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Abstract—Encrypted traffic classification is highly challenging
in network security due to the need for extracting robust features
from content-agnostic traffic data. Existing approaches face criti-
cal issues: (i) Distribution drift, caused by reliance on the closed-
world assumption, limits adaptability to real-world, shifting
patterns; (ii) Dependence on labeled data restricts applicability
where such data is scarce or unavailable. Large language models
(LLMs) have demonstrated remarkable potential in offering
generalizable solutions across a wide range of tasks, achieving
notable success in various specialized fields. However, their
effectiveness in traffic analysis remains constrained by challenges
in adapting to the unique requirements of the traffic domain. In
this paper, we introduce a novel traffic representation model
named Encrypted Traffic Out-of-Distribution Instruction Tuning
with LLM (ETooL), which integrates LLMs with knowledge of
traffic structures through a self-supervised instruction tuning
paradigm. This framework establishes connections between tex-
tual information and traffic interactions. ETooL demonstrates
more robust classification performance and superior generaliza-
tion in both supervised and zero-shot traffic classification tasks.
Notably, it achieves significant improvements in F1 scores: APP53
(LLD.) to 93.19%(6.62%1) and 92.11%(4.19%1), APP53 (0.0.D.)
to 74.88%(18.17%71) and 72.13%(15.15%7), and ISCX-Botnet
(0.0.D.) t0 95.03%1(9.16 % 1) and 81.95% (12.08 % ). Additionally,
we construct NETD, a traffic dataset designed to support dynamic
distributional shifts, and use it to validate ETooL’s effectiveness
under varying distributional conditions. Furthermore, we eval-
uate the efficiency gains achieved through ETooL’s instruction
tuning approach.

Index Terms—Encrypted Traffic Classification, Network Secu-
rity, Out-of-Distribution Generalization, Large Language Models.

I. INTRODUCTION

S an essential technology for cybersecurity and network
management, traffic classification aims to identify cate-
gories of traffic from diverse applications or network services
[1]-[6], which has been widely used in scenarios such as
security attack detection and quality of service assurance to
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Fig. 1. The Schematic Illustration of Different O.O.D. Identification Solutions.

help web content and service providers provide a more secure
and high-quality web service experience for users.

In recent years, gradual full encryption of traffic has become
a reality, explicit fingerprinting has been gradually failing.
Different technical approaches have been proposed to address
the needs of encrypted traffic analysis, including: (i) Statistical
feature-based approaches [15], [39] extract statistical features
and combine them with classical machine learning algorithms
to cope with traffic without plaintext; (if) Raw feature-based
approaches [8], [22] on the other hand selects raw traffic fea-
tures and captures complicated patterns based on deep learning
algorithms; and (iii) Raw datagram-based approaches [18]-
[20] utilize deep neural networks to learn implicit correlations
between datagram bytes.

Regrettably, the validity of most encrypted network traffic
analysis methods is based on the assumption that training
and testing traffic are independent and identically distributed
(ILD.), following empirical error minimization learning from
the training distribution. In fact, this assumption is fragile and
unrealistic in practical scenarios in the field of cybersecurity.
The interaction information and patterns of web applications
change over time, which makes it difficult for existing methods
to ensure good performance of the test data, the most intuitive
manifestations of which include version updates of web appli-
cations, and behaviors in different temporal windows [9]-[11].
Therefore, existing studies face the problem of probability
distribution drift of traffic and category labels due to dynamic
changes in network traffic, i.e., new feature distributions
cannot be precisely mapped to the same labels under a well-
trained classification model with the old distribution [14], [31].

In response to the degraded performance of traffic classifi-
cation models under Out-of-Distribution (O.0.D.) conditions,
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one of the most intuitive and commonly used techniques
[36]-[38] is to periodically retrain the model to adapt to
changes in traffic, as shown in Fig. 1(a). However, updating
the model involves collecting labeled samples and retraining
the classifier, consuming a lot of time and labor. Moreover,
the frequent updating of applications and the forgetting of old
distributions make it difficult to balance the updating effort
with performance degradation [31], [37]. Existing approaches
are inappropriate in dealing with out-of-distribution traffic
detection for two essential reasons:

(1) Feature Instability. Most used traffic features, single-
packet features or single-flow features inherited from packet-
level information, are weakly stable under distribution drift
and lack the ability to represent traffic more robustly.

(2) Insufficient Generalization. Existing research frame-
works are built to fit distributions under artificial experience
or large-scale labeled data, while realistic networks, ranging
from the complexity and variability of the application layer to
the interactive changes of the transmission mechanism, launch
an impact on the existing experimental assumptions.

Studies [38]-[41] have shown that both the temporal or-
dering of adjacent flows and packet-level bursts contribute
significantly to traffic fingerprinting. Moreover, consistent
traffic burst patterns within an application, even after updates,
have proven to be robust features for building stable traffic
representations. Additionally, pre-training methods are gaining
traction in traffic analysis. For instance, ET-BERT [12] demon-
strates strong generalization across multiple tasks, offering a
viable traffic representation framework, though it does not
fully resolve the generalization challenge.

Recently, large language modeling has been making break-
throughs in areas such as multi-modality. Under massive
knowledge and unsupervised learning tasks, LLMs are able to
acquire data extrapolation and scenario transfer capabilities,
and emerge as emergent capabilities in some tasks [21]. Such
powerful generalization ability can be easily migrated to the
target domain (Domain-LLM) [16], [17] by fine-tuning the
instruction form of small-scale labeled data. Stable traffic
representation in conjunction with LLM motivated our idea.

To address the aforementioned challenges, we propose a
novel traffic graph instruction tuning model for classifying
encrypted traffic in out-of-distribution (0.0.D.) scenarios,
called ETooL (Encrypted Traffic Out-of-Distribution Instruc-
tion Tuning with Large Language Model). ETooL focuses on
designing flow interaction representations that allow LLMs
to learn the underlying properties of network flows without
requiring retraining for new distributions (Fig. 1(b)). First, we
introduce flow graph representations, converting flow inter-
action properties into learnable graph structures. By using a
contrastive learning approach, we align textual representations
with flow graph structures, enabling the LLM to comprehend
flow characteristics. During the instruction tuning phase, the
model is guided through a BURST graph matching task as a
self-supervised signal. This process helps the LLM understand
the underlying transport structure (BURST), enhancing its
ability to capture contextual associations in traffic. In the sec-
ond tuning phase, we fine-tune the LLM using traffic-specific
instructions, adapting it further to the traffic identification task.

In summary, the main contributions of this paper are
summarized as follows:

I We propose an instruction tuning model, called ETooL,
for out-of-distribution encrypted traffic classification. The
aim of this work is to align structural knowledge of the
traffic domain with the generalization of LLMs, in order
to enhance O.0.D. generalization for encrypted traffic.

II We newly propose flow-specific self-supervised instruc-
tion tuning task, BURST Graph Matching, to improve the
LLM’s comprehension of flow interaction. Meanwhile,
we introduce task-specific instruction tuning to enhance
the adaptability to encrypted traffic classification.

IIT We design and construct a dataset suitable for Non-L.1.D.
traffic classification, named NETD. To the best of our
knowledge, this is the first dynamically distributed traffic
dataset that is dedicated to advancing data-supported
research on O.0.D. encrypted traffic.

IV ETooL has great generalization ability and achieves a
new state-of-the-art performance over 7 encrypted traffic
classification datasets across independent and identically
distributed and out-of-distribution scenarios, including
Encrypted Application Classification, Malicious Service
Classification and Encrypted Traffic Classification with
Distribution Flexible, and outperforms existing works
remarkably by 6.62%, 4.19%, 18.17%, 15.15%, 9.16%,
12.08% and 2.88%.

II. PRELIMINARIES
A. Problem Statement

An adversary can use the encrypted traffic to perform a side-
channel attacks to identify whether a victim has accessed a
specific set of monitored applications. A defender, on the other
hand, performs intrusion detection analysis with encrypted
traffic to identify whether an attacker uses a malicious program
to compromise a controlled network. We assume that the
attacker or defender cannot exploit the plaintext payload of the
packets and define an encrypted network flow as a bidirectional
sequence of packets corresponding to a unique five-tuple
source IP, destination IP, source port, destination port, protocol.

The goal of out-of-distribution encrypted traffic classifi-
cation is to utilize traffic data from known distributions to
learn transferable traffic knowledge, in order to achieve that
the mapping relationship between test data and labels stays
minimally changed when the distribution is changed, and
thus to improve the accuracy of the traffic identification task
under the new distribution. Specifically, we define the out-of-
distribution encrypted traffic classification as follows: Given
the traffic samples in the data space X" and label space ) as the
initial data domain D = {(x,y)|x € X,y € Y} ~ P(z,y),
the target data domain D' = {(z,y)lz € X,y € YV} ~
P'(z,y) is the newly distributed traffic data obtained by
sampling with a different joint probability distribution from the
initial data domain, then the learning objective fy : X — ) is
to maintain the accuracy of the label mapping in the event of
a shift change in the marginal distribution of the traffic data:

P(Y]X) = P(Y|X),if P(X) # P'(X) (D
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TABLE I
THE COMPARISON WITH THE EXISTING DATASETS OF ENCRYPTED TRAFFIC CLASSIFICATION.

Dataset ‘ Year ‘ #Flow ‘ Scenario ‘ 0.0.D. ‘ Extensible
ISCX-VPN [29] 2016 | 2,329 | VPN/Service/Application X X
ISCX-Tor [28] 2017 | 3,021 Tor/Application X X
USTC-TFC [20] 2017 | 9,853 Malware X X
Cross-Platform(iOS) [32] 2020 | 20,858 Application X X
Cross-Platform(Android) [32] | 2020 | 27,846 Application X X
CSTNET-TLS 1.3 [12] 2022 | 46,372 Service/Application X X
ISCX-Botnet [27] 2014 | 96,857 Malware (4 X
FDAN-APP53 [40] 2023 | 976,000 Application (4 X
NETD(Ours) 2024 | 3,000 |  Service/Application | v | v

B. Investigation on Existing Datasets

Datasets are an invaluable component of contemporary
traffic classification research, and they have been pivotal to
the tremendous progress made in the field. Not only do they
serve as a reliable source of training data, but they also
provide a relatively fair means of measuring and comparing
the performance of competing methods. Due to the diversity
of application scenarios and the development of network
protocols, new traffic datasets are constantly being released
to meet different research goals. However, most existing
traffic datasets follow the assumption of independent and
identical distribution of data, meaning that training and testing
data should contain independent and identically distributed
samples. In fact, we cannot decide the distribution of test data
in real scenarios, and the assumption of independent identical
distribution can never be strictly satisfied [25], which means
that minimizing the empirical error of a model on the training
data does not necessarily make it perform well on the test data.

Table I presents several representative datasets designed to
meet various research objectives, covering scenarios such as
VPN, malware, and mobile services. Most of these datasets
were captured without fully considering the Non-L.LD. na-
ture of test scenarios, and only a few address distributional
variations that are explicitly identified. For example, the
ISCX-Botnet dataset introduces different data distributions
by varying the type and volume of malicious and benign
traffic between the training and testing sets. Similarly, FDAN-
APP53 (APP53) accounts for both temporal and device factors
to simulate distribution shifts caused by application version
changes in real-world settings. The factors contributing to
distribution shifts in real-world networks are complex, and it is
labor- and time-intensive to comprehensively account for and
capture them. For instance, in the case of temporal distribution
shifts, constructing a dataset would require data collection over
multiple time periods.

In this regard, we propose NETD, an out-of-distribution
encrypted traffic dataset that supports distributional dynamics
adjustment while being low-cost, efficient, and usable, as it
supports the exploitation of publicly available datasets. It is
worth noting that no previous dataset has supported adjusting
the degree of traffic distribution bias, whereas the NETD
dataset supports modelling varying degrees of O.0.D. traffic

in a controlled manner. Details are given in Section VIII-A.

C. Motivation Analysis

LLMs have demonstrated remarkable performance in tasks
involving rich semantics and natural language understanding,
highlighting their strong generalization capabilities. When it
comes to encrypted network traffic, we apply LLM-based
techniques based on the following considerations:

(1) Feasibility of Applying LLMs to Encrypted Traffic
Classification. Although encrypted traffic lacks rich semantic
information, the use of LLMs in encrypted traffic analysis is
gaining momentum. Several studies [12], [13] have shown that
LLM architectures (particularly leveraging pre-training) signif-
icantly enhance generalization in traffic classification tasks. By
representing traffic features in a sequential format, LLMs can
be naturally integrated to improve model generalization.

(2) Effectiveness of Structured Traffic Graph Repre-
sentations. Structured graph representations of traffic have
been proven effective in capturing stable interaction patterns
between flows [40]. To further address the challenge of
distributional shift in traffic data, we propose leveraging traffic
graphs as an input representation for fine-tuning LLMs. Our
experiments confirm that incorporating graph-based repre-
sentations provides measurable gains in performance under
distribution shift conditions.

(3) Feasibility of LLMs Learning from Structured Data.
While LLMs are inherently designed for text, recent re-
search [48] has demonstrated their ability to generalize across
structured data formats. This inspired us to explore the
integration of LLMs with graph-structured representations of
network traffic, aiming to harness their transferability and
generalization in non-textual domains.

(4) Advantages of the LLM Architecture. We evaluated
LLM-based approaches using traffic sequence representations
[12], [24] alongside traditional Al techniques. Notably, most
of these methods do not explicitly address the issue of
distribution shift. Other existing approaches [31] rely on
access to unknown traffic in advance, which deviates from the
strict requirements of true O.0.D. detection. In contrast, the
LLM architecture exhibits stronger generalization capabilities,
including zero-shot learning and representational transfer,
which motivated our investigation.
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III. RELATED WORK

In this section, we provide an overview of encrypted
traffic classification methods that have been proposed, in-
cluding statistical feature-based methods and deep learning-
based methods, as well as pre-training and instruction tuning.
Fingerprint construction represented by deep packet inspection
(DPI) is no longer applicable and will not be discussed.

A. Encrypted Traffic Classification

(1) Statistical Methods: To efficiently analyze complex
traffic, most studies of encrypted traffic utilize statistical
features of traffic independently of traffic encryption. CUMUL
[15] selects 104-dimensional statistical features by accuracy
evaluation and then utilizes them as input to a support vector
machine to identify website traffic. AppScanner [39] uses
statistical features of packet size to train a random forest
classifier. While ML-based methods combined with statistical
features can analyze complex traffic, they rely on expert-
designed statistical features, which makes it difficult to design
generic statistical features to adapt to the large number of
applications and websites that are constantly changing [34].

(2) Deep Learning Models: Encrypted traffic classifica-
tion using supervised deep learning in conjunction with raw
features or raw datagram has become a popular approach
to automatically extract distinguishing features rather than
relying on manual design. FS-Net [22] uses recurrent neural
networks (RNNs) to automatically extract representations from
the original packet size sequence of encrypted traffic, while
Deeppacket [19] and TSCRNN [18] are representing the
original payload. Traffic Interaction Graph [7] models flow
interactions as graphs and learns flow associations based on
graph representations, providing better traffic identification
ability. However, such methods rely on a large amount of
supervised data to capture the effective features and thus learn
biased representations in a small range of data.

B. Pre-training and Instruction Tuning

Pre-training techniques learn unbiased data representations
from large amounts of unlabeled data through self-supervised
learning, which not only significantly reduces the appetite for
labeled training data, but also further improves performance
in downstream tasks. In encrypted traffic classification, pre-
training models are applied as emerging architectures to im-
prove the generalization of traffic classification. PERT [24] ap-
plies the pre-training model to migrate ALBERT to encrypted
traffic classification and achieves performance improvement in
VPN scenarios. ET-BERT [12] proposes pre-training tasks that
are more suitable for traffic datagram representation and achi-
eves performance improvement in traffic classification under
multiple tasks, which demonstrates the powerful generalization
of the pre-training model for encrypted traffic classification. In
addition, MT-FlowFormer [45] and Flow-MAE [46] utilize the
pre-training model to capture flow correlations from a visual
perspective and improve flow identification performance. Pre-
training techniques demonstrate power in traditional traffic
classification, but these studies fall short of the desired goal by

not considering attempts to solve the problem of classifying
Non-LLD. encrypted traffic.

Prompting [35], a technique that uses task-specific prompts
to guide pre-trained models, reducing the need for fine-tuning
or large amounts of labeled data. Recently, prompt learning
has demonstrated its effectiveness in generalized transfer in
natural language processing, computer vision, and network
service optimization tasks [42], [44]. The instruction tuning
paradigm, integrating the pre-train and fine-tuning framework
with prompt learning, enhances generalization capabilities in
transfer learning by enabling effective task adaptation with few
or even zero samples [26], [47]. In the context of encrypted
traffic classification, this area of research remains largely
unexplored. We propose a generic traffic representation based
on domain-specific traffic knowledge, taking into account the
unique characteristics of traffic modalities. Additionally, we
design two instruction-tuning tasks to ensure the generalized
transferability of traffic representations.

IV. OVERVIEW OF ETOOL

In this section, we present the design of ETooL. Typi-
cally, encrypted traffic analysis focuses on extracting multi-
dimensional features from a single data flow and examines
the flow pattern under the assumption of I.I.D. data. However,
this assumption is often fragile and unrealistic in real-world
scenarios. Single-flow patterns are more susceptible to per-
formance degradation due to distributional bias compared to
multi-flow interaction patterns.

To this end, our goal is to learn generic interaction corre-
lation patterns for encrypted traffic and achieve better netflow
classification in scenarios with different distributional vari-
ations. Thus, in this paper, we propose ETooL, an out-of-
distribution encrypted traffic classification framework based
on a generalized pre-trained large model, to tackle the out-
of-distribution recognition problem in encrypted traffic in the
network domain. As shown in Fig. 2, the ETooL framework
consists of a two-stage fine-tuning and contains three core
components, i.e., traffic interaction graph structure represen-
tation, graph structure instruction tuning, and traffic task
instruction tuning.

Traffic2Graph. Drawing inspiration from FRG features
[40] that cope with ambiguous flows and concept drifts,
we propose to utilize flow interactions incorporating multi-
granularity features as a generic pattern for constructing
flow representations. Network Traffic Relation Graph (TRG)
is constructed based on the correlation topology between
different flows, and the graph contains flow features at dif-
ferent granularities. Specifically, the TRG consists of multiple
network flows at adjacent timing, where each node represents
a network flow, and each node contains a Raw Datagram (RD)
sequence and a Packet Length (PL) sequence. The relationship
between nodes represented by different network flows, i.e.,
correlation edges, consists of adjacency edges and burst edges,
which represent the interaction between different flows.

Graph Structural Instruction Tuning. This phase pro-
poses a well-designed flow-graph alignment module and a
flow-graph structure instruction tuning paradigm for helping
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Fig. 2. Overview of ETooL Framework.

LLMs capture and learn flow associations, thus alleviating
problems such as the difficulty of existing LLMs in under-
standing flow feature information and flow-graph structure.
In particular, the flow-graph alignment module aims to align
the flow features and topological relationship graphs in the
encoding space, based on which natural language instruction
data containing flow feature information is designed for self-
supervised tuning, leading to better understanding of flow
graph structure knowledge.

Traffic-Task Instruction Tuning. In order to help the
large language model adapt to the out-of-distribution traffic
identification task, this phase proposes the traffic task instruc-
tion tuning module to design the instruction data for traffic
classification based on the knowledge of the traffic domain
structure obtained by the large language model.

We realize the learning of network interactions and con-
textual associations by constructing correlation graphs to
represent the interaction characteristics of multi-flow, and
allowing the pre-trained models to recognize the flow cor-
relation patterns through self-supervised learning. Meanwhile,
with the inference and understanding ability of the pre-trained
model, we realize the generalized out-of-distribution flow
identification under the traffic task instruction tuning.

V. TRAFFIC2ZGRAPH

In real networks, multiple network flows are often estab-
lished within a short timeframe to enhance the application’s
response rate and improve user experience. This results in
several communication flows being created and transmitting
messages simultaneously, which can be observed through
passive network traffic capture.

This phenomenon is referred to as BURST, a key concept
widely used in recent years for traffic feature mining and
representation. Specifically, packet-level BURST is defined as
a sequence of consecutive packets whose arrival intervals are
within a small time threshold. Several studies have demon-
strated that this traffic structure is effective for analyzing

encrypted network traffic. Similarly, flow-level BURST refers
to network flows established within a short time window,
which helps explore the correlation properties between flows.
While packet-level BURST captures the traffic characteristics
of multiple packets serving the same resource request or
response, flow-level BURST reflects the collaboration between
multiple flows serving the same network function.

To further capture the interactions between flows in raw
traffic, we propose the Traffic2Graph module to construct
a discriminative and generic traffic characterisation with the
variability that exists in the flow-level BURST features of dif-
ferent web applications. The module consists of two processes:
(1) Flow Extractor extracts datagrams and packet sizes from
each input network flow to merge flow feature information of
different dimensions. (2) Flow2Graph further constructs the
flows with fused features into a graph structure according to
timing and connectivity relationships to better represent the
correlation information among different flows in BURST.

Web application developers often implement similar func-
tionalities, but their differing interpretations of business mod-
els and development practices can result in distinct network
flow collaboration patterns at the network traffic level. This
section examines the interaction between network flows, fo-
cusing on two key relationships: adjacency and bursting.
Adjacency describes the connectivity between adjacent net-
work flows and, in this context, is extended to represent the
through-connectivity between neighboring BURST structures.
The bursting relationship, on the other hand, refers to the
connectivity between flows within the same flow-level BURST
structure. These multi-dimensional correlations capture the
temporal and sequential relationships between network flows
and the collaborative construction of BURST structures, which
work together to enable network service functionality.

A. Flow Extractor

The multi-dimensional fusion of traffic information helps to
adapt to the needs of more traffic identification scenario tasks,
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and we focus on datagrams and packet sizes that are widely
used and have effects: datagram and packet size. In particular,
to adapt to flow data in instruction fine-tuning, we expand the
token representation of LLM according to CETP [30].

(1) Sequence of Datagrams. We extract 128 bytes from
the datagrams and construct traffic representation units that
contain more information to enable the pre-training phase to
obtain richer contextual information. Therefore, the hexadec-
imal bit sequence in the original traffic datagram is double-
byte split and encoded as a sequence of byte pairs, where the
representation space of each unit ranges from 0 to 65535, e.g.,
the {ee08bf56...} would be represented as {ee08, bf36, ...}.

(2) Directed Packet Size Sequence. The construction of the
packet size sequence follows the conventional way of flow
statistical characterisation, where the packet size is extracted
while preserving the communication direction information of
the encrypted flows, where + indicates that the packet is sent
from the client to the server, and - indicates that the packet
is returned from the server to the client. For example, a
sequence of directed packet sizes for a bi-directional flow can
be represented as {+128, -74, -1020, +378...}.

B. Flow2Graph

Given all network flows S generated by a client using a
certain web application during a certain period of time, and a
graph structure is constructed for these flows. Taking advan-
tage of the property that graph data structures can express rich
node information and relationships between disjoint nodes, the
traffic relation graph TRG(G = (V, E)) is used to express
adjacency and bursting relationships between different network
flows. The specific construction process of the traffic relation
graph is shown in Algorithm 1.

In accordance with the adjacency and bursting edges be-
tween flows in the temporal relationship, and the feature
information representation in each flow, we construct the nodes
and edges in the traffic relation graph as follows:

(1) Nodes V' in TRG. Each network flow constitutes a
node in the TRG, where each node consists of flow features
including datagram sequences, packet size sequences, packet
message type sequences, packet time interval sequences, and
so on. Since the value of the start timestamp of a network
flow is dynamically variable, we are mainly concerned with
the directed packet size sequence and datagram sequence of
each network flow.

(2) Edges E in TRG. The TRG contains two types of associ-
ation edges, the first of which is adjacency edge for connecting
flows within different BURST structures. By capturing the
bursting relation, the flows in the set S can be divided into
different BURST structures, after which the neighbour relation
is formed by connecting the last flow of the previous flow level
BURST to the first and last flows of the next BURST. And
the second one is the burst edge, which is applied to connect
concurrent network flows within the same BURST structure.
The flow level BURST is divided according to whether the
start timestamp of the network flow is within a small temporal
neighbourhood ~.

Algorithm 1 Construction of Traffic Relation Graphs.

Input: S = {f1, f2, ..., fu}: Network traffic data collected
over time; «y: Interval threshold for determining the flow
level BURST;

Output: G = (V, E): The traffic relation graph G containing
nodes V' and edges E;

1: V={}, E={}, BURST=[ |, BURST4s: = [ |

2: Sort the network flows in .S by starting timestamps
3: Each flow is added as a node to V'

4: for each f € S do

5 if BURST # NULL then
6 if |fstart_time - BURSTls%Zﬁ‘t_time‘ < Y then
7: current flow f is added to BURST
8 else
9: for i € range(BURST;..) do
10: E.insert(BURST([:], BURST[i + 1])
11: end for
12: if BURST,,s: # NULL then
13: E.insert(BURST,,s:[—1], BURSTI0])
14: E.insert(BURST;4s:[—1], BURST[—1])
15: end if
16: BURST,s; = BURST
17: BURST = | |
18: end if
19:  end if
20: end for

21: return G = (V, E)

VI. GRAPH STRUCTURAL INSTRUCTION TUNING

To enhance the understanding of flow graph structural in-
formation with LLMs, ETooL aligns the flow graph structural
encoding with the natural language space. This alignment is
intended to enable the language model to leverage the inherent
language comprehension capabilities for effective understand-
ing of flow features and through-connection relationships.
Towards this goal, we design a flow graph encoding alignment
module that aims to preserve the flow graph structural context
information during instruction tuning of the large language
model, thus effectively correlating the flow understanding with
the topological structure relationships in the graph.

A. Traffic Graph Encoding Alignment

Inspired by cross-modal alignment studies such as CLIP,
we integrate traffic features into the graph structure encoding
process in the form of contrastive learning to align and fuse the
traffic graph structure and traffic information representation.

Specifically, a graph neural network encoder with pre-
training parameters is integrated into the ETooL framework
and enabled to correspond to the graph representation and the
flow representation encoding through the contrastive learning
approach. Assuming that the flow graph is represented as
G(V,E, A, X), the flow feature information of the nth node
corresponding to the flow is represented as C = {¢; €
Rlixd 1 <i< N }, where [; denotes the length of the input
of the 745, node and N denotes the number of nodes.

The encoded flow graph structure and flow feature repre-
sentations are obtained by any graph representation encoder
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fq (e.g., Graph Transformer) and flow representation encoder
fn (e.g., ET-BERT) as follows:

H = [4(G),N = fu(C) 2

where V,E,A,X as inputs to the flow graph denote the node
encoding, associated edges, graph adjacency matrix, and node
features, respectively. I denotes the structure-level graph
encoding representation generated by the graph neural network
encoding, and N is the encoded representation of the flow
features associated with the nodes.

The traffic-graph alignment process for different dimensions
through comparative learning is conducted as follows:

S = (g (norm(H)) - g (norm(N))T) -exp(r) ()

1
L= Z SN(CE(Si,y) + CE(S/ ,9)) 4)

where y = (0,1,...,—1)T as the contrastive learning target
denotes the alignment label, J; denotes the similarity measure
during contrastive learning, g; denotes the encoder of different
information, 7 denotes the temperature coefficient, A denotes
the weight coefficient of different difficulty sample pairs, and
CE denotes the cross-entropy loss function.

B. BURST Graph Matching

The encoding alignment enables the inclusion of flow
features in the instruction cues to be understood in association
with the flow graph structure. In order to further align the
linguistic comprehension of the large language model with the
graph learning task, we utilise a pre-trained instruction tuning
paradigm to enhance the adaptability of the large language
model for specific traffic learning tasks, enabling the large
language model to generate more accurate and contextually
appropriate results for the traffic graph structure data.

Despite the strong generalised contextual understanding of
the large language model, it is lacking in the understanding of
network communication behaviours as well as traffic features.
Meanwhile, the construction of traffic understanding capability
is independent of a specific traffic identification task, and we
use self-supervised instruction tuning to inject the knowledge
of traffic graph structure into the large language model so
as to effectively understand the contextual information in the
traffic. Specifically, we design the interactive structure-aware
flow graph matching task in the self-supervised instruction
tuning approach, which allows the use of unlabelled encrypted
traffic data to generate the representations of the flow graph
structure as part of the instructions for the tuning of the large
language model, where the flow graph structure will be used as
a self-supervised signalling unit to instruct the large language
model to distinguish between the different flow graph nodes
using both the natural language and the flow sequence.

Instruction Design. The traffic graph matching task is
guided by three core components: (i) traffic graph, (if) problem
instruction, (iii) ETooL response. Each node within the traffic
graph is designated as a central node, and an h-hop random
neighbor sampling strategy is employed to extract the subgraph
structure from the input traffic graph. The input provided to

the large language model is a combination of natural language
descriptions and traffic-specific features. For this task, the
instructions consist of a <graph> indicator unit, disrupted
BURST traffic features, and a textual problem description.
The objective is to align each flow, represented by a traffic
graph node, with its corresponding traffic feature. Achieving
this alignment necessitates reordering the disordered BURST
traffic feature representations by understanding the topological
relationships between graph nodes. Through this process, the
model correlates the structural representation of the traffic
graph with its associated traffic features, thereby improving
its capacity to infer and comprehend network traffic behavior.

Tuning Strategy. Through the lightweight alignment pro-
jection, we keep the parameters of both the LLM and the
graph neural network encoder frozen during tuning, optimizing
only the parameters within the projection layer. Specifically,
we freeze all components of the LLM backbone, including
attention blocks, token embeddings, and layer normalization
layers, as well as every layer within the pre-trained flow-graph
encoder. After fine-tuning, the projection layer effectively
maps encoded flow-graph representations to corresponding
node representations, enabling the LLM to align these node
representations with various node-level feature semantics.
By using a projector (e.g., a linear mapping module), the
model establishes a correspondence between graph node rep-
resentations and flow feature instruction representations. The
indicator unit <graph> embedded in the natural language
instructions is replaced with the aligned flow graph node repre-
sentations, formatted as {<graph_begin>, <graph_token>,
..., <graph_token>,,, <graph_end>}. This incorporation of
flow graph structure into the instructions allows the large
language model to process them. Since the flow graph match-
ing process is self-supervised, it efficiently leverages large
amounts of unlabeled flow graph data from various traffic
scenarios, improving the generalization capabilities of the
learned projectors.

VII. TRAFFIC-TASK INSTRUCTION TUNING

After completing self-supervised instruction tuning, we
develop task-specific instruction tuning methods tailored to
encrypted traffic classification. This process involves customiz-
ing the inference behavior of the LLM to meet the specific
constraints and requirements of the classification task. By
fine-tuning the LLM with task-specific instructions, the model
is guided to generate responses that are more appropriate
for traffic learning. The traffic task instruction tuning further
enhances the model’s adaptability in handling encrypted traffic
identification tasks across varying distributions.

In the traffic task instruction tuning, the instruction template
consists of three parts. The traffic graph information includes
multiple traffic samples collected over time, supporting the
construction of sub-graphs. For the traffic classification task
¢, we model the traffic representation using the training
pair (X, y). During this phase we continue to keep the full
LLM backbone and the flow-graph encoder frozen, updating
only the structure-aware projector inherited from BURST
Graph Matching together with a lightweight task-specific
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TABLE II
THE STATISTICAL INFORMATION OF DATASETS. THE ACTUAL NUMBER OF DATASETS USED FOR CLASSIFICATION AFTER PROCESSING. THE CATEGORIES
AND SAMPLE SIZE OF NETD ARE DETERMINED BY THE ACTUAL DATASET USED.

Tasks ‘ Description of Task ‘ Dataset ‘ #Flow ‘ #Label ‘ Collection
EAC-T ‘ Encrypted Application Classification with the Same Time Distribution ‘ APP53-TIME [40] ‘ 93,479 ‘ 28 ‘ Public
EAC-V | Encrypted Application Classification for the Same Application Version | APP53-VERSION [40] | 104697 | 25 | Public
EAC =T | Encrypted Application Classification with Time Shift | APPS3 = TIME [40] | 93479 | 28 | Public
EAC = V| Encrypted Application Classification with Version Shift | APPS3 = VERSION [40] | 104697 | 25 | Public
MSC = T | Malicious Service Classification with Type Shift | ISCX-Botnet [27] | 8.000(5.578)| 2(8) | Public
ETC = F ‘ Encrypted Traffic Classification with Distribution Flexible ‘ NETD ‘ - ‘ - ‘ Private
classification head. Then ETooL leverages the parameters of o F=INlofDataset  —@=Test Error oo
the structure-aware projector, trained in the first phase as the 04'5 =8 .
initial state 6, and fine-tunes it to predict the traffic label y. '04 16'000/
Y= ETOOL(XKG; ¢)) 5) 035 4 14.00%
. . . . . . 0.3 4 1200%5
After completing the dual-stage instruction tuning, whichin- =~ - | -
. . B 2
cludes free.m.ng specific model par?lmeters, the large language . { soo% 3
model’s ability to understand and infer the structure of traffic s o/ { coox =
graphs is significantly improved. This approach enables the o |
model to efficiently handle a wide range of tasks related to 005 |
traffic graph analysis. . 0.00%
1 2 3 4 5 6 7 8 9 10 11 12
VIII. EVALUATION () ISCX-VPN
In this section, we perform six different encrypted traffic E==INIof Dataset & Test Error
classification scenario tasks (Section VIII-A) to demonstrate 35 ¢ 1 45.00%
that ETooL has better generalisation and effectiveness in the ;l 1 20.00%
out-of-distribution traffic identification task, as well as to show 1 +5 00
that the ETooL model can still be adapted to the old distributed s | '
encrypted traffic identification task. We then compare our V;l ” 000
model with 6 approaches (Section VIII-B) and perform an 21 ) 25.00% &
ablation analysis of the key components of the model (Section N .| - P 1 20.00% "_%
VIII-C). We further provide an analysis of the effectiveness of oo E
ETooL for traffic identification in a dynamic distribution offset 1} \| B p ) m o o
scenario (Section VIII-D), an evaluation of the efficiency of °© M 1 10-00%
the model (Section VIII-E), as well as the analysis of hyper- i ’ { s.00%
parameter selection (Section VIII-F). 0 0.00%

A. Experimental Settings

1) Datasets Descriptions: To evaluate the effectiveness and
generalization of ETooL, we conduct experiments across five
encrypted traffic classification tasks on four public datasets
and one one newly proposed dataset. The tasks and the
corresponding datasets are shown in Table II.

We conduct L.LID. and O.0.D. experiments in the publicly
available dataset APP53 [40], which contains the 53 web apps
with the largest user sizes selected from the Google Apps
Marketplace, and collect data from these apps across time and
versions on different devices by volunteers. However, since
this dataset only exposes the encrypted traffic dataset of apps
collected on Xiaomi 5Plus devices at different times and with
different versions, the following task will be set up around
that: extracting only apps from APP53 that have undergone

1 2 3 4 5 6 7 8 9 10 11 12
(b) NETD-1
Fig. 3. Comparison of the Index of Distribution Shift and Testing Error.

version changes and time changes, and setting them up as
Independent Identically Distributed and Non-Independently
Identically Distributed experiments.

Although the aforementioned APP53 dataset has some
scenarios for O.0.D. traffic identification, existing publicly
available O.0.D. datasets that can be used for evaluation are
still scarce. At the same time, most of the publicly available
datasets follow the experimental assumption of independent
and identical distributions without considering the impact
of distributional variations, which lacks explicit support for
the evaluation of O.0.D. traffic identification. Datasets for
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simulating different O.0.D. traffic scenarios to better support
traffic classification studies are still vacant.

In order to more efficiently support and promote the re-
search of O.0.D. encrypted traffic analysis, we design and con-
struct NETD (Dynamic Non-L.I.D. Encrypted Traffic Dataset),
an 0.0.D. encrypted traffic dataset that supports dynamically
adjustable distributions, within the existing publicly available
conventional encrypted traffic dataset, ISCX-VPN [29]. We
construct NETD by exploiting the intrinsic variability of target
concepts and background contexts in the traffic data to achieve
distributional shifts, i.e., to simulate the distributional changes
brought about by the development of objective factors such as
time. By treating any network behaviour as a contextual prin-
cipal component and other network behaviours as secondary
components in the traffic data, the degree of flexibility in
controlling the distributional shift can be achieved by adjusting
the proportional deviation of the principal and secondary
components in the target traffic task.

Given a feature extractor G' as well as a category C, we
introduce the Non-LI.D. Index (NI) [33] used to evaluate the
impact of distributional shift on the dataset as follows:

G(X’quain) — G(X’qusf)

a(G(X))

NI(C) = (©)

2

where X denotes the full data set and X¢c = X& , UXS ..
The 6 represents the first-order moments, meaning that the
expected or mean value is calculated for the representation of
the training set or the test set, which is able to systematically
portray the probability distribution of the data set. The o(-)
represents the standard deviation, which is used to normalize
the dimension of the representation. The || - ||2 represents the
L2 norm, which is able to measure the degree of difference in
the distribution between the train and test sets.

To verify the prevalence of Non-LI.D. in existing datasets,
we use the ET-BERT model as a feature extractor and test it on
the widely used LI.D. dataset ISCX-VPN. Figure 3 illustrates
the impact of distributional shifts on traffic identification,
where traffic classes with more severe distributional shifts
produce correspondingly larger identification errors in testing,
and the strict independent identity distribution is difficult to
satisfy, i.e., few classes are able to achieve a NI value of zero.

2) Downstream Tasks: In accordance with Table II, we
present six encrypted traffic classification tasks:

Task 1: Encrypted Application Classification with the Same
Time Distribution (EAC-T) aims to set up and classify the
identification of application traffic that is under the same time.

Task 2: Encrypted Application Classification for the Same
Application Version (EAC-V) aims to classify application
traffic collected from the same version of the application.

Task 3: Encrypted Application Classification with Time
Shift (EAC = T) aims to classify application traffic based
on time span (one month interval). Task 1 will be fine-tuned
under this task and tested in the form of zero-shot on traffic
collected at different times.

Task 4: Encrypted Application Classification with Version
Shift (EAC = V) aims to categorise application traffic based
on version span (version update). Task 2 will be fine-tuned

TABLE III
CATEGORY DISTRIBUTION OF THE DATASETS.

Dataset ‘ #Label ‘ Category
APP53-TIME 28 air.ITVMobilePlayer, bbc.mobile.weather,
APP53=TIME cn.cntv, com.amazon.kindle, com.booking,

com.cnn.mobile.android.phone,
com.dropbox.android, com.flipkart.android,
com.google.android.gm, com.groupon,
com.gumtree.android,
com.iconology.comics, com.imdb.mobile,
com.imo.android.imoim,
com.joelapenna.foursquared,
com.lenovo.anyshare.gps, com.pinterest,
com.reddit.frontpage, com.shazam.android,
com.shpock.android, com.skype.raider,
com.soundcloud.android, com.ted.android,
com.tripadvisor.tripadvisor,
info.androidz.horoscope, kik.android,
sg.bigo.live, tv.twitch.android.app

APP53-VERSION 25
APP53=-VERSION

com.amazon.mShop.android.shopping,
com.badoo.mobile, com.contextlogic.wish,
com.facebook katana,
com.google.android.youtube, com.guardian,
com.ideashower.readitlater.pro,
com.instagram.android,
com.jingdong.app.mall, com.kakao.talk,
com.nytimes.android,
com.particlenews.newsbreak,
com.sina.weibo, com.snapchat.android,
com.spotify.music,
com.ss.android.ugc.aweme,
com.taobao.taobao, com.tencent.qqliveil8n,
com.twitter.android, com.vidio.android,
com.vkontakte.android,
com.xunmeng.pinduoduo, flipboard.app,
ru.ideast.championat, tv.danmaku.bili

ISCX-Botnet 2(8) | Benigh and Malicious (Neris, Rbot, Virut,

NSIS, SMTP Spam, Zeus, Zeus Control)

under this task and tested in the form of zero-shot on traffic
data collected from another application version.

Task 5: Malicious Service Classification with Type Shift
(MSC = T) aims to classify the botnet traffic with type shifts.
In this task, benign traffic is one class, while botnet traffic
consists of 16 types, of which the training set contains only
a portion of seven of them. In addition to the default binary
classification, we add a multi-classification scenario.

Task 6: Encrypted Traffic Classification with Distribution
Flexible (ETC = F) aims to classify the encrypted traffic
under different distributional variations. In this task, twelve
web services are grouped into four different distributional
datasets through different shifts in the context.

Notes. In our analysis of the APP53, we identified incon-
sistencies between the application categories linked to the
shift factors and the descriptions in the original work, along
with difficulties in obtaining fully accurate labels. In APP53,
version changes involve 25 application categories, not 22 as
originally described, and labeling inconsistencies contributed
to lower test accuracy. Additionally, in ISCX-Botnet (Multi-
Class), only 5 classes could be mapped to known labels.
Thus, we supplemented the remaining two categories based
on the original combined datasets. As a result, we conducted
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the experiments in this paper based on the actual dataset
acquisition to ensure accurate evaluation results. The category
distribution can be seen in Table III.

Echoing these tasks, we implement experiments to validate
the effectiveness of our framework in a variety of settings and
address key research questions:

o RQI1: How does the proposed ETooL framework perform
in both supervised and zero-shot settings for traffic
classification? (Section VIII-B)

o RQ2: What is the contribution of various key compo-
nents in the proposed ETooL framework to its overall
performance? (Section VIII-C)

o RQ3: What is the generalization ability of our model in
handling dynamic distribution shift? (Section VIII-D)

e RQ4: How efficient is the ETooL framework? (Section
VII-E)

o RQS5: What extent does hyper-parameter selection affect
the results? (Section VIII-F)

3) Comparison Methods: The state-of-the-art (SOTA)
methods used by application fingerprinting are summarized
as comparison approaches, including (1) statistical feature
methods: AppScanner [39] and CUMUL [15]; (2) deep
learning methods: Deep Fingerprinting (DF) [8], FS-Net [22]
and GraphDApp [7]; (3) pre-training methods: PERT [24]
and ET-BERT [12]. These methods are selected because
they represent a subset of different technical approaches that
support flow-level traffic detection. They are representative,
widely adopted, and commonly used as baselines in
comparative studies.

4) Evaluation Metrics: For each experiment, we evaluate
the methods by four typical metrics, including Accuracy
(AC = (I'P+TN)/(TP+ TN + FP + FN)), Precision
(PR=TP/(TP + FP)), Recall (RC =TP/(TP+ FN)),
and F1-Score(F'1 = (2 * PR x RC)/(PR + RC)). Macro
Average [23] is used to avoid biased results due to imbalance
between multiple categories of data by calculating the mean
value of PR, RC and F1 of each category.

N
1
Macro-Precision = v ; Precision;,
1
Macro-Recall = N ; Recall;, 7

1 N
Macro-F1 = — Y Fl,.
acro N 12:;

5) Implementation: We employ Vicuna-7B-v1.5 as the base
model for our approach. Unlike traditional Transformers, this
model is optimized by several key modifications: replac-
ing LayerNorm with RMSNorm, Multi-Head Attention with
Grouped-Query Attention, Positional Encoding with Rotary
Position Embedding, and ReLU with SwiGLU as the activa-
tion function. The architecture consists of 32 decoder layers,
each with 32 self-attention heads, and the dimensions of the
g, k, and v vectors in the attention module are set to 128.
ETooL is set with the learning rate of 2 x ¢~3, a warmup ratio
of 3 x e 2, the training epoch of 3, the batch size of 2 and

the maximum input length of the LLM to 2,048. We set the
BURST time threshold to a value of 1s. All the experiments
are implemented with Pytorch 2.1.0, conducted with NVIDIA
Tesla A800 GPUs with 80 GB.

B. Overall Performance Comparison (RQI1)

We conduct experiments on the traffic classification tasks,
evaluating both supervised and zero-shot scenarios. The over-
all performance is presented in Table IV. Our ETooL con-
sistently outperforms various state-of-the-art baselines in both
supervised and zero-shot scenarios.

1) General Encrypted Traffic Classification in I.1.D.: We
first discuss the performance between our proposed model and
the existing methods in classifying apps in ideal experimental
setting. The experiments in this section also play the role of
baseline to indict the effect of ambiguous traffic and concepts
drift in the following sections.

Our proposed ETooL achieves an average performance
improvement of 5.41%, 7.49%, and 19.87% on F1 compared
to different representative traffic classification baselines (ET-
BERT, FS-Net, and AppScanner) in L.I.D. scenarios.

In the EAC-TIME task, ETooL achieves performance im-
provements of 6.62%, 7.63%, and 20.92% in F1 score com-
pared to ET-BERT, FS-Net, and AppScanner, respectively. The
APP53 dataset’s homogeneous flow interference hampers tra-
ditional traffic feature construction methods (such as CUMUL
and AppScanner), indicating the diminishing effectiveness
of expert-driven feature extraction. DF and FS-Net, which
employ deep learning for feature extraction, can recognize
encrypted traffic with L.L.D. flows. However, their performance
varies due to differences in network architecture and fea-
ture selection, and both are constrained by the limited size
of labelled data. Although ET-BERT demonstrates stronger
recognition performance, confirming the advantage of pre-
training over traditional methods, its effectiveness is hindered
by the limitations of flow-level input. In contrast, ETooL does
not rely on extensive flow pre-training; instead, it leverages
the comprehension capabilities of large language models
through instruction tuning, exploiting multi-flow correlations
and contextual relationships from limited labelled data, thus
enabling effective performance in challenging I.I.D. scenarios.

In the EAC-VERSION task, ETooL significantly outper-
forms the three leading methods, with F1 score improvements
of 4.19%, 7.34%, and 18.82%, respectively. The increased
difficulty of identifying encrypted traffic stems from the
larger number of data categories for recording application
versions, as well as the interference of similar flows. Despite
these challenges, ETooL shows superior robustness, affirming
its powerful capacity to comprehend and generalize traffic
features effectively.

2) Non-1.1.D. Encrypted Traffic Classification: In this sub-
section, we explore the generalization ability of our model
by incorporating more instruction data to fine-tune the ETooL
for effectively handling various types of tasks. In contrast to
supervised L.I.D. experiments, this subsection will discuss the
out-of-distribution generalisation capabilities of our proposed
method under distributional variations.
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TABLE IV
COMPARISON RESULTS ON APP53 IN [.I.D. AND O.0.D. SETTING.

Dataset | APP53-TIME \ APP53-VERSION \ APP53 = TIME \ APP53 = VERSION
Method | AC% PR% RC% Fl1% | AC% PR% RC% Fl% | AC% PR% RC% Fl% | AC% PR% RC% F1%
AppScanner | 72.65 7290 72.65 7227 | 73.08 7353 7353 7329 | 4387 4602 4387 44.03 | 3539 3585 3569 35.00
CUMUL | 60.13 5993 6038 5974 | 61.00 60.18 61.04 6022 | 37.78 3791 3778 37.46 | 36.83 3633 37.17 36.14
DF 69.30 69.44 6921 69.10 | 73.44 7449 73.63 7375 | 3456 3671 3456 3456 | 34.58 3451 3458 33.78
FS-Net 8575 8591 8546 8556 | 84.50 84.82 8491 8477 | 4524 45.11 4487 4396 | 43.14 4642 4333  43.48
GraphDApp | 86.53 84.18 85.66 8596 | 80.32 81.21 80.93 8047 | 4141 42.16 4198 4179 | 3441 3432 3426 3424
PERT 7870 7870 7929 7871 | 7640 7640 7752 7677 | 4569 4569 4920 46.18 | 4596 4596 4754 4572
ET-BERT | 86.54 8654 8672 8657 | 87.82 8772 87.94 87.92 | 57.04 57.04 5937 5671 | 57.08 57.08 60.07 56.98
ETooL 9314 9421 9377 9319 | 9339 9266 9183 9211 | 7438 7624 7412 7488 | 7319 7424 7218 7213

TABLE V is capable of maintaining effective performance. This demon-

COMPARISON RESULTS ON ISCX-BOTNET IN O.0.D. SETTING.

Dataset | MSC = T (Binary) | MSC = T (Multi-Class)
Method |AC% PR% RC% F1% | AC% PR% RC% Fl1%
AppScanner | 76.94 7697 76.95 76.92|60.99 60.12 60.99 60.16
CUMUL | 6595 66.77 65.88 65.42|29.41 56.96 29.41 28.37
DF 7825 79.90 7828 77.94 | 2670 4430 42.10 42.30
FS-Net |77.42 78.81 77.36 77.27|7033 7139 7134 69.87
GraphDApp | 77.92 78.13 77.43 77.81|71.36 7129 7137 7131
PERT |8523 8877 85.11 85.19]6538 6270 6536 61.48
ET-BERT |85.74 85.18 88.67 85.87 | 65.51 72.58 6551 67.91
ETooL |9536 9572 94.87 95.03 |84.19 83.02 8273 8195

According to Table IV, the baseline method shows a signifi-
cant degradation in performance in the face of changes in flow
distribution. Nevertheless, our proposed ETooL achieves the
lowest performance degradation and an average performance
improvement of 16.66%, 29.79%, and 33.42% on F1 compared
to different representative baselines in the APP53 = TIME
and APP53 = VERSION tasks, respectively.

In the EAC = TIME task, the traffic identification accu-
racy of existing representative encrypted traffic classification
methods decreases significantly when no out-of-distribution
handling strategies are applied. This decline is particularly
evident when the methods are tested on new distributions.
For instance, AppScanner achieves an F1 score of 72.27%
on LLD. traffic, yet its performance drops to 44.03% when
evaluated on test data with time shifts. Similarly, FS-Net and
ET-BERT exhibit declines in F1 scores, dropping to 43.96%
and 56.71%, respectively. These results illustrate that shifts in
traffic distribution, caused by changes in time intervals, have
a substantial impact on the performance of existing methods.

However, the ETooL framework demonstrates superior ro-
bustness, experiencing minimal degradation and exhibiting
enhanced O.0.D. traffic identification capabilities compared
to the other methods. Unlike these methods, which struggle
to adapt to O.0.D. traffic caused by time variation, ETooL

strates that, despite shifts in the distribution of traffic over time,
certain invariant properties persist in O.0.D. traffic. These
properties, rooted in the associations within the traffic transport
topology and the contextual relationships of traffic flows, can
be effectively captured and integrated into ETooL’s inference
mechanism, allowing it to generalize and perform well even
under time-varying conditions.

In the EAC = VERSION task, we observe that the impact
from version updates is relatively stronger than temporal
changes, seeing that this is a more challenging task for
identifying out-of-distribution encrypted traffic. Unlike time
spanning, the cross-version task is to collect encrypted traffic
from two different versions of a mobile application at the
same time, when differences in application network interfaces
or service design logic bring about differences in traffic
distribution. AppScanner’s traffic identification result drops to
35.00%, while FS-Net and ET-BERT both drop to 43.48%
and 56.98% respectively. However, the ETooL model still
maintains minimal performance degradation and provides a
significant improvement over existing methods.

Furthermore, we validate the performance of ETooL in the
detection of malicious traffic. When distinguishing between
benign and malicious traffic, a key source of distributional
bias arises from the variation among different botnet types
present in the malicious traffic. In addition to the variation
factors encountered in the two previously mentioned O.0.D.
tasks, the MSC = T (Binary) task introduces another layer
of complexity by including malicious traffic from previously
unknown botnet types. This necessitates a higher degree of
model generalization, as the model must effectively generalize
beyond the known botnet types to accurately detect and
classify these unseen forms of malicious traffic. Based on
the characteristics of the dataset, we also incorporated benign
traffic alongside seven types of botnet traffic to perform a
multi-class classification task for malicious traffic detection.

As shown in Table V, AppScanner and FS-Net, both of
which rely on packet size as a feature, exhibit superior
detection rates compared to their counterparts (excluding
unknown botnet types). This suggests that packet size is a valu-
able feature for capturing commonalities across distributional
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TABLE VI
ABLATION STUDY OF KEY COMPONENTS IN ETOOL.

Dataset | APPS3.T | APP53.V |APP53 = T|APPS3 = V|Botnet = T

Method | AC% F1% | AC% F1% |AC% F1% | AC% Fl1% | AC% F1%

ETooL (Full Model) 93.14 93.19]93.39 92.11|74.38 74.88 |73.19 72.13 |9536 95.03

1 w/o Raw Datagram 90.93 89.62]89.33 88.64|68.76 68.18 | 67.26 67.93 |93.26 92.83
2 w/o Packet Length 91.73 90.62|91.31 90.99|69.43 69.39 | 70.55 69.72 | 94.75 94.39
3 | w/o Graph Structural Tuning | 74.25 73.92 | 76.74 76.81 | 45.87 45.79 |43.56 43.11 | 77.83 77.02
4| w/o Large Language Model | 87.26 86.95 | 87.01 85.72|55.61 54.79 |52.20 51.96 |83.47 83.69

shifts. Additionally, the use of datagrams as feature carriers
in DF, compared to pre-training methods such as PERT and
ET-BERT, further supports the performance gains attributable
to the pre-training architecture. Notably, ETooL surpasses the
optimal baseline by 9.16% and 12.08% across two malicious
traffic detection tasks. On the one hand, ETooL leverages
TRG to fuse packet size and datagram features, alongside
incorporating concurrency and timing relationships of flows.
This allows the model to capture richer underlying interactions
within the traffic data. Second, ETooL’s large-scale architec-
ture enhances its inference capabilities through pre-training,
while also improving its understanding of graph structures.
These factors collectively enable ETooL to generalize more
effectively to unseen traffic distributions.

C. Ablation Study (RQ2)

We conduct an ablation study to investigate the individual
contributions of different sub-modules of our proposed frame-
work, and the results are reported in Table VI.

We sequentially eliminate raw datagram, packet length,
graph structural tuning, and LLM and show the ablation results
to verify the contribution of each component on different tasks.

(1) In Models ”1-2”, we evaluate the impact of different
granularities of traffic input information on the model’s ef-
fectiveness. Model 717, which excludes datagram sequences,
shows an average decrease of 4.02% in F1 score compared to
ETooL. Similarly, removing packet length sequences results
in an average decrease of 2.44%. These findings suggest
that while the representation of arbitrary traffic information
provides some representational gain, datagrams offer more
significant improvements in model performance.

(2) In Model 73, we assess the impact of the traffic graph
structure and the graph instruction fine-tuning task. In this
model, flow-level instruction fine-tuning is performed directly
using the large language model, without incorporating traffic
relation graphs. Model 3 exhibits significant performance
degradation across all scenarios, with an average reduction
of 22.13% in F1 score compared to the full model. These
results suggest that both the traffic correlation structure and
the graph instruction tuning paradigm are critical for enabling
ETooL to learn traffic context more effectively. Furthermore,
this interaction-based approach enhances the model’s ability to
capture representational similarities under distributional shifts,
thereby improving its performance in O.0.D. traffic detection.

(3) Model ’4” was designed to perform supervised training
on flow graphs using an uninitialized Graph Transformer
model, removing the instruction tuning paradigm, and then
testing its out-of-distribution capability. Compared to ETooL,
Model ”4” demonstrates an average F1 score decrease of
12.84% across all datasets. This indicates that the understand-
ing and reasoning capabilities provided by the large language
model play a critical role in mitigating misclassification after
distributional shifts, offering substantial support for the task
of 0.0.D. traffic identification.

D. Generalization Ability Investigation (RQ3)

To further measure the performance difference between
the ETooL. model and the comparative approach models, we
analyze the encrypted traffic classification capability under the
ISCX-VPN with LLD. setups and the dynamic distribution-
variation traffic dataset NETD.

As described in Section VIII-A1l, we further illustrate the
detailed construction process. NETD is primarily designed by
controlling two key factors: proportional bias and composi-
tional bias. The specific settings are as follows:

Basic Dataset Composition. The ISCX-VPN dataset con-
sists of 6 types of services under both VPN and Non-
VPN categories, encompassing a total of 17 applications,
namely Chat (ICQ, AIM, Skype, Facebook and Hangouts),
Email (SMPTS, POP3S and IMAPS), File Transfer (Skype,
FTPS and SFTP), P2P (uTorrent and Transmission), Streaming
(Vimeo and Youtube), VoIP (Facebook, Skype and Hangouts).
With the detection objective of service traffic identification
in mixed traffic scenario, the components of the constituent
services are applied.

Proportional Bias Setting. In this setting, we ensure that
the constituent components of each target class are present in
both the training and testing data. For each service category,
one primary component is randomly selected. The proportional
bias between the primary and other components is controlled
by specifying a dominant ratio, which determines the relative
prevalence of the primary component:

NDominam
Dominant Ratio = —————

®)

N Minor

where Npominant denotes the number of samples for the
dominant component, while Njs;,o- represents the average
number of samples for the minor components. By fixing
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TABLE VII

STUDY ON THE TIME AND SPACE EFFICIENCY OF THE MODEL TRAINING AND INFERENCE.

Fine-tuning Method

‘ Training Time ‘ Tuned Parameters ‘ GPU(MB) ‘

FLOPs

‘ Inference Latency(ms)

1 | BURST Graph Matching tuning OOM 6,607,884,288 OOM 6,704,861,184 -
2 | BURST Graph Matching freeze 18:36:27 131,612,672 73,511 2,915,157,037 3,756.62
3 Traffic Task tuning OOM 6,607,884,288 OOM 6,704,861,184 -
4 Traffic Task freeze 1:38:41 131,612,672 71,196 2,793,692,160 3,756.62
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Fig. 4. Comparison Results on Dynamic Non-L.I.D. Encrypted Traffic Dataset.

the dominant ratio in either the training or testing data and
varying the proportional bias in the other, we simulate different
distribution shift scenarios.

Compositional Bias Setting. In contrast to proportional
bias, compositional bias simulates the situation where knowl-
edge in the training data fails to cover the complete dis-
tribution. By varying the number of constituent components
for each service category in the training and test data, we
are able to simulate different degrees of information loss
and thus achieve distributional bias. For the set of contextual
components C’, the construction strategy for the training and
testing set is as follows:

T={Tcc |1zm=N-1},

N-1 9)
TI=> (ZZ>:2N—2
k=1
s={scc ‘ <18 <N},
(10)

|S|:§:<Z>:2N_1

m=1

where 7 denotes the optional set of training data, S denotes
the optional set of testing data, and /V denotes the full number
of contextual components of the current category.

On the basis of ISCX-VPN, we construct generate four
0.0.D. traffic datasets with different distribution shifts: (1)
NETD-1: The distribution of the test set and training set of
traffic data is changed by using a proportional bias strategy,
and the dataset is generated by randomly sampling according
to the ratio of major and minor components of 1:3. (2) NETD-
2: Similar to NETD-1, but randomly sampling according to a
3:1 ratio of major and minor components in the sample pool.
(3) NETD-3: The distribution of the traffic data training set is
changed by employing a contextual compositional component
bias strategy and tested on the full data set. We randomly
capture 80% of the applications in the target class of services
as contextual constituents, while other applications do not
appear in the training set. It is also possible to further construct
the training data with more severely shifted distributions
according to the ratio bias of the major and minor components.
(4) NETD-4: Similar to NETD-3, but captures 20% of the
contextual applications of the target service.

According to the results in Fig. 4, the visualization clearly
demonstrates that ETooL achieves the best classification per-
formance across various datasets. In the figure, the recognition
results for each method are represented by bars, while the
folded lines indicate performance under the LLD. setting.
Notably, ETooL and ET-BERT show comparable performance
in the LLD. setting. However, under two distinct Non-L.L.D.
scenarios, ETooL significantly outperforms the other methods,
demonstrating superior robustness and classification accuracy.

E. Model Efficiency Study (RQ4)

The study aims to evaluate the computational efficiency of
our model during the training stage.

As shown in Table VII, our instruction tuning framework
follows a two-stage process in which both LLM and graph
encoder parameters are frozen and only the flow-graph aligned
projection layer is tuned. We perform a comparison between
freezing and tuning LLM parameters in a dual-card 80G
Nvidia A800 environment, denoted by freeze and funing,
respectively. The study investigates the time and space ef-
ficiency in terms of training time, tuning parameters, single
GPU memory occupied (MB), model computing volume and
inference latency (milliseconds per response). Under the same
experimental conditions, we suffer from GPU Out of Memory
errors when fully parametrically tuning a large language model
even with one batch size. However, by using a parameter-
freezing tuning strategy, the training process can still be
executed normally when increasing the training batch size.
In addition, the parameters involved in instruction tuning is
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Fig. 5. Comparison Results on Different Hyper-parameters Selection.

reduced by more than 50 times with frozen compared to
full-parameter, resulting in a significant reduction in model
computation and training time. To further investigate the
inference efficiency of EToolL, we measured the inference
latency on the NETD dataset, using a single NVIDIA AS800.
While ETooL has not yet met the requirements for real-
time detection, it is well-suited for scenarios such as assisted
decision-making, where accurate O.0.D. encrypted traffic
identification is critical. In particular, when combined with in-
terpretability strategies [49], LLM’s generalization capabilities
can be regularized, making it suitable for online deployment.

F. Hyper-parameters Analysis (RQS5)

The analysis aims to evaluate the selection of hyper-
parameters during the training stage. According to the results
presented in Figure 5, the BURST time threshold and the
learning rate affect the performance of the model in the test
scenarios of L.I.D. and O.0.D.

If the BURST time threshold is too small, flows serving
different functionalities may be aggregated into the same
BURST, while an overly large threshold may also lead to the
merging of flows with unrelated functions. To evaluate this
effect, we experimented with a range of time thresholds and
observed the testing performance. Empirically, a threshold of
around 1 second yielded the most favorable results.

Moreover, due to the limitation on batch size, setting the
learning rate too high can cause the model to oscillate or
overshoot near the convergence point, leading to increased
gradient variance and potential divergence. On the other hand,
setting the learning rate too low slows down convergence,
requiring more training steps to compensate. Through exper-
iments across different learning rate ranges, we found that
setting the learning rate to 2x e~ yields the best performance.

IX. CONCLUSION

In this paper, we propose ETooL, an effective and distribu-
tionally adaptive traffic large language model, aiming to im-
prove the generalisation ability of traffic classification model.
The proposed framework injects traffic graph structures based
on flow interaction knowledge into the LLM tuning paradigm.
We comprehensively evaluate the generalisation ability of
ETooL on seven encrypted traffic datasets in I.LI.D. and Non-
LLD. settings, demonstrating the effectiveness of our approach
in both supervised and zero-shot scenarios. The experimental

results clearly demonstrate that our proposed method exhibits
superior out-of-domain generalization capabilities compared
to existing encrypted traffic classification approaches. The
ETooL framework effectively integrates traffic features and
interaction correlation patterns with adaptive instruction tuning
via large language models. This enables ETooL to identify
out-of-distribution traffic while retaining knowledge of traffic
from previous distributions, offering a significant advantage
over traditional models that rely on iterative retraining.
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