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Abstract. Digital Forensics and Incident Response (DFIR) involves an-
alyzing digital evidence to support legal investigations. Large Language
Models (LLMs) offer new opportunities in DFIR tasks such as log anal-
ysis and memory forensics, but their susceptibility to errors and halluci-
nations raises concerns in high-stakes contexts. Despite growing interest,
there is no comprehensive benchmark to evaluate LLMs across both the-
oretical and practical DFIR domains. To address this gap, we present
DFIR-Metric, a benchmark with three components: (1) Knowledge As-
sessment: a set of 700 expert-reviewed multiple-choice questions sourced
from industry-standard certifications and official documentation; (2) Re-
alistic Forensic Challenges: 150 CTF-style tasks testing multi-step rea-
soning and evidence correlation; and (3) Practical Analysis: 500 disk and
memory forensics cases from the NIST Computer Forensics Tool Testing
Program (CFTT). We evaluated 14 LLMs using DFIR-Metric, analyz-
ing both their accuracy and consistency across trials. We also introduce
a new metric, the Task Understanding Score (TUS), designed to more
effectively evaluate models in scenarios where they achieve near-zero ac-
curacy. This benchmark offers a rigorous, reproducible foundation for
advancing Al in digital forensics. All scripts, artifacts, and results are
available on the project website at https://github.com/DFIR-Metric.

Keywords: Digital Forensics - Incident Response - LLM Benchmarking

1 Introduction

Since the Turing Test first challenged machines to mimic human conversation [32],
progress in Natural Language Processing (NLP) has been tracked through vari-
ous benchmarks. As noted by Wang et al. [35], modern Large Language Models
(LLMs), powered by neural networks and transformers [33], often record near-
perfect scores on widely used suites such as GLUE and SQuAD [34,23], which
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reduces the effectiveness of these tests. In response, some new benchmarks like
FRONTIERMATH [9] are made future-proof, and even advanced models can only
achieve 1.7% accuracy. These highly complex benchmarks do not support clear
differentiation between the capabilities of current models. LLMs hold immense
potential for various fields, including cybersecurity [31], software engineering [22],
biomedicine [4] or law [6], which has sparked calls for privacy-aware, reliability-
oriented, and domain-tailored benchmarks [35].

Digital Forensics and Incident Response (DFIR) is one such domain where
practitioners analyze logs, e-mails, and multilingual reports to identify evidence,
reconstruct timelines, and mitigate threats [11]. Recent studies show promising
results when LLMs are applied in the DFIR domain, particularly for log fil-
tering, artifact classification, and incident reporting [25,38,17,16,21]. However,
the stakes are especially high. Errors can compromise evidence or misdirect in-
vestigations, and the use of proprietary models may violate strict confidentiality
requirements. LLMs are known to hallucinate facts and misinterpret context [28].
Before they can be trusted in DFIR workflows, we need rigorous, task-specific
evaluations that measure not only one-off success through accuracy but also
reliability and consistency.

Evaluating the performance of LLMs within the DFIR domain remains a
significant challenge due to the absence of a comprehensive benchmark datasets
and well-defined evaluation metrics. Although several strong general-purpose
and domain-specific benchmarks are available, none provide a comprehensive
evaluation across the diverse landscape of DFIR. As a result, practitioners lack
a clear framework to determine when LLMs can be reliably applied and when
expert validation is still required. A question naturally rises: “ Which specific
DFIR tasks can LLMs effectively support, and in which areas is human expertise
still essential?” To obtain a detailed answer, we frame the study around the
following research questions:

'_( Research Questions ]

RQ1: What level of comprehension and confidence do LLMs exhibit in DFIR
domain knowledge when challenged with certification-grade multiple-choice
questions?

RQ2: To what extent can LLMs accurately and reliably solve practical foren-
sic workflows, like log triage, memory-dump analysis, reverse engineering, and
string search?

RQ3: Among the leading proprietary models and the strongest open-source
alternatives, which achieve the highest scores in a unified evaluation?

\. J

To the best of our knowledge, no comprehensive and standardized benchmark
currently exists in the literature to thoroughly address these research questions.
To fill this gap, we introduce DFIR-Metric, a novel suite of benchmark tasks
and datasets to evaluate LLMs in the DFIR domain. According to NIST Special
Publication 800-86 "Guide to Integrating Forensic Techniques into Incident Re-
sponse” [13], the digital forensics process consists of five key steps: identifying
evidence, collecting artifacts, examining data, analyzing findings, and reporting
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results. Our benchmark evaluates LLMs on the first four stages, emphasizing
technical accuracy and procedural rigor, while intentionally excluding the final
legal reporting phase. This paper makes the following three key contributions:

— DFIR-Metric: We design a three-part dataset to evaluate LLMs on: (a) DFIR
knowledge, using 700 human-verified multiple-choice questions sourced from indus-
try certifications and official documentation; (b) practical disk and memory foren-
sics tasks, evaluated through the string search tests of NIST’s Computer Forensics
Tool Testing Program (CFTT); and (c) CTF-style challenges on realistic forensic
investigations that require planning, analytical reasoning, and evidence correlation.

— Improved Evaluation Metrics: Beyond single-pass accuracy, we assess each task
multiple times to ensure reliability and introduce a new evaluation metric: the Task
Understanding Score (TUS), which rewards models for accurately completing steps
in a multi-step pipeline;

— Reproducability: All artifacts, associated scripts, and the final DFIR-Metric
dataset are available on the project’s GitHub page, allowing independent researchers
to integrate new models, replicate our results, and expand the evaluation as needed.
We assessed 14 state-of-the-art LLMs to capture the current landscape of model
advancements. (https://github.com/DFIR-Metric)

The remainder of the paper is organized as follows. Section 2 reviews related
work. Section 3 outlines the methodology used to construct the benchmark’s
three components. Section 4 presents experimental results for various state-of-
the-art LLMs, while Section 5 concludes the paper.

Ethical Considerations

All 700 DFIR-Metric questions were built from publicly available sources. Any
text that resembled certification material was paraphrased or abstracted to pre-
vent direct association with specific certification bodies or copyrighted material,
and brief quotations are used only for research—a context generally covered by
fair-use (or equivalent) provisions. The benchmark is independent of, and unen-
dorsed by any certification body. Our aim is to support open, ethical research
while respecting the rights of certification providers, content creators, and the
broader digital forensics community.

2 Related Work

Ferrag et. al [7] identified nine main areas where LLMs are being used today
marking DF as a standalone field. Sharma et al. [26] proposed ForensicLLM,
a model fine-tuned on a custom Q&A dataset for digital forensics tasks, but
neither the model nor its dataset is publicly released. Several recent studies
have explored the use of pre-trained large language models for a variety of tasks
across the digital forensic investigation pipeline. These tasks include timeline
reconstruction [16], automated report writing [18], and technical analyses such
as malware detection and reverse engineering [8,12]. Other work has focused on
artifact examination [24], as well as more practical applications like evidence
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extraction, scripting automation, and data recovery [24]. These studies high-
light the growing interest in adapting LLMs to support various stages of foren-
sic workflows, though many remain exploratory in nature. Wickramasekara et
al. [37] introduced AutoDFBench to assess Al coding skills in string search using
NIST CFTT test suites. We note that Module III of DFIR-Metric, which will
be detailed in the Section 3, also utilizes the NIST CFTT challenges to assess
LLMs’ capabilities in string search tasks.

Most existing evaluation frameworks for LLM-based forensics still rely on
ad-hoc, chat-style prompt tests. This approach does not scale well to large ques-
tion sets, provides limited control over response variability, and poses significant
challenges for reproducibility. Horsman and Lyle [10] emphasized the lack of
high-quality datasets in digital forensics and proposed several guiding principles
for dataset creation. Expanding on their work, we identify four key requirements
that any robust forensic benchmark should meet: (i) publicly accessible, well-
organized benchmarks hosted on platforms such as GitHub or Hugging Face;
(ii) a plug-and-play evaluation framework that allows models to be tested via
simple APT integration; (iii) evaluation metrics that go beyond accuracy to in-
clude critical risks such as hallucination frequency and domain-specific blind
spots; and (iv) a formal dataset specification that adopts a standardized format
to support auditability and long-term reproducibility. While such datasets exist
in broader cybersecurity domains, for example [30], none of the existing DFIR-
specific datasets fully meet all the criteria outlined above. Table 1 lists datasets,
benchmarks, and frameworks that satisfy a subset of the criteria and support
the DFIR field.

Table 1: DFIR-Relevant Datasets and Benchmarks

Dataset Name

Modality

Benchmark Scope / Description

CyberMetric [31]
DIA-Bench [30]

RAISE [5]

Vision Forensics [27]
Timeline Analysis [29]
IoT-CAD [19]
DeepSpeak [2]
CIC-MalMen-2022 [3]
Unraveled [20]
SCVIC-APT-2021 [14]
SCVIC-CIDS-2021 [15]

AutoDFBench [36]

CTIBench [1]

Textual (MCQ)
Textual (JSON)
Multimedia (Images)

Multimedia (Video)
Timeline (CSV/JSON)
Memory, Disk, Net
Multimedia (Aud/Vid)
Memory Dumps

Logs (Net -+ Host)
Network (pcap)

Logs (Net + Host)
Disk + Artifacts

Textual (TSV)

Cybersecurity benchmark with 10,000 MCQ;
Cybersewcurity /math reasoning benchmark
Camera-native images to support classification
tasks

Device-attributed video samples for
analysis

Plaso-based timeline QA benchmark for evaluat-
ing LLMs

Labeled IoT attack traces with memory and net-
work data.

integrity

100h webcam speech for deepfake detection tasks
58k labeled Windows dumps (malware/benign)
Multi-week APT simulation with labeled detec-
tion logs.

APT emulation with attack phases and labeled
flows

Host /network logs combining CIC-IDS-2018 traf-
fic traces

Al tool validation benchmark against NIST
CFTT

CTI benchmark with threat classification, CVSS
scoring
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3 Methodology: Dataset Creation and Evaluation Metrics

DFIR-Metric consists of three core components, as shown in Figure 1. Module
I focuses on 700 multiple-choice question generation and evaluation. Module
IT contains CTF-style forensic challenges, covering a wide range of real-world
scenarios from comprehensive log analysis to reverse engineering tasks. Module
IIT introduces the NIST CFTT String Search Challenge', requiring LLMs to
apply advanced forensic skills to analyze disk images and locate specific artifacts.
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(c) Module IIT: NIST String Search Dataset Generation and LLM Evaluation

Fig. 1: DFIR-Metric evaluation framework, consisting of three modules.

3.1 Module I - Multiple-Choice Questions (Static)

To assess theoretical competence in DFIR, we built a high-quality multiple-
choice dataset aligned with international standards and certifications. An eight-
step pipeline (Figure la.) harvested candidate questions from peer-reviewed ar-
ticles, official guidelines, and certification exams, followed by an LLM grammar
check and a 200-hour expert review. Ambiguous questions such as “‘ Where are
deleted files stored in Windows operating systems?” were revised to eliminate
imprecision. In Windows 10, deleted files reside in C:\$Recycle.Bin, whereas

1 https://www.nist.gov/itl/ssd/software-quality-group/computer-forensics-tool-testing-program-cftt
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in Windows XP, they are located in C: \RECYCLER. This module tests only knowl-
edge through multiple-choice questions and does not assess the practical skills
required to perform forensic tasks. Practical skillsets will be evaluated in the
following modules. An example question is shown in the code snippet below:

Question example (Module 1): Which command can provide the in-
vestigators with details of all the loaded modules on a Linux-based sys-
tem?

A: "plist mod -a", B: "lsof -m", C: "lsmod", D: "list modules -a".

3.2 Module II - CTF-style Forensic Challenges (Dynamic)

Inspired by Capture-the-Flag (CTF) events, this module evaluates log analysis,
cryptographic puzzles, and system-forensics skills. This is a dynamic module
where each task is based on a hand-crafted template. Parameters such as log
lines, keys, file system artifacts, and attacker actions can be randomized to gen-
erate multiple unique instances of the same task. In the evaluation we probe
each task template three times to test the reliability of LLMs in solving specific
tasks. Figure 1b. outlines the pipeline. All templates and solutions were manu-
ally audited, preserving real-world DFIR complexity while providing a controlled
ground truth for rigorous, reasoning-centric assessment. Some of the CTF tem-
plates are modified versions from our previous work [30], while several brand
new task were added for forensics. An example question is shown below:

Question example (Module 2): Find the flag in this hex dump. Note:
Characters are XOR’ed with 0x55 before hex encoding 0x0000: 3f d7
8c 31 78 €0 4d 00 4d 3b fb 69 71 66 9a 26 0x0010: 99 Of f3 a6
16 21 9b a5 82 36 5a 90 28 .....

3.3 Module III - NIST Forensic String Search (Static)

The third module introduces hands-on disk analysis tasks focused on string
search, a fundamental forensic technique. This benchmark is based on the NIST
Computer Forensics Tool Testing Program’s technical documentation, originally
designed to evaluate tools like EnCase and Magnet AXIOM using standardized
datasets such as the String Search Test Data Set Package Version 1.1, which
contains known content across various file systems. To adapt these challenges
for LLMs, we reformulated each task into a prompt accompanied by a valid disk
image, asking the model to generate a Python script to solve the given forensic
problem. To assess performance, we developed an automated evaluation pipeline
that analyzes disk images, extracts memory blocks, parses file systems, and re-
covers both active and deleted files. This output was used to construct ground
truth baselines, which were rigorously validated by human experts. These base-
lines served as reference outputs for evaluating and comparing LLM-generated
responses across tasks. The entire process is illustrated in Figure lc.
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3.4 Defining Task Understanding Score for LLM evaluation

In [30] four novel metrics were introduced; Reliability Score (RSQKk), Task Success
Rate (TSRQk), Confidence Index (ConfQ@k), and Near Miss Score (NMSQk).
Let t represent a question template with variable parameters, and let 7 =
{t1,t2,...,t,} denote the set of all such templates. Let Q(T,k) = {q1,92, - -, ¢nxk}
denote the set of unique questions, where each template from 7T is used to gen-
erate k different questions and let Sg = {s1, 82, ..., Snxk} represent the set of
solutions corresponding to Q. We have f : Q(T,k) — Sg such that f(g;) = s;
forallie {1,...,n x k}.

Definition 1 (Reliability Score). The Reliability Score (RSQk) over a dataset
Q(T, k) is calculated as:

1 nxk
RSOQ(k) = — i 1
0= XA 1)
where A; denotes the score assigned to answering q;, defined as A; = +1 if s; is

correctly returned for q;, 0 if q; is skipped, and —2 otherwise.

Definition 2 (Task Success Rate). The Task Success Rate (TSRQ(¢;, k))
evaluates the number of correct answers for a given question template t; out of

the k generated instances, where the number of templates is i € {1,2,...,n}.
k
TSRA(t;, k) =Y B; (2)
j=1

where the value of B; is defined as B; = +1 if s; is returned for q;, 0 otherwise.

Definition 3 (Confidence Index). The Confidence Index (Conf@k) repre-
sents the percentage of question templates in a dataset where, for a given tem-
plate t;, all k generated queries are successfully answered,

Confa(k) = — >

i=1

(3)

_ 100 " [1 if TSR@(t;, k) =k
0 otherwise.

A new metric - The Task Understanding Score (TUS) Metrics such
as TSR@k, Conf@k, and the traditional Pass@k assess whether a response to
question ¢; is fully correct, but they do not account for cases where an LLM
demonstrates partial success on a task. If LLMs score zero on a given task, it
cannot establish a meaningful ranking, nor it will provide insight on how close
models are to the correct solution. In reality, answers frequently contain some
correct components, and we should also give credit for partial correctness. We
want to move beyond simply classifying answers as correct or not, and introduce
more granular scoring. Let C = {c1,¢a,..., ¢} be the set of key criteria, where
m = |C|. Each criterion can represent various aspects—for instance, whether
the Python code generated by an LLM executes correctly, or whether key steps
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essential to solving the problem are present. We can measure how many criteria
are satisfied when solving question ¢;. Let r;; € {0,1} indicate whether the j-th
criterion is satisfied in the solution to question ¢;. Then:

Definition 4 (Task Understanding Score). The Task Understanding Score
(TUS@m) quantifies how well responses capture the essential components of a
solution. It measures the average proportion of criteria satisfied across all eval-
uated responses.

Q| m
1 1
TUSOm = — g — E Tij (4)
Q| = \m /

j=1
where |Q| is the total number of evaluated questions.

Using TUS@m, we can evaluate the performance of LLMs on challenging
tasks where traditional metrics like accuracy often yield a score of zero. Even in
such cases, TUS@m enables us to capture partial correctness by assessing which
predefined building block of a solution is satisfied in the response. For Module IIT
tasks, the number of criteria |C| is set to four (m = 4), with a dataset comprising
|Q| = 500 NIST Forensic String Search challenge.

4 Experimental results

To asses the capabilities of different LLMs on the newly introduced DFIR-Metric
we conducted an experiment on multiple commercial and open-sourced models.

4.1 Module I - Multiple-Choice Questions

We evaluated 14 state-of-the-art models on the MCQ dataset. Each question was
asked 3 times, where correct answer was randomized between A, B, C or D to
eliminate guessing. The best-performing model was GPT-4.1, closely followed by
GPT-40 and Grok 3 with only marginal differences. Among the open-source, non-
proprietary models, the best performer was Qwen-2.5 with 72 billion parameters.
It achieved a Confidence Index (CI) of 84.29% with k = 3 and a Mean Accuracy
(MA) of 89.90%, which is only 5% lower than the state-of-the-art GPT models.
Table 2 displays the final results of the 14 LLMs tested.

4.2 Module II - CTF-style Forensic Challenges

Each CTF task was issued as a single prompt. Following Definition 1, models
earned +1 for a correct response, 0 for skip, and —2 for an incorrect answer. All
prompts, tasks, and the Google Colab code are published on our GitHub page to
support easy and reproducible research. The evaluations were conducted via API,
and no code execution was performed by the models in this module—consistent
with their standard API capabilities. This contrasts with Module III, where
Python code execution was preformed for the NIST string search tasks. Table 3
presents the final results of the tested LLMs on the CTF challenges.
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Table 2: LLM Performance on 700 MCQ dataset (k=3) (Sorted by CI)

Model Company Size License Open| CI MA

GPT-4.1 OpenAl  N/A Proprietary X |89.34% 92.75%
GPT-40 OpenAl  N/A Proprietary X [88.92% 93.03%
Grok 3 xAI 2700B Proprietary X [88.22% 91.91%
Claude 3.7 Sonnet Anthropic ~N/A Proprietary X [86.40% 91.58%
Gemini 2.5 Flash Google N/A Proprietary X [85.41% 90.37%
Qwen-2.5 Qwen 72B  Apache 2.0 ¢ |84.29% 89.80%
DeepSeek V3 DeepSeek AI 671B  DeepSeek ¢ [81.76% 89.25%
GPT-40-mini OpenAl N/A Proprietary X |79.94% 85.78%
Llama 3.3 Meta 70B  Llama 3 v |79.80% 86.49%
WizardLM 2 Microsoft 8x22B Apache 2.0 ¢ |77.84% 84.53%
Gemma 3 Google 27B  Gemma v |77.13% 84.71%
Mixtral-8x7B Mistral AT 46.7B Apache 2.0 ¢ |71.11% 80.36%
Gemma 2 Google 9B Gemma v |68.58% 79.85%
Mistral-3B Mistral AI 3B  Apache 2.0 ¢ [25.66% 55.86%

Table 3: DFIR-Metric CTF Performance (k = 3) (Sorted by Confidence Index)
Model

Company Size Open|Correct Skipped Wrong RS CI

GPT-4.1 OpenAl N/A X 47 0 103 -53.0 28%
GPT-40 OpenAl N/A X 46 18 86  -42.0 26%
DeepSeek V3 DeepSeek Al 671B v 43 18 89  -45.0 22%
Qwen-2.5 Qwen 7B Vv 35 14 101 -55.7 20%
Llama3.3 Meta 0B v 33 16 101 -56.3 20%
Grok 3 xAI 2700B X 40 5 105  -56.7 20%
Gemini 2.5-flash Google N/A X 38 1 111 -61.3 20%
GPT-40-mini OpenAl N/A X 27 14 109 -63.7 20%

Table 4: NIST Forensic String Search (m = 4) (Sorted by TUSQ4)

Model Company Size Open|Correct Syntax Wrong T/O TUS@Q4
GPT-4.1 OpenAl N/A X 1 217 292 0 38.52%
GPT-40 OpenAl N/A X 0 283 226 1 27.99%
Gemini 2.5-flash Google N/A X 1 16 493 0 25.88%
Claude 3.7 Sonnet Anthropic N/A X 5 309 195 1 24.75%
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GPT-4.1 achieved the highest confidence index (CI, 28 %), but its reliabil-
ity score (RS) was lower than that of GPT-40 and DEEPSEEK V3 because it
attempted every task and accumulated 103 wrong answers, which highlights a
potential architectural difference or system prompt design. The other GPT-4
variant skipped 18 uncertain items, incurring fewer penalties and posting the
best reliability score (—42).

Among the non-proprietary, openly released models, DEEPSEEK V3, Qwen-
2.5, and Llama-3.3 form a tight cluster (CI 22-20 %), trailing GPT-4.1 by only
6-8 percentage points. Note, that the benchmark includes high-difficulty items—
reverse engineering, cryptographic analysis, and large-scale log triage—that typ-
ically require code execution or multi-step reasoning. Although larger or more
sophisticated models may one day solve these problems in a single pass, present
systems should at minimum recognize their limits and abstain, rather than emit
fluent yet incorrect answers. The frequency of such errors drives every model’s
reliability score (range —300 to 150) into negative territory. In this evaluation,
partial success was not graded, however, in some cases models were able to ex-
tract the correct answer, but failed to return it in the requested format.

4.3 Module III - NIST Forensic String Search

We assessed the nine highest-scoring models from the MCQ benchmark on the
NIST Forensic String Search task. The following task serves as an example;
“You are an experienced Digital Forensics and Incident response specialist. An-
swer the following question by writing a python script..... Additionally, each
prompt contained specific instruction like directing the LLMs to produce a self-
contained Python script, and return its findings in a rigid JSON-like list of
<inode>:<filename> pairs, prefixed by DELETED or LIVE.

This setting stresses both technical competence (correct identification of
strings in a forensic image) and compliance with a brittle output specification—
two dimensions that everyday DFIR workflows routinely demand. To calcualte
TUS@4, partial points can be awarded for the following categories: (1) deter-
mining the right offset of the file system from the prompt description, as each
image contains 3 different file systems. (2) properly identify the image path in
the directory. (3) identify the correct search string target, and if it requires regex
or regular search. (4) identifying the right extension for the artefact; doxe, txt,
html, etc. Table 4 provides insights on how many occasions models were able
to solve the task, or if they failed what was the main reason. The categories
are: Correct: the script successfully extracts the target information from the
forensic. Wrong: the script runs but fails to extract the correct datadisk im-
age. Timeout Execution: the script does not complete within a predefined
execution time. Syntax Error: the script fails to run due to code syntax issues.

Although GPT-4.1 secures the highest TUS@4 (38.5 %), its advantage stems
largely from a higher rate of partially correct steps, rather than from wholesale
task completion. Manual review revealed three recurrent error patterns across
models: they sometimes hallucinate files, bash commands, paths or libraries that
are absent from the image, causing the script to crash; even when the search
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logic is sound, the script may capture the wrong sub-string or omit a required
field, producing only partially valid lines, and finally; tiny deviations from the
rigid output schema, misplaced brackets, missing prefixes or commas invalidate
otherwise correct answers.

Table 4 reports the results for the evaluation. TUS rewards incremental
progress (correct code fragments, partially valid lists, etc.) rather than binary
success. From a practitioner’s standpoint this nuance matters: a higher TUS
model may still require substantial fine-tuning to yield admissible, reproducible
evidence, but it has a step in the right direction. Finally, we note that open-
weight models (e.g. DeepSeek V3, Qwen-2.5, Llama 3.3) have yet to match the
proprietary leaders in this task.

5 Conclusion

In this work, we introduce DFIR-Metric, the first extensive benchmark tailored
to evaluate both theoretical knowledge and practical proficiency of LLMs in
the domain of Digital Forensics & Incident Response (DFIR). Spanning 700
certification-grade multiple-choice questions, a NIST-compliant string-search suite,
and dynamically generated CTF investigations, DFIR-Metric evaluates models
across the first four phases of the NIST 800-86 forensic workflow. To measure
not only accuracy but also consistency and self-assessment, we used reliability
metrics such as Confidence Index and Reliability Score for the evaluation, and
introduced a novel metric—the Task Understanding Score (TUS)— and exe-
cuted every task multiple times for awarding partial task completion. Our work
addressed three research questions:

— RQ1: What level of comprehension and confidence do LLMs exhibit in DFIR do-
main knowledge when challenged with certification-grade multiple-choice questions?
Answer: The leading models demonstrate substantial mastery of core DFIR prin-
ciples. GPT-4.1 achieves a Confidence Index of 89.34% and a Mean Accuracy of
92.75%. This underlines that high accuracy does not correspond with reliable prob-
lem solving, as models may guess and provide a correct answer by chance. This
highlights the importance of repetitive testing and reliability metrics. The open-
source Qwen-2.5-72B trails by only 5%, indicating a narrowing proprietary edge,
whereas compact models (e.g., Mistral-3B) perform scarcely above pure chance.

— RQ2: To what extent can LLMs accurately and reliably solve practical forensic

workflows such as log triage, memory-dump analysis, reverse engineering, and
string search?
Answer: Practical competence lags behind domain knowledge. In the NIST String
Search module, no model produced meaningful results across the 500 prompts, and
even the top performer (GPT-4.1) achieved just 38% partial-credit on the Task Un-
derstating Score, indicating incomplete pipeline execution (e.g., script generation
succeeded but filesystem carving failed). In our CTF-style trials, the best model
was again GPT-4.1, but solved only 28% of tasks consistently. Notably, unlike other
top performing models like GPT-40, DeepSeck V3, or Qwen-2.5, GPT-4.1 was not
able to skip any questions, highlighting severe limitations in comprehension and
self reflection.
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— RQ3: Among the leading proprietary models and the strongest open-source alter-
natives, which achieve the highest scores in a unified evaluation?
Answer: Overall, the proprietary models, GPT-4.1 and GPT-4o0 consistently lead
in every Module: domain knowledge, CTF challenges, and NIST sting search tasks
(although in the latter they were not able to solve a single task, and only achieve
partial success through the task understanding score). Among the open source
models Qwen—2.5 and DeepSeek V3 perform best in the multiple choice questions,
Llama 3.3, WizardLM 2 and Gemma 3 are not trailing far behind. Interestingly,
in the CTF challenges DeepSeek V3 performs very close to GPT-4o0, skipping the
same amount of questions and only getting a 4% worse Confidence Index.

Our findings highlight steady progress but also underscore unresolved challenges
in automating end-to-end DFIR investigations. Current LLMs can recall cer-
tification material and generate competent forensic scripts, yet struggle with
sustained deductive reasoning, rigorous chain-of-custody logic, and calibrated
confidence. Here it is important to highlight that we did not include reasoning
models in the evaluation like o4-mini or DeepSeek R1, where we expect these
models to perform slightly better based on [30].

DFIR-Metric fills a critical evaluation gap, offering the community an open,
extensible framework to measure future advances. We release all datasets, grad-
ing code, and baseline results to foster reproducibility and encourage iterative
enhancement. We conclude that practical digital forensic scenarios and end-to-
end forensic workflows remain out of reach for current models.
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