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Abstract. Decentralized applications are often composed of multiple in-
terconnected smart contracts. This is especially evident in DeFi, where
protocols are heavily intertwined and rely on a variety of basic building
blocks such as tokens, decentralized exchanges and lending protocols. A
crucial security challenge in this setting arises when adversaries target in-
dividual components to cause systemic economic losses. Existing security
notions focus on determining the existence of these attacks, but fail to
quantify the effect of manipulating individual components on the overall
economic security of the system. In this paper, we introduce a quantita-
tive security notion that measures how an attack on a single component
can amplify economic losses of the overall system. We study the funda-
mental properties of this notion and apply it to assess the security of key
compositions. In particular, we analyse under-collateralized loan attacks
in systems made of lending protocols and decentralized exchanges.

1 Introduction

Developing decentralized applications nowadays involves suitably designing, as-
sembling and customizing a multitude of smart contracts, resulting in complex
interactions and dependencies. In particular, recent DeFi applications are highly
interconnected compositions of smart contracts of various kinds, including to-
kens, derivatives, decentralized exchanges (DEX), and lending protocols [15,16].

This complexity poses significant security risks, as adversaries targeting one
of the components may compromise the security of the overall application. Note
that, for this to happen, the attacked component does not even need to have a
proper vulnerability to exploit. For example, in an application composed of a
lending protocol and a DEX serving as a price oracle, adversaries could target the
DEX in order to artificially inflate the price of an asset that they have previously
deposited to the lending pool. This manipulation would allow adversaries to
borrow other assets with an insufficient collateral, circumventing the intended
economic mechanism of the lending protocol [12,21,5,20,1].

The first step to address these risks is to formally define when a system of
smart contracts is secure. In recent years, a few security notions have emerged,
starting from Babel, Daian, Kelkar and Juels’ “Clockwork finance” [3]. Broadly,
these definitions try to characterise the economic security of smart contract
systems based on the extent of economic damage that adversaries can inflict
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on them. In this context, adversaries are typically assumed to have the powers
of consensus nodes. Namely, they can reorder, drop or insert transactions in
blocks. Accordingly, the economic damage on a system S can be quantified in
terms of the Maximal Extractable Value (MEV) that adversaries can extract
from S by leveraging these powers [10]. To provide a more concrete formulation
of the existing notions, consider a set of contracts ∆ to be deployed in a system
S . We denote by S | ∆ the system composed of S and ∆. The security criterion
in [3] requires that MEV(S | ∆) ≤ (1+ε)MEV(S): namely, the MEV extractable
from S | ∆ does not exceed the MEV extractable from S by more than a factor
of ε. This notion does not capture our intuition of assessing the security of ∆ in
terms of the economic losses that ∆ could incur due to adversaries interacting
with the context S . For example, an airdrop contract ∆ that gives away tokens
would be deemed insecure, while in reality its interactions with S are irrelevant.

In a different security setting, a similar intuition was the basis of Goguen
and Meseguer’ non-interference [11], which was originally formulated as follows:

“One group of users, using a certain set of commands, is noninterfer-
ing with another group of users if what the first group does with those
commands has no effect on what the second group of users can see”.

In the setting of smart contract compositions, this notion can be reinterpreted
by requiring that adversaries interacting with S do not inflict economic damage
to ∆. The notion of MEV non-interference introduced by [6] is based on this
idea, using MEV as a measure of economic damage. The approaches in [14,24] are
also based on the idea of non-interference, but replacing MEV with an explicit
tagging of contract variables as high-level or low-level variables.

A common aspect of these approaches to economic non-interference is their
qualitative nature: namely, these definitions classify a composition as either se-
cure or insecure, in a binary fashion. While a qualitative evaluation is sufficient
when a composition is deemed secure, in that case that it is not, it does not pro-
vide any meaningful estimate of the degree of interference. For example, in the
insecure composition between a lending protocol and a DEX mentioned above, a
quantitative measure could provide insights into the extent to which the system
state (e.g., the liquidity reserves in the DEX) and the contract parameters (e.g.,
the collateralization threshold) contribute to increasing the economic loss.

Contributions This paper introduces a quantitative notion of economic security
for smart contract compositions. Our MEV interference, which we denote by
I(S ⇝ ∆), measures the increase of economic loss of contracts∆ that adversaries
can achieve by manipulating the context S . We apply our notion to assess the
security of some notable contract compositions, including a bet on a token price,
and a lending protocol relying on a DEX as a price oracle. We prove some
fundamental properties of our notion: more specifically, I(S ⇝ ∆) increases when
S is extended with contracts that are not in the dependencies of ∆ (Theorem 1);
I(S ⇝ ∆) does not depend on the token balances of users except adversaries
(Theorem 2); I(S ⇝ ∆) is preserved when extending S with contracts Γ that
enjoy some specific independency conditions with respect to ∆ (Theorem 3).
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Table 1: Summary of notation.
A, B User accounts A,B Sets of [user|contract] accounts
C, D Contract accounts C,D Sets of contract accounts
T, T′ Token types $1T Price of T
X,X′ Transaction names A: C.f(args) Transaction
S, S ′ Blockchain states $C(S) Wealth of contracts C in S
W,W ′ Wallet states deps(C) Dependencies of contracts C
Γ ,∆ Contract states †Γ Contract accounts in Γ

2 Smart contracts model

We consider a contract model inspired by account-based platforms such as
Ethereum. The basic building blocks of our model are a set T of token types
(T, T′ , . . .), representing crypto-assets (e.g., ETH), and a set A of accounts. We
partition accounts into user accounts A, B, . . . ∈ Au (representing the so-called
externally owned accounts in Ethereum) and contract accounts C, D, . . . ∈ Ac.

The state of a user account is a map w ∈ T → N from token types to non-
negative integers, representing a wallet of tokens. The state of a contract account
is a pair (w, σ), where w is a wallet and σ is a key-value map, representing the
contract storage. A blockchain state S is a map from accounts to their states. We
write an account state in square brackets, wherein we denote by n: T a balance
of n units of token T in the wallet, and by x = v, the association of value v to
the storage variable x. For example, C[1: T, owner = A] represents a state where
the contract C stores 1 unit of T, and the variable owner contains the address A.
We write a blockchain state as the composition of its account states, using the
symbol | as a separator. For example, S = A[1: T, 2: ETH] | C[1: T, owner = A] is a
state composed by a user account and a contract account.

Contracts are made up of a finite set of functions, which can be called by
transactions sent by users. A function can: (i) receive parameters and tokens from
the caller, (ii) transfer tokens to user accounts (including the caller), (iii) update
the contract state, (iv) call other functions (possibly of other contracts, and
possibly transferring tokens along with the call), (v) return values to the caller.
Functions can only manipulate tokens as described above: in particular, they
cannot mint or burn tokens, or drain tokens from other accounts. Transactions
X,X′, . . . are calls to contract functions, written A: C.f(args), where A is the
user signing the transaction, C is the called contract, f is the called function,
and args is the list of actual parameters. Parameters can also include transfers of
tokens T from A to C, written A pays n: T. Invalid transactions are reverted (i.e.,
they do not update the blockchain state). We remark that our security definition
and results do not rely on a particular language for functions: we just assume
a deterministic transition relation −→ between blockchain states, where state
transitions are triggered by transactions. To write examples, however, we will
instantiate this abstract model using a contract language inspired by Solidity.

We assume that a contract D can call a function of a contract C only if C was
deployed before D. Formally, defining C ≺ D (read: “C is called by D”) when some
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function in D calls some function in C, we require that the transitive and reflexive
closure ⊑ of ≺ is a partial order. We define the dependencies of a contract C as
deps(C) = {C′ | C′ ⊑ C}, and extend this notion to sets of contracts C. We assume
that blockchain states S enjoy the following conditions: (i) S contains all its
dependencies, i.e. if C is a contract in S , then also the contracts deps(C) are in S ;
(ii) S contains finite tokens. All states mentioned in our results are assumed to
enjoy these well-formedness assumption.3 We write S = W | Γ for a blockchain
state S composed of user wallets W and contract states Γ . We can deconstruct
wallets, writing S = W | W ′ | Γ when the accounts in W and W ′ are disjoint,
as well as contract states, writing S = W | Γ | ∆. We denote by †Γ the set of
contract accounts in Γ , i.e. †Γ = domΓ . For example, †(C[· · · ] | D[· · · ]) = {C, D}.
Given X = A: C.f(args), we write callee(X) for the target contract C.

3 Threat model

To define economic security of smart contract compositions, following [3] we
consider the Maximal Extractable Value (MEV) that can be extracted when
new contracts C are deployed in a blockchain state S = W | Γ , leading to a new
state S | Γ | ∆ where ∆ contains the initial state of the new contracts C. Since
our goal is measuring the loss of the new contracts ∆ caused by attacking their
dependencies Γ , rather than considering the overall MEV of S | ∆, we isolate the
MEV extractable from ∆ and compare it to the MEV that could be extracted
from ∆ without exploiting the dependencies Γ . To this purpose, we leverage the
adversary model and the notion of local MEV introduced in [6].

We start by designating a finite subset M of user accounts as adversaries.
We assume that adversaries have full control of the selection and ordering of
transactions — a standard assumption in definitions of MEV [3]. Then, to mea-
sure the economic loss of a set of contracts C, we consider the wealth of C in
a blockchain state before and after the attack. The wealth of C in S , written
$C(S), is given by the amount of tokens in each contract C ∈ C in S weighted by
their prices. Recalling that a contract state is a pair (w, σ) whose first element is
a wallet, and denoting by $1T the price of a token type T, the wealth of a single
contract state C[w, σ] is given by

∑
T w(T) ·$1T , i.e. the summation, for all token

types T, of the number of tokens T in the wallet of C, times the price of T.4 By
extending this to the set C, we obtain the following general definition of wealth:

$C(S) =
∑

C∈C,T

fst(Γ (C))(T) · $1T (1)

Building on the definition of wealth, we now revisit the notion of local MEV
introduced in [6]. The local MEV extractable by a set of contracts C in a

3 Note that well-formedness rules out some problematic features like reentrancy, which
instead is present in Ethereum. However, reentrancy can always be removed by using
suitable programming patterns, so we do not consider this as a limitation.

4 Here we implicitly assume that the prices of native crypto-assets are constant, since
they do not depend on the blockchain state. We discuss this assumption in Section 6.
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blockchain state S , denoted by MEV(S,C), is the maximum loss that adversaries
can inflict to C by performing an arbitrary sequence of transactions crafted using
their knowledge. By denoting with κ(M) the set of transactions craftable by M,
this amounts to the maximum loss $C(S) − $C(S

′) over all possible states S ′

reachable through a sequence X⃗ of transactions in κ(M). In symbols:

MEV(S,C) = max

{
$C(S)− $C(S

′)

∣∣∣∣ X⃗ ∈ κ(M)
∗
, S

X⃗−→ S ′
}

(2)

In MEV(S,C), adversaries are allowed to call any contract in S , including the
dependencies of C not defined in C itself. This follows from the fact that κ(M)
does not pose any restriction on the callee of the transactions craftable by M.
To estimate the MEV extractable from ∆ without exploiting the dependencies
Γ , we introduce an additional parameter D to local MEV, representing the set
of contracts callable by M. We denote by κD(M) = {X ∈ κ(M) | callee(X) ∈ D}
the set of transactions craftable by M and targeting contracts in D. We define:

MEVD(S,C) = max

{
$C(S)− $C(S

′)

∣∣∣∣ X⃗ ∈ κD(M)
∗
, S

X⃗−→ S ′
}

(3)

Note that by the finite token assumption in Section 2, the wealth is always
finite, and so also the local MEV.

4 A quantitative notion of economic security

In this section we introduce our notion of quantitative security for smart contract
compositions, and study its theoretical properties. In Section 5 we will apply it
to analyse some archetypal compositions and attacks.

Let S be a blockchain state, formed by users’ walletsW and contract states Γ ,
where we want to deploy new contracts with an initial state ∆. Note that, by
the well-formedness assumption introduced in Section 2, the dependencies of ∆
must be included in Γ | ∆, i.e. any function call made by a contract in ∆ must
target some contracts in Γ or in ∆. We want to measure the security of the
composition S | ∆ by analysing the additional loss that an adversary can inflict
to the contracts in ∆ by manipulating the dependencies Γ . To this purpose, our
definition will compare:

– MEV(S | ∆, †∆), the maximal loss of the contracts in ∆, where adversaries
are able to send transactions to any contract in S | ∆;

– MEV†∆(S | ∆, †∆), the maximal loss of the contracts in ∆, where adver-
saries can only send transactions to contracts in ∆. Note that interactions
between ∆ and Γ are still possible, as contracts in ∆ can invoke functions of
contracts in Γ (“contract dependencies”), and adversaries can extract tokens
from Γ to play them in calls to contracts in ∆ (“token dependencies”).

Our security notion, called MEV interference, measures how leveraging the
dependencies in S can amplify the loss caused to ∆. We denote with I(S ⇝ ∆)
the MEV interference caused by a blockchain state S to ∆.
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Listing 1.1: A simple airdrop contract.

contract Airdrop {
fund (pay x:T) { } // any user can deposit x:T to the contract
withdraw (x) { // any user can withdraw any amount x:T

require ( balance (T) >=x); // check that the contract has at least x:T
transfer (sender ,x:T); // transfer x:T to the caller

}
}

Listing 1.2: A simple airdrop contract with fees.

contract AirdropFee {
fund (pay x:T) { } // any user can deposit x:T to the contract
withdraw (x) { // any user can withdraw any amount x:T ( minus fee)

require ( balance (T) >=x);
fee = floor (( FeeManager . getFee () * x) / 100); // integer division
transfer (sender , x-fee:T);
transfer ( FeeManager . getOwner () , fee:T);

}
}
contract FeeManager {

constructor () { owner = sender ; feeRate =1; }
getOwner () { return owner ; }
getFee () { return feeRate ; }
setFee (r) { require (r >=0 && r <=100) ; feeRate =r; }

}

Definition 1 (MEV interference). For a blockchain state S and a contract
state ∆, we quantify the MEV interference caused by S on ∆ as:

I(S ⇝ ∆) =

1− MEV†∆(S | ∆, †∆)

MEV(S | ∆, †∆)
if MEV(S | ∆, †∆) ̸= 0

0 otherwise

Our notion is consistent with the notion of MEV non-interference in [6], which
classifies S and ∆ as non-interferent if MEV†∆(S | ∆, †∆) = MEV(S | ∆, †∆).
Namely, I(S ⇝ ∆) = 0 iff S and ∆ are non-interferent according to [6].

Example 1 (Any/Airdrop). Consider an instance ∆ = Airdrop[n: T] of the air-
drop contract in Listing 1.1, to be deployed in an arbitrary blockchain state S .
Note that MEV(S | ∆, {Airdrop}) = n · $1T , since the adversary can craft a
transaction M: Airdrop.withdraw(n) to extract all the tokens from the contract.
The restricted MEV{Airdrop}(S | ∆, {Airdrop}) is equal to the unrestricted one,
since the adversary just needs to interact with Airdrop. Therefore, if n > 0:

I(S ⇝ ∆) = 1−
MEV{Airdrop}(S | ∆, {Airdrop})

MEV(S | ∆, {Airdrop})
= 0

The same holds if n = 0. This is consistent with our intuition, since the adversary
does not need to exploit the dependencies in S to extract MEV from ∆. ⋄
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Example 2 (FeeManager/Airdrop). Consider a variant of the airdrop contract,
where each withdrawal requires the user to pay a proportional fee (Listing 1.2).
To obtain the fee rate, the AirdropFee contract calls the FeeManager contract.
Assume that we want to deploy ∆ = AirdropFee[n: T] in a blockchain state S
containing FeeManager[feeRate = r]. The unrestricted MEV is n · $1T , since
an adversary can set the fee to 0 by calling FeeManager.setFee(0) and then
withdraw the full balance of n: T from AirdropFee. Instead, the restricted MEV
only amounts to (n−⌊r·n/100⌋) ·$1T , since the adversary cannot call FeeManager
to manipulate the fee rate. Therefore, if n > 0:

I(S ⇝ ∆) = 1− n− ⌊r·n/100⌋
n

≤ r

100

This is coherent with our intuition: the closer the fee rate is to 100, the greater
the difference between restricted and unrestricted MEV, and so the possibility
for the attacker to inflict more damage to the contract. ⋄

We now study the theoretical properties of MEV interference. Because of
space constraints, we relegate the proofs of our statements to a technical report
on ArXiV. Lemma 1 establishes a few basic properties of MEV interference:
its value is zero when the context S has no contracts and when ∆ is empty;
furthermore, the interference is always comprised between 0 and 1.

Lemma 1. (i) I(S ⇝ ∅) = 0; (ii) I(W | ∅⇝ ∆) = 0; (iii) 0 ≤ I(S ⇝ ∆) ≤ 1.

Note that I(S ⇝ ∆) ranges from a minumum 0, representing the case where
the context S is not useful to extract MEV from∆, to a maximum 1, correspond-
ing to the case where the economic loss that can be inflicted to ∆ is purely due
to the interactions of the adversary with S . Enclosing MEV interference into an
interval is a design choice, which we illustrate with an example. Let S be a state
with an airdrop contract releasing 1: T, where we want to deploy a new contract
∆ that, upon the payment of 1: T, releases all its balance of n: ETH. Assume that
the adversary has no tokens T, so that she needs to extract 1: T from the airdrop
in order to extract MEV from ∆. If we measured the interference from S to ∆
as the difference between unrestricted and restricted MEV, i.e.:

I(S ⇝ ∆)
?
= MEV(S | ∆, †∆)−MEV†∆(S | ∆, †∆)

then we would obtain that I(S ⇝ ∆) = n · $1ETH, i.e. the interference would be
proportional to the ETH balance in ∆. We do not find this measure particularly
insightful: after all, what we observe is just that all the MEV extractable from ∆
is due to the interaction with the context S . In general, under these conditions,
our intuition is that the interference should take its maximum value.

Lemma 2 states that when the newly deployed contracts ∆ have no wealth
(i.e., when $†∆(∆) = 0), then they have no MEV interference with the context.

Lemma 2. If $†∆(∆) = 0, then I(S ⇝ ∆) = 0.
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Of course, if ∆ has zero wealth, no loss can be inflicted to ∆, regardless of
any potential manipulation of its dependencies in S . This also underscores a
fundamental aspect of our definition — namely, that it measures what happens
in specific contract states, rather than in arbitrary reachable states of a given
contract. For this reason, our intuition is to have I(S ⇝ ∆) = 0 whenever ∆ has
zero wealth, while not ruling out the possibility of having I(S ′ ⇝ ∆′) > 0 in a
state ∆′ where the contracts have been funded.

Theorem 1 says that widening a blockchain state S potentially increases MEV
interference to newly deployed contracts ∆. Formally, this amounts to showing
that I is monotonic w.r.t. the operation of adding contracts Γ to the context,
i.e. I(S ⇝ ∆) ≤ I(S | Γ ⇝ ∆). Note that by the well-formedness assumption,
the statement implicitly assumes that ∆ has no dependencies in Γ .

Theorem 1. I(S ⇝ ∆) ≤ I(S | Γ ⇝ ∆)

For illustration, consider a state S where we want to deploy new contracts ∆,
with an interference estimated as I(S ⇝ ∆). Assume now that the deployment
of ∆ is front-run by that of another set of contracts Γ . Of course ∆ cannot have
dependencies in Γ , since otherwise it would not be possible to deploy ∆ in S
(as this would violate the well-formedness assumption). Now, the interference
I(S | Γ ⇝ ∆) could either be equal to I(S ⇝ ∆), or possibly increase when the
adversary can drain tokens from Γ to inflict more loss to ∆. Theorem 1 states
that, in any case, the interference should not decrease.

The following example shows a case where the inequality given by Theorem 1
is strict. This is because, even if ∆ has no contract dependencies in Γ , the
adversary may exploit their token dependencies, i.e. extract tokens from Γ and
leverage them to extract more tokens from ∆.

Example 3. Let S = M[0: T] be a state where the adversary has no tokens, and
there are no contracts. Consider a contract Doubler with a function that, upon
receiving as input n: T, returns to the sender 2n: T, and let ∆ = Doubler[2: T].
By Lemma 1, S does not interfere with ∆. Instead, adding Γ = Airdrop[1: T]
to S yields I(S | Γ ⇝ ∆) = 1, since MEV{Doubler}(S | Γ | ∆, {Doubler}) = 0
while MEV(S | Γ | ∆, {Doubler}) = 2·$1T . This increase is caused by the ability
of M to leverage the token dependencies between the newly deployed Airdrop

contract to extract more MEV from Doubler than previously possible. ⋄

The previous example also shows that wealthier adversaries not always cause
greater interference. Indeed, if S = M[1: T], then M does not need to exploit
the Airdrop to extract MEV from the Doubler contract, since she has enough
tokens in her wallet. Of course there are also cases where wealthier adversary can
cause more MEV interference: we will see this in Example 5, where a sufficiently
wealthy M can win a bet by producing a price fluctuation in an AMM.

Theorem 2 shows that users’ wallets are irrelevant to the evaluation of MEV
interference. Namely, I(S ⇝ ∆) is preserved when removing from S all the
wallets except those of adversaries. Recall that a wallet state W is a map from
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accounts to wallets. Then, in a state S = W | Γ , we just need to consider the
restriction of W to the domain M.

Theorem 2. If domWM = M, then I(WM | W | Γ ⇝ ∆) = I(WM | Γ ⇝ ∆).

Here the intuition is that the adversary does not have any control of the
tokens in users’ wallets, and therefore these tokens play no role in the extraction
of MEV from ∆. This assumption highlights a simplification in our attacker
model, namely that the mempool of users’ transactions is not known by the
adversary. Formally, this assumption is visible in the definition of MEV in (3),
where the set κD(M) of transactions craftable by the adversary does not take the
mempool as a parameter. Were mempool transactions playable by the adversary,
then their success would also depend on the users’ wallet, and consequently the
MEV interference would possibly depend on them. We discuss this in Section 6.

Theorem 3 provides sufficient conditions under which an adversary M gains
no advantage by front-running the newly deployed contracts ∆ with malicious
contracts ΓM . Condition (i) requires the contracts in deps(∆) to be sender-
agnostic, i.e. their functions are unaware of the identity of the sender, only being
able to use it as a recipient of token transfers. Condition (ii) requires that the
contracts in deps(∆) are token independent with those in the other contracts (not
in deps(∆)) which could be possibly exploited by M. Note that since Definition 1
assumes that states are well-formed, Theorem 3 implicitly assumes that contracts
in ∆ do not call contracts in ΓM . Before stating Theorem 3, we formalise sender-
agnosticism and token independence.

Definition 2 (Sender-agnosticism). A contract C is sender-agnostic if, for
all states S and for all transitions that involve an (external or internal) call to
C, replacing the caller’s address a with any other address b results in the same
post-transition state, up to the substitution of a with b.

In practice, the effect of calling a function of a sender-agnostic contract C

can be decomposed into: (i) updating the states of contracts (either directly
or through internal calls); (ii) transferring tokens between users and contracts;
(iii) transferring tokens to the sender of the call to C. Any call to C with the
same arguments and origin, but distinct sender, has exactly the same effect,
except for item (iii), where tokens are transferred to the new sender.

Token independence relies on two auxiliary notions: the token types that can
be received by contracts Γ from other contracts in S , denoted by inS (Γ ), and
those that can be sent from Γ to other contracts, written outS (Γ ).

Definition 3 (Token independence). Let S = W | Γ , and let ∆ ⪯ Γ be a
subset of the contract states in Γ . We define:

– inS (∆) as the set of token types T for which there exists a state S ′ reachable
from S through a sequence of steps, containing a transaction that causes an
inflow of tokens T from outside ∆ to one of the contracts in ∆.
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Listing 1.3: An exchange contract.

contract Exchange {
constructor (pay x:tout_ , tin_ , rate_ ) { // receive x: tout_ from sender

require rate_ >0 && tin_ != tout_ ;
rate= rate_ ; tout= tout_ ; tin=tin_; owner = sender ;

}
getTokens () { return (tin ,tout); }
getRate (tout) { return rate; } // 1: tin for getRate (tout):tout
setRate (r) { require sender == owner ; rate=r; } // sender can update rate

swap (pay x:tin) { // sender sells x units of token tin
y = x* getRate (tout); // units of token tout sold to sender
require balance (tout) >=y; // Exchange has enough tout tokens
transfer (sender , y:tout); // send y units of token tout to sender

}
}

– outS (∆) as the set of token types T for which there exists a state S ′ reachable
from S through a sequence of steps, containing a transaction that causes an
outflow of tokens T from ∆ to one of the contracts outside ∆.

Let now ∆0 ⪯ Γ and ∆1 ⪯ Γ . We say that ∆0 and ∆1 are token independent
in S = W | Γ when inS (∆0) ∩ outS (∆1) = ∅ = inS (∆1) ∩ outS (∆0).

Theorem 3. I(S ⇝ ∆) = I(S | ΓM ⇝ ∆) holds if (i) the contracts in deps(∆)
are sender-agnostic, and (ii) deps(∆) and deps(S | ΓM) \ deps(∆) are token
independent in S | ΓM | ∆.

Note that I(S ⇝ ∆) is zero when the contract dependencies and the token
dependencies of ∆ in S are irrelevant to the ability of inflicting a loss to ∆.
E.g., consider an arbitrary state S where we want to deploy an airdrop contract
∆ (see Listing 1.1). In this scenario, the adversary cannot gain any advantage
from the contracts in S , since she can extract the full MEV from the airdrop by
interacting with ∆, only. Therefore, the MEV interference from S to ∆ is zero.

5 Use cases

We now illustrate MEV interference through a set of use cases. For simplicity, we
assume the values in these use cases are real numbers and that all computations
are performed using exact arithmetic. We note that adapting our results to smart
contract platforms, that, like Ethereum, operate on integers, requires several
modifications, such as applying flooring to arithmetic operations and replacing
equalities with inequalities. We refer to Appendix B for details.

Example 4 (Airdrop/Exchange). Consider an instance of the Exchange contract
in Listing 1.3, to be deployed in a blockchain state S containing an instance of
the Airdrop contract in Listing 1.1. More specifically, let:

S = M[nM : T] | Airdrop[nA : T]

∆ = Exchange[nE : ETH, tin = T, tout = ETH, rate = r, owner = A]

10



The Exchange contract allows any user to swap tokens of type tin with tokens
of type tout (in the instance, T and ETH, respectively), at an exchange rate of 1
unit of tin for rate units of tout. For simplicity, assume that $1T = $1ETH = 1.
We evaluate the MEV interference from S to ∆. When the exchange rate is
favourable, i.e. r > 1, the adversary M can extract MEV from ∆ by exchanging
T for ETH. This is possible as far as Exchange has enough ETH balance. The MEV
can be further increased by draining nA : T from Airdrop, and swapping these
tokens through the Exchange. More precisely, we have:

MEV{Exchange}(S | ∆, {Exchange}) =

{
nM · r if nM < nE/r

nE otherwise

MEV(S | ∆, {Exchange}) =

{
(nM + nA) · r if nM < nE/r − nA

nE otherwise

Therefore, the MEV interference from S on ∆ is given by:

I(S ⇝ ∆) =


nA/(nM+nA ) if nM < nE/r − nA

1− nM ·r/nE if nE/r − nA ≤ nM < nE/r

0 otherwise

When M is sufficiently rich, she can drain the Exchange without invoking the
Airdrop. Instead, when M’s wealth is limited, she is able to inflict a greater loss
of Exchange by leveraging the Airdrop. So, the interference caused to Exchange
in this case has a dual dependence on the adversary’s and the Airdrop’s wealth.
Furthermore, the interference is inversely proportional to M’s wealth, i.e. richer
adversaries have less need to exploit the context, resulting in lower interference
from S to ∆. This is coherent with our intuition, since we would expect a poorer
adversary to benefit more from exploiting the Airdrop than a richer one. ⋄

Example 5 (AMM/Bet). The Bet contract in Listing 1.4 allows a player to
bet on the exchange rate between a token and ETH. It is parameterized over an
oracle that is queried for the token price. To enter the bet, the player must
match the initial pot set upon deployment. Before the deadline, the player can
win a fraction potShare of the pot if the oracle exchange rate exceeds or equals
potShare times the rate. The remaining fraction is taken by the owner. Consider
an instance of Bet using the AMM in Listing 1.5 as a price oracle:

S = M[m: ETH] | AMM[r0: ETH, r1: T] | block.num = d− k | · · ·
∆ = Bet[b: ETH, owner = A, tok = T, rate = r, deadline = d]

When M is allowed to leverage Bet’s dependency, she can manipulate the AMM to
influence the internal exchange rate. If M has sufficient funds to enter the bet, she
can fire the following sequence of transactions, where, in the swap transaction,
x = m − b ≥ 0 is the number of ETH units sent to the AMM and y = xr1/r0+x is
the number of T units received (we omit M’s wallet for brevity):

11



S | ∆ M:Bet.bet(M pays b:ETH,p)−−−−−−−−−−−−−−−−→ AMM[r0: ETH, r1: T] | Bet[2b: ETH, potShare = p, · · · ] | · · ·
M:AMM.swap(M pays x:ETH,0)−−−−−−−−−−−−−−−−→ AMM[r0 + x: ETH, r1 − y: T] | Bet[2b: ETH, · · · ] | · · ·
M:Bet.win()−−−−−−−→ AMM[r0 + x: ETH, r1 − y: T] | Bet[2b− 2bp: ETH, · · · ] | · · ·
M:AMM.swap(M pays y:T,0)−−−−−−−−−−−−−−−→ AMM[r0: ETH, r1: T] | Bet[2b− 2bp: ETH, · · · ] | · · ·

The bet value that maximizes the loss caused to Bet depends on M’s wealth, and
is given by p = r0+x/r(r1−y). Assuming M enters the bet only for p ≥ 1/2 (since a
smaller proportion makes the bet irrational for her), by Equation (2) we have:

MEV(S | ∆, {Bet}) =
(
2(r0+m−b)2/rr0r1 − 1

)
b

If M can only interact with Bet, she is limited to settle on a lower bet value:

MEV{Bet}(S | ∆, {Bet}) =

{
2br0/rr1 − b− 1 if r0/rr1 ≥ 1/2

0 otherwise

Accordingly, MEV interference is estimated through Definition 1 as follows:

I(S ⇝ ∆) =

{
1− 2br20−rr0r1(b+1)

2b(r0+m−b)2−brr0r1
if r0/rr1 ≥ 1/2

1 otherwise

We observe maximum interference when M exploits the Bet by manipulating the
AMM, which would be impossible by interacting exclusively with Bet. Further-
more, the interference value is proportional to the adversarial wealth, as one
would anticipate. By contrast, even if M was able to empty a portion of the Bet
by fair play, she can always increase this loss by manipulating the AMM (pro-
vided she owns adequate funds). Note that in the composition between Bet and
Exchange, the MEV interference is zero, as the adversary cannot manipulate the
exchange rate (unless she is the Exchange owner). ⋄

Example 6 (AMM/Lending Pool). The contract LP in Listing 1.6 implements a
simplified lending protocol, where users can deposit and borrow tokens. Borrow-
ing requires users to have a sufficient collateralization [13,5]. This value, defined
as the ratio between the value of their deposits and that of their debits, is a
measure of the borrowing capacity (full versions of lending protocols include a
function that allows liquidators to repay loans of under-collateralized borrow-
ers in exchange for part of their collateral). The contract LP is parameterized
over an oracle that is queried for the token prices. Below we analyze a well-
known attack where the underlying oracle is an AMM, which is manipulated by
an adversary to increase her borrowing capacity [12,21,5,20,1].

More specifically, consider the following instance, where $1ETH = 1 = $1T , the
AMM is balanced, and the adversary M has not deposited or borrowed tokens yet:

S = M[n: ETH] | AMM[r: ETH, r: T] ∆ = LP[a: ETH, b: T, Cmin = Cmin , · · · ]
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Listing 1.4: A Bet contract.

contract Betoracle {
constructor (pay x:ETH , tok_ , deadline_ , rate_ ) {

require tok_ != ETH && oracle . getTokens () ==( ETH ,tok_);
tok=tok_; deadline = deadline_ ; rate= rate_ ; owner = sender ;

}
bet(pay x:ETH , p_) { // sender gives x:ETH to Bet and chooses potShare

require player == null && x== balance (ETH) && p_ >=0 && p_ <=1;
potShare = p_; player = sender ;

}
win () { // only callable by player before the deadline

require block .num <= deadline && sender == player ;
if ( oracle . getRate (ETH) >= potShare *rate)

transfer (player , potShare * balance (ETH):ETH);
}
close () { // after the deadline , transfer the ETH balance to the owner

require block .num > deadline ;
transfer (owner , balance (ETH):ETH);

}
}

Listing 1.5: A constant-product AMM contract.

contract AMM {
constructor (pay x0:T0 , pay x1:T1) { require x0 >0 && x1 >0; }

getTokens () { return (T0 ,T1); } // token pair

getRate (tout) { // 1: tin for getRate (tout):tout
if (tout == T0) { tin=T1 } else { tin=T0 };
return balance (tout)/ balance (tin);

}
swap (pay x:tin , ymin) { // sell x:tin to buy at least ymin:tout

if (tin == T0) { tout=T1 } else { tout=T0 };
y = x* getRate (tout); // units of token tout sold to sender
require ymin <=y< balance (tout); // the AMM has enough tout tokens
transfer (sender , y:tout); // send y units of token tout to sender

}
}

If M can interact with the AMM, she has the following attack strategy: deposit
(n− x): ETH to the LP, and use the remaining x: ETH to inflate the price of T in
the AMM. This allows M to increase the amount of T she can borrow, since the LP
now uses an artificially inflated price to determine her borrowing capacity.

To implement this strategy, M fires the following sequence of transactions,
where we denote by y the amount of T units that M receives from the swap, and
with t the amount of T units that M manages to borrow from the LP (below, we
omit M’s wallet, and the parts of the state that do not change upon a transition):

S | ∆ M:LP.deposit(M pays (n−x):ETH)−−−−−−−−−−−−−−−−−−−−→ AMM[r: ETH, r: T] | LP[a+ n− x: ETH, b: T, · · · ] | · · ·
M:AMM.swap(M pays x:ETH,0)−−−−−−−−−−−−−−−−→ AMM[r + x: ETH, r − y: T] | · · ·
M:LP.borrow(t,T)−−−−−−−−−−→ · · · | LP[a+ n− x: ETH, b− t: T, · · · ] | · · ·
M:AMM.swap(M pays y:T,0)−−−−−−−−−−−−−−−→ AMM[r: ETH, r: T] | · · ·

13



Listing 1.6: A Lending Pool contract (simplified).

contract LPoracle {
constructor ( Cmin_ ) { Cmin = Cmin_ ; } // collateralization threshold

collateral (a) { // return a’s collateralization
val_minted = 0;
for c in minted : val_minted += minted [t][a] * oracle. getRate (t);
val_debts = 0;
for c in debts : val_debts += debt[t][a] * oracle. getRate (t);
return val_minted / val_debts ;

}
deposit (a pays x:t) { // a deposits x units of token t in the LP

minted [t][a] += x; // record the deposited units in the minted map
}
borrow (a sig , x, t) { // a borrows x units of token t in the LP

require balance (t) >=x;
debts [t][a] += x; // record the borrowed units in the debts map
require collateral (a) >=Cmin; // a is over - collateralized
transfer (a, x:t);

}
}

The amount that M can borrow (as a function of x) is t = (n−x)(r+x)2/Cmin(r−y)2.
Its maximum is obtained for x = 4n−r/5 when M benefits from the manipulation
(i.e., when 4n ≥ r), and for x = 0 otherwise.

Assuming that the LP has sufficient funds, the unrestricted MEV is given by:

MEV(S | ∆, {LP}) =
(n− x)(r + x)2

Cmin(r − y)2
+ x− n

=


(
n+r
5

)(
1

Cmin

(
4(n+r)

5r

)4
− 1

)
if 4n ≥ r

n
(

1
Cmin

− 1
)

otherwise

On the contrary, if M was restricted to interact with the LP only, she suffers a
reduced borrowing allowance. By Equation (3) we have:

MEV{LP}(S | ∆, {LP}) = n

(
1

Cmin
− 1

)
Accordingly, MEV interference is estimated through Definition 1 as follows:

I(S ⇝ ∆) =

{
1 − 55r4n(1−Cmin)

(n+r)(44(n+r)4−(5r)4Cmin)
if 4n ≥ r

0 otherwise

In accordance with our expectations, the interference is indeed proportional to
the attack capital n of the adversary. Naturally, adversaries with higher manipu-
lation capital experience an increased borrowing capacity. Moreover, the degree
of interference is influenced by the AMM reserves since the profitability of the
attack rests on the cost of manipulating and de-manipulating the AMM. ⋄
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6 Conclusions

We have proposed a notion of economic security for smart contract compositions,
which quantifies the potential economic loss an adversary can inflict on a contract
by targeting its dependencies. Below, we discuss some limitations of our approach
and directions for future work.

Limitations To keep our theory manageable, we have made a few simplifying
assumptions in our model. A first assumption is that the prices of native crypto-
assets are constant. Consequently, the amount of MEV interference is not af-
fected by fluctuations of these prices (while they could depend on the prices
provided by DEXes, like in Examples 5 and 6). Handling price updates would
require to extend blockchain states with a function mapping tokens to their
prices. Another assumption is that the local MEV in Equation (3) does not al-
low adversaries to exploit their knowledge of pending users’ transactions (the
public mempool). The rationale underlying this choice is that, in our vision,
MEV interference should be the basis for a static analysis of smart contracts,
where dynamic data such as the mempool transactions are not known. Assuming
an over-approximation of users’ transactions, we could extend our MEV inter-
ference by making the mempool a parameter of local MEV, similarly to what
done for the theory of MEV in [7].

Future work While some tools exist for detecting price manipulation attacks in
DeFi protocols [23,18,22], and others for estimating MEV opportunities [3,4],
there remains a gap in addressing general economic attacks on smart contract
compositions. A common analysis technique underlying the detection of price
manipulation attacks — also employed by some of the tools mentioned above —
is taint analysis, which aims at identifying potential data flows from low-level
to high-level data. In the DeFi setting, this typically corresponds to flows from
to functions that influence token prices to functions that transfer tokens. While
this technique could potentially be generalised to analyse qualitative MEV non-
interference, capturing our notion of quantitative interference seems to require
more advanced techniques. Some inspiration could be drawn from static analysis
techniques for information-theoretic interference [9,19,17,2]. We plan to explore
this research line in future work. Our blockchain model represents crypto-assets
as token types with primitive transfer operations and built-in linearity guar-
antees preventing asset creation or destruction. In practice, several blockchains
including Ethereum do not have native support for custom tokens, but rather
require to implement them as smart contracts exposing standard interfaces. This
opens the door for attackers to exploit potential discrepancies between these im-
plementations and the standards, possibly leading to MEV [8]. Applying our
MEV interference analysis to such compositions is left as future work.
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19. Köpf, B., Rybalchenko, A.: Automation of quantitative information-flow analysis.
In: International School on Formal Methods for the Design of Computer, Com-
munication, and Software Systems (SFM). LNCS, vol. 7938, pp. 1–28. Springer
(2013). https://doi.org/10.1007/978-3-642-38874-3_1

20. Mackinga, T., Nadahalli, T., Wattenhofer, R.: TWAP oracle attacks: Easier
done than said? In: IEEE International Conference on Blockchain and Cryp-
tocurrency (ICBC). pp. 1–8. IEEE (2022). https://doi.org/10.1109/ICBC54727.
2022.9805499

21. Qin, K., Zhou, L., Livshits, B., Gervais, A.: Attacking the DeFi ecosystem with
Flash Loans for fun and profit. In: Financial Cryptography. LNCS, vol. 12674, pp.
3–32. Springer (2021). https://doi.org/10.1007/978-3-662-64322-8_1

22. Wu, K.W.: Strengthening DeFi security: A static analysis approach to Flash Loan
vulnerabilities. CoRR abs/2411.01230 (2025). https://doi.org/10.48550/
arXiv.2411.01230

23. Wu, S., Wang, D., He, J., Zhou, Y., Wu, L., Yuan, X., He, Q., Ren, K.: DeFiRanger:
Detecting price manipulation attacks on defi applications. CoRR abs/2104.15068
(2021), https://arxiv.org/abs/2104.15068

24. Yao, S., Ni, H., Myers, A.C., Cecchetti, E.: SCIF: A language for compositional
smart contract security. CoRR abs/2407.01204 (2024), https://arxiv.org/
abs/2407.01204

17

https://doi.org/10.1007/978-3-031-32415-4\_18
https://doi.org/10.1007/978-3-031-32415-4_18
https://doi.org/10.1007/978-3-031-32415-4\_18
https://doi.org/10.1007/978-3-031-32415-4_18
https://doi.org/10.1145/3532857
https://doi.org/10.1145/3532857
https://doi.org/10.1145/3532857
https://doi.org/10.1145/3532857
https://doi.org/https://doi.org/10.1016/j.tcs.2014.04.022
https://doi.org/https://doi.org/10.1016/j.tcs.2014.04.022
https://doi.org/https://doi.org/10.1016/j.tcs.2014.04.022
https://doi.org/https://doi.org/10.1016/j.tcs.2014.04.022
https://doi.org/10.1145/3597926.3598124
https://doi.org/10.1145/3597926.3598124
https://doi.org/10.1145/3597926.3598124
https://doi.org/10.1145/3597926.3598124
https://doi.org/10.1007/978-3-642-38874-3_1
https://doi.org/10.1007/978-3-642-38874-3_1
https://doi.org/10.1109/ICBC54727.2022.9805499
https://doi.org/10.1109/ICBC54727.2022.9805499
https://doi.org/10.1109/ICBC54727.2022.9805499
https://doi.org/10.1109/ICBC54727.2022.9805499
https://doi.org/10.1007/978-3-662-64322-8\_1
https://doi.org/10.1007/978-3-662-64322-8_1
https://doi.org/10.48550/arXiv.2411.01230
https://doi.org/10.48550/arXiv.2411.01230
https://doi.org/10.48550/arXiv.2411.01230
https://doi.org/10.48550/arXiv.2411.01230
https://arxiv.org/abs/2104.15068
https://arxiv.org/abs/2407.01204
https://arxiv.org/abs/2407.01204


A Proofs: properties of MEV interference

We start by recalling from [6] a few useful properties of local MEV. We define
the relation ⪯ between contract states as follows:

Γ ⪯ ∆ ⇐⇒ ∀C ∈ domΓ . C ∈ dom∆ ∧ Γ (C) = ∆(C)

Therefore, the condition Γ ⪯ ∆ in Item 3 of Lemma A.1 means that ∆ is a
widening of the state Γ with other arbitrary contract states.

Lemma A.1 (Basic properties of MEV [6]). For all S , C,D ⊆ Ac:

1. MEVD(S, ∅) = MEV∅(S,C) = 0, MEVAc
(S,Ac) ≥ MEV(S)

2. if D ⊆ D′, then MEVD(S,C) ≤ MEVD′(S,C)
3. MEVD(W | Γ ,C) ≤ MEVD(W | ∆,C) if Γ ⪯ ∆
4. MEVD(W | Γ ,C) = MEVD(W | Γ ,C ∩ †Γ ) = MEVD∩†Γ (W | Γ ,C)
5. 0 ≤ MEVD(S,C) ≤ $C(S)

Lemma A.2 states that the only user wallets that need to be taken into
account to estimate the MEV are those of the adversary. This is because M has
no way to force other users to spend their tokens in the attack sequence.

Lemma A.2 (MEV and adversaries’ wallets [6]). If domWM = M, then

MEVD(WM | W | Γ ,C) = MEVD(WM | Γ ,C)

Proof of Lemma 1

For Item (i), by Item 1 of Lemma A.1 we have that MEV(S | ∅, †∅) = 0. The
thesis follows by Definition 1.

For Item (ii), by Item 4 of Lemma A.1 we have:

MEV(W | ∅ | ∆, †∆) = MEV†∆(W | ∅ | ∆, †∆)

which gives us I(W | ∅⇝ ∆) = 0, and hence we have our thesis.

For Item (iii), there are two cases. If MEV(S | ∆, †∆) = 0, then I(S ⇝ ∆) = 0
holds by definition. Otherwise, by Items 2 and 5 of Lemma A.1:

0 ≤ MEV†∆(S | ∆, †∆) ≤ MEV(S | ∆, †∆)

=⇒ 0 ≤ MEV†∆(S | ∆, †∆)

MEV(S | ∆, †∆)
≤ 1

=⇒ 0 ≤ 1− MEV†∆(S | ∆, †∆)

MEV(S | ∆, †∆)
≤ 1

which implies 0 ≤ I(S ⇝ ∆) ≤ 1, giving us our thesis. ⊓⊔
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Proof of Lemma 2

From Items 2 and 5 of Lemma A.1, we have:

0 ≤ MEV†∆(S | ∆, †∆) ≤ MEV(S | ∆, †∆) ≤ $†∆(∆)

By hypothesis, $†∆(∆) = 0. So, by the inequalities above, MEV(S | ∆, †∆) = 0.
Definition 1 gives the thesis. ⊓⊔
Definition A.1 (Gain). The gain of C ⊆ Ac when a transaction sequence X⃗

is fired in S is given by γC(S, X⃗) = $C(S
′)− $C(S) if S

X⃗−→ S ′.

Dually, the loss of C ⊆ Ac when a transaction sequence X⃗ is fired in S is given

by −γC(S, X⃗) = $C(S)− $C(S
′) if S

X⃗−→ S ′.

Lemma A.3 states that widening the contract state Γ preserves the MEV
extractable from the target contracts. This is because the contracts allowed
to be targeted by the adversary, i.e. D, are not widened. This refines Item 3
of Lemma A.1, giving an equality under the additional assumption D ⊆ †Γ .

Lemma A.3. MEVD(W | Γ ,C) = MEVD(W | ∆,C) when D ⊆ †Γ and Γ ⪯ ∆.

Proof. The inequality ≤ follows directly from Item 3 of Lemma A.1. For the
inequality ≥, assume that ∆ is the composition of the contracts Γ with some
other contracts Γ̄ , i.e. Γ ⪯ ∆, Γ̄ ⪯ ∆, and ∆ ⪯ Γ | Γ̄ . Let X⃗ ∈ κD(M)

∗
be a

valid sequence of transactions that maximizes the loss −γC(W | ∆, X⃗). Since X⃗
consists of transactions targeting contracts in D ⊆ †Γ and since, by the well-
formedness assumption, there are no internal calls from Γ to Γ̄ , the contracts
in Γ̄ are not affected by X⃗. Hence, executing X⃗ yields a transition of the form:

W | ∆ X⃗−→ W ′ | ∆′ where Γ̄ ⪯ ∆′

As noted above, X⃗ does not include any direct/indirect calls to †Γ̄ , and so X⃗ is
also valid in W | Γ . Therefore, we also have some Γ ′ such that:

W | Γ X⃗−→ W ′ | Γ ′

To prove that the loss is constant, observe that:

γC(W | Γ , X⃗) = $C(W
′ | Γ ′)− $C(W | Γ )

= $C(Γ
′)− $C(Γ )

= $C(∆
′)− $C(Γ̄ )− $C(∆) + $C(Γ̄ )

= $C(∆
′)− $C(∆)

= $C(W
′ | ∆′)− $C(W | ∆)

= γC(W | ∆, X⃗)

This implies that:

MEVD(W | ∆,C) ≤ MEVD(W | Γ ,C)

which gives our thesis. ⊓⊔
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Proof of Theorem 1

By Definition 1, we have two cases.

If MEV(S | ∆, †∆) = 0, then I(S ⇝ ∆) = 0. From Lemma 1(iii), we have
I(S | Γ ⇝ ∆) ≥ 0. This implies the thesis, I(S ⇝ ∆) ≤ I(S | Γ ⇝ ∆).

Otherwise, assume that MEV(S | ∆, †∆) > 0. Then, by Definition 1:

I(S ⇝ ∆) = 1− MEV†∆(S | ∆, †∆)

MEV(S | ∆, †∆)

Now, by Item 3 of Lemma A.1, we have that:

0 < MEV(S | ∆, †∆) ≤ MEV(S | Γ | ∆, †∆)

Therefore, by Definition 1:

I(S | Γ ⇝ ∆) = 1− MEV†∆(S | Γ | ∆, †∆)

MEV(S | Γ | ∆, †∆)

From Lemma A.1, we have that:

MEV†(S |∆)(S | ∆, †∆) ≤ MEV†(S |∆)(S | Γ | ∆, †∆) by Item 3

≤ MEV†(S |Γ |∆)(S | Γ | ∆, †∆) by Item 2 (4)

We know from (4),

MEV(S | ∆, †∆) ≤ MEV(S | Γ | ∆, †∆)

Taking the reciprocal on both sides gives us:

1

MEV(S | ∆, †∆)
≥ 1

MEV(S | Γ | ∆, †∆)

By Lemma A.3, we have MEV†∆(S | ∆, †∆) = MEV†∆(S | Γ | ∆, †∆). Then:

MEV†∆(S | ∆, †∆)

MEV(S | ∆, †∆)
≥ MEV†∆(S | Γ | ∆, †∆)

MEV(S | Γ | ∆, †∆)

which finally gives us:

1− MEV†∆(S | ∆, †∆)

MEV(S | ∆, †∆)
≤ 1− MEV†∆(S | Γ | ∆, †∆)

MEV(S | Γ | ∆, †∆)

which gives our thesis, i.e. I(S ⇝ ∆) ≤ I(S | Γ ⇝ ∆). ⊓⊔
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Proof of Theorem 2

By Lemma A.2 we have that, for all C,D and for all Γ ′:

domWM = M =⇒ MEVD(WM | W | Γ ′,C) = MEVD(WM | Γ ′,C)

In particular, by choosing Γ ′ = Γ | ∆ and C = †∆, this implies that:

MEV(WM | W | Γ | ∆, †∆) = MEV(WM | Γ | ∆, †∆)

MEV†∆(WM | W | Γ | ∆, †∆) = MEV†∆(WM | Γ | ∆, †∆)

which gives us our thesis, i.e. I(WM | W | Γ ⇝ ∆) = I(WM | Γ ⇝ ∆) ⊓⊔

Lemma A.4 gives sufficient conditions under which we can strip D from all
the non-dependencies of C while preserving MEVD(S,C). Condition 1 is that
contract functions are sender-agnostic, i.e. they are not aware of the identity of
the sender, being only able to use it as a recipient of token transfers. Condition 2
ensures that D contains enough contracts to reproduce attacks in the stripped
state. Condition 3 requires that the dependencies and the non-dependencies of C
inD are token independent in S . In other words, there are no token dependencies
between D∩deps(C) and D \deps(C), which could have potentially be exploited
by non-wealthy adversaries.

Lemma A.4. The equality:

MEVD(S,C) = MEVD∩deps(C)(S,C)

holds if all the following conditions, where C′ = deps(C) ∩ deps(D \ deps(C)),
are satisfied:

1. the contracts in C′ are sender-agnostic;
2. C′ ⊆ D;
3. deps(D) ∩ deps(C) and deps(D) \ deps(C) are token independent in S .

Proof. First, note that the inequality MEVD∩deps(C)(S,C) ≤ MEVD(S,C) fol-
lows from Item 2 of Lemma A.1, so we just need to show that:

MEVD(S,C) ≤ MEVD∩deps(C)(S,C)

To do so, let X⃗ ∈ κD(M)
∗
be a sequence of transactions that maximizes the loss

of C when executed in state S . We show that there exists Y⃗ ∈ κD∩deps(C)(M)
∗

that causes a loss to C equal to the one caused by X⃗, i.e.:

Y⃗ ∈ κD∩deps(C)(M)
∗

γC(S, Y⃗) = γC(S, X⃗) (5)

W.l.o.g. we assume that all the transactions in X⃗ are valid: indeed, invalid trans-
actions in X⃗ are reverted, so they can be removed without affecting the loss.
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Note that each transaction Xi = Mi: Ci,1.fi,1(argsi,1) in X⃗ can trigger a sequence
of internal contract-to-contract function calls:

Ci,1: Ci,2.fi,2(argsi,2) Ci,2: Ci,3.fi,3(argsi,3) · · · Ci,k−1: Ci,k.fi,k(argsi,k)

Let x⃗ be the sequence of all function calls (either external or internal) that are

performed upon the execution of X⃗ in state S . To construct Y⃗, we start by
considering the subsequence y⃗ of x⃗ containing all and only the calls of the form:

(a) Mi: Ci,1.fi,1(argsi,1) where Ci,1 ∈ deps(C), or
(b) Ci,j−1: Ci,j.fi,j(argsi,j), where Ci,j−1 ̸∈ deps(C) and Ci,j ∈ deps(C).

Claim (1). If Ci,j−1: Ci,j.fi,j(argsi,j) ∈ y⃗, then Ci,j ∈ C′.

Proof of Claim (1). By hypothesis, Ci,j ∈ deps(C). Let Xi ∈ X⃗ be the transaction
that originated the call. Since Xi ∈ κD(M), then Ci,1 ∈ D. Since deps(C) is closed
downward and Ci,j−1 ̸∈ deps(C), then Ci,1 ̸∈ deps(C). So, Ci,1 ∈ D \ deps(C),
and therefore Ci,j ∈ deps(D \ deps(C)). This completes the proof of Claim (1).

To describe the construction of Y⃗, let the meta-variables ai range over user
and contract addresses, so to rewrite the sequence y⃗ as follows:

a1: C1.f1(args1) a2: C2.f2(args2) · · · an: Cn.fn(argsn) · · ·

We translate y⃗ into the sequence of transactions Y⃗ by preserving the senders ai
that are user accounts (i.e., ai = Mi), and by replacing the ai that are contract
accounts into the user account that originated the corresponding call. Namely,
if ai = Ci,j−1 is a contract account corresponding to the following call in y⃗:

Ci,j−1: Ci,j.fi,j(argsi,j)

then the sender of the i-th transaction in Y⃗ is Mi, i.e. the originator of the call.
Note that each transaction Yi in Y⃗ can be funded by the adversary:

– if ai = Mi, then the fact that the corresponding transaction Xi in X⃗ was valid
implies that Mi has the tokens needed to fund the call;

– if ai = Ci,j−1, then there is no token transfer from Ci,j−1 to Ci,j, and so Yi

does not need to be funded. This is because:
• Ci,j−1 ∈ deps(D)\deps(C): indeed, Ci,j−1 ∈ deps(D) since Xi ∈ κD(M),
and Ci,j−1 ̸∈ deps(C) by definition of case (b);

• Ci,j ∈ deps(D)∩deps(C): indeed, Ci,j ∈ deps(D) since Xi ∈ κD(M), and
Ci ∈ deps(C) by definition of case (b);

• deps(D) ∩ deps(C) and deps(D) \ deps(C) are token independent in S
by assumption (3).

Claim (2). Y⃗ ∈ κD∩deps(C)(M)
∗

Proof of Claim (2). Consider a transaction Yi in Y⃗. We have two cases, depending
on whether Yi is due to conditions (a) or (b):
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(a) in this case, Yi corresponds to some Xi = Mi: Ci,1.fi,1(argsi,1) in X⃗ where
Ci,1 ∈ deps(C). Since Xi ∈ κD(M), then Yi ∈ κD∩deps(C)(M).

(b) by Claim (1), the callee of Yi is in C′ = deps(C)∩ deps(D \ deps(C)), which
is included in D by assumption 2. Note that M is able to craft the actual
arguments of that call by simulating the execution of X⃗. This implies that
Yi ∈ κD∩deps(C)(M). This completes the proof of Claim (2).

We now show that Y⃗ and X⃗ modify the state of contracts in C in exactly the
same way. Note that the transactions Yi that are in Y⃗ due to condition (b) have
callee in C′ by Claim (1), and so their functions are sender-agnostic by assump-
tion 1. So, the fact that in the execution of Yi they are called directly from a user
address, while in the execution of Xi they are called from a contract address, does
not affect the execution of these calls. Note that a call Ci,j−1: Ci,j.fi,j(argsi,j)
in Xi could send tokens to the sender Ci,j−1, thus affecting its gain, while the
corresponding call Mi: Ci,j.fi,j(argsi,j) would send these tokens to Mi. This dif-
ference however do not affect the gains and losses of C, since Ci,j−1 is not in
deps(C) by condition (b).

Note that the sequence h⃗ of calls performed upon the execution of Y⃗ contains
y⃗ but does not coincide with it, since it also includes all the internal calls that
are performed by functions in y⃗. In fact, h⃗ is the subsequence of x⃗ that contains
every call to functions of contracts in deps(C). For this reason, both x⃗ and h⃗
modify the state of contracts deps(C) in the same way — and, in particular, they

cause exactly the same losses to the contracts in C. This implies that Y⃗ is valid
in S and that γC(S, Y⃗) = γC(S, X⃗). Since we have proved (5) for all possible X⃗,
we obtain the thesis. ⊓⊔

Example A.1. To illustrate Lemma A.4, consider the contracts:

contract C0 { f(a pays 1:T) { transfer (M ,2:T) } }
contract C1 { f() { C0.f(C1 pays 1:T); } }
contract C2 { f() { require sender ==C3; C1.f(); } }
contract C3 { f() { C2.f(); C1.f(); } }

Let M = {M}, D = {C0, C1, C3}, C = {C0, C1}, and let:

S = M[0: T] | C0[2: T] | C1[2: T] | C2[0: T] | C3[0: T]

Let X⃗ ∈ κD(M) be the following sequence of transactions:

X⃗ = M: C3.f()

By executing X⃗ in S , we have that:

S
M:C3.f()−−−−−→ M[4: T] | C0[0: T] | C1[0: T] | C2[0: T] | C3[0: T]

Since there are no tokens left in C, X⃗ clearly maximises the loss of C, hence:

MEVD(S,C) = 4 · $1T
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We first check that the conditions of Lemma A.4 are satisfied. Let:

C′ = deps(C) ∩ deps(D \ deps(C)) = {C0, C1} ∩ deps({C0, C1, C3} \ {C0, C1})
= {C0, C1} ∩ deps({C3}) = {C0, C1} ∩ {C0, C1, C2, C3}
= {C0, C1}

The conditions of Lemma A.4 are then satisfied, since:

(1) the contracts C0, C1 ∈ C′ is sender-agnostic. Note that C2 is not sender-
agnostic, but this does not violate assumption 1 since sender-agnosticism is
only required on C′;

(2) C′ = {C0, C1} ⊆ D. Note that this inclusion is stricter than necessary: indeed,
in this example, choosing D = {C1, C3} would have violated assumption 2,

but it would have still preserved the MEV (see Y⃗ below).
(3) token independence of the parts of S related to contracts:

deps(D) ∩ deps(C) = {C0, C1, C2, C3} ∩ {C0, C1} = {C0, C1}
deps(D) \ deps(C) = {C0, C1, C2, C3} \ {C0, C1} = {C2, C3}

Note instead that token independence is not required between C0 and C1:
actually, these two contracts are token dependent, since C1 sends 1: T along
with the internal call to C0.

We now construct the sequence of transactions Y⃗ following the proof of Lemma A.4.
The sequence x⃗ of calls induced by X⃗, the subsequence y⃗ obtained by filtering x⃗,
and the sequence of transactions Y⃗ are the following:

x⃗ = M: C3.f() C3: C2.f() C2: C1.f() C1: C0.f() C3: C1.f() C1: C0.f()
y⃗ = C2: C1.f() C3: C1.f()

Y⃗ = M: C1.f() M: C1.f()

Note that Y⃗ ∈ κD∩deps(C)(M) = κ{C0,C1}(M). By executing Y⃗ in S , we have that:

S
M:C1.f()−−−−−→ M[2: T] | C0[1: T] | C1[1: T] | C2[0: T] | C3[0: T]
M:C1.f()−−−−−→ M[4: T] | C0[0: T] | C1[0: T] | C2[0: T] | C3[0: T]

Hence, we have that:

MEVD∩deps(C)(S,C) = 4 · $1T

which confirms the preservation of MEV stated by Lemma A.4. ⋄

Example A.2. To illustrate the need of the token independence assumption in
Lemma A.4, consider the contracts:

contract C0 { f(a pays 2:T) { transfer (M ,4:T) } }
contract C1 {
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f() { C0.f(C1 pay 2:T); }
receive (a pays n:T) { }

}
contract C2 {

f() { C1. receive (C2 pays 1:T); }
// transfer (C1 ,1:T) is forbidden in our model
// transfer recipients must be user accounts

}
contract C3 { f() { C2.f(); C1.f(); } }

Let M = {M}, C = {C0, C1}, D = {C0, C1, C3}, and let:

S = M[0: T] | C0[2: T] | C1[1: T] | C2[1: T] | C3[0: T]

Note that M has no tokens in S , to the only way to extract MEV is to pass
through C3. Let X⃗ ∈ κD(M) be the following sequence of transactions:

X⃗ = M: C3.f()

By executing X⃗ in S , we have that:

S
M:C3.f()−−−−−→ M[4: T] | C0[0: T] | C1[0: T] | C2[0: T] | C3[0: T]

Since there are no tokens left in C, X⃗ clearly maximises the loss of C. Since C

contained 3: T in S , then:

MEVD(S,C) = 3 · $1T

Similarly to Example A.1, we have that C′ = {C0, C1}, which satisfies conditions
(1) and (2). For condition (3) (token independence), we have that:

deps(D) ∩ deps(C) = {C0, C1, C2, C3} ∩ {C0, C1} = {C0, C1}
deps(D) \ deps(C) = {C0, C1, C2, C3} \ {C0, C1} = {C2, C3}

Now, token independence between {C0, C1} and {C2, C3} is not satisfied, since
C2 sends 1: T to C1. More formally, we have that:

inS (Γ C0,C1) = {T} outS (Γ C2,C3) = {T} inS (Γ C2,C3) = ∅ outS (Γ C0,C1) = {T}

By Definition 3, since:

inS (Γ C0,C1) ∩ outS (Γ C2,C3) = {T} ∩ {T} ≠ ∅

then, Γ C0,C1 and Γ C2,C3 are not token independent.

Since the conditions of Lemma A.4 are not satisfied, we are not guaranteed to
have the preservation of MEV:

MEVD∩deps(C)(S,C)
?
= MEVD(S,C) = 3 · $1T

Indeed, the maximum loss that M can inflict to C using κD∩deps(C)(M) =
κ{C0,C1}(M) is zero. This is because:
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– calling C0 fails, since C0 has not the required 4: T to transfer;
– calling C1 fails, since C1 does not have the 2: T required to call C0.

Note also that requiring the milder condition that D ∩ deps(C) and D \ deps(C)
are token independent would not be enough to guarantee MEV preservation. In
our example, we would have:

D ∩ deps(C) = {C0, C1, C3} ∩ {C0, C1} = {C0, C1}
D \ deps(C) = {C0, C1, C3} \ {C0, C1} = {C3}

where Γ C0,C1 and Γ C3 are token independent. ⋄

Example A.3. To illustrate the need of the sender-agnosticism assumption in
Lemma A.4, consider the contracts:

contract C0 { f() { require sender ==C1; transfer (M ,1:T) }}
contract C1 { f() { C0.f(); } }

Let M = {M}, C = {C0}, D = {C0, C1}, and let:

S = M[0: T] | C0[1: T] | C1[0: T]

Let X⃗ ∈ κD(M) be the following sequence of transactions:

X⃗ = M: C1.f()

By executing X⃗ in S , we have that:

S
M:C1.f()−−−−−→ M[1: T] | C0[0: T] | C1[0: T]

Since there are no tokens left in C, X⃗ clearly maximises the loss of C, hence:

MEVD(S,C) = 1 · $1T

We have that C′ = {C0}, which satisfies condition (2). Note that condition (3)
(token independence) is trivially satisfied, since there are no token transfers
among the contracts. Instead, the contract C0 ∈ C′ is not sender-agnostic, thus
violating condition (1). Indeed, MEV preservation does not hold, since:

MEVD∩deps(C)(S,C) = MEV{C0}(S, {C0}) = 0

This is because the adversary is restricted to calling C0, but the transaction
would revert since the require condition in C0 is violated. ⋄

Example A.4. To illustrate the need of the assumption (2) in Lemma A.4, con-
sider the contracts:

contract C0 { f() { transfer (M ,1:T) } }
contract C1 { f() { C0.f(); } }
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Let M = {M}, C = {C0}, D = {C1}, and let:

S = M[0: T] | C0[1: T] | C1[0: T]

Let X⃗ ∈ κD(M) be the following sequence of transactions:

X⃗ = M: C1.f()

By executing X⃗ in S , we have that:

S
M:C1.f()−−−−−→ M[1: T] | C0[0: T] | C1[0: T]

Since there are no tokens left in C, X⃗ clearly maximises the loss of C, hence:

MEVD(S,C) = 1 · $1T

We have that C′ = deps({C0}) ∩ deps({C1} \ deps({C0})) = {C0} ̸⊆ D, thus
violating condition (2). We have that:

MEVD∩deps(C)(S,C) = MEV{C1}∩{C0}(S, {C0}) = MEV∅(S, {C0}) = 0

Therefore, MEV preservation does not hold. ⋄

Proof of Theorem 3

We show the following two equalities, which imply the thesis:

MEV(S | ∆, †∆) = MEV(S | ΓM | ∆, †∆) (6)

MEV†∆(S | ∆, †∆) = MEV†∆(S | ΓM | ∆, †∆) (7)

Observe that (7) follows directly from Lemma A.3, since S | ∆ ⪯ S | ΓM | ∆ and
†∆ ⊆ †(S | ∆) = †S∪†∆. Note instead that (6) does not follow from Lemma A.3,
since to equate MEV†(S |ΓM |∆)(S | ∆, †∆) and MEV†(S |ΓM |∆)(S | ΓM | ∆, †∆),
the lemma would require †(S | ΓM | ∆) ⊆ †(S | ∆), which is false.

In order to prove (6), we pass through two auxiliary results. We start by proving
the following equality:

MEV†(S |ΓM |∆)(S | ΓM | ∆, †∆) = MEV†(S |∆)∩deps(†∆)(S | ΓM | ∆, †∆) (8)

In order to apply Lemma A.4, let:

C = †∆ D = †(S | ΓM | ∆)

and let:

C′ = deps(C) ∩ deps(D \ deps(C))
= deps(∆) ∩ deps(†(S | ΓM | ∆) \ deps(∆))

Note that the conditions of Lemma A.4 are satisfied:
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(1) C′ are sender-agnostic, since C′ ⊆ deps(∆) and, by assumption of Theorem 3,
the contracts in deps(∆) are sender-agnostic;

(2) C′ ⊆ D holds since C′ ⊆ deps(∆) ⊆ D;
(3) Since the state S | ∆ is well-formed by assumption, then deps(∆) ⊆ †(S | ∆),

and so we have that:

deps(D) ∩ deps(C) = deps(S | ΓM | ∆) ∩ deps(∆) = deps(∆)

deps(D) \ deps(C) = deps(S | ΓM | ∆) \ deps(∆) = deps(S | ΓM) \ deps(∆)

⊆ †(S | ΓM) \ deps(∆)

Since S | ΓM | ∆ is well-formed and deps(∆) and †(S | ΓM) \ deps(∆) are
disjoint, then Condition (ii) of Theorem 3 ensures that these sets are token
independent.

Therefore, by Lemma A.4 it follows that:

MEV†(S |ΓM |∆)(S | ΓM | ∆, †∆) = MEV†(S |ΓM |∆)∩deps(†∆)(S | ΓM | ∆, †∆)

To obtain (8), just note that, since deps(†∆) ⊆ †(S | ∆):

†(S | ΓM | ∆) ∩ deps(†∆) = †(S | ∆) ∩ deps(†∆)

which is equal to deps(†∆).

The second auxiliary result is the equality:

MEV†(S |∆)(S | ΓM | ∆, †∆) = MEV†(S |∆)∩deps(†∆)(S | ΓM | ∆, †∆) (9)

This time, in order to apply Lemma A.4 we let:

C = †∆ D = †(S | ∆) C′ = deps(∆) ∩ deps(D \ deps(C))

In order to apply Lemma A.4, let us first compute:

C′ = deps(C) ∩ deps(D \ deps(C))
= deps(∆) ∩ deps(†(S | ∆) \ deps(∆))

Again, note that the assumptions of Lemma A.4 are satisfied:

(1) C′ are sender-agnostic, since C′ ⊆ deps(∆) and assumption (i);
(2) C′ ⊆ D holds since C′ ⊆ deps(∆) ⊆ D;
(3) Since the state S | ∆ is well-formed by assumption, then deps(∆) ⊆ †(S | ∆),

and so we have that:

deps(D) ∩ deps(C) = deps(S | ∆) ∩ deps(∆) = deps(∆)

deps(D) \ deps(C) = deps(S | ∆) \ deps(∆) = deps(S) \ deps(∆)

Condition (ii) ensures that these sets are token independent.
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Therefore, Lemma A.4 gives the equality (8).

Now, by putting together (8) and (9), we obtain:

MEV†(S |ΓM |∆)(S | ΓM | ∆, †∆) = MEV†(S |∆)(S | ΓM | ∆, †∆) (10)

Now we can prove (6) by observing the following chain of equalities:

MEV†(S |∆)(S | ΓM | ∆, †∆)
by (10)
====== MEV†(S |ΓM |∆)(S | ΓM | ∆, †∆)∥∥∥∥ by Lemma A.3

∥∥∥∥
MEV†(S |∆)(S | ∆, †∆) MEV†(S |ΓM |∆)(S | ΓM | ∆, †∆)∥∥∥∥ by Lemma A.1(4)

∥∥∥∥ by Lemma A.1(4)

MEV(S | ∆, †∆) MEV(S | ΓM | ∆, †∆)

Now, the thesis directly follows from Equations (6) and (7). ⊓⊔

B Proofs: use cases

AMM/Bet (Example 5)

Consider the starting state:

S = M[m: ETH] | AMM[r0: ETH, r1: T] | block.num = d− k | · · ·
∆ = Bet[b: ETH, owner = A, tok = T, rate = r, deadline = d]

When M is allowed to manipulate the AMM, she can inflate the exchange rate of
ETH, provided that she possesses sufficient funds. Formally, if M swaps x: ETH for
y: T, then according to the criterion specified in Bet.win(), the winner receives
an amount ⌊2bp⌋ only if AMM.getRate(ETH) = r0+x/r1−y ≥ p · r. Assuming that
M enters the bet only when she can choose x sufficiently high to satisfy this
condition, and for p ≥ 1/2 (since a smaller proportion makes the bet irrational
for her), she fires the following sequence of transactions: where, in the swap

transaction, x = m − b ≥ 0 is the number of ETH units sent to the AMM, y =
⌊xr1/r0+x⌋ is the number of T units received, and the value that M bets on is
p = r0+x/r(r1−y):

S | ∆ M:Bet.bet(M pays b:ETH,p)−−−−−−−−−−−−−−−−→ AMM[r0: ETH, r1: T] | Bet[2b: ETH, potShare = p, · · · ] | · · ·
M:AMM.swap(M pays x:ETH,0)−−−−−−−−−−−−−−−−→ AMM[r0 + x: ETH, r1 − y: T] | Bet[2b: ETH, · · · ] | · · ·
M:Bet.win()−−−−−−−→ AMM[r0 + x: ETH, r1 − y: T] | Bet[2b− ⌊2bp⌋: ETH, · · · ] | · · ·
M:AMM.swap(M pays y:T,0)−−−−−−−−−−−−−−−→ AMM[r0: ETH, r1: T] | Bet[2b− ⌊2bp⌋: ETH, · · · ] | · · ·
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By Equation (2) we have:

MEV(S | ∆, {Bet}) = b− (2b− ⌊2bp⌋) = ⌊2bp⌋ − b ≤ 2bp− b =
2b(r0 + x)

r(r1 − y)
− b

=
2b(r0 + x)

r
(
r1 −

⌊
xr1
r0+x

⌋) − b ≤ 2b(r0 + x)

r
(
r1 − xr1

r0+x

) − b

=
2b(r0 + x)2

rr0r1
− b =

(
2(r0 +m− b)2

rr0r1
− 1

)
b

Whereas, if M was restricted to interact with Bet only, there are two cases: if
AMM.getRate = r0/r1 ≥ p · r, then M wins the bet. Otherwise, she loses (and,
therefore, Bet does not suffer an economic loss). Even in this case, M enters the
bet only for p ≥ 1/2. Therefore Equation (3) gives us:

MEV{Bet}(S | ∆, {Bet}) =

{
b−

(
2b−

⌊
2br0
rr1

⌋)
if r0

rr1
≥ 1/2

0 otherwise

=

{⌊
2br0
rr1

⌋
− b if r0

rr1
≥ 1/2

0 otherwise

>

{
2br0
rr1

− b− 1 if r0
rr1

≥ 1/2

0 otherwise

Hence MEV interference is estimated through Definition 1 as follows:

I(S ⇝ ∆) <

1−
2br0
rr1

−b−1(
2(r0+m−b)2

rr0r1
−1

)
b

if r0
rr1

≥ 1/2

1 otherwise

=

{
1− (2br0−brr1−rr1)r0

b(2(r0+m−b)2−rr0r1)
if r0

rr1
≥ 1/2

1 otherwise

=

{
1− 2br20−rr0r1(b+1)

2b(r0+m−b)2−brr0r1
if r0

rr1
≥ 1/2

1 otherwise
⋄

AMM/Lending Pool (Example 6)

For simplicity, we make the following assumptions: (i) $1ETH = 1 = $1T , (ii) the
AMM is balanced, (iii) M has not deposited or borrowed tokens from the LP yet.
(iv) the LP has sufficient reserves of T to satisfy any borrow request. Note also
that our simplified LP contract only offers two functions, deposit and borrow.
Calling deposit does not extract tokens from the LP, so the only action through
which M could cause a loss to the LP is borrow.
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Consider the following blockchain state:

S = M[n: ETH] | AMM[r: ETH, r: T] ∆ = LP[a: ETH, b: T, Cmin = Cmin , · · · ]

We start by estimating the unrestricted local MEV, i.e. MEV(S | ∆, {LP}).
When M can interact with the AMM, she can maximize the loss caused to LP by
maximizing her loan amount, or in other words, by inflating her collateralization
ratio. There is only one way to do so: by depositing a portion of her ETH to the LP
and by inflating the exchange rate of ETH provided by the AMM. To this purpose,
M partitions its funds as follows:

– x: ETH to perform a swap in the AMM in exchange for y: T, where y = xr/r+x

– (n− x): ETH to deposit in the LP

We denote by t(x) the number of units of token T that M can borrow from the
LP as a function of x.

We first note that in order to satisfy the require constraint within borrow

function of LP, M must be over-collateralized in the new LP state. Recall that the
collateralization of a user is given by the ratio between the value of her minted
tokens and that of her debts. Regarding M, the value vminted of her minted tokens
and the value vdebt of her debts in the new state are given by:

vminted = (n− x) · AMM.getRate(ETH)
AMM.getRate(T)

= (n− x) · r − y

r + x

vdebt = t(x) · AMM.getRate(T)

AMM.getRate(ETH)
= t(x) · r + x

r − y

Therefore, M is over-collateralized, and so her call to borrow does not revert, if:

vminted

vdebt
=

(n− x)(r + x)2

t(x)(r − y)2
≥ Cmin

This gives us the maximum value of t(x) that M can choose, which is:

t(x) =
(n− x)(r + x)2

Cmin(r − y)2

To find the value of x that maximizes t(x), we study the function t(x) that
gives the loan amount as a function of the deposited amount x, subject to the
constraint 0 ≤ x ≤ n. Since we working with real-valued amounts, we have that
t(x) is continuous. Thus, we compute its derivative w.r.t. x and set it to 0:

dt(x)

dx
=

d

dx

(
(n− x)(r + x)4

Cminr4

)
=

4(n− x)(r + x)3 − (r + x)4

Cminr4
= 0

Since r + x > 0, we can simplify the above as:

4(n− x) = r + x if 0 ≤ x ≤ n
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Therefore, the x that maximizes t(x) is given by:

x =

{
4n−r

5 if 4n ≥ r

0 otherwise

In other words, when 4n < r, M does not need to interact with the AMM to
maximize her borrowing capacity.

We can check that x = 4n−r
5 maximizes t(x) by performing the double derivative

test. We compute the double derivative of t(x) w.r.t x, plugging in x = 4n−r
5 ,

and check if it is < 0. Accordingly:

d2t(x)

dx2
=

d

dx

(
4(n− x)(r + x)3 − (r + x)4

Cmin · r4

)

=
12(n− x)(r + x)2 − 4(r + x3)− 4(r + x)3

Cmin · r4

=
12(n− x)(r + x)2 − 8(r + x)3

Cmin · r4

Substituting 4(n− x) = r + x we get:

d2t(x)

dx2
=

3(r + x)3 − 8(r + x)3

Cmin · r4
= −5(r + x)3

Cmin · r4
< 0

As a result, M fires the following sequence of transactions with a loan amount
t = (n−x)(r+x)2/Cmin(r−y)2 and the amount received on swap y = xr/r+x:

S | ∆ M:LP.deposit(M pays (n−x):ETH)−−−−−−−−−−−−−−−−−−−−→ AMM[r: ETH, r: T] | LP[a+ n− x: ETH, b: T, · · · ] | · · ·
M:AMM.swap(M pays x:ETH,0)−−−−−−−−−−−−−−−−→ AMM[r + x: ETH, r − y: T] | LP[a+ n− x: ETH, b: T, · · · ] | · · ·
M:LP.borrow(t,T)−−−−−−−−−−→ AMM[r + x: ETH, r − y: T] | LP[a+ n− x: ETH, b− t: T, · · · ] | · · ·
M:AMM.swap(M pays y:T,0)−−−−−−−−−−−−−−−→ AMM[r: ETH, r: T] | LP[a+ n− x: ETH, b− t: T, · · · ] | · · ·
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By Equation (2) we get:

MEV(S | ∆, {LP}) = t+ x− n =
(n− x)(r + x)2

Cmin(r − y)2
+ x− n

= (n− x)

(
(r + x)2

Cmin(r − xr
r+x )

2
− 1

)

= (n− x)

(
(r + x)4

r4Cmin
− 1

)

=


(
n− 4n−r

5

)( (r+ 4n−r
5 )

4

r4Cmin
− 1

)
if 4n ≥ r

n
(

1
Cmin

− 1
)

otherwise

=


(
n+r
5

)( ( 4(n+r)
5 )

4

r4Cmin
− 1

)
if 4n ≥ r

n
(

1
Cmin

− 1
)

otherwise

=


(
n+r
5

)(
1

Cmin

(
4(n+r)

5r

)4
− 1

)
if 4n ≥ r

n
(

1
Cmin

− 1
)

otherwise

We note two key aspects of the transaction sequence fired by M. Firstly, the
ordering of deposit and the (initial) swap transactions is irrelevant. Hence,
they can be interchanged without causing a difference to the loss caused to LP.
Secondly, firing the (final) swap, i.e. de-manipulating the AMM only affects the
wealth of M and not the LP. Hence, it does not affect the MEV extractable from
LP. Nevertheless, we include it in the transaction sequence to reflect the attack
execution employed in practice.

We now calculate the restricted local MEV, i.e. MEV{LP}(S | ∆, {LP}). In this
case, the only way M can maximize her borrowing capacity is by depositing her
total available capital to the LP. Hence, M deposits n: ETH. The collateralization
of M after a call to borrow for t′ units of T is given by:

vminted

vdebt
=

n · AMM.getRate(ETH)/AMM.getRate(T)
t′ · AMM.getRate(T)/AMM.getRate(ETH)

=
n · r/r
t′ · r/r

=
n

t′(x)

Thus, the call to borrow does not revert iff:

n

t′
≥ Cmin
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From this, we obtain that the maximum amount that M can borrow is given by:

t′ =
n

Cmin

By Equation (3), we have that:

MEV{LP}(S | ∆, {LP}) = t′ − n =
n

Cmin
− n = n

(
1

Cmin
− 1

)
To conclude, we estimate MEV interference through Definition 1 as follows:

I(S ⇝ ∆) =


1 −

n
(

1
Cmin

−1
)

(n+r
5 )

(
1

Cmin
( 4(n+r)

5r )
4
−1

) if 4n ≥ r

1 −
n
(

1
Cmin

−1
)

n
(

1
Cmin

−1
) otherwise

=

{
1 − n(1−Cmin)

Cmin
· 5
n+r · (5r)4Cmin

(4(n+r))4−(5r)4Cmin
if 4n ≥ r

0 otherwise

=

{
1 − 55r4n(1−Cmin)

(n+r)(44(n+r)4−(5r)4Cmin)
if 4n ≥ r

0 otherwise
⋄
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