
ar
X

iv
:2

50
5.

18
78

7v
2

 [
cs

.C
V

]
 1

7
Ju

n
20

25

Think Twice before Adaptation: Improving Adaptability of DeepFake Detection
via Online Test-Time Adaptation

Hong-Hanh Nguyen-Le1 , Van-Tuan Tran2 , Dinh-Thuc Nguyen3 and Nhien-An Le-Khac1
1 University College Dublin, Ireland

2 Trinity College Dublin, Ireland
3 University of Science, Ho Chi Minh City, Vietnam

hong-hanh.nguyen-le@ucdconnect.ie, tranva@tcd.ie, ndthuc@fit.hcmus.edu.vn, an.lekhac@ucd.ie

Abstract
Deepfake (DF) detectors face significant challenges
when deployed in real-world environments, par-
ticularly when encountering test samples deviated
from training data through either postprocessing
manipulations or distribution shifts. We demon-
strate postprocessing techniques can completely
obscure generation artifacts presented in DF sam-
ples, leading to performance degradation of DF de-
tectors. To address these challenges, we propose
Think Twice before Adaptation (T2A), a novel on-
line test-time adaptation method that enhances the
adaptability of detectors during inference without
requiring access to source training data or labels.
Our key idea is to enable the model to explore alter-
native options through an Uncertainty-aware Nega-
tive Learning objective rather than solely relying on
its initial predictions as commonly seen in entropy
minimization (EM)-based approaches. We also in-
troduce an Uncertain Sample Prioritization strategy
and Gradients Masking technique to improve the
adaptation by focusing on important samples and
model parameters. Our theoretical analysis demon-
strates that the proposed negative learning objective
exhibits complementary behavior to EM, facilitat-
ing better adaptation capability. Empirically, our
method achieves state-of-the-art results compared
to existing test-time adaptation (TTA) approaches
and significantly enhances the resilience and gen-
eralization of DF detectors during inference.

1 Introduction
Recently, Generative Artificial Intelligence (GenAI) has been
used to generate DFs for malicious purposes, such as imper-
sonation1 and disinformation spread2, raising concerns about
privacy and security. Several DF detection approaches have
been proposed to mitigate these negative impacts [Nguyen-
Le et al., 2024a]. Despite advances, deploying these systems

1Finance worker pays out $25 million after video call with deep-
fake ‘chief financial officer’

2AI-faked images of Donald Trump’s imagined arrest swirl on
Twitter

in real-world environments presents two critical challenges.
First, in practice, adversaries can strategically apply previ-
ously unknown postprocessing techniques to DF samples at
inference time, completely obscuring the generation artifacts
[Corvi et al., 2023] and successfully bypassing detection sys-
tems. Second, real-world applications are frequently exposed
to test samples drawn from distributions that deviate substan-
tially from the training data distribution [Pan et al., 2023],
leading to performance degradation. To mitigate these chal-
lenges, existing approaches require access to source train-
ing data and labels for complete re-training [Ni et al., 2022;
Shiohara and Yamasaki, 2022], continual learning [Pan et al.,
2023] or test-time training [Chen et al., 2022], which is costly
and time-consuming.

In this work, we address these limitations by introduc-
ing a novel TTA-based method, namely Think Twice be-
fore Adaptation (T2A), which enhances pre-trained DF de-
tectors without requiring access to source training data or la-
bels. Our approach achieves two key objectives: (1) enhanced
resilience through dynamic adaptation to unknown postpro-
cessing techniques; and (2) improved generalization to new
samples from unknown distributions. While current TTA ap-
proaches commonly employ Entropy Minimization (EM) as
the adaptation objective, solely relying on EM can result in
confirmation bias caused by overconfident predictions [Zhang
et al., 2024] and model collapse [Niu et al., 2023]. To this
end, in T2A, we design a novel Uncertainty-aware Negative
Learning adaptation objective with noisy pseudo-labels, al-
lowing the model to explore alternative options (i.e., other
classes in the classification problem) rather than becoming
overly confident in potentially incorrect predictions. For bet-
ter adaptation, we incorporate Focal Loss [Ross and Dollár,
2017] into the negative learning (NL) objective to dynami-
cally prioritize crucial samples and propose a gradients mask-
ing technique that updates crucial model parameters whose
gradients align with those of BatchNorm layers.

Our contributions. To the best of our knowledge, we are
the first to present a novel TTA-based method for DF detec-
tion. Our contributions include:

• We provide a theoretical and quantitative analysis (Sec.
3) that demonstrates the impacts of postprocessing tech-
niques on the detectability of DF detectors.

• We introduce T2A, a novel TTA-based method specifi-

https://edition.cnn.com/2024/02/04/asia/deepfake-cfo-scam-hong-kong-intl-hnk/index.html
https://edition.cnn.com/2024/02/04/asia/deepfake-cfo-scam-hong-kong-intl-hnk/index.html
https://arstechnica.com/tech-policy/2023/03/fake-ai-generated-images-imagining-donald-trumps-arrest-circulate-on-twitter/
https://arstechnica.com/tech-policy/2023/03/fake-ai-generated-images-imagining-donald-trumps-arrest-circulate-on-twitter/
https://arxiv.org/abs/2505.18787v2

cally designed for DF detection. T2A enables models to
explore alternative options rather than relying on their
initial predictions for adaptation (Sec. 4.3). We also the-
oretically demonstrate that our proposed negative learn-
ing objective exhibits complementary behavior to EM.
Additionally, we introduce Uncertain Sample Prioriti-
zation strategy (Sec. 4.4) and Gradients Masking tech-
nique (Sec. 4.5) to dynamically focus on crucial samples
and crucial model parameters when adapting.

• We evaluate T2A under two scenarios: (i) Unknown
postprocessing techniques; and (ii) Unknown data distri-
bution and postprocessing techniques. Our experimental
results show superior adaptation capabilities compared
to existing TTA approaches. Furthermore, we demon-
strate that integration of T2A significantly enhances the
resilience and generalization of DF detectors during in-
ference, establishing its practical utility in real-world de-
ployments.

2 Related Work
2.1 Deepfake Detection
DF detection approaches are often formulated as a binary
classification problem that automatically learns discrimina-
tive features from large-scale datasets [Nguyen-Le et al.,
2024b]. Existing approaches can be classified into three cat-
egories based on their inputs: (i) Spatial-based approaches
that operate directly on pixel-level features [Ni et al., 2022;
Cao et al., 2022], (ii) Frequency-based approaches that ana-
lyze generation artifacts in the frequency domain [Liu et al.,
2021; Frank et al., 2020], and (iii) Hybrid approaches that in-
tegrate both pixel and frequency domain information within
a unified method [Liu et al., 2023b]. Recent advances have
improved the cross-dataset generalization of DF detectors by
employing data augmentation (DA) strategies [Ni et al., 2022;
Yan et al., 2024], synthesis techniques [Shiohara and Ya-
masaki, 2022], continual learning [Pan et al., 2023], meta-
learning and one-shot test-time training [Chen et al., 2022].

Compared to existing methods, our T2A offers advantages:
(1) T2A enables DF detectors to be adapted to test data with-
out access to source data (e.g., OST [Chen et al., 2022] re-
quires source data for adaptation); (2) T2A does not rely
on any DA or synthesis techniques to extend the diversity
of data; (3) Not only enhance the generalization, T2A also
improves the resilience of DF detectors to unknown post-
processing techniques. Additionally, our method is orthog-
onal to these works [Fang et al., 2024; Liu et al., 2024;
He et al., 2024], which require pre-training on joint datasets
(physical and digital attacks) and do not adapt during infer-
ence.

2.2 Test-time Adaptation (TTA)
TTA approaches only require access to the pre-trained model
from the source domain for adaptation [Liang et al., 2024].
Unlike source-free domain adaptation approaches [Li et al.,
2024], which require access to the entire target dataset, TTA
enables online adaptation to the arrived test samples.

TENT [Wang et al., 2020] and MEMO [Zhang et al., 2022]
optimized batch normalization (BN) statistics from the test

batch through EM. LAME [Boudiaf et al., 2022] adapted
only the model’s output probabilities by minimizing Kull-
back–Leibler divergence between the model’s predictions and
optimal nearby points’ vectors. Several methods have studied
TTA in continuously changing environments. CoTTA [Wang
et al., 2022] implemented weight and augmentation averag-
ing to mitigate error accumulation, while EATA [Niu et al.,
2022] developed an efficient entropy-based sample selection
strategy for model updates. Inspired by parameter-efficient
fine-tuning, VIDA [Liu et al., 2023a] used high-rank adapters
to handle domain shifts. However, these methods solely rely
on EM as the learning principle, which can present two is-
sues: (1) Confirmation bias: EM greedily pushes for con-
fident predictions on all samples, even when predictions are
incorrect [Zhang et al., 2024], leading to overconfident yet
incorrect predictions; and (2) Model Collapse: EM tends to
cause model collapse, where the model predicts all samples
to the same class, regardless of their true labels [Niu et al.,
2023]. The model collapse phenomenon is particularly prob-
lematic in DF detection, where the inherent bias toward dom-
inant fake samples in training data [Layton et al., 2024] can
exacerbate the collapse.

Focusing on the problem of EM, our T2A method al-
lows the model to consider alternative options rather than
completely relying on its initial prediction during inference
through NL with noisy pseudo-labels.

2.3 Negative Learning

Supervised learning or positive learning (PL) directly maps
inputs to their corresponding labels. However, when labels
are noisy, PL can lead models to learn incorrect patterns.
Negative learning (NL) [Kim et al., 2019] addresses this chal-
lenge by training networks to identify which classes an input
does not belong to. Several loss functions have been pro-
posed by leveraging this concept: NLNL [Kim et al., 2019]
combines sequential PL and NL phases, while JNPL [Kim
et al., 2021] proposes a single-phase approach through joint
optimization of enhanced NL and PL loss functions. Recent
work has further integrated NL principles with normalization
techniques [Ma et al., 2020] to transform active losses into
passive ones [Ye et al., 2023].

Inspired by these advances, we introduce a NL strategy
with noisy pseudo-labels to our T2A method to enable the
model to think twice during adaptation, avoiding confirma-
tion bias and model collapse caused by EM.

3 Generation Artifacts Analysis
Artifacts in DFs generated by Generative Adversarial Exam-
ples (GANs), which emerge from the upsampling operations
in the GANs pipeline, can be revealed in the frequency do-
main through Discrete Fourier Transform (DFT) [Frank et al.,
2020]. In this section, we demonstrate postprocessing tech-
niques can completely obscure these artifacts presented in DF
samples, leading to performance degradation of DF detectors.

Definition 3.1. Let an image x(·, ·) of size M ×N , its DFT
X(·, ·) is defined as:

X(u, v) =
1

MN

M−1∑
m=0

N−1∑
n=0

x(m,n)e−j2π(um
M + vn

N), (1)

where x(m,n) represents pixel values at spatial coordinates
and X(u, v) denotes the corresponding Fourier coefficient in
frequency domain.

Lemma 3.2. For two images x1(·, ·) and x2(·, ·), their con-
volution in the spatial domain is equivalent to multiplication
of their spectra in the frequency domain:

x1(m,n)⊛ x2(m,n) ⇔ X1(u, v) ·X2(u, v). (2)

This property (Proof in Appendix A) is particularly impor-
tant for understanding why the upsampling operation leaves
artifacts in the frequency domain [Ojha et al., 2023]. For an
image x(·, ·) convolved with a kernel c(·, ·), the output y(·, ·)
in the spatial domain and its frequency domain form can be
expressed as:

y(m,n) = x(m,n)⊛ c(m,n)

⇔ Y (u, v) = X(u, v) · C(u, v) (3)

Real Fake Resize Gaussian Blur

(a) (b) (c) (d)

Figure 1: Comparison of frequency domain artifacts across differ-
ent image processing conditions. Top row: Images in spatial do-
main. Bottom row: Corresponding frequency spectra. Artifacts as
checkerboard patterns in (c) and (d) are obscured by postprocessing
techniques (i.e., Resize, Gaussian Blur). All fake images are gener-
ated by StarGANv2.

When image x(·, ·) is upsampled by a factor of 2 in both
dimensions, the upsampled image x̃(·, ·) can be expressed as:

x̃(m,n) =

{
x
(
m
2 ,

n
2

)
, m = 2k, n = 2l

0 otherwise.
(4)

where k = 0, . . . ,M − 1 and l = 0, . . . , N − 1. The DFT of
the upsampled image is:

X̃(u, v) =
1

4MN

2M−1∑
m=0

2N−1∑
n=0

x̃(m,n)e−j2π(um
2M + vn

2N) (5)

This upsampling operation creates a characteristic periodic
structure in the frequency domain, showing that the original

image’s frequency components appear multiple times in the
frequency domain:

X̃(u, v) =


X(u, v), u ∈ [0,M − 1], v ∈ [0, N − 1]

X(u−M, v), u ∈ [M, 2M − 1], v ∈ [0, N − 1]

X(u, v −N), u ∈ [0,M − 1], v ∈ [N, 2N − 1]

X(u−N, v −N), u ∈ [M, 2M − 1], v ∈ [N, 2N − 1]

(6)
These duplicated components create distinctive artifacts as
checkerboard patterns in the frequency domain that distin-
guishes GAN-generated images from real ones.

However, these spectral artifacts exhibit vulnerability to
various postprocessing operations [Corvi et al., 2023]. As
shown in Figure 1(b), the GAN-generated image displays dis-
tinctive checkerboard artifacts in its frequency spectrum, but
they undergo substantial modifications when subjected to dif-
ferent postprocessing operations (Figures 1(c)-(d)). The mag-
nitude of these artifacts’ obscurity correlates directly with the
intensity of the applied postprocessing operations, as demon-
strated in Figure 3 (Appendix B). Furthermore, the empirical
analysis presented in Figure 2 of Appendix B shows that the
performance of existing DF detectors tends to drop signifi-
cantly when encountering unseen postprocessing techniques
with increasing intensities.

4 Methodology
The core principle of T2A lies in its deliberate approach to
decision-making, encouraging models to explore alternative
options rather than solely relying on their initial predictions.
The key steps of T2A are summarized in Algorithm 1.

4.1 Problem Definition
Given a DF detector f : X → R2 parameterized by θ is well-
trained on the training data Dtrain = {(xi, yi)}N

train

i=1 ∼
P train(x, y), where x ∈ X is the input and y ∈ Y = {0, 1}
is the target label, our goal is to online update parame-
ters θ of f on mini-batches {B1,B2, . . . } of the test stream
Dtest = {(xj , yj)}N

test

j=1 ∼ P test(x, y). Note that, in the
online TTA setting, P train(x, y) and {yj} are unavailable,
and the knowledge learned in previously seen mini-batches
could be accumulated for adaptation to the current mini-batch
[Liang et al., 2024]. In this work, we consider online TTA in
two challenging scenarios of DF detection:

1. Unseen postprocessing Techniques: While the test
data distribution remains similar to the training distribu-
tion P train(x, y) = P test(x, y), the test samples are ap-
plied unknown postprocessing operations Ψ : X → X .
Specifically, given a test sample xj ∼ P test, f takes
Ψ(xj) as input, where Ψ ∈ P with P denotes a set of
unseen postprocessing techniques during training.

2. Unseen Data Distribution and postprocessing Tech-
niques: This is a more challenging setting in which
test samples come from a different distribution P test ̸=
P train and are also subjected to unknown postprocess-
ing operations.

Algorithm 1: T2A Algorithm
Input : trained model fθ , test samples

Dtest = {xj , yj)}N
test

j=1

Define: batch size B; loss balancing hyperparameters α, β,
gradients alignment threshold ψ; learning rate η

1 for mini-batches {xi}Bi=1 ⊂ Dtest do
2 Obtain pseudo-label ŷi from Eq. 8
3 Calculate noisy pseudo-label by Eq. 9
4 Calculate entropy of model predictions LEM follow Eq.

7
5 Calculate noise-tolerant negative loss

LNTNL(xi, ỹi) = αLnn(xi, ỹi) + βLp(xi, ỹi)
follow Equations (11) and (12)

6 Optimize the adaptation objective function:
LNTNL + LEM to obtain the gradient matrix∇θL

7 Perform Gradient Masking on∇θL by keeping the
parameters of those gradients aligned with gradients of
BN layers by Eq. 15

8 Perform Gradient Descent to adapt the model:
θ ← θ − η∇θL

4.2 Revisitting Entropy Minimization (EM)
EM is commonly used to update model parameters by mini-
mizing the entropy of model outputs on test sample x during
inference:

LEM = −
∑
c∈C

p(y = c|x) log p(y = c|x), (7)

where p(y = c|x) is the predicted probability for class c,
computed as the softmax output of the model: p(y = c|x) =

exp(fc(x))∑
c∈C exp(fj(x)

, where fc(x) is the logit for class c from the
model’s forward pass on input x. As discussed in Sec 2.2,
EM causes two issues: Confirmation bias and Model col-
lapse. Therefore, besides EM, our T2A method introduces
a NL strategy with noisy pseudo-labels (described in Sec.
4.3), allowing models to re-think other potential options be-
fore making the final decision.

4.3 Uncertainty-aware Negative Learning
Uncertainty Modelling with Noisy Pseudo-Labels
Given the DF detector f , the pseudo-label ŷ = ŷ(x) ∈ {0, 1}
of input x is defined as:

ŷ = sign(f(x)− τ) =

{
1, f(x) ≥ τ

0, f(x) < τ
, (8)

where τ ∈ [0, 1] denotes the classification threshold. Rather
than implicitly trusting the model’s initial predictions, we en-
able the model to ”doubt” its predictions by introducing noisy
pseudo-labels.

We model the uncertainty in pseudo-labels using a
Bernoulli distribution. For each input x with pseudo-label
ŷ, we generate a noisy pseudo-label ỹ for input xi as follows:

ỹ =

{
1− ŷ, if X ∼ Bernoulli(1− pxi

) = 1

ŷ, otherwise
, (9)

where pxi represents the prediction probability. This indi-
cates that higher confidence predictions have a lower proba-
bility of being flipped. When the Bernoulli trial equals 1 (with
probability 1−pxi

), the pseudo-label is flipped to the opposite
class; otherwise (with probability pxi

), it remains unchanged.
However, directly adapting to noisy pseudo-labels presents
two limitations during test-time updates: (1) Without access
to source data for regularization, errors from noisy labels can
accumulate rapidly; and (2) The stochastic nature of noisy
gradients can lead to unstable updates.

Noise-tolerant Negative Loss Function
The goal of the noise-tolerant negative loss (NTNL) is to en-
able the model to think twice through NL with noisy pseudo-
labels.

From Positive to Negative Learning. Negative learning
(NL) enables the model to be taught with a lesson that ”this
input image does not belong to this complementary label”
[Kim et al., 2019]. In our work, converting from pseudo-
labels to noisy versions is equivalent to transforming from
positive to negative learning, facilitating the DF model to
re-think that ”this input image might not belong to this real
(fake)/fake (real) label”.

Noise-tolerant Negative Loss Function. Inspired by ex-
isting works [Zhou et al., 2021; Ma et al., 2020; Ghosh et al.,
2017], we start from the fact that any loss function can be ro-
bust to noisy labels through a simple normalization operation:

Lnorm =
ℓ(f(x), y)∑
c∈C ℓ(f(x), c)

. (10)

Theorem 4.1. In the binary classification with pseudo-label
ŷ ∈ {0, 1}, if the normalized loss function Lnorm has the lo-
cal extremum at x∗, the entropy minimization function LEM

also has the local at x∗, and vice versa.
From Theorem 4.1 (Proof in Appendix A), we demonstrate

that simply using pseudo-labels in the normalized loss func-
tion could drive the model toward maximizing confidence in
its initial predictions ŷ. This behavior aligns with the EM
objective presented in Eq.7. However, we seek to enable the
model to explore another option rather than uncritically trust-
ing its initial predictions, which may be incorrect. To do that,
we introduce noisy pseudo-labels ỹ in place of the original
pseudo-labels ŷ within the normalized loss function, in which
ỹ is generated by the flipping procedure described previously,
effectively transforming normalized loss function (Eq. 10) to
a negative one. This normalized negative loss Lnn for adapt-
ing with noisy pseudo-labels is defined as:

Lnn(x, ỹ) =
ℓ(f(x), ỹ)∑

c=∈{0,1} ℓ(f(x), c)
. (11)

As shown in Figure 4 (Appendix C.2), given a normalized
loss function with pseudo label Lnorm(x, ŷ), our normalized
negative loss function Lnn(x, ỹ) with noisy pseudo-label is
the opposite of Lnorm(x, ŷ).

Prior research by [Ma et al., 2020; Ye et al., 2023] has in-
dicated that the normalized loss function suffers from the un-
derfitting problem. This problem is particularly critical in the
TTA context where the model only ”sees” a few samples dur-
ing inference. To address this challenge, we incorporate the

passive loss function Lp [Ye et al., 2023] into TTA, leading
to our NTNL which can effectively help the model to adapt
to noisy pseudo-labels:

LNTNL(x, ỹ) = αLnn(x, ỹ) + βLp(x, ỹ), (12)

where Lp(x, ỹ) = 1 − p0−ℓ(f(x),ỹ)∑
c∈{0,1} p0−ℓ(f(x),c) , p0 is the mini-

mum value of the model prediction in the current test batch,
and α, β are balancing hyperparameters.

Definition 4.2. (Passive loss function). Lp is a passive loss
function if ∀(x, y) ∈ D,∃k ̸= y, ℓ(f(x), k) ̸= 0.

4.4 Uncertain Sample Prioritization
To identify which samples should be prioritized during adap-
tation, we propose a dynamic prioritization strategy that fo-
cuses on uncertain samples (i.e., low confidence). Our intu-
ition here is that lower-confidence samples require the model
to be considered more carefully. Specifically, we incorporate
Focal Loss [Ross and Dollár, 2017] into the NTNL function
(Eq. 12). Formally, the loss function ℓ(x, ỹ) is now defined:

ℓ(x, ỹ) = −(1− p(ỹ|x)γ) log p(ỹ|x), (13)

where γ controls the rate at which high-confident samples are
down-weighted.

The proposed NTNL with Focal Loss enables the model to
explore alternative options beyond its initial predictions while
dynamically focusing on uncertain samples during adapta-
tion. When combined with EM, we formulate our final adap-
tation objective function to enhance the adaptation of DF de-
tectors as follows:

L = LNTNL + LEM , (14)

where LEM is the entropy of model predictions defined in Eq.
7. By optimizing this objective, our approach achieves robust
adaptation that can effectively handle both unknown postpro-
cessing techniques and distribution shifts during inference.

4.5 Gradients Masking
BatchNorm (BN) adaptation [Schneider et al., 2020] is
widely used in existing TTA approaches [Niu et al., 2022;
Wang et al., 2020]. BN is a crucial layer that normalizes
each feature z during training: y = ϱ ∗

(
(z−µb)

σb

)
+ ϑ, where

µb and σb are batch statistics, and ϱ, ϑ are learnable param-
eters. After training, µema and σema, which are estimated
over the whole training dataset via exponential moving aver-
age (EMA) [Schneider et al., 2020], are used during infer-
ence. When P train(x, y) ̸= P test(x, y), BN adaptation re-
places EMA statistics (µema, σema) with statistics computed
from test mini-batches (µ̂b, σ̂b). However, this approach is
limited by only updating BN layer parameters.

To overcome this limitation, we propose a gradient mask-
ing technique that identifies and updates parameters whose
gradients align with those of BN layers. Let θBNi

be
the parameter of i-th BN layer, and all BN parameters’
gradients are concatenated into a single vector: u =
[∇θBN1

L,∇θBN2
L, ...,∇θBNL

L], where N is the number of
BN layers and ∇θBNi

L represents the gradient vector of the

loss L with respect to parameters in the i-th BN layer. For
each non-BN parameter’s gradient vi = ∇θiL in the model,
we compute its cosine similarity with the concatenated BN
gradients: sim(u, vi) =

⟨vi,u⟩
||vi||·||u|| .

Note that, since parameter gradients and BN gradient vec-
tors have different dimensions, zero-padding is applied to
align dimensions before computing similarity. The final gra-
dient masking is then applied as:

∇θiL =

{
vi if sim(vi, u) > ψ

0 otherwise
, (15)

where ψ is a threshold to control the selection of parame-
ters for updating. This technique brings more capacity for
adaptation as more model parameters are updated compared
to approaches that only update BN parameters during infer-
ence [Niu et al., 2022; Wang et al., 2020].

5 Experiments
In this section, we demonstrate the effectiveness of our T2A
method when comparing it with state-of-the-art (SoTA) TTA
approaches and DF detectors. We also provide an ablation
study for our method in Appendix D.1 and an analysis of run-
ning time compared to other TTA methods in Appendix D.4.

5.1 Setup
Datasets and modeling
We use Xception [Chollet, 2017] as the source model, which
as commonly used as the backbone in DF detectors. The
training set is FaceForensics++ (FF++) [Rossler et al., 2019].
To evaluate the adaptability of our T2A method, we use six
more datasets at inference time, including CelebDF-v1 [Li et
al., 2020b], CelebDF-v2 [Li et al., 2020b], DeepFakeDetec-
tion (DFD) [Google, 2019], DeepFake Detection Challenge
Preview (DFDCP) [Dolhansky, 2019], UADFV [Li et al.,
2018], and FaceShifter (FSh) [Li et al., 2020a]. The dataset
implementations are provided by [Yan et al., 2023] and more
details are described in Appendix C.

Metrics
We use three evaluation metrics: accuracy (ACC), the area
under the ROC curve (AUC), and average precision (AP). For
each metric, higher values show better results. Notably, in the
DF detection context, datasets inherently exhibit significant
class imbalance with fake samples substantially dominating
real ones [Layton et al., 2024], the AUC metric is more im-
portant as it remains robust to this problem.

Postprocessing Techniques
Following [Chen et al., 2022], we employ four postprocess-
ing techniques: Gaussian blur, changes in color saturation,
changes in color contrast, and resize: downsample the image
by a factor then upsample it to the original resolution. At the
inference time, test samples are applied to these operations
with the intensity level increasing from 1 to 5. Details of
postprocessing techniques and intensity levels are provided
in Appendix C. Note that these postprocessing techniques are
unknown to all models.

Table 1: Comparison with state-of-the-art TTA methods on FF++ with different unknown postprocessing techniques. The results for each
postprocessing technique are averaged across 5 intensity levels. Bold values denote the best performance for each metric.

Method

Postprocessing Techniques

Color Contrast Color Saturation Resize Gaussian Blur Average

ACC AUC AP ACC AUC AP ACC AUC AP ACC AUC AP ACC AUC AP

Source 0.7891
± 0.04

0.8696
± 0.03

0.9639
± 0.01

0.8074
± 0.04

0.8195
± 0.06

0.9432
± 0.02

0.8120
± 0.03

0.8767
± 0.02

0.9669
± 0.01

0.8431
± 0.01

0.8423
± 0.04

0.9523
± 0.01

0.8129
± 0.01

0.8520
± 0.02

0.9566
± 0.01

TENT 0.8745
± 0.01

0.9043
± 0.01

0.9732
± 0.01

0.8408
± 0.03

0.8510
± 0.05

0.9562
± 0.01

0.8517
± 0.01

0.8837
± 0.02

0.9680
± 0.01

0.8622
± 0.01

0.8844
± 0.02

0.9676
± 0.01

0.8573
± 0.01

0.8808
± 0.01

0.9663
± 0.01

MEMO 0.8288
± 0.01

0.8612
± 0.01

0.9603
± 0.01

0.8268
± 0.01

0.8244
± 0.04

0.9482
± 0.01

0.8348
± 0.01

0.8611
± 0.02

0.9620
± 0.01

0.8334
± 0.01

0.8676
± 0.02

0.9626
± 0.01

0.8310
± 0.01

0.8536
± 0.01

0.9583
± 0.01

EATA 0.8740
± 0.01

0.9044
± 0.01

0.9733
± 0.01

0.8402
± 0.03

0.8507
± 0.05

0.9561
± 0.01

0.8511
± 0.01

0.8839
± 0.02

0.9681
± 0.01

0.8625
± 0.01

0.8846
± 0.02

0.9676
± 0.01

0.8570
± 0.01

0.8809
± 0.01

0.9663
± 0.01

CoTTA 0.8548
± 0.01

0.8706
± 0.02

0.9596
± 0.01

0.8214
± 0.01

0.8256
± 0.01

0.9481
± 0.01

0.8445
± 0.01

0.8618
± 0.02

0.9618
± 0.01

0.8517
± 0.01

0.8664
± 0.02

0.9622
± 0.01

0.8431
± 0.01

0.8561
± 0.01

0.9579
± 0.01

LAME 0.7882
± 0.03

0.8185
± 0.05

0.9393
± 0.01

0.8088
± 0.03

0.7594
± 0.05

0.9096
± 0.03

0.7957
± 0.01

0.8113
± 0.02

0.9311
± 0.01

0.8065
± 0.01

0.7519
± 0.06

0.9035
± 0.02

0.7998
± 0.01

0.7853
± 0.02

0.9209
± 0.01

VIDA 0.8517
± 0.01

0.8794
± 0.01

0.9647
± 0.01

0.8168
± 0.02

0.8210
± 0.05

0.9446
± 0.01

0.8385
± 0.01

0.8668
± 0.03

0.9617
± 0.01

0.8448
± 0.01

0.8631
± 0.02

0.9596
± 0.01

0.8380
± 0.01

0.8576
± 0.01

0.9576
± 0.01

COME 0.8660
± 0.01

0.8983
± 0.01

0.9716
± 0.01

0.8391
± 0.02

0.8502
± 0.05

0.9568
± 0.02

0.8528
± 0.02

0.8781
± 0.03

0.9654
± 0.01

0.8622
± 0.01

0.8812
± 0.02

0.9665
± 0.01

0.855
± 0.01

0.877
± 0.02

0.9651
± 0.01

T2A (Ours) 0.8745
± 0.01

0.9044
± 0.02

0.9733
± 0.01

0.8437
± 0.03

0.8519
± 0.05

0.9566
± 0.01

0.8502
± 0.02

0.8840
± 0.02

0.9681
± 0.01

0.8642
± 0.01

0.8847
± 0.02

0.9676
± 0.01

0.8582
± 0.01

0.8813
± 0.01

0.9664
± 0.01

Table 2: Comparison with state-of-the-art TTA methods under the unknown data distributions and postprocessing techniques scenario across
6 deepfake datasets. Bold values denote the best performance for each metric.

Mehtod
CelebDF-v1 CelebDF-v2 DFD FSh DFDCP UADFV

ACC AUC AP ACC AUC AP ACC AUC AP ACC AUC AP ACC AUC AP ACC AUC AP

Source 0.6171 0.5730 0.6797 0.6621 0.6118 0.7337 0.8337 0.5570 0.8891 0.5370 0.5587 0.5480 0.6737 0.6553 0.7598 0.6316 0.7109 0.6443

TENT 0.6334 0.6166 0.7028 0.6370 0.6327 0.7475 0.7631 0.6409 0.9258 0.5285 0.5586 0.5540 0.7213 0.6990 0.7763 0.6625 0.7330 0.6674

MEMO 0.6456 0.6216 0.7003 0.6679 0.5937 0.7171 0.8798 0.5884 0.9148 0.5107 0.5619 0.5408 0.7000 0.6892 0.7466 0.6337 0.7295 0.6653

EATA 0.6313 0.6165 0.7029 0.6389 0.6330 0.7474 0.7579 0.6438 0.9276 0.5307 0.5583 0.5532 0.7245 0.7004 0.7758 0.6604 0.7330 0.6685

CoTTA 0.6354 0.6280 0.6975 0.6602 0.6189 0.7380 0.8757 0.6068 0.9222 0.5292 0.5661 0.5528 0.6934 0.6524 0.7384 0.6316 0.7210 0.6532

LAME 0.6211 0.5901 0.6733 0.6505 0.5914 0.7033 0.8935 0.5724 0.9091 0.5007 0.5307 0.5174 0.6475 0.5988 0.6996 0.5102 0.676 0.6284

VIDA 0.6374 0.6057 0.6683 0.6756 0.5589 0.6849 0.8810 0.5948 0.9230 0.5192 0.5285 0.5337 0.6770 0.6925 0.7692 0.6090 0.6972 0.6149

COME 0.6334 0.6162 0.7041 0.6389 0.6327 0.7465 0.7573 0.6451 0.9286 0.5292 0.5585 0.5537 0.7262 0.7013 0.7764 0.6625 0.7317 0.6674

T2A
(Ours)

0.6700 0.6748 0.7299 0.6718 0.6430 0.7565 0.7594 0.6438 0.9279 0.5370 0.5728 0.5657 0.7327 0.7320 0.7774 0.6830 0.7623 0.7117

Table 3: Improvement of deepfake detectors to unknown postprocessing techniques. All these methods undergo five levels of intensity of
postprocessing techniques.

Method
Color Contrast Color Saturation Resize Gaussian Blur Average

ACC AUC AP ACC AUC AP ACC AUC AP ACC AUC AP ACC AUC AP

CORE 0.8154
± 0.02

0.8245
± 0.04

0.9349
± 0.02

0.8237
± 0.03

0.8067
± 0.06

0.9395
± 0.02

0.8360
± 0.02

0.8628
± 0.03

0.9598
± 0.01

0.8334
± 0.02

0.8265
± 0.05

0.9409
± 0.02

0.8271
± 0.01

0.830
± 0.02

0.9438
± 0.01

CORE + T2A 0.8605
± 0.01

0.8744
± 0.02

0.9604
± 0.01

0.8414
± 0.02

0.8497
± 0.04

0.9447
± 0.01

0.8425
± 0.01

0.8897
± 0.03

0.9511
± 0.01

0.849
± 0.01

0.8662
± 0.02

0.9539
± 0.01

0.8491
± 0.01

0.8725
± 0.02

0.9525
± 0.01

Effi.B4 0.6980
± 0.07

0.8464
± 0.04

0.9531
± 0.01

0.8491
± 0.02

0.7973
± 0.07

0.9262
± 0.03

0.8314
± 0.02

0.8458
± 0.04

0.9526
± 0.01

0.8380
± 0.02

0.7929
± 0.06

0.9286
± 0.03

0.8041
± 0.02

0.8206
± 0.02

0.9401
± 0.01

Effi.B4 + T2A 0.8531
± 0.02

0.8638
± 0.02

0.9542
± 0.01

0.8271
± 0.03

0.8311
± 0.05

0.9372
± 0.02

0.8302
± 0.02

0.8355
± 0.04

0.9485
± 0.01

0.8442
± 0.01

0.8670
± 0.03

0.9515
± 0.01

0.8382
± 0.01

0.8592
± 0.02

0.9478
± 0.01

F3Net 0.8037
± 0.03

0.8306
± 0.05

0.9438
± 0.02

0.8542
± 0.02

0.8196
± 0.07

0.9413
± 0.02

0.8551
± 0.03

0.8681
± 0.03

0.9575
± 0.01

0.8360
± 0.02

0.8136
± 0.05

0.9374
± 0.02

0.8284
± 0.01

0.8387
± 0.02

0.9491
± 0.01

F3Net + T2A 0.8605
± 0.01

0.8879
± 0.02

0.9641
± 0.01

0.8617
± 0.02

0.8737
± 0.04

0.9599
± 0.02

0.8142
± 0.01

0.8723
± 0.03

0.9632
± 0.01

0.8417
± 0.02

0.8489
± 0.02

0.9524
± 0.01

0.8547
± 0.01

0.8776
± 0.01

0.9621
± 0.01

RECCE 0.8080
± 0.03

0.8189
± 0.04

0.9386
± 0.02

0.8348
± 0.02

0.7915
± 0.06

0.9283
± 0.02

0.8137
± 0.03

0.8338
± 0.04

0.9484
± 0.01

0.8360
± 0.02

0.8136
± 0.04

0.9374
± 0.01

0.8231
± 0.01

0.8144
± 0.02

0.9382
± 0.01

RECCE + T2A 0.8502
± 0.01

0.8698
± 0.02

0.9587
± 0.01

0.8291
± 0.02

0.8432
± 0.05

0.9406
± 0.02

0.8408
± 0.01

0.8426
± 0.03

0.9495
± 0.01

0.8417
± 0.01

0.8689
± 0.02

0.9524
± 0.01

0.8405
± 0.01

0.8561
± 0.01

0.9503
± 0.01

Baselines
For TTA, we compare our T2A method with SOTA methods,
including TENT [Wang et al., 2020], MEMO [Zhang et al.,
2022], EATA [Niu et al., 2022], CoTTA [Wang et al., 2022],
LAME [Boudiaf et al., 2022], ViDA [Liu et al., 2023a], and

COME [Zhang et al., 2024]. For DF detection, we employ the
following DF detectors: EfficientNetB4 [Tan and Le, 2019],
F3Net [Qian et al., 2020], CORE [Ni et al., 2022], RECCE
[Cao et al., 2022]. Details for these baselines are provided in
Appendix C.

Table 4: Improvement of deepfake detectors to unknown data distributions and postprocessing techniques across six Deepfake datasets.

Method
CelebDF-v1 CelebDF-v2 DFD FSh DFDCP UADFV

ACC AUC AP ACC AUC AP ACC AUC AP ACC AUC AP ACC AUC AP ACC AUC AP

CORE 0.6517 0.6828 0.7837 0.6467 0.6268 0.7527 0.8515 0.5319 0.8962 0.5050 0.5216 0.5151 0.7016 0.6465 0.7513 0.6090 0.7481 0.7331

CORE + T2A 0.6558 0.6883 0.7599 0.7162 0.6571 0.7576 0.7946 0.6292 0.9291 0.5200 0.5103 0.4985 0.6721 0.6611 0.7565 0.6337 0.7805 0.7692

Effi.B4 0.6313 0.6613 0.7202 0.6428 0.5489 0.6556 0.8743 0.6310 0.9282 0.5292 0.5737 0.5504 0.6344 0.5023 0.6438 0.5576 0.6791 0.6363

Effi.B4 + T2A 0.6415 0.6659 0.7542 0.6351 0.4347 0.7312 0.8259 0.6892 0.9452 0.5450 0.5944 0.5598 0.6475 0.5824 0.7040 0.6152 0.7107 0.6622

F3Net 0.6252 0.6541 0.7614 0.6563 0.6604 0.7681 0.8547 0.5507 0.9012 0.5228 0.5448 0.5644 0.6688 0.6528 0.7443 0.5843 0.7146 0.6866

F3Net + T2A 0.6517 0.6655 0.7531 0.6602 0.6409 0.7283 0.7500 0.6097 0.9244 0.5128 0.5569 0.5647 0.6803 0.6961 0.7831 0.6563 0.7447 0.6877

RECCE 0.5804 0.5689 0.6804 0.6776 0.6175 0.7531 0.8177 0.6256 0.9356 0.5235 0.5367 0.5275 0.6672 0.6358 0.7333 0.6522 0.7194 0.6778

RECCE + T2A 0.6578 0.6508 0.7233 0.6718 0.6725 0.7783 0.7296 0.6521 0.9346 0.5321 0.5512 0.5593 0.7032 0.7184 0.7949 0.7119 0.7910 0.7370

Implementation
For adaptation, we use Adam optimizer with learning rate
η = 1e− 4, batch size of 32. Other hyperparameters includ-
ing loss balancing ones α, β and gradient masking threshold
ψ are selected by a grid-search manner from defined values in
Table 5. The γ hyperparameter in Eq. 13 is set to 2.0. Details
about these hyperparameters are provided in SAppendix C.2.

5.2 Experimental Results
We design the experiments to assess the effectiveness of our
method under two real-world scenarios: (i) unknown postpro-
cessing techniques, and (ii) both unknown data distributions
and postprocessing techniques. The primary distinction be-
tween these scenarios lies in the underlying data distribution
assumptions. In the first scenario, we assume that test sam-
ples are drawn from a distribution similar to the training data
and focus specifically on evaluating our method’s resilience
when adversaries intentionally employ unknown postprocess-
ing techniques. The second scenario presents a more chal-
lenging setting where test samples stem from unknown dis-
tributions, allowing us to evaluate not only the method’s re-
silience to postprocessing techniques but also its broader gen-
eralization across different data domains.

Comparison with SoTA TTA Approaches
We compare our T2A method with existing TTA approaches,
with results presented in Table 1 and Table 2. Table 1 re-
ports results when tested with unknown postprocessing tech-
niques. Each technique is tested across five intensity levels,
with the results showing averaged performance metrics. De-
tailed results for individual intensity levels are provided in
Appendix D. The Average column denotes the mean across
all postprocessing techniques, providing a holistic view of
adaptation capability. We test our method and other TTA ap-
proaches on FF++ samples exposed to unseen postprocessing
operations. From Table 1, we can observe that our method
outperforms existing TTA approaches. On average, T2A im-
proves the source DF detector by 2.93% on AUC. For the
more challenging scenario - unknown data distributions and
postprocessing techniques, Table 2 shows that T2A achieves
SoTA results on 5 out of 6 datasets, including CelebDF-1,
CelebDF-2, FSh, DFDCP, and UADFV, and the second-best
result on DFD dataset. Note that postprocessing techniques
used in this experiment are unseen during the training process
of the source model.

Adaptability Improvement over Deepfake Detectors
To further demonstrate the effectiveness of our T2A method,
we evaluate its capability to enhance the adaptability of DF
detectors. We test the performance of DF detectors with and
without the T2A method under two scenarios. For the first
scenario, Table 3 indicates that: When integrated with T2A,
the performance of DF detectors measured by AUC is sig-
nificantly improved, enhancing the resilience of these detec-
tors against unseen postprocessing techniques. Particularly,
our method shows substantial improvements of 4.25% for
CORE, 3.86% for EfficientNet-B4, 3.89% for F3Net, and
4.17% for RECCE. Under the more challenging scenario,
Table 4 presents results that T2A consistently enhances the
generalization capability of DF detectors over unseen data
distributions while maintaining robustness against postpro-
cessing manipulations. For example, on the real-world DF
benchmark DFDCP, our method improves the performance
of RECCE to 8.26%, EfficientNet-B4 to 8%, F3Net to 4.33%,
and CORE to 1.46%.

6 Conclusion
In this work, we introduce T2A, which improves the adapt-
ability of DF detectors across two challenging scenarios:
unknown postprocessing techniques and data distributions
during inference time. Instead of solely relying on EM,
T2A enables the model to explore alternative options be-
fore decision-making through NL with noisy pseudo-labels.
We also provide a theoretical analysis to demonstrate that
the proposed objective exhibits complementary behavior to
EM. Through experiments, we show that T2A achieves higher
adaptation performance compared to SoTA TTA approaches.
Furthermore, when integrated with T2A, the resilience and
generalization of DF detectors can be significantly improved
without requiring additional training data or architectural
modifications, making it particularly valuable for real-world
deployments. However, since our method is based on back-
propagation for updating parameters at inference time, it only
works with end-to-end DF detectors that allow gradient flow
throughout the model.

Acknowledgments
This publication has emanated from research conducted with
the financial support of Science Foundation Ireland under
Grant number 18/CRT/6183.

References
[Boudiaf et al., 2022] Malik Boudiaf, Romain Mueller, Is-

mail Ben Ayed, and Luca Bertinetto. Parameter-free on-
line test-time adaptation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 8344–8353, 2022.

[Cao et al., 2022] Junyi Cao, Chao Ma, Taiping Yao, Shen
Chen, Shouhong Ding, and Xiaokang Yang. End-to-end
reconstruction-classification learning for face forgery de-
tection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4113–
4122, 2022.

[Chen et al., 2022] Liang Chen, Yong Zhang, Yibing Song,
Jue Wang, and Lingqiao Liu. Ost: Improving general-
ization of deepfake detection via one-shot test-time train-
ing. Advances in Neural Information Processing Systems,
35:24597–24610, 2022.

[Chollet, 2017] François Chollet. Xception: Deep learning
with depthwise separable convolutions. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 1251–1258, 2017.

[Corvi et al., 2023] Riccardo Corvi, Davide Cozzolino, Gio-
vanni Poggi, Koki Nagano, and Luisa Verdoliva. Intrigu-
ing properties of synthetic images: from generative adver-
sarial networks to diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 973–982, 2023.

[Dolhansky, 2019] B Dolhansky. The deepfake detec-
tion challenge (dfdc) preview dataset. arXiv preprint
arXiv:1910.08854, 2019.

[Fang et al., 2024] Hao Fang, Ajian Liu, Haocheng Yuan,
Junze Zheng, Dingheng Zeng, Yanhong Liu, Jiankang
Deng, Sergio Escalera, Xiaoming Liu, Jun Wan, et al. Uni-
fied physical-digital face attack detection. In Proceedings
of the Thirty-Third International Joint Conference on Ar-
tificial Intelligence, pages 749–757, 2024.

[Frank et al., 2020] Joel Frank, Thorsten Eisenhofer, Lea
Schönherr, Asja Fischer, Dorothea Kolossa, and Thorsten
Holz. Leveraging frequency analysis for deepfake im-
age recognition. In International conference on machine
learning, pages 3247–3258. PMLR, 2020.

[Ghosh et al., 2017] Aritra Ghosh, Himanshu Kumar, and
P Shanti Sastry. Robust loss functions under label noise
for deep neural networks. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 31, 2017.

[Google, 2019] Google. Contributing data to deepfake de-
tection research, 2019. Accessed on 11 December 2024.

[He et al., 2024] Xianhua He, Dashuang Liang, Song Yang,
Zhanlong Hao, Hui Ma, Binjie Mao, Xi Li, Yao Wang,
Pengfei Yan, and Ajian Liu. Joint physical-digital facial
attack detection via simulating spoofing clues. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 995–1004, 2024.

[Hendrycks and Dietterich, 2019] Dan Hendrycks and
Thomas Dietterich. Benchmarking neural network

robustness to common corruptions and perturbations.
International Conference on Learning Representations,
2019.

[Kim et al., 2019] Youngdong Kim, Junho Yim, Juseung
Yun, and Junmo Kim. Nlnl: Negative learning for noisy
labels. In Proceedings of the IEEE/CVF international con-
ference on computer vision, pages 101–110, 2019.

[Kim et al., 2021] Youngdong Kim, Juseung Yun, Hyoun-
guk Shon, and Junmo Kim. Joint negative and positive
learning for noisy labels. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 9442–9451, 2021.

[Layton et al., 2024] Seth Layton, Tyler Tucker, Daniel Ol-
szewski, Kevin Warren, Kevin Butler, and Patrick Traynor.
{SoK}: The good, the bad, and the unbalanced: Measur-
ing structural limitations of deepfake media datasets. In
33rd USENIX Security Symposium (USENIX Security 24),
pages 1027–1044, 2024.

[Li et al., 2018] Yuezun Li, Ming-Ching Chang, and Siwei
Lyu. In ictu oculi: Exposing ai created fake videos by
detecting eye blinking. In 2018 IEEE International work-
shop on information forensics and security (WIFS), pages
1–7. Ieee, 2018.

[Li et al., 2020a] Lingzhi Li, Jianmin Bao, Hao Yang, Dong
Chen, and Fang Wen. Advancing high fidelity identity
swapping for forgery detection. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 5074–5083, 2020.

[Li et al., 2020b] Yuezun Li, Xin Yang, Pu Sun, Honggang
Qi, and Siwei Lyu. Celeb-df: A large-scale challeng-
ing dataset for deepfake forensics. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 3207–3216, 2020.

[Li et al., 2024] Jingjing Li, Zhiqi Yu, Zhekai Du, Lei Zhu,
and Heng Tao Shen. A comprehensive survey on source-
free domain adaptation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2024.

[Liang et al., 2024] Jian Liang, Ran He, and Tieniu Tan. A
comprehensive survey on test-time adaptation under dis-
tribution shifts. International Journal of Computer Vision,
pages 1–34, 2024.

[Liu et al., 2021] Honggu Liu, Xiaodan Li, Wenbo Zhou,
Yuefeng Chen, Yuan He, Hui Xue, Weiming Zhang, and
Nenghai Yu. Spatial-phase shallow learning: rethinking
face forgery detection in frequency domain. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 772–781, 2021.

[Liu et al., 2023a] Jiaming Liu, Senqiao Yang, Peidong Jia,
Renrui Zhang, Ming Lu, Yandong Guo, Wei Xue, and
Shanghang Zhang. Vida: Homeostatic visual domain
adapter for continual test time adaptation. In International
Conference on Learning Representations, 2023.

[Liu et al., 2023b] Jiawei Liu, Jingyi Xie, Yang Wang, and
Zheng-Jun Zha. Adaptive texture and spectrum clue min-
ing for generalizable face forgery detection. IEEE Trans-
actions on Information Forensics and Security, 2023.

[Liu et al., 2024] Ajian Liu, Shuai Xue, Jianwen Gan, Jun
Wan, Yanyan Liang, Jiankang Deng, Sergio Escalera, and
Zhen Lei. Cfpl-fas: Class free prompt learning for general-
izable face anti-spoofing. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 222–232, 2024.

[Ma et al., 2020] Xingjun Ma, Hanxun Huang, Yisen Wang,
Simone Romano, Sarah Erfani, and James Bailey. Nor-
malized loss functions for deep learning with noisy labels.
In International conference on machine learning, pages
6543–6553. PMLR, 2020.

[Nguyen-Le et al., 2024a] Hong-Hanh Nguyen-Le, Van-
Tuan Tran, Dinh-Thuc Nguyen, and Nhien-An Le-Khac.
Deepfake generation and proactive deepfake defense: A
comprehensive survey. Authorea Preprints, 2024.

[Nguyen-Le et al., 2024b] Hong-Hanh Nguyen-Le, Van-
Tuan Tran, Dinh-Thuc Nguyen, and Nhien-An Le-Khac.
Passive deepfake detection across multi-modalities: A
comprehensive survey. arXiv preprint arXiv:2411.17911,
2024.

[Ni et al., 2022] Yunsheng Ni, Depu Meng, Changqian Yu,
Chengbin Quan, Dongchun Ren, and Youjian Zhao. Core:
Consistent representation learning for face forgery detec-
tion. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 12–21, 2022.

[Niu et al., 2022] Shuaicheng Niu, Jiaxiang Wu, Yifan
Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and
Mingkui Tan. Efficient test-time model adaptation without
forgetting. In International conference on machine learn-
ing, pages 16888–16905. PMLR, 2022.

[Niu et al., 2023] Shuaicheng Niu, Jiaxiang Wu, Yifan
Zhang, Zhiquan Wen, Yaofo Chen, Peilin Zhao, and
Mingkui Tan. Towards stable test-time adaptation in dy-
namic wild world. The Eleventh International Conference
on Learning Representations, 2023.

[Ojha et al., 2023] Utkarsh Ojha, Yuheng Li, and Yong Jae
Lee. Towards universal fake image detectors that gen-
eralize across generative models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 24480–24489, 2023.

[Pan et al., 2023] Kun Pan, Yifang Yin, Yao Wei, Feng Lin,
Zhongjie Ba, Zhenguang Liu, Zhibo Wang, Lorenzo Cav-
allaro, and Kui Ren. Dfil: Deepfake incremental learning
by exploiting domain-invariant forgery clues. In Proceed-
ings of the 31st ACM International Conference on Multi-
media, pages 8035–8046, 2023.

[Qian et al., 2020] Yuyang Qian, Guojun Yin, Lu Sheng,
Zixuan Chen, and Jing Shao. Thinking in frequency: Face
forgery detection by mining frequency-aware clues. In
European conference on computer vision, pages 86–103.
Springer, 2020.

[Ross and Dollár, 2017] T-YLPG Ross and GKHP Dollár.
Focal loss for dense object detection. In proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 2980–2988, 2017.

[Rossler et al., 2019] Andreas Rossler, Davide Cozzolino,
Luisa Verdoliva, Christian Riess, Justus Thies, and
Matthias Nießner. Faceforensics++: Learning to de-
tect manipulated facial images. In Proceedings of the
IEEE/CVF international conference on computer vision,
pages 1–11, 2019.

[Schneider et al., 2020] Steffen Schneider, Evgenia Rusak,
Luisa Eck, Oliver Bringmann, Wieland Brendel, and
Matthias Bethge. Improving robustness against common
corruptions by covariate shift adaptation. Advances in
neural information processing systems, 33:11539–11551,
2020.

[Shiohara and Yamasaki, 2022] Kaede Shiohara and Toshi-
hiko Yamasaki. Detecting deepfakes with self-blended
images. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 18720–
18729, 2022.

[Tan and Le, 2019] Mingxing Tan and Quoc Le. Efficient-
net: Rethinking model scaling for convolutional neural
networks. In International conference on machine learn-
ing, pages 6105–6114. PMLR, 2019.

[Wang et al., 2020] Dequan Wang, Evan Shelhamer,
Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent:
Fully test-time adaptation by entropy minimization. arXiv
preprint arXiv:2006.10726, 2020.

[Wang et al., 2022] Qin Wang, Olga Fink, Luc Van Gool,
and Dengxin Dai. Continual test-time domain adaptation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7201–7211, 2022.

[Yan et al., 2023] Zhiyuan Yan, Yong Zhang, Xinhang Yuan,
Siwei Lyu, and Baoyuan Wu. Deepfakebench: A compre-
hensive benchmark of deepfake detection. arXiv preprint
arXiv:2307.01426, 2023.

[Yan et al., 2024] Zhiyuan Yan, Yuhao Luo, Siwei Lyu,
Qingshan Liu, and Baoyuan Wu. Transcending forgery
specificity with latent space augmentation for generaliz-
able deepfake detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 8984–8994, 2024.

[Ye et al., 2023] Xichen Ye, Xiaoqiang Li, Tong Liu, Yan
Sun, Weiqin Tong, et al. Active negative loss functions
for learning with noisy labels. Advances in Neural Infor-
mation Processing Systems, 36:6917–6940, 2023.

[Zhang et al., 2022] Marvin Zhang, Sergey Levine, and
Chelsea Finn. Memo: Test time robustness via adapta-
tion and augmentation. Advances in neural information
processing systems, 35:38629–38642, 2022.

[Zhang et al., 2024] Qingyang Zhang, Yatao Bian, Xinke
Kong, Peilin Zhao, and Changqing Zhang. Come:
Test-time adaption by conservatively minimizing entropy.
arXiv preprint arXiv:2410.10894, 2024.

[Zhou et al., 2021] Xiong Zhou, Xianming Liu, Junjun
Jiang, Xin Gao, and Xiangyang Ji. Asymmetric loss func-
tions for learning with noisy labels. In International con-
ference on machine learning, pages 12846–12856. PMLR,
2021.

Appendix for ”Think Twice before Adaptation:
Improving Adaptability of DeepFake Detection
via Online Test-Time Adaptation”
A Proofs
Proof for Theorem 4.1
Proof. Given a binary classification model f : X → R2 that
produces a probability prediction 0 < p = p(y = 1|x) < 1
for a sample x, with 1 − p = p(y = 0|x) representing the
prediction probability of the other class. Let ŷ denote the
pseudo-label as defined in Eq. 8. We begin by defining two
key quantities:

Definition A.1. The entropy of prediction in the binary clas-
sification is defined as:

H(x) = −ŷ(x) ∗ log(p)− (−1− ŷ) ∗ log(1− p) (16)

Definition A.2. The normalized cross-entropy loss is defined
as:

NCE(x) =
H(x)

− log(p)− log(1− p)
(17)

Let c = − log(p)− log(1− p) and suppose that c is a pos-
itive constant. We can establish the following equivalence:

H(x) = c ∗NCE(x) (18)

Partial derivative ofH(x) with respect to xi, i = 1, . . . , n:

∂H(x)

∂xi
=

∂

∂xi
[−ŷ(x) log(p)− (1− ŷ) log(1− p)] (19)

= −∂ŷ(x)
∂xi

log(p) +
∂ŷ(x)

∂xi
log(1− p) (20)

= −∂ŷ(x)
∂xi

[log(p)− log(1− p)] (21)

= −∂ŷ(x)
∂xi

log

(
p

1− p

)
(22)

Partial derivative of NCE(x) with respect to xi, i =
1, . . . , n:

∂NCE(x)

∂xi
=

∂

∂xi

(
H(x)

c

)
(23)

=
1

c
· ∂H(x)

∂xi
(24)

= −1

c
· ∂ŷ(x)
∂xi

log

(
p

1− p

)
(25)

We have:
∂H(x)

∂xi
= 0 ⇐⇒ −∂ŷ(x)

∂xi
log

(
p

1− p

)
= 0 (26)

⇐⇒ c ·
(
−1

c
· ∂ŷ(x)
∂xi

log

(
p

1− p

))
= 0

(27)

⇐⇒ c · ∂NCE(x)

∂xi
= 0 (28)

⇐⇒ ∂NCE(x)

∂xi
= 0 (29)

The last equivalence holds because c is positive. Therefore,
for all i = 1, . . . , n:

∂H(x)

∂xi
= 0 ⇐⇒ ∂NCE(x)

∂xi
= 0 (30)

This equivalence proves that the partial derivatives of both
H(x) and NCE(x) vanish at the same points. Since c is
positive, H(x) has a local extremum if and only if NCE(x)
has a local extremum at the same point x∗.

Proof for Lemma 3.2
We need Definition 3.1 to prove the Lemma 3.2.

Note that, for simplification, in this proof, we assume that
x1 and x2 have the same size M ×N .

Proof. The spatial domain convolution of two images is given
by:

(x1 ⊛ x2)(m.n) =
1

MN

M−1∑
k=0

N−1∑
l=0

x1(k, l)x2(m− k, n− l)

(31)
Take the Fourier transform of Eq. 31, we obtain:

F{x1 ⊗ x2} =

M−1∑
m=0

N−1∑
n=0

[
M−1∑
k=0

N−1∑
l=0

x1(k, l)x2(m− k, n− l)

]
e−j2π(um

M + vn
N)

M−1∑
k=0

N−1∑
l=0

x1(k, l)

[
M−1∑
m=0

N−1∑
n=0

x2(m− k, n− l)e−j2π(um
M + vn

N)

]
(32)

After change of variables p = m− k, q = n− l and substitu-
tion:

F{x1 ⊗ x2} =

M−1∑
k=0

N−1∑
l=0

x1(k, l)

[
M−1∑
p=0

N−1∑
q=0

x2(p, q)e
−j2π(

u(p+k)
M +

v(q+l)
N)

]

=

M−1∑
k=0

N−1∑
l=0

x1(k, l)e
−j2π(uk

M + vl
N)

·

[
M−1∑
p=0

N−1∑
q=0

x2(p, q)e
−j2π(up

M + vq
N)

]
(33)

By definition of the 2D-DFT 3.1, we can recognize:{∑M−1
k=0

∑N−1
l=0 x1(k, l)e

−j2π(uk
M + vl

N) = X1(u, v)∑M−1
p=0

∑N−1
q=0 x2(p, q)e

−j2π(up
M + vq

N) = X2(u, v)

(34)
Therefore:

F{x1 ⊗ x2} = X1(u, v) ·X2(u, v) (35)

1 2 3 4 5
Intensity

0.6

0.7

0.8

0.9

A
U

C
Color Saturation

1 2 3 4 5
Intensity

0.70

0.75

0.80

0.85

0.90

0.95

A
U

C

Color Contrast

1 2 3 4 5
Intensity

0.70

0.75

0.80

0.85

0.90

0.95

A
U

C

Resize

1 2 3 4 5
Intensity

0.6

0.7

0.8

0.9

A
U

C

Gaussian Blur

CORE F3Net RECCE Effi. B4 T2A

Figure 2: Resilience capability comparisons of different DF detectors and our method under various unknown postprocessing techniques,
including color saturation, color contrast, downsampling, and Gaussian blurring. The results are aggregated across five intensity levels. All
these methods undergo 5 levels of intensity of postprocessing techniques.

Intensity 1 Intensity 2 Intensity 3 Intensity 4 Intensity 5

Gaussian Blur

Resize

Color Contrast

Color Saturation

Figure 3: Visualization of frequency domain artifacts in DF images generated by StarGANv2 under varying postprocessing operations. The
heatmaps illustrate the spectral signatures across five intensity levels for four different postprocessing techniques: Gaussian blur, resize, color
contrast, and color saturation.

B More Experiments of Generation Artifacts
Figure 3 illustrates frequency spectra of the fake sample gen-
erated by StarGAN2. This fake sample is applied by 4 types
of postprocessing operations, with the intensity level increas-
ing from 1 to 5. Figure 2 shows the performance degrada-
tion of DF detectors under different types of postprocessing
techniques across 5 intensity levels. Note that, in this exper-
imental evaluation, both training and test samples are drawn
from the same underlying data distribution (FaceForensics++
[Rossler et al., 2019]), and only postprocessing operations are
unseen during the testing phase.

C Experimental Details
C.1 Datasets
Training dataset.
We use FF++ [Rossler et al., 2019] for training the source
model (Xception) and other DF detectors. In this dataset, real
videos collected from YouTube, which are then used to gen-
erate fake videos through four DF methods, including Deep-
Fake, Face2Face, FaceSwap, and NeuralTexture. FF++ con-
tains a total of 5000 videos, of which 1000 videos are sourced
from YouTube.

Test datasets.
To evaluate the adaptability of our T2A method, we use six
datasets at the inference time, including:

• CelebDF-v1 and CelebDF-v2 [Li et al., 2020b]: con-
tain 998 real videos collected from 59 celebrities and
6434 fake videos improved by using techniques, such
as higher resolution synthesis, color mismatch reduc-
tion, improved face mask, temporal flickering reduction.
Videos in CelebDF datasets are variations in face sizes,
orientations, lighting condiitons and backgrounds.

• DeepFakeDetection (DFD) [Google, 2019]: includes
363 real videos and 3000 fake videos.

• DeepFake Detection Challenge Preview (DFDCP) [Dol-
hansky, 2019]: consists of 1131 real videos of 66 indi-
viduals total and 4119 fake videos generated by multiple
synthesis methods. Videos include varied lighting con-
ditions, head poses, and backgrounds.

• UADFV [Li et al., 2018] which is composed of 98 real
and fake videos from 49 different identities. This dataset
mainly focuses on blinking, assisting in DF detection
through physiological signals.

• FaceShifter (FSh) [Li et al., 2020a]: includes a total of
2000 real and fake videos.

The image size of training and test samples are 256× 256
unless using Resize postprocessing (described in Sec. C.2).
During the testing phase, individual frames extracted from
these videos serve as our evaluation data. We use test sets of
these datasets provided by [Yan et al., 2023].

C.2 Intensity Levels of Postprocessing Techniques
In practice, both authentic and manipulated images frequently
undergo various postprocessing operations. For real-world

DF detection requirements, resilience to unknown postpro-
cessing techniques is crucial. Following [Chen et al., 2022],
we evaluate detector robustness across four fundamental post-
processing operations: Gaussian blur, resize, color saturation,
and color contrast. For each operation, we implement five
intensity levels based on standard corruption benchmarking
practices [Hendrycks and Dietterich, 2019]. Figure 6 shows
an example of the five intensity levels of four types of post-
processing techniques.

Regarding Gaussian blur operation, we employ progres-
sively larger kernel sizes: 5 × 5, 9 × 9, 13 × 13, 17 × 17,
and 21 × 21 (levels 1 − 5, respectively). Each larger ker-
nel size produces a progressively stronger blurring effect on
the image. For the resize operation, we first downsample to
a smaller resolution and then upsample back to 256 × 256,
creating progressively stronger image quality degradation as
more pixel information is lost at lower intermediate resolu-
tions. For each intensity level, the intermediate resolution is:
128, 85, 64, 51, and 41, respectively.

To manipulate color saturation across 5 intensity levels, we
convert the image from BGR to YCbCr color space, where
Y represents luminance and Cb/Cr represents chrominance
components, then a saturation factor i (each intensity level)
is applied to linearly push Cb and Cr values c away from
the center point (128) while preserving Y (luminance) by the
transformation as follows: c := 128 + (c− 128) ∗ i.

For color contrast operation, we modify image contrast
across 5 intensity levels by manipulating pixel values around
their mean while applying channel-wise enhancements. In
particular, for intensity i, the pixel value c will be updated as
follows: c := Ec + (c − Ec)i. Then, the pixel values will be
clipped to the range of [0, 255] to preserve brightness.

C.3 Implementation Details
TTA baselines
For all TTA approaches, TENT [Wang et al., 2020], MEMO
[Zhang et al., 2022], EATA [Niu et al., 2022], CoTTA [Wang
et al., 2022], LAME [Boudiaf et al., 2022], ViDA [Liu et
al., 2023a], and COME [Zhang et al., 2024], we follow all
hyperparameters that are set in their Github unless it does not
provide.

DF Detection baselines
Since the pre-trained models of EfficientNetB4 [Tan and Le,
2019], F3Net [Qian et al., 2020], CORE [Ni et al., 2022],
and RECCE [Cao et al., 2022] are not provided, we use that
provided by [Yan et al., 2023].

Hyperparameters
Table 5 provides hyperparameters details.

Table 5: Hyperparameters.

Hyperparameter Values
α {1.0, 2.0}
β {1.0, 2.0}
ψ {0.01, 0.1}

0.00 0.25 0.50 0.75 1.00
p

0.00

0.25

0.50

0.75

1.00

Entropy

Normalized loss w/ pseudo-labels

Normalized loss w/ noisy pseudo-labels

(a) Normalized loss with pseudo la-
bel Lnorm(x, ŷ) and noisy pseudo-label
Lnn(x, ỹ). Lnn(x, ỹ) is the opposite of
Lnorm(x, ŷ).

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

Entropy

Passive loss w/ pseudo-labels

Passive loss w/ noisy pseudo-labels

(b) Passive loss function with pseudo
label Lp(x, ŷ) and noisy pseudo-label
Lp(x, ỹ). Lp(x, ỹ) is the opposite of
Lp(x, ŷ).

0.00 0.25 0.50 0.75 1.00
p

0.0

0.5

1.0

1.5

Entropy

NTNL Loss w/ pseudo-labels

NTNL Loss w/ noisy pseudo-labels

(c) Noise-tolerant negative loss (NTNL)
functions with pseudo labelLNTNL(x, ŷ)
and noisy-pseudo label LNTNL(x, ỹ).
LNTNL(x, ỹ) is the opposite of
LNTNL(x, ŷ).

Figure 4: Comparison of different loss functions against entropy minimization. Each plot demonstrates how the proposed loss functions
exhibit complementary behavior to entropy minimization across different prediction probabilities.

Table 6: Effectiveness of components in T2A method on FF++
dataset. The results are averaged across 4 postprocessing techniques
with 5 intensity levels.

Using
LEM

Using
Lnn

Using
Lp

Gradients
masking

ACC AUC AP

T2A ✓ 0.8491
±

0.01

0.8542
±

0.02

0.9570
±

0.01

T2A ✓ ✓ 0.8472
±

0.01

0.8580
±

0.02

0.9583
±

0.01

T2A ✓ ✓ 0.8490
±

0.01

0.8542
±

0.02

0.9570
±

0.01

T2A ✓ ✓ ✓ 0.8394
±

0.01

0.8646
±

0.01

0.9617
±

0.01

T2A ✓ ✓ ✓ ✓ 0.8582
±

0.01

0.8813
±

0.01

0.9664
±

0.01

D More Experimental Results
D.1 Ablation Study
Analysis on Components of T2A method
Our method consists of three main components: 1) En-
tropy Minimization (EM) loss, 2) Noise-tolerant negative loss
(NTNL), and 3) Gradients masking. We ablate them in Ta-
ble 6. Compared with the EM loss, our proposed method
(5-th row) achieves better performance across three metrics.
This validates our motivation that some overconfident sam-
ples (i.e., optimized by EM) hurt the performance of the
model during adaptation. We also evaluate the impact of the
normalized negative loss Lnn and the passive loss Lp on the
adaptation performance of the model.

Analysis on Proposed Loss Functions
We provide an analysis of our proposed loss functions in com-
parison with EM, demonstrating their complementary behav-
ior. Figure 4 illustrates three variants of our negative learning

So
ur

ce

TENT

M
EM

O

EATA

CoT
TA

LAM
E

VID
A

CO
M

E
T
2 A

Method

0.0

0.5

1.0

1.5

2.0
R

u
n

n
in

g
ti

m
e

(s
)

Running time of TTA methods (per iteration)

Figure 5: Average running time per iteration of TTA methods.

approach and their relationships with EM across the prob-
ability range [0, 1]. The figure shows that three variants of
loss functions with noisy pseudo-labels (green line) exhibit
opposing behavior with the EM (blue line).

D.2 Full results of comparison with SoTA TTA
methods under unknown postprocessing
techniques

In Table 7, we provide more results to compare our T2A
method with SoTA TTA approaches on FF++ with the inten-
sity level from 1 to 5. Although the source model achieves
better performance at the lowest intensity level (level 1) for
color contrast and color saturation operations, our method
exhibits consistently better adaptation performance as the in-
tensity of postprocessing increases. Across all four postpro-
cessing types, T2A generally outperforms existing TTA ap-
proaches across all three evaluation metrics, demonstrating
particular resilience to more aggressive postprocessing ma-
nipulations.

(a) Resize

(b) Gaussian Blur

(c) Color Contrast

(d) Color Saturation

Figure 6: Four postprocessing operation types across five intensity levels.

D.3 Full results of improvements of DF detectors
under unknown postprocessing techniques

Table 8 shows more results about improvement of DF detec-
tors under unknown postprocessing techniques scenario with
the intensity level 1-5. THe table shows that our method can
improve the adaptation performance of DF detectors across
intensity levels of postprocessing techniques.

D.4 Wall-clock running time of T2A
We report the running time per iteration of TTA meth-
ods. Figure 5 compares the running time of our method
and other TTA approaches. Experiments on the DFDCP
dataset, performed using an NVIDIA RTX 4090 GPU.
Our T2A method achieves superior adaptation performance
(73.2% AUC) within 0.5s per iteration. EATA, COME,

and TENT demonstrate comparable execution times (approx-
imately 0.26s) but with lower performance (70.04%, 70.13%,
and 69.9% AUC, respectively). While LAME achieves the
fastest execution (0.07s), it shows significantly degraded per-
formance (59.88% AUC). Conversely, methods employing
extensive augmentation during adaptation—MEMO (0.66s),
VIDA (0.83s), and CoTTA (2.23s) — incur substantially
higher computational costs. Note that, TENT, EATA, COME,
LAME achieve running efficiency due to the adaptation be-
ing applied to BN layers only. This shows that our method
achieves an effective balance between computational effi-
ciency and adaptation performance.

Table 7: Comparison with state-of-the-art TTA methods on FF++ with different postprocessing techniques from intensity level from 1 to 5.
The bold number indicates the best result.

Method
Color Contrast Color Saturation Resize Gaussian Blur Average

ACC AUC AP ACC AUC AP ACC AUC AP ACC AUC AP ACC AUC AP

Intensity level = 1

Source 0.9171 0.9604 0.9902 0.9214 0.9602 0.9901 0.9042 0.9469 0.9867 0.9028 0.9481 0.9869 0.9114 0.9539 0.9884

TENT 0.9100 0.9556 0.9887 0.8914 0.9468 0.9859 0.9042 0.9456 0.9828 0.9042 0.9488 0.9868 0.9024 0.9492 0.9860

MEMO 0.8657 0.9307 0.9824 0.8657 0.9284 0.9815 0.8585 0.9285 0.9812 0.8557 0.9281 0.9814 0.8614 0.9289 0.9816

EATA 0.9100 0.9558 0.9887 0.9085 0.9550 0.9888 0.9071 0.9415 0.9827 0.9042 0.9489 0.9868 0.9074 0.9503 0.9867

CoTTA 0.8928 0.9447 0.9863 0.8942 0.9437 0.9858 0.8885 0.9310 0.9823 0.8885 0.9333 0.9830 0.8910 0.9381 0.9843

LAME 0.8171 0.9134 0.9668 0.8185 0.9164 0.9684 0.8071 0.8874 0.9557 0.8157 0.9012 0.9624 0.8146 0.9046 0.9633

VIDA 0.8771 0.9330 0.9827 0.8771 0.9324 0.9826 0.8828 0.9309 0.9823 0.8785 0.9315 0.9824 0.8789 0.9319 0.9825

COME 0.9000 0.9536 0.9885 0.9071 0.9524 0.9882 0.8985 0.9453 0.9862 0.8971 0.9455 0.9863 0.9007 0.9492 0.9873

T2A (Ours) 0.9128 0.9562 0.9888 0.9100 0.9559 0.9888 0.9071 0.9485 0.9867 0.9071 0.9588 0.9888 0.9092 0.9549 0.9882

Intensity level = 2

Source 0.8600 0.9233 0.9794 0.8900 0.9381 0.9840 0.8671 0.9165 0.9789 0.8757 0.9169 0.9788 0.8732 0.9217 0.9803

TENT 0.8928 0.9150 0.9700 0.9000 0.9453 0.9861 0.8728 0.9206 0.9795 0.8842 0.9241 0.9807 0.8873 0.9267 0.9775

MEMO 0.8342 0.8791 0.9662 0.8342 0.9021 0.9744 0.8400 0.8898 0.9706 0.8442 0.9019 0.9741 0.8382 0.8932 0.9713

EATA 0.8928 0.9151 0.9800 0.9000 0.9451 0.9861 0.8700 0.9208 0.9795 0.8842 0.9243 0.9808 0.8867 0.9274 0.9806

CoTTA 0.8785 0.9046 0.9749 0.8900 0.9359 0.9835 0.8714 0.9023 0.9748 0.8742 0.8996 0.9736 0.8785 0.9106 0.9767

LAME 0.8457 0.8873 0.9598 0.8128 0.8943 0.9603 0.8057 0.8113 0.9219 0.8042 0.8582 0.9457 0.8171 0.8628 0.9469

VIDA 0.8514 0.8912 0.9704 0.8585 0.9241 0.9801 0.8471 0.9055 0.9757 0.8685 0.9082 0.9757 0.8564 0.9072 0.9753

COME 0.8785 0.9108 0.9692 0.8900 0.9442 0.9862 0.8785 0.9173 0.9786 0.8828 0.9198 0.9791 0.8825 0.9235 0.9787

T2A (Ours) 0.8885 0.9251 0.9800 0.9042 0.9456 0.9862 0.8742 0.9256 0.9798 0.8871 0.9252 0.9810 0.8882 0.9321 0.9817

Intensity level = 3

Source 0.7928 0.8683 0.9630 0.8214 0.8365 0.9467 0.8357 0.8800 0.9697 0.8271 0.8594 0.9609 0.8192 0.8610 0.9600

TENT 0.8728 0.8874 0.9723 0.8471 0.8652 0.9595 0.8500 0.8869 0.9637 0.8628 0.8758 0.9590 0.8581 0.8788 0.9636

MEMO 0.8200 0.8454 0.9572 0.8200 0.8476 0.9567 0.8300 0.8775 0.9681 0.8342 0.8672 0.9639 0.8260 0.8594 0.9614

EATA 0.8728 0.8876 0.9723 0.8457 0.8747 0.9594 0.8528 0.8875 0.9639 0.8628 0.8763 0.9592 0.8585 0.8815 0.9637

CoTTA 0.8514 0.8669 0.9628 0.8357 0.8552 0.9620 0.8528 0.8683 0.9651 0.8571 0.8696 0.9636 0.8492 0.8650 0.9634

LAME 0.8042 0.8455 0.9465 0.8042 0.7832 0.9199 0.8057 0.8167 0.9300 0.8042 0.7452 0.8993 0.8046 0.7977 0.9239

VIDA 0.8471 0.8757 0.9648 0.8285 0.8587 0.9630 0.8371 0.8781 0.9654 0.8400 0.8627 0.9605 0.8382 0.8688 0.9634

COME 0.8571 0.8897 0.9707 0.8514 0.8725 0.9686 0.8542 0.8862 0.9690 0.8657 0.8793 0.9662 0.8571 0.8819 0.9686

T2A (Ours) 0.8728 0.8972 0.9723 0.8485 0.8865 0.9699 0.8514 0.8982 0.9740 0.8700 0.8862 0.9689 0.8607 0.8920 0.9713

Intensity level = 4

Source 0.7142 0.8181 0.9502 0.6957 0.6909 0.9011 0.8200 0.8019 0.9411 0.8057 0.7876 0.9355 0.7589 0.7746 0.9319

TENT 0.8450 0.8836 0.9677 0.7971 0.7568 0.9316 0.8300 0.8372 0.9531 0.8428 0.8433 0.9481 0.8287 0.8302 0.9501

MEMO 0.8085 0.8306 0.9506 0.8085 0.7502 0.9250 0.8271 0.8171 0.9482 0.8228 0.8421 0.9535 0.8167 0.8100 0.9443

EATA 0.8442 0.8737 0.9579 0.7957 0.7658 0.9313 0.8285 0.8375 0.9532 0.8428 0.8437 0.9482 0.8278 0.8301 0.9426

CoTTA 0.8400 0.8352 0.9446 0.7585 0.7158 0.9151 0.8357 0.8323 0.9526 0.8257 0.8357 0.9522 0.8150 0.8048 0.9411

LAME 0.8042 0.7857 0.9296 0.8042 0.6464 0.8706 0.8042 0.8010 0.9306 0.8042 0.6581 0.8662 0.8042 0.7228 0.8993

VIDA 0.8528 0.8581 0.9573 0.7700 0.7173 0.9112 0.8257 0.8235 0.9456 0.8300 0.8287 0.9482 0.8196 0.8069 0.9406

COME 0.8485 0.8757 0.9657 0.7985 0.7618 0.9342 0.8271 0.8279 0.9428 0.8400 0.8514 0.9569 0.8285 0.8292 0.9424

T2A (Ours) 0.8457 0.8838 0.9678 0.8042 0.7692 0.9426 0.8285 0.8376 0.9533 0.8414 0.8536 0.9579 0.8300 0.8360 0.9554

Intensity level = 5

Source 0.6614 0.7780 0.9368 0.7085 0.6616 0.8841 0.6800 0.8003 0.9438 0.8042 0.6997 0.8995 0.7135 0.7349 0.9160

TENT 0.8514 0.8499 0.9475 0.7514 0.7020 0.9051 0.7971 0.8119 0.9470 0.8171 0.8067 0.9403 0.8042 0.7926 0.9349

MEMO 0.8157 0.8205 0.9450 0.8057 0.6936 0.9035 0.8185 0.7926 0.9417 0.8100 0.7988 0.9399 0.8125 0.7764 0.9325

EATA 0.8500 0.8500 0.9477 0.7514 0.7021 0.9052 0.7929 0.8052 0.9372 0.8185 0.8088 0.9433 0.8032 0.7915 0.9333

CoTTA 0.8114 0.8019 0.9295 0.7285 0.6772 0.8938 0.7742 0.7750 0.9340 0.8128 0.7939 0.9385 0.7817 0.7620 0.9239

LAME 0.6700 0.6607 0.8939 0.8042 0.5566 0.8287 0.7557 0.7404 0.9172 0.8042 0.5966 0.8438 0.7585 0.6385 0.8709

VIDA 0.8300 0.8391 0.9484 0.7500 0.6722 0.8860 0.800 0.7962 0.9395 0.8071 0.7843 0.9310 0.7967 0.7730 0.9262

COME 0.8457 0.8516 0.9540 0.7485 0.6980 0.9066 0.8057 0.8040 0.9405 0.8157 0.8098 0.9432 0.8039 0.7808 0.9260

T2A (Ours) 0.8564 0.8601 0.9577 0.7557 0.7031 0.9054 0.7942 0.8150 0.9469 0.8257 0.8102 0.9440 0.8080 0.7971 0.9385

Table 8: Improvement of deepfake detectors to unknown postprocessing techniques from intensity level from 1 to 5.

Method
Color Saturation Color Contrast Gaussian Blur Resize Average

ACC AUC AP ACC AUC AP ACC AUC AP ACC AUC AP ACC AUC AP

Intensity level = 1

CORE 0.9000 0.9441 0.9852 0.8957 0.9444 0.9855 0.9042 0.9423 0.9846 0.9028 0.9426 0.9847 0.9006 0.9434 0.9850

CORE + T2A 0.8985 0.9313 0.9784 0.9042 0.9329 0.9794 0.8942 0.9203 0.9729 0.8942 0.9214 0.9742 0.8977 0.9265 0.9762

F3Net 0.9028 0.9629 0.9910 0.9114 0.9634 0.9911 0.8971 0.9570 0.9895 0.8900 0.9555 0.9891 0.9003 0.9597 0.9902

F3Net + T2A 0.9071 0.9594 0.9900 0.9057 0.9607 0.9902 0.8942 0.9554 0.9891 0.9042 0.9523 0.9881 0.9028 0.9570 0.9894

RECCE 0.8971 0.9508 0.9871 0.9042 0.9521 0.9875 0.8971 0.9349 0.9824 0.8914 0.9357 0.9829 0.8975 0.9434 0.9850

RECCE + T2A 0.8971 0.9366 0.9825 0.8942 0.9368 0.9827 0.8871 0.9236 0.9779 0.8871 0.9242 0.9787 0.8914 0.9303 0.9805

Effi. B4 0.9100 0.9615 0.9905 0.9100 0.9607 0.9903 0.8971 0.9401 0.9844 0.8957 0.9411 0.9847 0.9032 0.9509 0.9875

Effi. B4 + T2A 0.8871 0.9393 0.9844 0.8914 0.9396 0.984 0.8871 0.9292 0.9813 0.8842 0.9287 0.9808 0.8875 0.9342 0.9826

Intensity level = 2

CORE 0.8814 0.9272 0.9809 0.8242 0.8861 0.9685 0.8542 0.9176 0.9770 0.8628 0.9179 0.9780 0.8557 0.9122 0.9761

CORE + T2A 0.8857 0.9160 0.9749 0.8614 0.8990 0.9705 0.8657 0.8992 0.9679 0.8714 0.9001 0.9683 0.8711 0.9036 0.9704

F3Net 0.8985 0.9359 0.9836 0.8557 0.9205 0.9791 0.8685 0.9293 0.9819 0.8857 0.9280 0.9805 0.8771 0.9284 0.9813

F3Net + T2A 0.8928 0.9512 0.9880 0.8757 0.9246 0.9786 0.8700 0.9193 0.9787 0.8871 0.9311 0.9885 0.8814 0.9316 0.9835

RECCE 0.8542 0.9119 0.9756 0.8157 0.8743 0.9640 0.8628 0.8870 0.9670 0.8757 0.9073 0.9742 0.8521 0.8951 0.9702

RECCE + T2A 0.8771 0.9254 0.9796 0.8714 0.9001 0.9717 0.8714 0.8924 0.9675 0.8742 0.8981 0.9698 0.8735 0.9040 0.9722

Effi. B4 0.8857 0.9422 0.9854 0.8171 0.9202 0.9789 0.8785 0.9009 0.9715 0.8728 0.9121 0.9759 0.8635 0.9189 0.9779

Effi. B4 + T2A 0.8885 0.9190 0.9779 0.8871 0.8985 0.9699 0.8728 0.9001 0.9708 0.8628 0.9006 0.9729 0.8778 0.9046 0.9729

Intensity level = 3

CORE 0.8328 0.8333 0.9514 0.8057 0.8205 0.9401 0.8071 0.8534 0.9538 0.8414 0.8714 0.9644 0.8218 0.8447 0.9524

CORE + T2A 0.8514 0.8639 0.9600 0.8600 0.8716 0.9564 0.8457 0.8576 0.9542 0.8485 0.8646 0.9595 0.8514 0.8644 0.9575

F3Net 0.8528 0.8676 0.9627 0.7657 0.8310 0.9509 0.8357 0.8704 0.9644 0.8100 0.8800 0.9671 0.8161 0.8623 0.9613

F3Net + T2A 0.8857 0.9191 0.9771 0.8571 0.8840 0.9641 0.8471 0.8829 0.9660 0.8542 0.8882 0.9667 0.8610 0.8936 0.9685

RECCE 0.8242 0.8014 0.9355 0.7928 0.7976 0.9319 0.8171 0.8201 0.9430 0.8300 0.8378 0.9505 0.8160 0.8142 0.9402

RECCE + T2A 0.8385 0.8498 0.9555 0.8457 0.8622 0.9542 0.8371 0.8496 0.9527 0.8442 0.8545 0.9524 0.8414 0.8540 0.9537

Effi. B4 0.8314 0.8180 0.9394 0.6742 0.8434 0.9539 0.8100 0.8346 0.9463 0.8357 0.8414 0.9555 0.7878 0.8344 0.9488

Effi. B4 + T2A 0.8500 0.8352 0.9460 0.8542 0.8588 0.9511 0.8485 0.8583 0.9556 0.8314 0.8492 0.9529 0.8460 0.8504 0.9514

Intensity level = 4

CORE 0.7542 0.6845 0.8978 0.7871 0.7571 0.9008 0.8000 0.7604 0.9175 0.8071 0.8188 0.9438 0.7871 0.7552 0.9150

CORE + T2A 0.7942 0.7367 0.9136 0.8442 0.8467 0.9530 0.8385 0.8256 0.9434 0.8142 0.8043 0.9374 0.8228 0.8033 0.9369

F3Net 0.8057 0.7018 0.8991 0.7428 0.7486 0.9152 0.8057 0.7542 0.9232 0.7671 0.8203 0.9442 0.7803 0.7562 0.9204

F3Net + T2A 0.8185 0.7970 0.9366 0.8414 0.8448 0.9457 0.8185 0.8501 0.9578 0.8285 0.8261 0.9453 0.8267 0.8295 0.9464

RECCE 0.7957 0.6581 0.8743 0.7657 0.7559 0.9135 0.8042 0.7453 0.9125 0.7671 0.7782 0.9286 0.7832 0.7344 0.9072

RECCE + T2A 0.7728 0.7158 0.9000 0.8242 0.8358 0.9458 0.8200 0.8138 0.9403 0.8128 0.7884 0.9316 0.8075 0.7885 0.9295

Effi. B4 0.8157 0.6537 0.8700 0.5628 0.7847 0.9320 0.8028 0.7005 0.8951 0.7928 0.7899 0.9313 0.7435 0.7322 0.9071

Effi. B4 + T2A 0.7685 0.7174 0.9087 0.8271 0.8281 0.9393 0.8228 0.7966 0.9342 0.8128 0.7923 0.9373 0.8078 0.7836 0.9299

Intensity level = 5

CORE 0.7500 0.6444 0.8823 0.7642 0.7142 0.8794 0.8014 0.6590 0.8717 0.7657 0.7633 0.9281 0.7703 0.6952 0.8904

CORE + T2A 0.7771 0.7008 0.8968 0.8342 0.8238 0.9444 0.8042 0.7784 0.9312 0.7914 0.7602 0.9178 0.8017 0.7658 0.9226

F3Net 0.8114 0.6300 0.8701 0.7428 0.6893 0.8826 0.8000 0.6500 0.8809 0.7185 0.7778 0.9351 0.7682 0.6868 0.8922

F3Net + T2A 0.8014 0.7421 0.9078 0.8228 0.8259 0.9419 0.7928 0.7906 0.9380 0.7957 0.7811 0.9346 0.8032 0.7849 0.9306

RECCE 0.8028 0.6351 0.8688 0.7614 0.7144 0.8959 0.7985 0.6808 0.8823 0.7042 0.7103 0.9055 0.7667 0.6852 0.8881

RECCE + T2A 0.7600 0.6882 0.8853 0.8157 0.8143 0.9391 0.7928 0.7651 0.9237 0.7857 0.7479 0.9151 0.7886 0.7539 0.9158

Effi. B4 0.8028 0.6109 0.8458 0.5257 0.7232 0.9102 0.8014 0.5882 0.8454 0.7600 0.7447 0.9159 0.7225 0.6668 0.8793

Effi. B4 + T2A 0.7371 0.6451 0.8691 0.8028 0.7952 0.9259 0.7957 0.7515 0.9160 0.7685 0.7588 0.9188 0.776 0.7377 0.9075

	Introduction
	Related Work
	Deepfake Detection
	Test-time Adaptation (TTA)
	Negative Learning

	Generation Artifacts Analysis
	Methodology
	Problem Definition
	Revisitting Entropy Minimization (EM)
	Uncertainty-aware Negative Learning
	Uncertainty Modelling with Noisy Pseudo-Labels
	Noise-tolerant Negative Loss Function

	Uncertain Sample Prioritization
	Gradients Masking

	Experiments
	Setup
	Datasets and modeling
	Metrics
	Postprocessing Techniques
	Baselines
	Implementation

	Experimental Results
	Comparison with SoTA TTA Approaches
	Adaptability Improvement over Deepfake Detectors

	Conclusion
	Proofs
	Proof for Theorem 4.1
	Proof for Lemma 3.2

	More Experiments of Generation Artifacts
	Experimental Details
	Datasets
	Training dataset.
	Test datasets.

	Intensity Levels of Postprocessing Techniques
	Implementation Details
	TTA baselines
	DF Detection baselines
	Hyperparameters

	More Experimental Results
	Ablation Study
	Analysis on Components of T2A method
	Analysis on Proposed Loss Functions

	Full results of comparison with SoTA TTA methods under unknown postprocessing techniques
	Full results of improvements of DF detectors under unknown postprocessing techniques
	Wall-clock running time of T2A

