN ∩{0, 1}∗ with respect to Sim(0),
leading to the desired result.

Corollary 3 (Mild-Lossiness of Randomized Encodings). If there exists a (T, µ, d)-randomized
encoding E for a promise problem Π, then for any γ > 0, Π is (T, µ, id, λ, γ)-mildly-lossy, where λ =
max

{
1, 13 + log

(
nd2/γ3

)}
, and id : x 7→ x is the identity function.

Corollary 4 (OWFs from Randomized Encodings). Let Π be a promise problem, and assume
that there exists a (T, µ, d)-randomized encoding for Π. Let θowf = (1−10µ)− (δ(λ)+γ) > 0, where
γ > 0 and λ is defined in Corollary 3. Then there exists an algorithm F that runs in time O(T+nγ−1)
and an oracle algorithm C, such that for any algorithm A one and only one of the following holds:

I. CA solves Π ∩ {0, 1}n in time O((T + nγ−1)θ−2owf) with O(θ−2owf) queries to A,
II. F is a (1− θowf/2)-OWF for A.

8.3 Quantum Worst-Case to Average-Case Reductions

In this section we show that a worst-case to average-case quantum reduction also implies mild-lossiness,
and therefore OWSGs and EFIs. However, since a quantum reverse Pinsker inequality is not known
in its most general form, we include here two independent assumptions on the quantum worst-case
to average-case reductions that imply quantum cryptography.

Theorem 6 (Mild-Lossiness of WC-DIST f -Distinguisher Quantum Reductions). Let
Π = ΠY ∪ ΠN for two disjoint sets ΠY ,ΠN ⊂ {0, 1}∗. If there exists a (T, µ, fm, d)-WC-DIST
quantum reduction R for Π, such that f is a non-constant permutation-invariant function, then for
any γ > 0, we have

1. If the minimum eigenvalue of the reduction is uniformly bounded from below for every pair-
wise independent 29mn/γ3-uniform distribution X, i.e there exists a constant β > 0 such
that λmin(R(X)) > β, then Π is (T, µ, fm, λ, γ)-mildly-lossy, where

λ = (β + 2d) log

(
1 +

2d

β

)
.
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2. If instead the dimension of the image space is upper bounded for every pairwise independent
29mn/γ3-uniform distribution X, i.e. there exists a constant dR ∈ N such that dim(Im(R(X))) ≤
dR, then Π is (T, µ, fm, λ, γ)-mildly-lossy, where

λ = 4d log dR + h(2d) .

Proof. Case 1: λmin(R(X)) > β . Let us denote by ρX,R(X) (or simply by ρ) the joint system of the
classical-quantum state after the reduction R is applied to a pairwise independent 29mn/γ3-uniform
distribution Xn over n-bit strings, where we drop the subscript n simplicity, see Equation 5. We
denote the subsystems of ρX,R(X) by ρX and ρR(X). Note that since ρX,R(X) is a classical-quantum
system, so is ρX ⊗ ρR(X). We can rewrite the mutual information in terms of the relative entropy,
which by Equation 6 for classical-quantum systems takes a simple form

I(X;R(X))ρ = D(ρX,R(X) ‖ ρX ⊗ ρR(X)) =
∑

x

Pr(X = x)DKL(ρR(X)|X=x ‖ ρR(X)) .

Note that we drop the classical term from the previous equation because both states have the same
classical distribution. By Lemma 3, if the minimum eigenvalue of the reduction is uniformly bounded
from below by a constant β, i.e. λmin(R(X)) > β, then we have a reserve Pinsker-like inequality

D(ρR(X)|X=x||ρR(X)) ≤
(
β +

1

2
‖ρR(X)|X=x − ρR(X)‖1

)
log

(
1 +

1

2β
‖ρR(X)|X=x − ρR(X)‖1

)
.

Finally, note that since R is a (T, µ, fm, d)-WC-DIST reduction, there exists a distribution Dn

such that for any x ∈ Π∩{0, 1}n, it holds that 1
2‖ρR(X)|X=x−Dn‖1 ≤ d, thus 1

2‖ρR(Xn)−Dn‖1 ≤ d.

By the triangle inequality, we have 1
2‖ρR(X)|X=x − ρR(X)‖1 ≤ 2d. We conclude that

I(X;R(X))ρ ≤
∑

x

Pr(X = x)(β + 2d) log

(
1 +

2d

β

)
= (β + 2d) log

(
1 +

2d

β

)
.

Case 2: dim(Im(R(X))) ≤ dR . We can find an alternative bound using the quantum conditional
entropy. Let us denote by ω the product state ωX,R(X) := ρX ⊗ ρR(X), since the mutual information
between subsystems of product states are zero, we have

I(X;R(X))ρ = |I(X;R(X))ρ − I(X;R(X))ω |
= |S(ρX)− S(X|R(X))ρ − S(ωX) + S(X|R(X))ω |
= |S(X|R(X))ρ − S(X|R(X))ω |
≤ 2Tr(ρ, ω) log dim(HA) + h(Tr(ρ, ω)) ,

where in the last inequality we used Theorem 5. We can bound the trace distance between ρ and ω
by the worst-case indistinguishability of the reduction R. Indeed, note that ρ and ω are classical-
quantum states with the same classical distribution, thus

‖ρX,R(X) − ρX ⊗ ρR(X)‖1 =
∑

x

Pr(X = x)‖ρR(X)|X=x − ρR(X)‖1

≤
∑

x

Pr(X = x)2d = 2d .
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Since the binary entropy function is increasing on [0, 1/2], we can conclude that for d < 1/4,

I(X;R(X))ρ ≤ 4d log dR + h(2d) .

The following corollaries stating conditions for the existence of OWSG are a direct result of
combining Theorems 6 and 4, we split the two conditions on the quantum reduction for clarity.

Corollary 5. Let Π be a promise problem, and assume that there exists a (T, µ, fm, d)-WC-DIST re-
duction for Π. Let β > 0 be such that λmin(R(X)) > β for every pairwise independent 29mn/γ3-
uniform distribution X. Let θows := 1 − (δ(λ) + γ + 4

√
2µ) > 0 and τows := 1 − 2µ − (δ + γ) > 0,

where γ > 0, λ = (β + 2d) log(1 + 2d/β), and δ(λ) is the function defined in Definition 20. Then
there exists an algorithm G = (StateGen,Ver) such that StateGen runs in time O(T +m2nγ−1) and
an oracle algorithm C, such that for every algorithm A one and only one of the following statements
holds:

I. CA solves Π ∩ {0, 1}n in time O((T +m2nγ−1 + τ−2ows)θ
−2
ows) with O(θ−2ows) classical queries to A,

II. G is a (1− θows/4)-OWSG for A.

Corollary 6. Let Π be a promise problem, and assume that there exists a (T, µ, fm, d)-WC-DIST re-
duction for Π, with d < 1/4. Let dR ∈ N be such that dim(Im(R(X))) ≤ dR for every pairwise
independent 29mn/γ3-uniform distribution X. Let θows := 1 − (δ(λ) + γ + 4

√
2µ) > 0 and τows :=

1 − 2µ − (δ + γ) > 0, where γ > 0, λ = 4d log dR + h(2d), and δ(λ) is the function defined
in Definition 20. Then there exists an algorithm G = (StateGen,Ver) such that StateGen runs in
time O(T +m2nγ−1) and an oracle algorithm C, such that for every algorithm A one and only one
of the following statements holds:

I. CA solves Π ∩ {0, 1}n in time O((T +m2nγ−1 + τ−2ows)θ
−2
ows) with O(θ−2ows) classical queries to A,

II. G is a (1− θows/4)-OWSG for A.

Remark 5. We can also instantiate Theorem 6 with the construction of EFIs in Theorem 2 to obtain
(1− 2µ, 1− 2µ− θefi/2)-EFIs from WC-DIST f -Distinguisher Quantum Reductions with the same
two possible conditions on the parameter λ from θefi := (1− 2µ)− 3(δ(λ) + γ).

9 Applications: Hardness vs One-Wayness

In the previous sections, we analysed the conditions under which a mildly-lossy reduction or
a WC-DIST reduction of Π implies one-way functions under the hardness of Π. In this section,
we discuss the concrete parameters. Except in Section 9.1, all statements are subject to classical
algorithms.

Let us discuss the implications of generic mildly-lossy reductions. We explicit some particular
conditions under which one-way functions exist.

Lemma 19. Let n ∈ N, λ : N→ R
+. Let Π be a (T, µ, fm, λ, γ)-mildly-lossy for parameters below:

T,m = 2O(λ+logn) , µ ≤ 2−λ−8 , γ = 2−λ−4 .

If Π cannot be solved in time 2O(λ+log n), then one-way functions exist.
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Proof. For these parameters, we have θowf := (1−10µ)− (δ(λ)+γ) ≥ 2−λ−3. Then, in Theorem 3, F
has runtime O(T+m2n2λ) and the runtime of theΠ-solver is O(22λ(T+TA)+m2n23λ) = 2Θ(λ+log n),
for all sufficiently large n. Therefore, if Π is 2O(λ+log n)-hard, then no algorithm A of the same
runtime can invert F with probability better than 1 − θowf/2 since otherwise CA must solve Π
which breaks its 2O(λ+log n) hardness. Set κ := 2λ+log n as the security parameter. This means
that no algorithm of runtime poly(κ) can invert F (whose runtime is poly(κ)) with advantage more
than 1− 1/(16κ). This implies weak one-way functions, which itself implies one-way functions.

As a result, we have the following theorem.

Theorem 7. Let n ∈ N, λ : N → R
+, and Π be a promise problem that cannot be solved by

any algorithm in time 2O(λ+logn). If Π has a fm-distinguisher reduction for some non-constant
permutation-invariant fm, with the following parameters:

it is mλ◦ ≤ mλ mildly-lossy , T,m = 2O(λ+logn) , and µ ≤ 2−λ−8 ,

then one-way functions exist.

Proof. One can use Lemma 19 and the fact that such a reduction implies that Π is (T, µ, fm, λ, γ)-
mildly-lossy for γ = 2−λ−4.

Perhaps surprisingly, the non-existence of infinitely-often one-way functions has strong impli-
cations. To explicit these implications, we first define a quantitative measure of the hardness of
problems as below.

Definition 24 (Exact Hardness of Problems). For a problem Π, let τΠ(n) := infτi(n)∈Υ {τi}
(the limit is taken point-wise), where Υ is the set of family of functions τi such that Π ∩{0, 1}n can
be solved in time O(2τi(n)) on all instances with probability ≥ 2/3.

Note that always τΠ(n) ≤ n. This is because algorithms with an advice of size 2n (maximum
size of the truth table of χΠ) can solve any instance of size n.

We need following lemma.

Lemma 20. For a non-constant permutation-invariant function fm, if an fm-reduction has an
error µ that is within a constant distance from 1/2, then it must have runtime Ω(m).

Proof. Assume that the reduction has runtime o(m). Supposing that reading each input of the
reduction takes instant time, the assumption implies that the circuit evaluating the reduction ig-
nores m− o(m) number of inputs. Let I be the indices of the discarded inputs, and let p(f) be as
in Lemma 16. As shown in the same lemma, function f only depends on the number of 1’s in its
inputs. On each input with p(f)−1 number of 1’s (which evaluates to 0), one can flip one of the 0’s
to 1 and obtain an input that evaluates to 1. However, if the index of this input is in I, it will be
discarded by the reduction. Therefore, on |I| = m − o(m) number of bit-flips, the reduction errs.
Consequently, the error must be at least (m− o(m))/(2m) = ω(1).

The non-existence of one-way functions has implications on mildly-lossy reductions, as follows:

Theorem 8. If infinitely often one-way functions do not exist, then for any Π and any f -distinguisher
reduction for Π with mild-lossiness ≤ m(τΠ/ log log n − log n) and µ ≤ 2−τΠ (n)−8, where fm is a
non-constant permutation-invariant function, it holds that T = 2Ω(τΠ/ log logn).
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Proof. Let τ be such that τ(n) + log n = o(τΠ(n)), and assume that there exists an infinitely often
fm-distinguisher reduction for Π with parameters

mild-lossiness mτ◦ ≤ mτ , T,m = 2O(τ+logn) , and µ ≤ 2−τΠ (n)−8 .

Since Π is Ω(2τΠ (n))-hard, then no algorithm that runs in time 2O(τ(n)+log n) can solve it. This is
because τ(n)+ log n = o(τΠ(n)). Therefore, by Theorem 7, infinitely often one-way functions exist.
This contradicts the assumption. Therefore, for such a lossiness and error µ ≤ 2−τΠ (n)−8, it must
hold that the fm-distinguisher reduction either runs in time 2ω(τ(n)+log n) or m = 2ω(τ(n)+log n), for
all sufficiently large n. Note that the latter implies the former by Lemma 20. Hence, we have T =
2ω(τ(n)+log n). This holds for every τ such that τ(n) + log n = o(τΠ(n)). We let τ = τΠ/ log log n −
log n. Therefore, the runtime must be at least 2Ω(τΠ/ logn).

Remark 6. We note that fm-compression reductions are special cases of mildly-lossy reductions.
More precisely, a mapping that compresses mn bits to mλ bits is mλ mildly-lossy. Therefore, all
the results above immediately apply to fm-compression reductions.

When the reductions are WC-DIST, we obtain fine-grained one-way functions with a slightly
looser range of parameters. We first simplify the conditions of Corollary 1.

Lemma 21. Let n ∈ N and γ, TA > 0. Let Π be a promise problem that admits a (T, µ, fm, d)-WC-
DIST reduction (per Definition 21). If d2 ≤ γ3/mn and µ, γ ≤ 10−5, then there exist a constant ϑ <
1 and an algorithm F that runs in time O(T+m2nγ−1), such that if F is not a ϑ-OWF for every TA-
bounded adversary, then Π ∩ {0, 1}n can be solved in time O(TA + T +m2nγ−1).

Proof. In Corollary 1, if d2 ≤ γ3/mn, then λ ≤ 13 and δ(λ) ≤ 1 − 2−15. Since µ, γ ≤ 10−5, we
have θowf ≥ (1 − 10µ) − (δ(λ) + γ) = 2−15 − 10−4 − 10−5. Thus θowf = Ω(1). Let ϑ := 1 − θowf/2.
Corollary 1 implies that there exists a function F that runs in time O(T +m2nγ−1) such that if it is
not a ϑ-OWF for an algorithm A, then Π∩{0, 1}n can be solved in time O((TA+T +m2nγ−1)θ−2owf),
where TA is the runtime of A. The statement follows by noting that θ−2owf = O(1).

The following lemma will be used in the proof.

Lemma 22. For a function g : N→ R
+, if g(n) > 2cτ(n) for every constant c < 1, then g = Ω(2τ ).

Using the above lemmas, one can leverage the hardness of Π to build fine-grained one-way
functions.

Theorem 9. Let n ∈ N, τ : N → R
+, and Π be a promise problem that cannot be solved by any

algorithm in time O(2τ(n)). For any η > 0, if Π admits a (T, µ, fm, d)-WC-DIST reduction for
some µ ≤ 10−5, d ≤ m2.5n/21.5τ/(1+η), and T,m = O(2τ/(1+η)), then there exists a constant ϑ < 1
and a one-way function F, such that no O(|F|1+η)-time algorithm can invert it with a probability
better than ϑ.

Proof. Set γ−1 as 2τ/(1+η)/(m2n). Let A be an algorithm with runtime TA = O(2τ ). By assump-
tion, Π ∩ {0, 1}n cannot be solved in time O(TA + T +m2nγ−1) = O(2τ ). Then, Lemma 21 implies
the existence of a constant ϑ < 1 and a function F that runs in time O(2τ/(1+η)) but no O(2τ )-time
algorithm can break it with a probability better than ϑ. This concludes the proof.
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The above theorem implies the existence of weak fine-grained one-way functions based on
the O(2τ )-hardness of Π and the fact that it admits an WC-DIST f -distinguisher reduction. Similar
to Theorem 8, we obtain an impossibility as below.

Theorem 10. If infinitely-often weak fine-grained one-way functions do not exist, then for any Π
and any (T, µ ≤ 10−5, fm, d ≤ m2.5n/21.5τΠ )-WC-DIST reduction for Π, where fm is a non-
constant permutation-invariant function, it holds that T = Ω(2τΠ (n)), for all sufficiently large n.

Proof. Fix n. For any fixed choice of τ(n) < τΠ(n), we have m2.5n/21.5τΠ ≤ m2.5n/21.5τ/(1+η)

for every η > 0. Therefore, if for some η, Π admits an infinitely-often (T, µ ≤ 10−5, fm, d ≤
2−1.5τΠ )-WC-DIST reduction for T,m = O(2τ(n)/(1+η)), then by Theorem 9 infinitely-often weak
fine-grained one-way functions exist. This contradicts the assumption (note that Π is O(2τ )-hard
per Definition 24). Therefore, such η > 0 does not exist. Therefore, any WC-DIST reduction, within
the mentioned parameter setting, must satisfy T = Ω(2τ(n)) or m = Ω(2τ(n)), for all sufficiently
large n, by Lemma 22. Note that the latter implies the former by Lemma 20. Finally, the statement
follows by taking the limit τ(n)→ τΠ(n).

Intuitively, the above theorem asserts that any randomization algorithm of Π, even it is allowed
to have a small constant error, is inherently capable of solving it.

In Theorem 21, if the statement holds for all constants η > 0, one obtains a weak one-way
function. Based on this observation, we immediately obtain the following result:

Theorem 11. Let n ∈ N, τ : N → R
+, and Π be a promise problem that cannot be solved by

any algorithm in time O(2τ ). If Π admits a (T, µ, fm, d)-WC-DIST reduction for some µ ≤ 10−5,
d ≤ m2.5n/2o(τ), and T,m = 2o(τ), then there exists a constant ϑ < 1 and a one-way function F,
such that no |F|O(1)-time algorithm can invert it with a probability better than ϑ.

Proof. As mentioned above, if for all constant η > 0, Π admits a (T, µ, fm, d)-WC-DIST reduction
for some µ ≤ 10−5, d ≤ m2.5n/21.5τ/(1+η), and T,m = O(2τ/(1+η)), then there exists a constant ϑ < 1
and a one-way function F, such that no |F|O(1)-time algorithm can invert it with a probability better
than ϑ. We note that the parameters in the statement satisfy these conditions.

This implies one-way functions using the known hardness amplification techniques [Yao82].
Moreover, similar to above, the non-existence of infinitely-often one-way functions has implications
for WC-DIST reductions of problems.

Theorem 12. If infinitely-often one-way functions do not exist, then for any Π and any (T, µ ≤
10−5, fm, d ≤ m2.5n2−1.5τΠ )-WC-DIST reduction for Π, where fm is a non-constant permutation-
invariant function, it holds that T = 2Ω(τΠ (n)).

Proof. Fix n as the size of the instances. For any fixed choice of τ(n) < τΠ(n), and every η >
0, it holds that m2.5n2−1.5τΠ ≤ m2.5n2−o(τ). Therefore, if Π admits an infinitely-often (T, µ ≤
10−5, fm, d ≤ 2−1.5τΠ )-WC-DIST reduction for some T,m = 2o(τ(n)), then by Theorem 11 infinitely-
often one-way functions must exist (note that Π is O(2τ )-hard per Definition 24), which contradicts
the assumption. Therefore, any WC-DIST reduction, within the mentioned parameter setting, must
satisfy T = 2Ω(τ(n)), for all sufficiently large n. One concludes by taking the limit τ(n)→ τΠ(n).

Remark 7. All the results above regarding WC-DIST reductions can be adapted to WC-DIST non-
adaptive Turing reductions for which the hint h (see Definition 22) is not too large, by putting more
restrictions on the error.
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Towards One-Way Functions from SAT

Let sk := inf{c ∈ R | there exists a O(2cN ) algorithm for kSat}. The Exponential Time Hypothesis
(ETH) asserts that s3 > 0, namely, 3Sat does not have any subexponential-time algorithm in
terms of the number of variables. In fact, Impagliazzo and Paturi [IP01] show that this is equivalent
to ∀k ≥ 3 : sk > 0. Firstly, we reformulate the assumption in terms of the bit-size of the instance.

Lemma 23. Let s∗k be the infimum of all c ∈ R such that there exists a O(2cn/ logn)-time algorithm
for kSat where n is the bit-size of the instance. Then under the ETH, we have 0 < s∗k ≤ 2ksk
and τkSat = s∗kn/ log n.

Proof. For any fixed k, we have ⌈N/k⌉ ≤ M ≤ (2N)k. On the other hand, the bit-size of an
instance is n := Θ(M logN). Equivalently, we have n = Θ(M logM). Using the standard sparsifi-
cation Lemma [IPZ98], under the ETH, there is no 2o(N+M)-time algorithm, or simply 2o(M)-time
algorithm, for kSat. Let g∗ be the inverse of the function M 7→ M logM . Therefore, under the
ETH, kSat cannot be solved in time 2o(g

∗(n)), where n is now the bit-size of the instance. Note that
one can use g∗(n) and M interchageably. On the other hand, kSat can be solved in time O(2skN ) by
an exhaustive search, therefore, it can also be solved in time O(2skN ) ≤ O(2kskM ) = O(2kskg

∗(n)) ≤
O(22ks

∗
kn/ logn), where we used the fact that n/ log n ≤ g∗(n) ≤ 2n/ log n. Therefore, 0 < s∗k ≤ 2ksk.

Finally, we have τkSat = s∗kn/ log n by Definition 24.

We immediately obtain the following corollary by Theorem 9.

Corollary 7. For any η > 0, if kSat admits a (T, µ, fm, d)-WC-DIST reduction for some µ ≤
10−5, d ≤ m2.5n/21.5s

∗
kn/(log n(1+η)), and T,m = O(2s

∗
kn/(logn(1+η))), then weak η-fine-grained one-

way functions exist.

The following corollary is obtained by Theorem 10 and Lemma 23.

Corollary 8. Under the ETH, if infinitely often weak fine-grained one-way functions do not exist,
then for any non-constant permutation-invariant fm, any fm-WC-DIST reduction for kSat with
error µ ≤ 10−5 and distance d ≤ m2.5n/21.5s

∗
kn/ logn runs in time Ω(2s

∗
kn/ logn).

Finally, we have the following corollary regarding the existence of one-way functions and hardness
of randomization and compression of kSat.

Corollary 9. Under the ETH, either infinitely often one-way functions exist, or, for every non-
constant permutation-invariant function fm, the following statements hold:

I. Any fm-WC-DIST reduction for kSat with error µ ≤ 10−5 and distance d ≤ m2.5n/21.5s
∗
kn/ logn

runs in time 2Ω(n/ logn).

II. Any fm-compression reduction for kSat with size-compression from mn bits to ≤ m(s∗kn/(log n ·
log log n)− logn) bits with error µ ≤ 2−s

∗
kn/ logn−8 runs in time 2Ω(n/(log n·log logn)). In particular,

for any constant ε < 1 and any m = poly(n), any perfect fm-compression that compresses mn
bits to mnε bits runs in time 2Ω(n/(log n·log logn)).

Proof. By using Lemma 23, Item (I) follows from Theorem 12 and Item (II) from Theorem 8.
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9.1 Quantum Hardness vs Quantum One-Wayness

In this section, we show that quantum compression reductions imply one-way state generators.

Lemma 24. Let n ∈ N, λ : N → R
+. Let Π be a (T, µ, fm, λ, γ)-mildly-lossy with a pure-outcome

reduction, with the parameters below:

T,m = 2O(λ+logn) , µ ≤ 2−2λ−11 , γ = 2−λ−4 .

If Π cannot be solved in time 2O(λ+logn) using quantum algorithms, then one-way state generators
exist.

Proof. We compute θowf and τowsg that are required in Theorem 4. For the given parameters, we
have θows = 1− (δ(λ)+ γ +4

√
2µ) ≥ 2−λ−3 and τows ≥ 2−λ−3. The runtime of the construction G in

theorem 4 is O(T +m2n2λ) and the runtime of the Π-solver is O(22λ(T + TA + 22λ) +m2n23λ) =
2Θ(λ+logn), for all sufficiently large n. Following a similar argument as in Lemma 19, we obtain
a weak one-way state generator. One can conclude by noting that weak one-way state generators
imply one-way state generators [MY24].

The following theorem is direct.

Theorem 13. Let n ∈ N, λ : N → R
+, and Π be a promise problem that cannot be solved by any

quantum algorithm in time 2O(λ+logn). If Π has a quantum fm-distinguisher pure-outcome reduction
for some non-constant permutation-invariant fm, with the following parameters:

mild-lossiness mλ◦ ≤ mλ , T,m = 2O(λ+logn) , and µ ≤ 2−2λ−11 ,

then one-way state generators exist.

Proof. Note that Π is indeed (T, µ, fm, λ, γ)-mildly-lossy for γ = 2−λ−4, with a quantum reduction.
Then the statement follows by Lemma 24.

In the beginning of this section, we showed impossibility results for classical mildly-lossy re-
ductions assuming that one-way functions do not exist. Here, we adapt them to one-way state
generators. We define a measure of quantum hardness as follows:

Definition 25 (Exact Quantum Hardness of Problems). For a problem Π, let τQΠ (n) :=
infτi(n)∈Υ {τi} (the limit is taken point-wise), where Υ is the set of family of functions τi such that Π∩
{0, 1}n can be solved by quantum algorithms in time O(2τi(n)) on all instances with probability ≥ 2/3.

Theorem 14. If infinitely often one-way state generators do not exist, then for any Π and any
quantum f -distinguisher reduction for Π with mild-lossiness ≤ m(τQΠ/ log log n − log n) and µ ≤
2−τ

Q
Π (n)−8, where fm is a non-constant permutation-invariant function, we have T = 2Ω(τQΠ / log logn).

Proof. Let τ be such that τ(n) + log n = o(τQΠ (n)). Further, assume that there exists an infinitely
often quantum fm-distinguisher reduction for Π with parameters

mild-lossiness mτ◦ ≤ mτ , T,m = 2O(τ+logn) , and µ ≤ 2−τ
Q
Π (n)−8 .
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Note that we have τ(n) + log n = o(τQΠ (n)) and Π is Ω(2τ
Q
Π (n))-hard using quantum algorithms.

Therefore, no quantum algorithm that runs in time 2O(τ(n)+log n) can solve it. By Theorem 13, it
follows that infinitely often one-way state generators exist, which contradicts the assumption. Hence
any the fm-distinguisher reduction (within the given parameters) either runs in time 2ω(τ(n)+log n)

or we have m = 2ω(τ(n)+log n), for all sufficiently large n. Note that the latter implies the former
by Lemma 20. Hence, we have T = 2ω(τ(n)+log n). The only condition that we impose on τ is
that τ(n) + log n = o(τQΠ (n)). By letting τ = τQΠ/ log log n − log n, we conclude that the runtime

must be at least 2Ω(τQΠ / logn).

Remark 8. We note that all the results above immediately apply to quantum fm-compression re-
ductions since any quantum fm-compression reduction is quantum mildly-lossy.
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