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Abstract—In-host shared memory (IVSHMEM) enables high-
throughput, zero-copy communication between virtual machines,
but today’s implementations lack any security control, allowing
any application to eavesdrop or tamper with the IVSHMEM
region. This paper presents Secure IVSHMEM, a protocol that
provides end-to-end mutual authentication and fine-grained ac-
cess enforcement with negligible performance cost. We combine
three techniques to ensure security: (1) channel separation and
kernel module access control, (2) hypervisor-mediated hand-
shake for end-to-end service authentication, and (3) application-
level integration for abstraction and performance mitigation.
In microbenchmarks, Secure IVSHMEM completes its one-time
handshake in under 200 µs and sustains data-plane round-trip
latencies within 5% of the unmodified baseline, with negligible
bandwidth overhead. We believe this design is ideally suited for
safety- and latency-critical in-host domains, such as automotive
systems, where both performance and security are paramount.

Index Terms—IVSHMEM, Inter-VM Shared Memory, End-to-
End Security

I. INTRODUCTION

The automotive industry is rapidly evolving, driven by
advances in semiconductor technology that have shifted sys-
tem architectures from traditional microcontrollers (MCUs) to
powerful Systems-on-Chip (SoCs). This evolution not only
enhances computational capabilities but also paves the way for
Software-Defined Vehicles (SDVs), where flexibility, scalabil-
ity, and rapid updates are paramount. In SDVs, virtualization
technology plays a crucial role by enabling the coexistence
of multiple virtual machines (VMs) on a single hardware
platform, ensuring isolated yet efficient execution of diverse
applications. For example, modern cockpit domain controllers
often deploy separate VMs for real-time operations (RTOS)
and infotainment systems, which is essential for balancing
performance and safety [1] [2].

Inter-VM communication in these environments is critical.
Traditional approaches, such as TCP/UDP over a network
stack or even UART-based messaging, often fall short in
terms of speed and resource efficiency [3]. Alternative so-
lutions like VirtIO offer a para-virtualized communication
mechanism through ring buffers (VirtQueues), but they do
not fully leverage the benefits of shared physical memory.
[4] IVSHMEM (Inter-VM Shared Memory) addresses these
limitations by mapping each VM’s virtualized PCI device

to a common physical memory region, allowing rapid data
exchange through shared memory [5] [6] [3]. Despite its
performance advantages, this method introduces significant
security challenges; multiple VMs accessing the same memory
space creates vulnerabilities where a compromised or mali-
cious VM could potentially access or modify data belonging
to another VM [7].

This concern is particularly acute in scenarios where critical
systems interact with less secure environments. For instance,
when an RTOS communicates with an Android-based infotain-
ment VM, there is a tangible risk that a malicious application
within Android might tamper with the shared memory region
[2]. Such tampering could result in attacks ranging from
man-in-the-middle to eavesdropping, ultimately compromising
system stability and safety.

In response to these challenges, we propose a secure pro-
tocol designed specifically for IVSHMEM communication.
Our approach introduces robust security measures on top of
the IVSHMEM framework, ensuring data integrity and access
control even in an environment with inherent vulnerabilities.
While our protocol does introduce some performance over-
head, we have implemented techniques to mitigate this impact,
ensuring that the overhead remains minimal relative to the per-
formance gains achieved by shared memory communication.

In this paper, we provide a detailed analysis of the security
threats associated with IVSHMEM, explore the limitations
of existing inter-VM communication methods, and describe
our protocol’s architecture and mitigation strategies. Through
comprehensive evaluation, we demonstrate that our secure
protocol successfully balances between robust security and the
high-performance demands of IVSHMEM applications—such
as those found in modern automotive systems.

II. BACKGROUND

In this section, we examine the IVSHMEM (Inter-VM
Shared Memory) mechanism, outline its challenges, and re-
view recent progress.

A. IVSHMEM: Mechanism and Architecture

IVSHMEM is a specialized implementation of shared mem-
ory IPC designed for virtualized environments. It emulates a
virtual PCI device to expose the shared memory’s base address
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and size to guest VMs [8] [9]. As shown in Figure 1, the
hypervisor exposes the shared-memory region to the guest
VM, and the UIO kernel driver maps the emulated PCI
device, allowing applications to access that memory directly
via /dev/uioX. The design leverages the standardized PCI
configuration to facilitate memory mapping and efficient com-
munication. Specifically, IVSHMEM utilizes:

• BAR0 (Base Address Register 0): This region (256
bytes of MMIO) holds the device registers, which control
the operation of the virtual device.

• BAR1: It contains the MSI-X table and Pending Bit
Array (PBA), primarily used by the IVSHMEM doorbell
mechanism for signaling interrupts.

• BAR2: This is mapped to the shared memory object,
providing a direct communication channel between VMs.

The doorbell interrupt mechanism enabled by this config-
uration allows VMs to notify one another when new data
is available, ensuring efficient core utilization and reducing
latency in inter-VM communication [10].

Fig. 1: The overview of IVSHMEM architecture

B. Security Concerns of Shared Memory

While shared memory IPC within a single operating system
benefits from well-established security mechanisms—such as
file access controls, sandboxing, and enhanced security mod-
ules like SELinux or AppArmor—IVSHMEM presents unique
challenges [11] [12]. In a traditional OS environment, the
operating system enforces strict access controls over shared
memory regions, ensuring that only authorized processes can
read or write data. However, when multiple, potentially un-
trusted VMs share the same memory space, these protections
are significantly diminished. A compromised or malicious VM
could easily access or tamper with data in the shared region,

leading to unauthorized data disclosure, corruption, or even
system instability [7].

C. Secure Communication Over Insecure Channels

The challenge of ensuring secure communication in IVSH-
MEM environments is analogous to securing communication
over the Internet, where multiple parties exchange information
over an inherently insecure channel. In network communica-
tions, protocols such as TLS rely on key exchange mecha-
nisms, mutual authentication, and end-to-end encryption to
safeguard data integrity and confidentiality [13] [14]. Simi-
larly, secure multi-party communication techniques—such as
Diffie-Hellman key exchange and advanced encryption stan-
dards—are employed to establish trust even when the channel
is compromised [15] [16].

In the context of IVSHMEM, the situation is even more
complex because multiple services must share the same re-
stricted memory space as a communication channel. This
necessitates the design of a secure protocol that not only
ensures confidentiality and integrity—akin to TLS or other
network security protocols—but also accommodates the shared
nature of the memory resource. Our research addresses these
challenges by proposing a secure protocol that protect the
data transmitted via IVSHMEM, while also mitigating the
performance overhead typically associated with such security
measures.

D. Recent Progress of IVSHMEM Communication

Recent research and developments in IVSHMEM commu-
nication have focused on balancing performance and security,
with various approaches having distinct trade-offs.

The SIVSHM project introduces a segmentation approach
to IVSHMEM, enhancing security by isolating shared memory
regions among VMs. However, this strict isolation introduces
notable overheads from reduced buffer size. [7].

Performance-centric solutions, such as XenLoop and Mem-
Pipe, have been proposed to optimize IVSHMEM by im-
proving transparency and reducing latency [17] [3] [18] [19]
[20] [21]. These solutions integrate seamlessly with traditional
socket-based network stacks, allowing applications to benefit
from high-speed shared memory communication without ex-
plicit changes. However, these solutions primarily prioritize
performance and transparency and lack of mechanisms for
security threats [3].

Other approaches have leveraged hypervisor-managed poli-
cies and features, like Xen’s grant tables, to enforce finer-
grained security controls. Grant tables establish explicit, con-
trolled memory-sharing agreements between VMs, restricting
access to designated regions. However, this technique is tied to
a specific hypervisor and does not provide a general-purpose
driver interface [22].

Overall, while significant progress has been made in enhanc-
ing both the performance and security of IVSHMEM, current
solutions optimize for one at the expense of the other. We aim
to design a Secure IVSHMEM protocol that delivers security
features while keeping performance overhead to a minimum.



III. THREAT MODEL

In this section we define the assets to be protected, the
adversary’s capabilities, our trust assumptions, concrete threat
scenarios with corresponding defenses, the security goals
achieved, and known limitations.

A. Assets

• Shared-Memory Contents: All plaintext data exchanged
via the IVSHMEM region (e.g., sensor readings, control
commands).

• VM Identities: Certificates and private keys provisioned
to each VM by the hypervisor CA.

B. Adversary Model

We consider an attacker with the following capabilities and
goals:

Location: Co-resident on the same host, either in another
VM or with limited host privileges.

Privileges in Guest: May be an unprivileged process or even
gain root in one VM, and thus can open and attempt to
mmap() the IVSHMEM region directly.

Goals:
1) Confidentiality breach: Read plaintext data from an-

other VM’s IVSHMEM region.
2) Integrity breach: Inject or tamper with messages in the

shared region.
3) Authentication breach: Impersonate a VM by forging

or replaying handshake messages.

C. Trust Assumptions

• Trusted Hypervisor: Each VM trusts the hypervisor as
the root of trust; although VMs do not inherently trust
the IVSHMEM communication channel, they rely on the
hypervisor acting as a Certificate Authority (CA) to issue,
sign, and validate VM certificates.

• Kernel-Module Enforcement: All VMs in the system
load and execute the same IVSHMEM enforcement
kernel module, ensuring uniform, in-kernel access con-
trol and preventing any unauthorized memory mappings
across the entire platform.

D. Security Goals

Under the above model and countermeasures, our protocol
achieves:

1) Confidentiality: No application in VM can read another’s
channel’s plaintext data.

2) Integrity: Any tampering with shared data is detected by
authentication tags.

3) Mutual Authentication: Only application in VMs with
valid, hypervisor-signed certificates complete the hand-
shake.

E. Limitations of Conventional Security Protocols

Conventional end-to-end security protocols such as TLS,
IPsec, or DTLS are ill-suited to the IVSHMEM use-case for
several reasons:

1) Performance Overhead: Conventional TLS requires
symmetric encryption and decryption on each record,
which breaks IVSHMEM’s zero-copy path and forces
additional data copies and context switches [13] [23].
In a high-throughput IVSHMEM environment—where
direct page mappings sustain multiple gigabytes per sec-
ond—this per-record crypto overhead introduces unac-
ceptable latency and CPU load.

2) Limited Shared-Memory Capacity: Unlike network
channels, IVSHMEM regions are fixed and small (e.g.,
1 MiB) [8] [9]. To prevent a malicious VM or service
from overwhelming the shared-memory resource, the
hypervisor must strictly assign and enforce per-service
channel quotas. Conventional socket-based protocols pro-
vide no mechanism for hypervisor-driven, size-limited
region allocation or fine-grained resource control.

3) Inadequate Fit for End-to-End Schemes: Conventional
end-to-end protocols (e.g., IPsec, SSH, DTLS) assume a
network stack with IP addresses, ports, and hostnames or
DNS names to establish and authenticate channels. IVSH-
MEM operates entirely in-host via PCI BAR mappings
without any network identifiers, so these protocols cannot
provide true end-to-end security for shared-memory com-
munication or integrate with hypervisor-managed channel
assignment.

Conventional end-to-end protocols such as TLS, IPsec, and
DTLS are ill-suited for IVSHMEM communication because
they (1) impose per-record cryptographic overhead that breaks
zero-copy performance [24] [23], (2) offer no mechanism
to enforce fixed, size-limited shared-memory quotas, and (3)
depend on network-layer identifiers (e.g., hostnames, IP ad-
dresses) while lacking support for hypervisor-driven channel
assignment [14]. Securing IVSHMEM therefore requires a
specialized protocol that leverages IVSHMEM’s in-host, fixed-
region semantics and hypervisor control, providing end-to-end
protection with minimizing additional performance overhead.

IV. DESIGN PROPOSAL

In this section, we present the Secure IVSHMEM design,
which aims to provide dedicated, zero-copy shared-memory
channels between VM services while preventing unauthorized
access, spoofing, and impersonation. Our approach combines
three complementary mechanisms: service-based channel sep-
aration to allocate isolated IVSHMEM regions per service
pair, granular kernel-module enforcement to block any unau-
thorized open, mmap, or I/O operations, and a hypervisor-
mediated mutual-authentication handshake to establish trust
on channel setup. Together, these components ensure end-to-
end security with negligible impact on IVSHMEM’s high-
performance communication.



Fig. 2: Service-based channel separation in Secure IVSHMEM: the trusted host controls metadata in the Control Section and
is assigned its own channel in the Data Section for host–VM communication, while each service pair communicates over its

dedicated Data Section channel.

A. Service-based Channel Separation

As illustrated in Figure 2, our design divides the IVSHMEM
architecture into two primary sections: the Control Section
and the Data Section. The Control Section is a fixed-size
region where a trusted host stores dynamic configurations
related to data allocation, while the Data Section is where the
service in virtual machines (VMs) actually read and write data
through their assigned channels. Importantly, only the trusted
host has permission to modify data in the Control Section,
and each VM is restricted to reading and writing only to its
designated channels within the Data Section.

The Data Section comprises multiple channels, with each
channel serving as a dedicated buffer space for a specific server
and client service pair. For each pair, a dedicated channel is
allocated, and the Control Section dynamically adjusts its size
based on the activation of channels.

For example, consider a scenario where Service A in VM1
needs to send data to Service B in VM2. In this case, the
trusted host allocates an initial channel with a buffer size of
512 KiB. The control information for this allocation is written
into the Control Section, and only Service A and Service B
are permitted to access the channel’s buffer. Additionally, the
size of the channel buffer can be adjusted based on the usage
patterns between the services.

An exception to this rule is the first channel in the Data
Section. This channel is of a fixed size and is exclusively used
for communication between the trusted host and the VMs—for
instance, during the initial handshake when a VM sends data
to the trusted host. All VMs have access to this channel.

The Control Section maintains all of the metadata needed
for buffer allocation and channel management. It tracks the
next free offset, the number of active channels, and protects
updates with a lock. Per-channel metadata (service IDs, pro-
cess IDs, buffer addresses and sizes) is stored in an internal
array. Channels use this information to coordinate reads and
writes to their assigned regions.

B. Granualr Kernel Module Enforcement

To enhance the security of the IVSHMEM framework, we
propose a granular access control mechanism that restricts
access to the shared memory channels on a per-application
basis. This mechanism is implemented via a dedicated kernel
module that operates on top of the IVSHMEM device driver.

1) Kernel Module Integration: Our kernel module hooks
all IVSHMEM-related system calls—including open, read,
write, and mmap—as well as any I/O control operations
targeting the IVSHMEM device. On each intercepted call, the
module retrieves the caller’s service_id and consults the
Control Section’s metadata to verify that this service identifier
matches the channel being accessed. If the service_id does
not correspond to that channel’s assigned service, the module
denies the operation. This enforcement ensures that only the
authorized host or VM service can interact with its designated
shared-memory region.

2) Channel-Specific Enforcement: Each channel within the
Data Section is allocated to a specific pair of services (e.g.,
a server and a client). The kernel module uses the control
section’s metadata to determine channel assignments and en-
forces strict access control, permitting operations only on the
designated channel buffers.

C. Hypervisor-Mediated Mutual-Authentication Handshake

A secure, hypervisor-mediated handshake is essential for
IVSHMEM because it protects against spoofing and imper-
sonation on both sides of the shared-memory channel. In our
model, the trusted host (e.g., dom0 in Xen, SOS in ACRN
[25], or the host in QEMU/KVM) cannot simply trust that any
service presenting a request truly owns its claimed endpoint;
similarly, a VM service cannot blindly accept control messages
or credentials from the host without risk of impersonation.
By embedding a mutual-authentication handshake into the
Control Section—that is, having each party present and verify
cryptographic credentials tied to its service id—the host first



confirms that the requesting service is one of its pre-registered,
trusted entities, and then the VM service validates that the
host’s response really comes from the genuine hypervisor
authority. Only once both directions of identity proof succeed
do we allocate a dedicated, zero-copy channel in the Data
Section. This two-way validation thwarts malicious actors on
either side and ensures end-to-end trust before any IVSHMEM
communication occurs.

Our proposed protocol is different from the conventional
internet based security protocol in that 1) The trusted host
(hypervisor) is not merely a passive participant but is re-
sponsible for allocating finite resources and establishing the
communication channel and 2) The hypervisor functions as a
certification authority (CA) [26], validating service credentials
and orchestrating the creation of dedicated secure channels
between clients and servers.

The detailed handshake protocol steps are provided below,
demonstrating the mutual authentication processes that lead to
the establishment of a confidential IVSHMEM channel.

Fig. 3: Secure IVSHMEM handshake flow: eight steps from
Client Hello through Host authorization to establishment of

the dedicated shared-memory channel

1) Protocol Steps (Fig. 3):

1. Client Hello:
• Purpose: Initiate the handshake and propose commu-

nication parameters.

• Message Contents: protocol version & extensions,
supported cipher suites, client identity (service ID, PID,
VM ID), nonce + timestamp for replay protection.

2. Trusted Host Hello:
• Purpose: Acknowledge the client’s request and pro-

vide trusted credentials.
• Message Contents: host certificate (± selected ci-

phers);
• Action: A temporary secure channel is created between

the client and the trusted host.
3. Client Authentication and Challenge:

• Purpose: Enable explicit mutual authentication.
• Message Contents: The client certificate, signature

over nonce, target server’s service ID.
4. Host Verification and Server Request:

• Purpose: Verify the client’s credentials and initiate
communication with the server.

• Action:
– The trusted host validates the client’s certificate and

challenge.
– Upon successful validation, the trusted host creates

a temporary channel for the server and forwards a
secure connection request to the server, including
the nonce.

5. Server Hello:
• Purpose: Server passes its credentials and decision to

accept the client’s request.
• Message Contents: server certificate, signature chal-

lenge, supported ciphers, acceptance flag.
6. Trusted Host Authorization and Channel Creation:

• Purpose: Establish a secure, dedicated IVSHMEM
channel for data transfer between the server and client.

• Action:
– The trusted host verifies the server’s certificate and

the corresponding challenge.
– The trusted host creates a communication channel

for the server and client and notifies the client.
– The trusted host deletes temporary channels pre-

viously established with both the client and the
server.

7. Secure Data Transfer:
• Purpose: Enable protected communication.
• Action: The client and server commence secure data

transfer over the authorized IVSHMEM channel.
8. Session Management (Optional Enhancements): Im-

plement mechanisms (similar to TLS session tickets) for
efficient session resumption without repeating the full
handshake process.

V. IMPLEMENTATION

In this section, we implment Secure IVSHMEM through
three components: a kernel module that hooks into the UIO
PCI driver [27] to enforce per-channel access control, a user-



Scenario Attack Flow Countermeasure

Eavesdropping & Unauthorized
Mapping

Rogue VM or process calls open/mmap on IVSHMEM and
reads raw data from an unassigned channel before authenti-
cation.

Kernel module enforces per-channel access control,
blocking any open, mmap, or I/O until the channel
is marked ESTABLISHED by the handshake.

Replay & Man-in-the-Middle At-
tacks

Adversary captures or intercepts handshake messages (certifi-
cates, nonces) and replays or tampers with them to hijack or
impersonate a service.

Mutual-authentication handshake with CA-signed
certificates and nonce-based challenge prevents re-
play and ensures both endpoints verify peer identity.

TABLE I: Key threat scenarios and corresponding Secure IVSHMEM defenses

space OpenSSL-based mutual-authentication handshake over
the control page, and a BSD-socket-style library for zero-copy
ring-buffer data transfers on authenticated channels.

A. Kernel-Module Integration via Dynamic Hooks

We build on top of the existing UIO PCI driver for IVSH-
MEM by inserting a lightweight kernel module that intercepts
system calls—mmap(), read() and write()—to enforce
per-channel access control.

a) Hook Implementation: Using a combination of
kprobes and ftrace [28], our module attaches to the IVSHMEM
driver’s mmap() entry point. In the hook we:

• Extract the vma pointer from the CPU registers.
• Compute the requested mapping’s channel ID and range.
• Look up the authorized-PID list stored in the IVSHMEM

control section.
• If current->pid is not present or the channel is not

marked AUTHORIZED, force-return -EPERM and skip
the real handler.
b) Policy Management: An in-kernel hash table of

policy_entry structs—keyed by channel_id—tracks
which PIDs are permitted each channel. The hypervisor
populates this table at boot, and upon handshake completion a
simple ioctl marks the corresponding entry as AUTHORIZED.

c) Cleanup: On module unload or VM teardown, all
probes are unregistered and the policy table cleared, restoring
the original UIO driver behavior.

This dynamic-hook approach adds minimal overhead, pre-
serves zero-copy data mappings for authorized clients, and
requires no modification to the upstream IVSHMEM driver.

B. Handshake Implementation

As illustrated in Figure 4, the mutual-authentication hand-
shake is implemented entirely in user-land using OpenSSL
[29] and leverages a IVSHMEM as an in-host transport. At the
initial setup, the hypervisor generates a 4096-bit RSA CA key
and self-signed certificate. It then builds an allowed-service list
that maps each (service_ID, VM_ID) pair to its corresponding
public key, and publishes that list together with the CA’s public
certificate—read-only—to all VMs via a shared directory.
Next, the hypervisor issues 2048-bit RSA key pairs for each
registered service, retaining the public key in its allowed-
service list and provisioning the private key to the guest VM.
Each service in the VM uses this private key to generate its
certificate when it performs the handshake. At runtime, host
and VM exchange certificates over the IVSHMEM control

Fig. 4: Credential management: the hypervisor publishes a
CA certificate and per-service public keys in the Allowed

Service List for Secure IVSHMEM

channel, verify each peer’s certificate against the CA and
the allowed-service list, and send signed acknowledgments to
confirm mutual credential validation. Once both sides have
verified the signature, the VM mark the kernel module that
the channel is ESTABLISHED, enabling zero-copy operations
under the authenticated session.

C. Application Library Implementation

To simplify adoption of Secure IVSHMEM, we provide
a lightweight user-land library with APIs analogous to BSD
sockets:

• ivshmem_listen(vm_id, service_id) – being
ready to accept connections from target on a dedicated
IVSHMEM channel

• ivshmem_connect(vm_id, service_id) – ini-
tiate a connection to the target, performing the handshake
over the control page

• ivshmem_send(buf, len) – copy len bytes from
buf into the ring buffer slots of the established channel
and ring the doorbell

• ivshmem_receive(buf, len) – poll the ring
buffer for new data, copy up to len bytes into buf

Under the hood, ivshmem_listen and
ivshmem_connect map the (vm_id, service_id)
tuple to a hypervisor-assigned PCI BAR channel, then carry



out the certificate exchange and mutual validation over the
IVSHMEM control region.

For payload transfers, the library allocates a ring buffer
within the IVSHMEM data section so that producers and
consumers operate without blocking:

1. The sender writes into its next available slot in the
ring buffer and triggers a doorbell interrupt. 2. The receiver,
polling the doorbell and head pointer, copies the data into its
local buffer and advances the consumer index. 3. A secondary
doorbell notifies the sender that the slot is free.

By combining zero-copy ring buffers with doorbell in-
terrupts followed by brief polling, this API achieves near-
native IVSHMEM performance while enforcing end-to-end
authentication. We evaluate its throughput in Section VI.

VI. MEASUREMENTS

The experiments were run on two Linux guest VMs, each
using the 6.12.10-0-lts kernel and provisioned with 2 GiB of
RAM and 4 vCPUs. The host is an x86_64 machine with
an Intel® Core™ Ultra 7 155H (VT-x enabled, 400 MHz–4.8
GHz) and 32 GiB of DDR memory. To minimize interference,
each VM was pinned to its own physical cores, and both the
control channel and IVSHMEM devices were instantiated via
QEMU’s full-virtualized interfaces

A. Latency Overhead for Handshake

We record the one-time handshake cost—from the initial
ivshmem_connect() call through certificate exchange and
verification until the first confirmation—and then measure
steady-state data-plane round-trip latency for each 32-bit write
(plus doorbell notification), comparing vanilla IVSHMEM to
Secure IVSHMEM.

Operation Vanilla (µs) Secure (µs)

Initial Handshake – 150
Round-Trip Transfer 8.1 8.4

TABLE II: Round-trip latency for a single 32-bit integer.
Secure IVSHMEM incurs a 150 µs handshake cost, but

per-message latency afterward is within 5 % of the vanilla
baseline.

As shown in Table II, although the initial handshake adds a
modest 150 µs one-time overhead, the steady-state data-plane
latency (8.4 µs) is almost identical to vanilla IVSHMEM (8.1
µs). This shows that, although the initial handshake introduces
some latency, our security mechanism adds negligible per-
message overhead once the session is established.

B. Bandwidth Overhead

For each experiment, a total of 32 GiB of random data
was transferred to evaluate raw throughput and quantify the
overhead introduced by our secure IVSHMEM protocol.

Figure 5 compares vanilla IVSHMEM with Secure IVSH-
MEM across message sizes from 26 to 215 bytes. At small
message sizes (≤ 28 B), the added kernel-module hooks
introduce up to a 20–25% throughput reduction. However,

Fig. 5: Bandwidth comparison of Secure IVSHMEM
Protocol versus Vanilla IVSHMEM.

this overhead quickly vanishes as messages grow. For transfers
≥ 1 KiB, Secure IVSHMEM’s bandwidth falls within 5 % of
the unmodified baseline, showing that the extra hooking logic
imposes only a negligible cost at larger message sizes.

C. Additional Performance Mitigation

Fig. 6: Throughput versus number of producer/consumer
pairs for Vanilla IVSHMEM and Secure IVSHMEM with

channel-separated mode.

One of the interesting things is that channel separation
brings additional performance gains in multi-producer, multi-
consumer scenarios. Figure 6 depicts throughput as a function
of the number of concurrent producer/consumer pairs (separate
IVSHMEM channels). With a single channel, both vanilla and
Secure IVSHMEM sustain ∼ 3.58GiB/s. As the channel
count increases to eight, per-channel throughput decreases
to ∼ 1.56GiB/s for vanilla and ∼ 1.23GiB/s for the
secure variant. This performance gain stems from reduced lock
contention and parallel, lock-free processing across channels.



Fig. 7: Performance benefit of the ring buffer versus
alternative read/write on Vanilla IVSHMEM.

Finally, Figure 7 compares the standard read/write interface
against our optimized ring-buffer API on vanilla IVSHMEM.
At small messages (64 B), the ring buffer yields a modest gain
(∼ 8%), but at larger sizes (≥ 1KiB) it delivers up to an
80% throughput improvement (e.g., 3.8 GiB/s vs. 2.1 GiB/s at
1 MiB messages). This validates that batching and zero-copy
techniques in the ring buffer significantly reduce syscall and
copy overhead.

In summary, although our Secure IVSHMEM protocol
incurs a one-time handshake latency when establishing each
channel, it introduces negligible per-message overhead in
both latency and bandwidth once the channel is established;
moreover, channel separation combined with a ring-buffer
API delivers additional scalability and throughput gains in
multi-producer/multi-consumer scenarios by reducing lock
contention.

D. Security Validation Experiments

To validate that our kernel-module enforcement reliably
blocks unauthorized access, we designed three attack scenarios
reflecting realistic bypass attempts. Each scenario was exer-
cised 30 times on our testbed with the Secure IVSHMEM
module active:

Out-of-Bounds Data Access Attack: mmap() requests a
data range that lies outside the limits recorded in the
control-section metadata.

Control-Section Access Violation Attack: attempt to read
via syscall from the read-only control section.

Impersonation Attack Attack: handshake request using an
invalid or replayed credential (wrong service ID or stale
nonce).

In all three cases, the kernel module returned -EPERM and
no pages or credentials were granted. A valid data-section
mapping (exactly matching the bounds in control metadata)
succeeded and was cleanly unmapped.

Test Scenario Attempts Blocked (%)

Out-of-Bounds Data Access 30 30 (100%)
Control-Section Access Violation 30 30 (100%)
Impersonation Attack 30 30 (100%)

TABLE III: Invalid Access Test Results: all invalid attempts
were correctly blocked.

VII. DISCUSSION

a) Hypervisor Independence: Our Secure IVSHMEM
protocol and its kernel-module integration are hypervisor-
agnostic. Both the handshake mechanism and the IVSHMEM
driver can be deployed on any virtualization platform that
supports UIO and the IVSHMEM device, including ACRN
and Xen.

b) Dynamic Channel Buffer Allocation: In our current
prototype, each channel’s buffer is allocated as a single con-
tiguous region for simplicity. To reduce external fragmentation
and improve memory utilization, a page-based or scatter/gather
buffer allocation scheme could be adopted.

c) Key Exchange and Symmetric Encryption: While we
focus here on authentication and integrity, confidentiality
could be added via symmetric encryption. A TLS-style key-
exchange (for example, ephemeral Diffie–Hellman over the
control channel) would introduce only a modest one-time
handshake delay and encryption overhead sacrificing zero-
copy data-plane performance.

d) Transparency: Our protocol and kernel module re-
quire applications to link against the IVSHMEM-specific
library and invoke its API, rather than using standard socket
or networking calls. Achieving full transparency [19] [18] [17]
[19]—so that unmodified applications could communicate over
IVSHMEM as if it were TCP/IP or any other network trans-
port—is beyond the scope of this work and is left for future
exploration (e.g., via socket-API interposition or hypervisor-
level redirection).

VIII. CONCLUSION

We have presented Secure IVSHMEM, a protocol that deliv-
ers end-to-end authentication and integrity for in-host shared-
memory channels without sacrificing zero-copy performance.
By treating the hypervisor as a trusted CA and implementing
a hypervisor-mediated mutual-authentication handshake, our
design prevents spoofing and impersonation attacks, while
dynamic kernel-module hooks enforce fine-grained channel
access control. Microbenchmarks show that the one-time hand-
shake incurs less than 200 µs latency and that subsequent
data transfers achieve near-native IVSHMEM throughput and
⩽ 5% round-trip latency overhead. Secure IVSHMEM is
therefore well suited for safety-critical, high-performance en-
vironments—such as automotive systems—where untrusted
services share memory in the same host.
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