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Abstract

In the evolving digital landscape, it is crucial to study the dynamics of
cyberattacks and defences. This study uses an Evolutionary Game Theory
(EGT) framework to investigate the evolutionary dynamics of attacks and
defences in cyberspace. We develop a two-population asymmetric game
between attacker and defender to capture the essential factors of costs,
potential benefits, and the probability of successful defences. Through
mathematical analysis and numerical simulations, we find that systems
with high defence intensities show stability with minimal attack frequen-
cies, whereas low-defence environments show instability, and are vulner-
able to attacks. Furthermore, we find five equilibria, where the strategy
pair ”always defend and attack” emerged as the most likely stable state as
cyber domain is characterised by a continuous battle between defenders
and attackers. Our theoretical findings align with real-world data from
past cyber incidents, demonstrating the interdisciplinary impact, such
as fraud detection, risk management and cybersecurity decision-making.
Overall, our analysis suggests that adaptive cybersecurity strategies based
on EGT can improve resource allocation, enhance system resilience, and
reduce the overall risk of cyberattacks. By incorporating real-world data,
this study demonstrates the applicability of EGT in addressing the evolv-
ing nature of cyber threats and the need for secure digital ecosystems
through strategic planning and proactive defence measures.

Keywords: Evolutionary Game Theory, Cyber Security Decision Support,
Ransomware, Adaptive Defence Strategies, AI-Driven Threat Analysis, Behavioural
Analysis, Cyber Attacks
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1 Introduction
In today’s digital world, the frequency of cyberattacks is escalating, driven by
technological advancements, use of Internet of Things (IoT) devices, cloud com-
puting, and inadequate security practices. This expanding attack surface in-
creases the vulnerability of interconnected systems, particularly those embedded
with sensitive data in the Industrial Internet of Things (IIoT) within industry4.0
[1]. According to an estimate, cybercrime is projected to cost $10.5 trillion
annually by 2025,as attackers target valuable information such as Personally
Identifiable Information (PII), Intellectual Property (IP), financial records, and
operational data [2] .

Cybercriminals use a variety of tactics such as malware infections [3], ran-
somware attacks, Distributed Denial of Service (DDoS) assaults [4], phishing
schemes, and more sophisticated methods like Advanced Persistent Threats
(APTs) [5] and zero-day exploits [6]. Numerous high-profile ransomware in-
cidents have underscored the urgency of addressing these threats [7], with no-
table recent cases including MOVEit (2023), BlackCat/ALPHV (2021), RE-
vil/Sodinokibi (2019-2021), DoppelPaymer (2019), Ryuk (2018), and WannaCry
(2017) [8], [9]. Critical sectors like government agencies, financial institutions,
healthcare systems, and e-commerce platforms are compelled to defend their
systems against these attacks to mitigate reputational and financial losses.

In response to the evolving threat landscape, researchers are exploring ad-
vanced attack detection methods leveraging AI-enabled attack detection meth-
ods [10], anomaly-detection [11] and deep learning methods [12], and graph
learning methods [13]. Businesses are more likely to use the Incident Re-
sponse Planning (IRP) method to address cybersecurity challenges. IRP ac-
tivates defensive mechanisms like firewalls, intrusion detection/prevention sys-
tems (IDS/IPS), encryption,honeypots and deception, risk management, and
continuous monitoring of the system after a security breach [14]. While these
technical solutions focus on detecting and resolving the attacks, understanding
the attack behaviour is crucial to prevent and reduce the number of successful
breaches.
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Figure 1: Estimated cost of cybercrime worldwide 2018-2029 (source: Statista
Market Insights), published by Ani Petrosyan, July, 2024

According to global indicator forecasts [15], [16], cybercrime costs are ex-
pected to rise significantly between 2024-2029, as shown in Figure 1. This is
due to the presence of several challenges that complicate effective cyber de-
fence. Firstly, attackers constantly develop new tactics, techniques, and pro-
cedures (TTPs), outpacing traditional defence techniques. APTs and zero-day
vulnerabilities are the biggest threats to cyber security due to their stealthy
nature [17]. Secondly, many organizations, especially Small and Medium-sized
Enterprises (SMEs), lack the financial and technical resources to adopt com-
prehensive cybersecurity solutions, making them susceptible to cyber-attacks
[18, 19]. Vulnerabilities like human error, phishing attacks, sharing credentials,
and malware installation increase vulnerabilities and threaten the cybersecurity
in critical sectors such as healthcare, energy, and finance [20].

Given the increasing frequency of cyber threats targeting critical systems,
it is imperative to investigate attack and defence patterns through system
behavioural analysis [21, 22]. The dynamic interplay between attackers and
defenders in cybersecurity can be analysed using Evolutionary Game Theory
(EGT) [23]. EGT, an application of game theory to dynamical systems, models
continuous interactions, adaptation, and strategy evolution among game players
[24, 25]. EGT studies the evolution of strategies over time within a population
based on their reproductive success, by considering bounded rationality and
dynamic nature of the player interactions [26, 24]. EGT is crucial for stability
analysis [25], as its frequency dependent nature allows us to study how well
a strategy performs compared to other strategies co-present in a population
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[27, 28].
The remainder of this paper is structured as follows: Section 2 discusses the

motivation behind this research work. Section 3 provides an overview of the
previous research on cyber defence using EGT. Section 4 presents, the cyber-
attack defence game model and stability at equilibrium points analysis. Section
6 analyses the social welfare and parameters impact on it. Section 6 discusses the
implications of these findings to address real-world cyber threats and concludes
the paper with key insights.

2 Research motivation
Understanding player’s behaviour in the cyber-attack and defence game is cru-
cial, because it depends on the expected outcomes that are influenced by the
opponent’s actions [29]. Sometimes, defenders may mistakenly think that their
data is not valuable enough to attract attackers, yet attackers attempt an at-
tack not just for financial benefits but for personal satisfaction [30]. This sense
of achievement often triggers small-scale attacks, where attackers exploit un-
secured systems because attacks are less costly, less risky, and convenient [31].
Conversely, when defenders invest in robust defensive resources, attackers face
increased difficulty and cost, thus reducing the likelihood of successful breaches.

Based on these reasons, continuous improvement of defence mechanisms is
essential in today’s digital environment. However, deterring attacks requires
more than just technological solutions, it requires a strategic approach that in-
corporates strategic modelling and behavioural analysis of the players [32]. The
ability of EGT, to model strategic interactions and dynamic behaviours within
populations makes it suitable for cybersecurity applications. EGT has been suc-
cessfully applied in many fields—such as computer science, physics, biology and
economics [33, 34, 35, 36, 37, 38, 39, 40]—as well as diverse important applica-
tion domains— such as healthcare [41, 42], AI safety and governance [43, 44],
and climate change mitigation [45, 46]—creating flexible solutions in a complex
dynamics context.

In our study, we employed EGT to analyse the system dynamics of cyber
attack and defence. By randomly generating extensive number of games, we aim
to identify which strategies dominate within large populations. Rather than
focusing solely on attacks and attackers only, we have discussed the scenario
from defender’s perspective, recognising that while attacks and attackers can’t
be controlled but defence can be improved by various factors. According to the
NIST Cybersecurity Framework [47], defence process is divided into five phases,
each with associated costs. Our model focuses on the most crucial phases of
identifying and protecting assets, because here strategic decisions can enhance
security before an attack happens.
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Defender Strengthens Security by:

 

 

Increase attack cost

Reduce defence cost

Intensity of defence analysis

Strategic decisions
Our model works here

Avoid these phases

NIST Framework

Figure 2: Our model assists in strategic decisions on the first two phases of
NIST framework to mitigate the attacks by strengthening the defence.

As shown in the Figure 2, by proactively identifying and protecting assets
through robust protective measures, including latest AI technologies, defenders
can reduce defence cost, increase attack cost, and avoid reactive phases—such
as detection, response, and recovery—which are more costly. EGT helps organi-
sations to allocate resources efficiently and stay ahead of evolving cyber-threats.
Our model focuses on early-stage security enhancements, making defences cost-
effective and helping cybersecurity decision-makers in strategic planning.

Furthermore, we use EGT as a knowledge-based framework to model the
complex interactions between attackers and defenders and how their strategies
co-evolve over time within cybersecurity systems. This research bridges the gap
between theoretical models and real-world applications, leveraging knowledge-
based systems for strategic decision-making in cyber defence. In real-world
scenarios, the probability of catching the attackers and imposing penalties is
low because attackers can exploit the data across borders. Gaining benefits
without any fear is the main reason behind the increase in cyber-attacks. To
deter attackers, defenders must use strategies that increase the cost and difficulty
of attacks by safeguarding sensitive data [48].

This research motivation leads to the following hypotheses.
H1: Attackers try to exploit systems with weaker security and higher ben-

efits.
H2: Defenders are more likely to invest in low-cost defences that target the

high-impact attacks on confidential data.
H3: Successful defence is achieved when the cost of defence is lower than

its benefit while the cost of attack is higher than its benefit and the intensity of
defence is increased.

We study evolutionary dynamics between the populations of attackers and
defenders by varying key factors including the attack and defence costs and
probability of successful defence, to explore stable strategies and cybersecurity
system dynamics. Our findings show that a high probability of defence is the
most impactful factor in maintaining system stability. Additionally, keeping the
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defence cost low is crucial to motivate the defender to invest in system security.
and at the same time high probability of defence should elevate the attack cost
to discourage the attackers.

The key contributions of this work are:

1. We developed a game-theoretic model using EGT to study evolutionary
dynamics of cyber attack and defence, and analysed the stability of equi-
librium points.

2. Real-world cyberattack data is used to validate model parameters.

3. We investigated social welfare and parameter impacts.

4. We studied the effect of increasing probabilities of catching the attacker
and imposing penalties.

3 Related Work
The application of EGT to cyber security is a rapidly evolving field We review
earlier studies that examined the application of game theory and EGT to cy-
bersecurity issues. This highlights the theoretical developments and real-world
applications of game theory that influence modern defence tactics like static and
dynamic game models [49], stochastic games [50], differential games for contin-
uous decision-making [51], replicator dynamics for strategy evolution [52], and
Stackelberg games for leader-follower scenarios [53]. Every method has its pros
and cons in decision-making in cyber cybersecurity space.

The idea catching and punishing the attacker is proposed in [54] using a
multi-player evolutionary game model to analyse the interactions between a
defender and multiple attackers in a network security scenario. The long-term
dynamics of the game and the evolution of strategies are observed over time, and
two different punishment schemes (static and dynamic) are proposed depending
on the attack intensity. Also, the importance of making laws and regulations
to strengthen defence is discussed. However, the effectiveness of this scheme
depends on the ability to catch attackers, which is a significant challenge in the
cyber world, as most cyber attackers remain anonymous and are never caught.

Another method of formulating defence mechanisms is to plot various pos-
sible sets of behaviours and apply defence accordingly. For instance, in [55]
bounded rationality is used, and the authors proposed a stochastic evolutionary
game model introducing a flexible parameter (λ) in LQRD model to quantify
the degree of rationality of players. The model categorizes players into differ-
ent types, including moderate, aggressive, and dangerous, which may not fully
capture the diversity of behaviours exhibited by real attackers and defenders.
In reality, it is not possible to make defensive strategies that are dependent on
the types of attackers; as this trait is not always observable or measurable.

To address the inherited issue of randomness in attack-defence process,
stochastic games are used in [56] and the strategy evolution of the players is
analysed. The introduction of stochasticity promotes the defenders’ ability to
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select optimal strategies but the effectiveness of the model relies on the accurate
estimation of certain parameters, e.g., punishment to attackers and rewards for
defenders, etc., which is challenging to determine in practice. To perform real-
time analysis of defence strategy selection in rapidly changing environments,
a differential game model for continuous decision-making is proposed in [57].
Their model identifies optimal attack and defence strategies for the players but
the real-time calculation of the optimal strategies, especially solving Hamilton-
Jacobi-Bellman (HJB) equations for continuous systems, is computationally in-
tensive and can overload the system in high-frequency attack environments.

All the above studies focus on the attacker, emphasizing the importance
of catching and penalising the attacker to reduce incidents. It is crucial to
recognise that attackers cannot be entirely controlled from the defender’s side.
Rather, defenders should adopt strategies to strengthen their defences. For
instance, smart home users rely on smart devices for their convenience, but
to ensure safety they must remain vigilant about potential cyber threats and
understand how to mitigate them[58]. This study highlights the importance
of affordable training costs and rewards to encourage user participation, which
can lead to a decrease in successful attacks. The study also emphasized the
need of government support and national cybersecurity plans, to promote public
awareness. However, beyond this theoretical analysis, simulations and analysis
of real-world data is needed to better understand user behaviour and smart-
home security strategies.

All techniques discussed so far involve the effort of the defender alone, but to
promote a safer community and to secure national security infrastructure, a col-
laborative approach is proposed in [59]. The authors propose CYBer security
information EXchange (CYBEX) framework to facilitate information sharing
among organizations about breaches and fixes to better combat cyber attacks.
EGT is used to investigate evolutionary dynamics within CYBEX to analyse
conditions under which firms join and achieve stable strategies. Also, CYBEX
adjusts participation costs to encourage cooperation and increase its own rev-
enue.

Despite the increase in EGT applications to model cyberattacks and de-
fences, there remains a gap in understanding crucial factors such as the at-
tacker’s adaptive learning process, probabilistic defence success rate, and the
cost of implementing the defensive measures. These factors are critical for ac-
curately modelling real-world scenarios, as attackers learn from failed attempts
and adjust their strategies accordingly. Consequently, defenders must allocate
their limited resources efficiently to strengthen their defences and counteract
evolving threats.

4 Cyber Game Model
In this model, we consider two populations: attackers and defenders, consisting
of bounded rational players and each player has two strategies. In the attacker
population, the strategies are ”attack” and ”no attack”, while in the defence
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population, strategies are ”defence” and ”no defence”, and the players inter-
act between populations. Numerically, no attack and no defence strategies are
denoted by 0, and attack and defence strategies are denoted by 1. Figure 3
illustrates the model and interactions.

Attackers Defenders

0

10

1

0 1

0

10

1

0 1

Interaction

Figure 3: Cyber-attack and defence model. Red and blue circles represent play-
ers in the attack and defend populations. No Attack and No Defence strategies
are denoted by 0, and Attack and Defence strategies by 1.

The players are non-cooperative because they act independently, and their
bounded rationality indicates that they make decisions with limited knowledge
and resources. Given the bounded rationality and independent nature of players,
a non-cooperative game is the best choice for our study of the cyber defence
model. Moreover, it is a non-zero sum game because the benefit of one player
is not necessarily equal to the loss of the other, i.e. the payoffs of an attacker
and co-playing defender do not always add up to zero. Defenders’ loss has two
aspects: one is monetary and the other is non-monetary. Monetary loss includes
assets value, legal fees and cost of data recovery. And, losses like reputation
loss, identity theft, downtime, and business disruption are not monetary and
cannot be directly equated to the attacker’s benefit. These different payoffs and
different strategies of the players make the game asymmetric.

4.1 Game description and players payoffs
We elaborate in this section the model, including the game players, their strate-
gies and payoffs. It is a two-population model, where players interact in a
pairwise fashion. Each player has two possible strategies.
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Table 1: Summary of parameters in the model.

Variables Meaning of variables Constraints

w
Assets value, i.e. loss to the defender for an
attack 0 < w ≤ 1

ca Cost to the attacker for attack attempt 0 < ca < w

cd Cost to the defender for implementing defence 0 < cd < w

ba Attacker’s benefit for a successful attack ca < ba

bd Defender’s benefit for not being breached cd < bd ≤ w

v Probability of successful defence 0 < v ≤ 1

m
Probability of catching an attacker on an un-
secured system 0 ≤ m ≤ 1

n
Probability of catching an attacker on a se-
cured system 0 ≤ n ≤ 1

p Attacker’s penalty for a successful attack p ≥ 0

s Attacker’s penalty for an unsuccessful attack s ≥ 0

Table 1 contains the parameters and their constraints. We consider infinite,
well-mixed populations for this study. The frequency of attack is denoted by
α, indicating that the attack probability of a randomly selected player from the
attack population. Similarly, β denotes the frequency of defence. The payoff
matrix can be written as follows, in Table 2:

Table 2: Payoff Matrix of the attacker and defender

Strategies No Attack (1 − α) Attack (α)

No Defence (1 − β) (0, 0) −w, −ca + ba − mp

Defence (β) (−cd + bd, 0) −cd + vbd − w(1 − v), −ca +
ba(1 − v) − vns − (1 − v)mp

4.2 Equilibrium and stability analysis
After formulating the cyber-defence game, its players, strategies, and payoffs,
we explore the system dynamics to find the equilibrium points and determine
their stability, i.e. the state within a population where the strategy distribution
remains stable overtime. This state can be calculated by using the replicator
dynamics (RD) method of EGT, to find the strategy frequencies in infinite
populations.
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4.2.1 Replicator dynamics

Replicator dynamics [60] is a well-established model in EGT for mathemati-
cal analysis of the idea that in any population, better-performing behavioural
strategies spread [61]. It is used to describe the population dynamics driven by
players’ payoffs to find equilibrium points of an infinite population. To study the
replicator dynamics of our two-population model, we derive a set of differential
equations that describe the rates of change of strategy frequencies over time.
The following set of equations shows the calculation of replicator dynamics for
our model. The replicator equation for both populations at time t is:

F (xi) = dxi/dt = xi(fi − f̄) (1)

where xi is the proportion of strategy i in the population. fi is the fitness of
type i and f̄ is the average population fitness. The corresponding replicator
equations for defender (β) and attacker (α) populations at time t are given by:

F (β) = dβ/dt = β(fβ − f̄β)
F (α) = dα/dt = α(fα − f̄α)

(2)

And average fitness of the populations is as follows:

f̄β = β ∗ fβ + (1 − β)f1−β

f̄α = α ∗ fα + (1 − α)f1−α

(3)

The expected payoffs of no defence, f1−β , and defence, fβ , strategies in our
model, can be obtained as follows:

f1−β = 0 ∗ (1 − α) + (−w) ∗ α = −wα

fβ = α(−bd + vbd − w + vw) − cd + bd

(4)

Similarly, the expected payoffs of no-attack, f1−α, and attack, fα strategies, are
obtained below:

f1−α = 0 ∗ (1 − β) + (0) ∗ β = 0
fα = β(vmp − bav − vns) − ca + ba–mp

(5)

First, by inserting Equations (4) in eq. (2), we obtain the replicator dynamics
for the defender population.

F (β) = dβ/dt = β(fβ − f ′
β) = β(1 − β)(fβ − f1−β)

F (β) = β(1 − β)(bd − cd − bdα + vbdα + vwα)
(6)

Similarly, for the attacker population, by inserting Equations (4) in eq. (2), the
replicator dynamics reads

F (α) = dα/dt = α(fα − f ′
α) = α(1 − α)(fα − f1−α)

F (α) = α(1 − α)(−ca + ba − mp − bavβ − vnsβ + vmpβ)
(7)
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Now we can find equilibrium points by solving the system of two differential
equations: F (β) = 0 and F (α) = 0. We denote E(β, α) an equilibrium point if
(β, α) is a solution. Clearly, E1(0, 0)T , E2(0, 1)T , E3(1, 0)T , E4(1, 1)T , are four
equilibrium points. We also have a potential internal stable point:

E5

(
ba−ca−mp

v(ba−mp+ns) , cd−bd

vbd−bd+vw

)T

if 0 < ba−ca−mp
v(ba−mp+ns) , cd−bd

vbd−bd+vw < 1.

4.2.2 Jacobian matrix

Stability of an equilibrium point can be obtained by analysing the Jacobian
matrix [62], [63] and its eigen values [64]. Namely, an equilibrium point is
a stable equilibrium if and only if all the eigenvalues of the Jacobian matrix
at that point have have negative real parts [28]. Jacobian matrix is formed by
calculating the first-order partial derivatives of a function [65]. So, the Jacobian
matrix of our model is formed as:(

J11 J12
J21 J22

)
=
(

∂F (β)
∂β

∂F (β)
∂α

∂F (α)
∂β

∂F (α)
∂α

)
where

J11 = ∂F (β)
∂β

= (1 − 2β)(bd − cd − bdα + vbdα + αvw),

J12 = ∂F (β)
∂α

= β(1 − β)(bd(v − 1) + vw),

J21 = ∂F (α)
∂β

= α(1 − α)(v(mp − ba − ns)),

J22 = ∂F (α)
∂α

= (1 − 2α)(−ca + ba − mp − bavβ − vnsβ + vmpβ).

Table 3 below shows eigen values at different equilibrium points E(β, α).

Table 3: Eigen values of the Jacobian matrix

Equilibrium points λ1 λ2

E1(0, 0) bd − cd ba − ca − mp

E2(0, 1) ca − ba + mp bdv − cd + wv

E3(1, 0) cd − bd
ba − ca − mp − bav −
vns + vmp

E4(1, 1) ca − ba + mp + bav +
vns − vmp

cd − bdv − wv

From the observed parameter conditions and eigenvalues in Table 3, we can
derive the initial parameter values to visualize the stability of the system at the
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equilibrium points. We start by assuming that the probabilities of catching and
penalising the attacker are negligible as it is often agreed that the chance of
catching attackers in real-world cybersecurity incidents is low [66].

That is, for simplicity we first set m = 0, n = 0, p = 0, and s = 0. That
would simplify the formulas for λ1 and λ2 in Table 3, and we thus obtain the
following general stability conditions.
Stability condition 1: The equilibrium point E1(0, 0) is stable if and only if:

bd − cd < 0 and ba − ca < 0,

which simplify to

bd < cd and ba < ca.

At this stable point, both the attacker and the defender are discouraged from
taking any action because their costs are higher than their benefits. Namely,
when these conditions hold, attackers do not attack and defenders do not invest
in cybersecurity.

Stability condition 2: The equilibrium point E2(0, 1) is stable if and only
if:

ca − ba < 0 and bdv − cd + wv < 0,

which simplify to

ca < ba and cd > v(bd + w).

It implies that a low cost of attack motivates the attacker to attack. However,
defenders are discouraged because the cost is higher than their benefit. When
these conditions hold, attackers dominate the system, and defenders do not
invest in cybersecurity.
Stability condition 3: The equilibrium point E3(1, 0) is stable if and only if

cd − bd < 0 and ba − ca + bav < 0

which simplifies to

cd < bd and ca > ba(1 + v)

In this condition, a low cost of defence motivates the defender to invest in
security measures and protect the system. However, a high cost of attack dis-
courages the attacker. Here, another important factor is intensity of defence v,
increasing which will increase the expected cost. It isa desirable situation in
real-world when defence is so strong that either attack attempts are unsuccess-
ful or attackers do not attack.

Stability condition 4: The equilibrium point E4(1, 1) is stable if and only
if

ca − ba + bav < 0 and cd − bdv − wv < 0

12



which simplify to

ca < ba(1 − v) and cd < v(bd + w)

Low costs and high benefits encourage the players to act. So, the attacker will
continue to attack and the defender will always be defending. If both conditions
hold, both attackers and defenders remain active, leading to highly contested
environment where defence and attack are persistent.

Internal equilibrium: The model has one potential internal stable equi-
librium point at E5

(
ba−ca−mp

v(ba−mp+ns) , cd−bd

vbd−bd+vw

)
. However, for all the game con-

figurations considered in this work, whenever 0 < ba−ca−mp
v(ba−mp+ns) , cd−bd

vbd−bd+vw < 1
is satisfied, the two eigen values do not have a negative real part at the same
time.

Due to the complexity of the explicit forms of the eigen values at the internal
equilibrium, we do not provide analytical conditions for its stability, and use
numerical simulations for its calculation instead.

All eigen values in Table 3 depend on cost and benefit to the players, and a
change in these parameters will affect players’ behaviour. Real-world scenarios
support the above equilibrium solutions where certain comparative relationships
among variables impact the system stability. Cyber systems contain valuable
data which must be protected and attackers are always interested in confiden-
tial information to gain benefits. Organizations who do not care about strong
security measures, leave themselves exposed to cyber threats.

To illustrate the stability conditions discussed above, the phase diagrams in
Figure 4 and Figure 5 are plotted. Parameter values are chosen based on the
constraints given in Table 1.
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Figure 4: Phase plot for stability of E4 = (1, 1) and E4 = (1, 0) in subplots (a)
and (b) respectively. Solid circles denote the stable point and blank circles are
denoting unstable points in the system.

Phase plots in Figure 4 show the stability of equilibrium points when de-
fender is defending and attacker may or may not attack, because we are con-
cerned about the effective defence and its stability in cyber world.
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Figure 5: Phase plot for stability of internal equilibrium and E2 = (0, 1) in
subplots (a) and (b) respectively. Solid circles denote the stable point and
blank circles are denoting unstable points in the system.

An example plot for internal equilibrium points is shown in Figure 5 subplot
(a), with eigen values λ1 = 0.041501, λ2 = −0.041501. Subplot (b) shows no
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defence and attack stability.

5 System dynamics and stability analysis
After mathematically deriving equilibrium points, now we use them to explore
the system dynamics. To systematically understand the cyber attack and de-
fence model and its evolutionary stability, we randomly sampled 100,000 games
from the parameters space, which satisfy the constraints given in Table 1. This
random game approach has been shown useful to examine the overall complex-
ity and dynamics of the system behaviour and when the game payoff matrix is
not deterministic due to environment changes and noise [67, 68, 69, 70, 71]. For
each game, we calculate equilibrium points and then determine their stability.
This generated random game data is used to plot the ratio of equilibrium points,
the impact of defence intensity on the strategies, the impact of parameters on
stability, and their relationships. All these aspects are discussed subsequently.

5.1 Number of stable equilibrium points
In the generated random game configurations we get different stability be-
haviours. As there are several possible equilibrium points, we examine if a game
might have more than one stable point simultaneously, as the number of stable
points indicates can predict a co-existence of different types in a population
and the maintenance of polymorphism [68, 72, 73]. Figure 6 subplot(a) shows,
98.4% games have a single equilibrium point and only a few configurations show
complex dynamics i.e., 1.6% games having two equilibrium points. It reflects
the tendency of the system to converge toward a single stable state under ran-
dom conditions. It is worth noting that more than two equilibrium points are
not stable at the same time. Here are the images to show the behaviour.

0 1 2 3
Number of Equilibrium Points

0

20000

40000

60000

80000

100000

N
um

be
r 

of
 G

am
es

0.0%

98.4%

1.6% 0.0%

Distribution of Equilibria

(a)

(1,0) (0,1) (1,1) total

(1
,0

)
(0

,1
)

(1
,1

)
to

ta
l

1.00 -0.36 -0.59 0.18

-0.36 1.00 -0.51 0.21

-0.59 -0.51 1.00 -0.11

0.18 0.21 -0.11 1.00

Correlation of Equilibrium Points

0.5

0.0

0.5

1.0

(b)

Figure 6: Subplot (a) shows the distribution of equilibrium points in randomly
generated game configurations. Subplot (b) shows correlation matrix between
the equilibrium points
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The heatmap representation of the correlation matrix in subplot (b) shows
that a strong negative correlation exists between (1, 1) and other equilibrium
points which is the reason three equilibrium points are never stable simulta-
neously. (1, 0) and (0, 1) have -0.36 correlation, suggesting a weaker inverse
relationship. We can see in a few configurations both points are stable simul-
taneously. Moreover, these points (1, 0) and (0, 1) have a positive correlation
0.18 and 0.21 respectively, with total stability, showing their slight contribution
to the total value. Figure 5 shows an example of a game configuration with
two stable equilibria at (1, 0) and (0, 1). Depending on the initial condition
regarding the frequency of attack and defence, one of the stable points will be
reached.

5.2 Frequency of stable equilibria in random games
It is useful to understand what equilibrium point is more likely to be stable,
when the game payoff matrix is randomly drawn. This is particularly useful
when a prediction needs to be made under uncertainty, which can happen when
the environment changes rapidly, or when human errors are frequent [67].
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Figure 7: Subplot (a) shows the count of game configurations with each equi-
librium point. E4(1, 1) shows dominance with highest number of occurrences,
followed by E3(1, 0) and E2(0, 1). The pie chart in subplot (b) shows the ratio
of equilibrium points.

Figure 7(a) shows the number of game configurations on y-axis with at least
one stable point and the equilibrium points on x-axis respectively. And Figure
7(b) shows the ratios of game configurations for each stable equilibrium point.
The equilibrium point E4(1, 1) shows the highest ratio of stability in 39.8% game
configurations, showing a continuous war between defender and attacker and
indicating the need for a strong defence strategy. The next high ratio is for the
equilibrium point E3(1, 0), when defender defends and no attack happens. The
existence of equilibrium point E2(0, 1) demonstrates that unprotected systems
are also attacked. The equilibrium point E1(0, 0) does not exist, indicating
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that in cyberspace, running an unsecured system is not recommended. These
subplots provide a clear understanding of how the majority of stable systems
tend to favour defence strategies to achieve stability.

5.3 Defence probability and strategy count
From the above analysis of stability ratio, we observed that always defend and
attack is the dominant collective behaviour in cyber-defence system. It high-
lights the need for strong defensive measures (i.e. high (v)) to protect the system
from adversaries. In Figure 8, we analyse the number of game configurations
showing stability for each equilibrium point, for varying the defence probability
v.
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Figure 8: Frequencies of equilibrium points (1,0), (0,1), and (1,1) as a function
of the defence intensity v, in the set of randomly sampled games.

Figure 8(a), shows that as the probability of defence v increases the frequency
of (1, 0) (pure defender strategy) increases. So, stability is associated with
strong defence implementations. It is worth noting that v has a peak around
0.9, i.e. 90% probability of defence, suggesting that perfect defence does not
guarantee complete stability and it may make the system unstable. The reason
behind it is that 100% intensity of defence v is costly to achieve as a very high
defence cost is unfavourable for the defenders. So, defender needs to ensure
effective defence without overwhelming the resources. The subplot (b) shows the
frequency of (0, 1) (pure attacker strategy) decreases as v increases i.e., starts at
a high frequency for low v, peaking at v = 0.1, and then declines rapidly. For,
v > 0.5, attacker rarely dominates, as v increases, successful defence becomes
more effective, making pure attack strategies unstable. Subplot (c) indicates
that frequency of (1, 1) (defence and attack) follows a bell shaped curve peaking
at v = 0.5. So, at low v, defence is weak, pure attack strategies dominate. At
mid range values of v, both strategies coexist, maximising (1, 1) stability. After
v = 0.5, as defence is stronger, attacks are discouraged, shifting the system
towards pure defence dominance. This reinforces the idea that more secure
systems are less prone to attacks.
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5.4 Impact of parameters on system stability
The cyber defence system and its stability depend on some parameters, and fol-
lowing the previous analysis, we now explore how the costs and benefits to the
players, assets value, and probability of defence influence the system’s stability
at the equilibrium point (1, 1). Moreover, to validate the applicability of our
model, we have used a publicly available cybersecurity dataset [74] about sev-
eral attacks reported from 2014-2020, and we found fascinating insights. This
validation is important because it connects the theoretical results to real-world
scenarios, enhancing the applicability of this knowledge-based approach.
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Figure 9: Subplots (a) and (b) show the number of game configurations decrease
sharply with an increase in the defender and attacker costs.

5.4.1 Cost of defence

As depicted in Figure 9(a), when the cost of defence cd increases, the num-
ber of game configurations stable at (1, 1) decreases. This indicates that the
higher cost of implementing defence directly reduces the organisation’s ability
to sustain defence. Similarly, in real-world scenarios, smaller companies can
not invest more security implementation, as compared to larger companies, and
face more attack attempts as shown in Figure 10. The reasons include the lack
of budget and expertise needed for stronger defence implementations and the
attackers exploit this vulnerability [75]. While larger organizations invest in lay-
ered defences and keep the highly confidential data nearly inaccessible. There is
a need for a reduced cost of defence cd otherwise, it becomes harder to maintain
stability, likely due to the limited resources available for effective defence.
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Figure 10: Small organizations are targeted by cyber-attacks more than larger
ones.

5.4.2 Cost of attack

Cost of attack ca also shows a similar trend like the cost of defence and in
Figure9, (b) illustrates that the number of stable game configurations is high
when attack costs are low. This reflects how less costly attacks are more likely to
happen, while higher attack costs discourage attackers and defence dominates.
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Figure 11: Organizations with low-medium digital intensity face more attacks.

The graph in Figure 11 reinforces the idea from real-world attack data to
show the attacks are prevalent in organisations with low to medium digital in-
tensity due to their partial digitisation and lack of sufficient security measures,
making attacks less costly. In contrast, high digital-intensity organisations,
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such as large firms with robust cybersecurity systems, experience fewer attacks
as these environments are expensive to exploit, aligning with our model’s pre-
diction.
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Figure 12: Subplots (a) and (b) show the number of game configurations vs
probability of defence v and the asset value w respectively.

5.4.3 Probability of successful defence v

Figure 12(a) shows that the probability of defence (v) has a direct impact on
the number of stable game configurations. When v is very low, stability is also
low because of no or little defence of the system. When v is very high, stability
decreases, because it will become difficult to maintain high intensity of defence
as it increases the cost of defence. This analysis suggests that moderate levels
of v, according to the size of the organisations, lead to highest stability as it is
manageable and is more likely to repel attacks effectively.

Lo
w

M
ed

iu
m

High

Prevention, Detection and Recovery Level

0

5

10

15

20

25

30

N
um

be
r 

of
 A

tt
ac

ks

Number of Ransomware Attacks per Prevention Level
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face less successful attacks.
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The positive correlation between the probability of defence and system sta-
bility mirrors real-world trends as in Figure 13. Organisations with high preven-
tion levels, such as those employing advanced threat detection and zero-trust
architecture, experience fewer successful attacks. For instance, large corpora-
tions like Google or Amazon, have implemented robust defences, making them
less vulnerable compared to smaller enterprises with lower prevention levels.

Figure 12(b) shows that for increasing assets value w, the number of stable
configurations increase initially, but decreases as w continues to rise. This is
because attacks will increase for manageable costs but for a very high w the
number of stable configurations drops significantly.
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Figure 14: Subplot (a) shows a peak around moderate values of ba. Subplot (b)
shows a decrease in stable game configurations with an increase in bd.

Figure 14(b) indicates that low benefit of attack ba makes attacking less
rewarding and encourages stability at (1, 1). As ba increases, attack becomes
beneficial to attacker and at very high ba, the attacker gains significant advan-
tage. But, when the attacker’s benefit becomes higher than the asset value,
stability count reduces because these cases are rare. Subplot (b) shows a de-
crease in the stability count for an increase in benefit of defence bd. This is
because defending a costly online platform is also very costly as attackers al-
ways try to attack these systems. This reduces the game counts significantly
for a very high value of bd. This is because the cost of sustaining such a strong
defence might outweigh the benefits.

5.5 Impact of attacker fine on equilibria
We have kept probability of catching and penalizing the attacker equal to zero
so far and analysed the cyber attack and defence scenario because in real-world,
catching and penalizing cyber attacker is often not possible. But, there is a
possibility of catching the cyber attackers and laws to penalise them if they
are under the jurisdiction [76]. We now study the impact of non-negligible
probabilities of catching and penalizing the attacker in case of unsuccessful
and successful attacks. In Table 1, we have defined variables m and p as the
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probabilities of catching the attacker on an unsecured system and its penalty
for a successful attack, respectively and variables n and s as the probabilities of
catching the attacker on a secured system and its penalty for an unsuccessful
attack, respectively. For simplicity, we are denoting these four variables by using
two variables fu and fs where fu = n∗s and fs = m∗p, i.e., fine for unsuccessful
and successful attack respectively. We have considered two scenarios where fines
are equal to 0.1 in Figure 15 and 0.5 in Figure 16 to see the impact on system
stability and we observed a drastic change in the equilibrium strategies. The
system transitions from a stable state where defence and attack coexists to a new
equilibrium where defenders are successfully defending the system and attackers
are deterred from launching attacks.
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Figure 15: Subplot (a) shows the count of game configurations at each equilib-
rium point when fines to the attacker i.e., fu = 0.1 and fs = 0.1. E3(1, 0) occurs
most frequently, followed by E4(1, 1) and E2(0, 1). The pie chart in subplot (b)
shows the ratio of equilibrium points.
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Figure 16: Subplot (a) shows the count of game configurations at each equilib-
rium point when fines to the attacker are fu = 0.5 and fs = 0.5. E3(1, 0) occurs
most frequently, followed by E2(0, 1) and E4(1, 1). The pie chart in subplot (b)
shows the ratio of equilibrium points.

The equilibrium shift in Figures 15 and 16 suggests that even a small chance
of enforcement can have significant impact and reduce attackers’ interest in
attacking by reducing their incentives from malicious activities. Attackers’ be-
haviour can be influenced by deterring them [77]. Their interest in such harmful
activities can be reduced by making them think that they will face punishment
and a very high fine of attack. External parties such as government, institu-
tions, law enforcement agencies, and regulatory bodies can estimate the amount
of fine according to the severity of the crime [78] and ensure its applicability to
the violators. These findings align with the existing literature on game-theoretic
models, highlighting the role of strong defensive measures in shaping adversarial
behaviour [79].

We can see that the theoretical analysis of our evolutionary game model is
consistent with the real-world cyber-attack dataset, proving the significance of
our study. The findings of this study highlight the importance of intelligent
resource allocation [80], aligning with the knowledge-based systems approach to
optimize cybersecurity strategies. To stay ahead of cybercriminals, businesses
must focus on establishing effective defence measures before an attack happens.
Organizations should learn from these previous attack trends to predict when
attackers will act in the future and take early protective measures. This means
that working together, raising awareness, sharing knowledge, and developing
systems will keep cyberspace safer in the long run [81].

6 Social Welfare
Building upon the equilibrium analysis presented in the previous sections, it
becomes essential to understand how well the cyber-defence system works as a
whole. Social welfare serves as a key metric in this regard, allowing us to identify
strategies that maximise the collective benefit of the population [82, 83]. This
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is particularly important in non-cooperative cyber defence scenarios to better
understand the balance between strategic stability and societal benefit.

The social welfare of a strategy pair [84] can be defined as:

SW (s) :=
2∑

i=1
ui(s), (8)

where s is the strategy chosen by player i and ui is the player’s payoff in that
strategy pair. In our cyber-defence model, social welfare for each possible stable
state (0, 1), (1, 0), and (1, 1), consisting of strategy pair (β, α) is computed as
the sum of defender and attacker payoffs. For instance, the social welfare for
the parameter values used in Figure 4 (a) can be calculated as given in Table 4:

Table 4: Social Welfare

Strategy pairs (β, α) Social Welfare
No Defence, No Attack 0

No Defence, Attack -0.59
Defence, No Attack 0.59

Defence, Attack -0.56

It can be seen that the strategy pair (Defence, No Attack) has the highest
payoff and highlights the efficiency of unilateral defence in deterring attacks and
maximizing societal benefit under the given parameters. Now, we calculate the
statistical values for the social welfare across random games. Here is the com-
parison of statistical values of all equilibrium points to show which equilibrium
point occurs the most. Now, to see the trend of defender and attacker strategies,
we can plot the social welfare for our random games.
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Figure 17: Subplots (a) shows the trend of social welfare across the equilibrium
points and (b) shows the social welfare distribution in random games.

Figure 17 (a) shows the average value of social welfare for each strategy
pair. It shows highest social welfare can be achieved when defender defends
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and attacker do not attack otherwise the social welfare decreases. It means
he system does not favour when attacker attacks. In subplot (b) most of the
games are at zero or around zero social welfare. It suggests, in many cases
attack and defence are not favoured. Negative social welfare values indicates
the scenarios where cost outweighs the benefits. Positive social welfare value
means the system achieves beneficial outcomes.
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Figure 18: The impact of parameters on social welfare. Subplots (a), (b), and
(c) show a positive impact of parameters v, ca and cd, respectively, on social
welfare outcomes.

The impact of different parameters on social welfare is analysed in Figure
18, revealing key insights into cyber security decision-making. Subplot (a),
highlights that as intensity of defence v increases, average social welfare also
increases with a sharp rise beyond v = 0.5. It indicates that low values of defence
intensity do not favour the social welfare because they will attract more attacks.
Subplot (b) shows a sharp decline in social welfare as cost of attack ca increase
from 0 to 0.2. It suggests that a slight increase in cost of attack discourages
the attacker due to reduced benefit. The negative linear trend in the subplot
(c) indicates that social welfare steadily declines with increasing cost of defence
because a high cost imposes a financial burden on defenders. Consequently,
organizations may opt for minimal or no defence, increasing vulnerabilities, and
reducing social welfare. Overall, these findings highlight the need of designing
cost-effective security strategies that maximise protection.

7 Discussion and Conclusion
This study highlights that cybersecurity is not a static process, but a dynam-
ical one, where defence strategies must adapt to evolving threats. The use of
Evolutionary Game Theory (EGT) to model cybersecurity system dynamics
aligns with existing frameworks that analyse strategic interactions in complex
systems, where one player’s action affects another player’s payoff [85, 25]. We
modelled attacker-defender interactions as an asymmetric game, and used repli-
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cator dynamics to identify the equilibrium points and the stability conditions
[86]. The stability analysis shows that in most of the random games, stability
lies at the equilibrium point (1, 1) which means defenders always defend the
systems and attackers continue attacks. However, catching the attackers and
imposing penalties for the attacks can shift stability towards (1, 0) i.e., always
defence and no attacks, consistent with real-world trends where robust defences
deter attacks. For example, increasing the intensity of a successful defence (v)
significantly reduces attack attempts [54].

This work highlights the cost-benefit asymmetry: increasing defence inten-
sity while lowering defence cost improves overall social welfare, while attackers
are deterred by increasing the attack costs. Previous work [74] has validated
using real-world cyberattack data to confirm that higher defence investments
correlate with a lower frequency of successful attack. Additionally, social wel-
fare analysis highlights the economic impact of cybersecurity strategies. It is
observed that increasing defence intensity while lowering defence cost improves
overall social welfare. The findings show that robust defence mechanisms and
strategic resource allocation are crucial for ensuring cybersecurity in dynamic
digital environments. These findings also highlight the importance of collabora-
tive efforts in the cybersecurity landscape, calling for industry-wide cooperation,
and sharing of resources to boost collective defences [87].

The existing literature on EGT analysis of cybersecurity and robust defence
mechanisms is limited. More research on cyber security and threat prevention
is needed as attacks are increasing in digital world. Our model focuses on one-
on-one interactions, leaving multi-attacker scenarios or coordinated attacks as a
promising direction for future research. It is challenging to accurately model the
real world due to the limited availability of data for all attack types. We aim to
validate the findings from our model with real world data where appropriate (e.g.
when relevant data is available). The integration of AI-driven systems, such as
Machine Learning models, reinforcement learning agents, and large language
models (LLMs), into this framework represents a promising path for future
work. These advanced AI models can be trained to predict attacker behaviour,
dynamically adapt defence strategies, and efficiently allocate resources, hence
increasing resilience to sophisticated cyber threats and to ensure that defenders
stay one step ahead in this evolving landscape. Another future direction high-
lighted by this research is the need of implications for cybersecurity policy and
strategy. Small and Medium-sized Enterprises (SMEs) need to focus on cost-
effective defence strategies that enhance system stability without overwhelming
resources. The findings support proactive measures, such as the creation of
multi-layered defences and collaboration across industries to share intelligent
and best practices.

To conclude, our EGT analysis not only sheds light on the fundamental dy-
namics of cyber interactions, but also provides actionable insights for developing
adaptive and robust systems. The findings show that robust defence mecha-
nisms and strategic resource allocation are crucial for ensuring cybersecurity
in dynamic digital environments. These findings also highlight the importance
of collaborative efforts in the cybersecurity landscape, calling for industry-wide
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cooperation, and sharing of resources to boost collective defences. This cooper-
ation will increase social welfare as an optimal balance of defence intensity and
defence cost reduction leads to better security outcomes.
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Understanding and testing for advanced persistent threats (apts). In 12th
European Conference on Information Warfare and Security (ECIW), page
383, 2013.

[18] Margareta Heidt, Jin P Gerlach, and Peter Buxmann. Investigating the
security divide between sme and large companies: How sme characteris-
tics influence organizational it security investments. Information Systems
Frontiers, 21:1285–1305, 2019.

[19] Alladean Chidukwani, Sebastian Zander, and Polychronis Koutsakis. A
survey on the cyber security of small-to-medium businesses: Challenges,
research focus and recommendations. IEEE Access, 10:85701–85719, 2022.
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