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Abstract—Many critical information technology and cyber-
physical systems rely on a supply chain of open-source software
projects. OSS project maintainers often integrate contributions
from external actors. While maintainers can assess the cor-
rectness of a change request, assessing a change request’s
cybersecurity implications is challenging. To help maintainers
make this decision, we propose that the open-source ecosystem
should incorporate Actor Reputation Metrics (ARMS). This
capability would enable OSS maintainers to assess a prospective
contributor’s cybersecurity reputation. To support the future
instantiation of ARMS, we identify seven generic security signals
from industry standards; map concrete metrics from prior work
and available security tools, describe study designs to refine and
assess the utility of ARMS, and finally weigh its pros and cons.

Index Terms—Software Supply Chain, Reputation systems

I. INTRODUCTION

Most commercial software depends on open-source software
components [1]. Although this approach reduces development
costs, it results in a software supply chain that exposes
an organization to cybersecurity risks [2], [3]. Many prior
works have examined software supply chain security failures
and have developed security techniques [4]–[6], engineering
processes and frameworks [7]–[9]. These works have had
substantial success, e.g., the now widely-used Sigstore project
for provenance [4], and OpenSSF Scorecard project [10] for
process. However, prior works have paid little attention to the
actor element of the software supply chain [8].

In this vision paper, we propose ARMS, an Actor Reputation
Metric System, to track the security qualifications of engineers
in the open-source software supply chain. We first define
ARMS’s requirements based on the threat model in this
context. We then propose a conceptual design for a reputation-
based framework that evaluates an actor’s trustworthiness.
Next, to obtain indicators of security skill and expertise, we
map high-level recommendations from frameworks like SLSA
and CNCF to specific, measurable metrics derived from prior
research and existing security tools. We outline evaluations
to assess the implementation and effectiveness of an ARMS
system. Finally, we discuss potential future directions and
improvements for our approach.

Our proposal explores the development and operational-
ization of actor-based metrics to address software supply
chain security failures. While our proposal requires careful

implementation to align with developers’ perspectives and
project needs, we hope it brings greater research attention to
the actor side of the software supply chain.

Our contributions are:
• We propose Actor Reputation Metric Systems (ARMS) to

support open-source maintainers in vetting contributions
from unknown engineers. Focusing on cybersecurity, we
identify signals that could indicate cybersecurity expertise,
and metrics that could be used to operationalize those
signals.

• We design experiments that could be used to evaluate
ARMS, and discuss the pros and cons of deploying such
a system.

II. BACKGROUND AND MOTIVATION

A. The Open-Source Software Supply Chain

Open-source software is widely integrated into commer-
cial [11] and government [12] systems. Any individual open-
source component is developed by a maintainer team. With
their approval, outsiders may be permitted to contribute
code [13]. Beyond this direct incorporation of external con-
tributions, each such project often depends on others as
components, recursively. This web of interdependencies is a
feature of open-source development, allowing (in an idealized
world) a reduction in repeated effort [14]. However, each
additional point of trust increases the potential attack surface.
From the perspective of the downstream application, the result
is a software supply chain that can be attacked either through
its artifacts or through its actors [15].

We follow the software supply chain definition of Okafor et
al. [8]: in their production and distribution, software artifacts
undergo a series of operations overseen by actors. This
definition indicates that a software supply chain can be secured
only through attention to all of these entities.

B. Artifact-Based Evaluations Are Not Enough

A key activity in open-source projects is expanding the
actor pool by introducing new maintainers and contributors
into projects [13]. As a software package gains popularity,
interest from potential contributors increases [16]–[18], often
resulting in onboarding new maintainers and merging change
requests from new contributors. Evaluating these individuals
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may involve reputational factors such as community status
and connections [16], [19], [20], but security considerations
are rarely enforced due to the challenges OSS teams face in
managing security resources effectively [21], [22].

As argued by Okafor et al. [8], most cybersecurity work
takes an artifact-based perspective. Efforts to develop static
and dynamic security analysis tools (SAST, DAST) [23], refine
code reviews [24], [25], and assess artifact provenance [4],
[26], [27] are all focused on confirming that an artifact is, to
the limits provided by the technique, reliable. While this is
not an unreasonable strategy, there are many reasons to avoid
relying exclusively on artifact checks, such as:
• Reliance on known vulnerabilities. Automated scanners

typically match code against vulnerability databases; there-
fore, zero-day flaws or novel attack vectors often evade
detection [28] e.g., Log4j [29].

• Biased human review. Manual code reviews and audits
are applied inconsistently, frequently favoring contributors
familiar to project maintainers [18], [19], [30].

• Scalability constraints. As projects grow, sustaining thor-
ough artifact checks becomes resource-intensive, leading to
superficial reviews or delayed patching [30], [31].

• Limited socio-technical insight. Artifact-centric methods
inspect code but ignore the developer behaviors and work-
flows that often precipitate security issues [32].

These shortcomings underscore the need for actor-based secu-
rity measures, rather than considering code in isolation from
its author. We thus turn now to reputation as a means of
estimating the quality of an actor’s contributions.

C. Using Actor Reputation to Establish Trust

Reputation systems establish trust between parties who have
not been previously connected [33]. When social systems inte-
grate reputation, incentives associated with positive reputation
can encourage good behavior over time [34]. Following Hen-
drikx et al. [35], any reputation system has three interacting
entities:
• Trustor: The party placing trust (e.g., the maintainer team).
• Trustee: The party being evaluated (e.g., a potential con-

tributor).
• Trust Engine (Recommender): The broker that supplies

the trustor with information about the trustee (interaction
data). Its design varies by application and threat model —
e.g., for communication [33], online-auction [36], etc.

Two common examples of reputation systems in software engi-
neering are GitHub’s star system [37] and the Stack Overflow
point-based system [38]. Both of these systems can be used
by a trustor to quantify the number of users satisfied with
a trustee’s projects and contributions [39]. As a result, they
might influence which GitHub projects an engineer (trustor)
may deem to be reliable [40], and which Stack Overflow
answers may be trusted by their readers [41].

In the following sections, we introduce ARMS to formalize
the concepts of an actor reputation metric system to promote
cybersecurity within the OSS ecosystem.

III. THREAT MODEL

A. Threat Actors

The goal of ARMS is to provide project maintainers with
measurements of the security expertise of prospective contrib-
utors or maintainers. ARMS operates within a context with
three kinds of threat actors:
1) Inexperienced Contributors/Inadvertent Vulnerability:

Contributors who lack sufficient security expertise — e.g.,
they are unfamiliar with standard security practices and
tooling within the ecosystem — attempt to join or main-
tain OSS projects, potentially introducing vulnerabilities
through mistakes [42], [43].

2) Reputation Spoofing: Malicious actors deliberately craft
the appearance of security expertise to gain collaborator or
maintainer status.

3) Impersonation. Impersonation occurs when a malicious
actor gains control of a legitimate user’s account (e.g., via
key compromise [44], [45]).

Our ARMS approach considers the first two classes of
threat. The third class, impersonation threats, are out of
scope — they undermine the assumption of stable identities
necessary for a reputation-based system [46].

B. Examples

We give examples of each kind of threat we outlined above.
1) Dexcom (Inadvertent Vulnerability): Dexcom is a med-

ical device company whose products include continuous glu-
cose monitors (CGMs) used by diabetics [47]. Their CGM
products were the first to incorporate “smart” capabilities such
as pushing health notifications to one’s smartphone. In 2019,
Dexcom’s engineers made an error leading to a service outage,
resulting in a lack of notifications; many were hospitalized and
at least one death is attributable [48]. This was the second
such outage in a 12-month window. Although we presume
that Dexcom is not intentionally harming its customers, its
engineers’ inability to sustain a safety-critical system suggests
inadequate experience for this class of work.

2) XZ Utils Backdoor (Reputation Spoofing): In March
2024, a backdoor was discovered in XZ Utils, an open-source
compression tool, which allowed attackers to gain root priv-
ileges and execute malicious code on affected systems [49].
The vulnerability was introduced by an actor who had built
trust within the project through non-malicious contributions,
and they were eventually promoted to co-maintainer [49]. In
retrospect, this particular actor had several suspicious reputa-
tional signals, most notably having no accounts on other sites
and no history of contributions to other projects.

3) ESLint Credential Compromise (Impersonation): ES-
Lint, a widely used static analysis tool in the npm ecosystem
for scanning JavaScript code, was compromised on July 12,
2018 [45]. Attackers gained access to a maintainer’s npm
credentials and published malicious package updates to the
npm registry [50]. Because the attacker used the identify of a
reputable maintainer, a reputation system (which assume stable
identities) could not anticipate this attack.
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Fig. 1: Overview of proposed ARMS system and context case study. Potential contributors (trustees), who may be malicious
(Actor A), inadequately expertised (Actor B), or genuine (and capable) (Actor C), express interest or submit change requests
. The maintainer team (trustors) requests reputation information on these contributors. The ARMS system retrieves each
contributor’s interaction history and quantifies it using the defined security signals and metrics (Interaction data formatter &
security signal scoring). Next, the reputation calculator weights these signal values by package usage, community tenure, and
centrality, then composites the results and compares them to ecosystem-wide benchmarks (Impact & Benchmark Scoring).
Finally, each trustee’s reputation score and recommended action are provided to the maintainer team.

IV. ARMS CONCEPTUAL MODEL

To formalize an OSS actor reputation system for GitHub,
we propose a reputation system based on the reference model
of Hendrikz et al. [35] described earlier, and adapt it to the
OSS supply chain context. The following subsections outline
our proposed system, define security metrics for an actor’s
security reputation, and propose evaluation metrics to measure
the effectiveness of these security metrics.

A. System Overview

Our proposed system follows the three-element model of
Hendrikx et al. (§II-C) comprising a trustor, a trustee, and
a trust engine. In the open-source supply chain, the trustor
and trustee already exist—e.g., the maintainer team serves as
the trustor, and a potential contributor is the trustee. Our work
focuses on operationalizing the trust engine component, which
is currently absent from the open-source ecosystem.

We describe our proposed system and case study in Fig-
ure 1. Interaction history defines the core of our reputation
computation, and in our system, we focus specifically on
security-related interactions defined by recommended security
practices. Although some work has been done on trust
establishment in OSS [51], the proposed frameworks are
based on defining trust, our work operationalizes trust with
reputation systems. In the next section, we define metrics to
assess security interactions and history within a typical OSS
ecosystem.

B. Interaction Data – Security Signals and Metrics Definitions

Our system computes reputation from an actor’s historical
interactions within the ecosystem. We categorize these inter-
actions by security signals and quantify each signal using
measurable metrics.

To define appropriate security signals and metrics, we
consider: (1) alignment with widely accepted security recom-
mendations, (2) the actor’s demonstrated adherence to good
security practices in previous contributions and to significant
projects, and (3) a history of non-malicious contributions.

From these considerations, we derive our security metrics
from two kinds of sources:

1) Security standards and recommendations: We consulted
frameworks like the SLSA security framework [57], the
CNCF software supply chain security guidelines [58],
the NIST SSDF security framework [59], NIST SP 800-
204D [60], Openssf S2C2F [61], and the CIS Software
Supply Chain Security Guide [62]. Common recommenda-
tions across these sources were used to ensure the selection
of well-established security practices.

2) Available security tools in the OSS ecosystem: We
identified security tools available through GitHub’s user
interface and API, which reflect the security capabilities
easily available to contributors on the platform.

We grouped the resulting metrics into seven categories –
Security Signals, based on contributors’ security tool usage
and vulnerability management practices. A summary appears
in Table I. This resulted in seven security signals
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Table I: Proposed security signals. Bolded signal categories are derived from security recommendations (e.g, NIST, CNCF,
etc). The proposed evaluation metrics in Table II offer ways to evaluate the signals below.

S/N. Proposed Signals & Analysis Metrics Description

SECURITY SIGNALS

1. Security vulnerability in artifact – Pull Requests/Commits [51]–
[53]

Measures vulnerabilities introduced through pull requests or commits. Introduced either by
the user or to a project owned by the user.

2. Security vulnerability in artifact – use of vulnerable dependencies
[51], [52]

Assesses the use and introduction of vulnerable dependencies into the artifact.

3. Use of ecosystem code scanning and security analysis features [54] Evaluates usage of ecosystem’s security tools for code scanning.

4. Use of ecosystem integrity guarantees [27] Examines use of ecosystem integrity features (e.g., code signing).

5. Use of branch protection [6], [55] Checks if branch protection is enforced to prevent unauthorized changes.

6. Use of security policies and vulnerability reporting [55] Determines if the project has security policies and reporting mechanisms.

7. Use of automated workflows [55] Assesses use of [55] automation in workflows to enforce security.

REPUTATION WEIGHTAGE SIGNALS

W1. Package Usage [56] Weighs the utility of the potential contributor’s owned projects

W2. Community Tenure [51] Weighs the the length of the contributor’s belonging to the ecosystem

W3. Centrality Score [18] Weighs the degree of connections of the potential contributor to other actors in the
ecosystem.

C. Trust Engine – Reputation Computation

In this section, we outline the core functionality of the
trust engine’s reputation score computation (see Figure 1).
First, the interaction data formatter and security signal scorer
extracts each contributor’s ecosystem interaction history and
quantify each signal according to the metrics in Table II. These
base measurements capture a user’s adherence to the defined
security signals and their contribution patterns.

Next, ARMS evaluates each contributor’s reputation. To ac-
count for the risk posed by a contributor’s activities within the
ecosystem, we refine the initial signal scores by incorporating:

Impact Score – (Weightage Signals Table I (W1-W3)):

1) Package Usage Weighting: Projects with no users (e.g.,
private repositories or those with zero forks/downloads)
should not contribute to the user’s evaluation score, as they
present minimal supply chain risk.

2) Community Tenure Weighting [51]: This ensures that
newer users do not unduly influence their reputation score,
addressing concerns like those in the ”XZ utils” situa-
tion [63], where malicious activity was introduced by new
members.

3) Centrality Score Weighting [18]: Centrality—an actor’s
level of connectedness within the ecosystem based on con-
tribution activities—can be crucial for scaling reputation.
We suggest evaluating not only the number of connections
(edges) but also the time taken to establish them.

Benchmark Score:

1) Combination of multiple security metrics/Composite
Scoring: A holistic evaluation will aggregate a user’s
performance across various security metrics, offering a
comprehensive view of their adherence to security prac-
tices. This approach minimizes false positives and negatives
by drawing from multiple metrics, as seen in the OpenSSF

scorecard [64]. Each metric’s weighting will be based on
its effectiveness analysis §V-A.

2) Ecosystem Benchmarks: User performance will be bench-
marked against the average or median reputation scores
across the ecosystem to provide a relative measure of
security adherence.

V. DESIGN OF EXPERIMENTS FOR ARMS

In this section, we outline potential studies to establish and
evaluate the feasibility of an actor reputation system, exempli-
fied by ARMS, and general use of actor metrics to establish
trust in software supply chain security. These complemen-
tary studies—primarily observational or retrospective—aim to
validate and refine the proposed security-reputation metrics
and assess the real-world impacts of deploying ARMS. We
categorize these studies into two groups: (1) evaluating the
effectiveness of the proposed security metrics, and (2) exam-
ining user behaviors.

A. Security Metrics Effectiveness Evaluation – Quasi-
Experimental Analyses

To evaluate the utility of the proposed security signals, we
propose the following quasi-experimental studies to determine
whether the signals reliably predict poor security practices.
1) Inter-metric Relationship Study: Compare OSS projects

that adopted a given security practice (e.g., branch pro-
tection) to matched control projects that did not, using a
difference-in-differences design. We will analyze the re-
sults with regression models incorporating project and time
fixed effects and interaction terms for the paired metrics to
isolate their combined impact on security outcomes.
• Data: Historical GitHub records for projects within the

same domain, similar size, and activity levels.
• Outcomes: Changes in vulnerability incidence (Signals

1–2) and shifts in contributor behaviors (Signals 3–7).
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• Ethics: Uses only publicly available data, avoiding addi-
tional data collection or privacy concerns.

2) Retrospective Incident Prediction Study: Identify
projects that experienced known supply-chain incidents
(e.g., npm/Event-Stream, ua-parser-js) and compare their
pre-incident signal profiles against similar “clean” projects.
• Data: Metric values for each project’s maintainers before

the incident.
• Analysis: Logistic regression (with interaction terms) to

determine which signals best predict incident occurrence.

B. User Behavioural Studies – Surveys & Interviews

To evaluate the practical usability of actor metrics in OSS
Supply chain security, we propose the following studies:
1) Collaborator Vetting Study: We propose a Recruitment

of active OSS maintainers to participate in a vignette study
[65]. This would present anonymized contributor profiles
with varying metric scores, and measure time-to-decision
(vet vs. reject) and how variations on the proposed ARMS
signals would influence these choices. This method would
gather qualitative feedback on signal clarity and usefulness.

2) Chilling Effect: A potential issue with establishing an ac-
tor reputation system is the possibility of “chilling effect,”
[66] where contributors may hesitate or reduce participation
if they know their interactions are being tracked and scored
[66]–[68]. We propose a user survey study to assess con-
tributors’ willingness to participate under different tracking
scenarios (e.g., “all projects” vs. “critical only”), and to
quantify perceived privacy risks and impact of monitoring
activities on contribution intent.

Ultimately, we do expect some chilling effects. To mit-
igate them, we recommend limiting the deployment of an
ARMS approach to high-impact, security-sensitive OSS
projects (e.g., the Linux kernel) rather than applying it to
hobby or low-risk repositories. To effectively do this, there
is need to develop an effective project importance score.
OpenSSF’s criticality score [69] may be used or serve as a
starting point. We recommend surveying OSS contributors
to gauge a suitable threshold of criticality.

C. Worked Examples

We illustrate how our proposed system could have worked
in the earlier described examples §III-B.

1) XZ Utils Attack: The timeline of events leading to the
XZ Utils backdoor reveals several characteristics that map to
our proposed security signals [70]:
1) Recent account: The attacker created a GitHub account in

January 2021 and joined the XZ Utils project in October
2021—well within their first year of activity.

2) Limited public history: Prior to October 2021, their
contributions were confined to private repositories.

3) Targeted feature change requests: Their first public
change request focused on adding features to a small set
of projects rather than fixing issues.

Under our framework, these traits would yield a low repu-
tation score:

• Signal Metrics (Signals 1-7) penalize sparse or opaque
contribution histories.

• Community tenure (Signal W2) reduces scores for newly
created accounts.

• Centrality (Signal W3) remains low because the user’s
contribution network is both recent and shallow.
2) Dexcom: The Dexcom engineers’ case revealed repeated

failures that lasted for extended periods. In one incident, an
issue persisted from November 28 to December 3, 2019,
halting Dexcom systems and severely impacting availability.
Under our framework, this would be reflected in lower scores
for Signals 1 and 2 (time to fix vulnerabilities and severity
levels), as recurrent downtime directly reduces the reputation
of engineers responsible for critical systems.

3) ESLint Compromise: The 2018 ESLint compromise
was traced to an attacker breaching a maintainer’s ac-
count—enabled by the absence of two-factor authentication.
This type of attack cannot be modeled by reputation systems
because the attacker took over a legitimate account without
performing any genuine contributor actions or exhibiting the
behavioral signals that these systems track. This is why we
deem it out of scope in the system threat Model §III.

VI. DISCUSSIONS AND FUTURE WORKS

A. Threats to Validity

We begin by outlining some potential issues with our
proposal:
1) False Positives and Negatives: There is a risk of mis-

assigning reputation, resulting in inappropriate character-
izations of users as more or less trustworthy. Our defini-
tions and metrics do not account for all interactions that
could detect incompetence or malicious activities, espe-
cially non-artifact interactions such as social engagements,
organizations, security communications, feedback to code
reviews, etc. To mitigate this, we recommend a weighted
combination of metrics, with each metric’s effectiveness
considered in §V-A. Using ecosystem-wide averages and
standard deviations can also help raise the threshold for
issuing advisories based on user scores.

2) Insider Threats: As a special case of false negatives, we
emphasize that any reputational system is ineffective for
insider threats where trust is deliberately built over time.
However, such attacks are costly for an adversary.

3) Defining Security Interactions: As stated, our work envi-
sions operationalizing actor trust security metrics; however,
we acknowledge the inadequacies of our proposed security
metrics. We encourage further research in defining trust,
especially concerning the interactions between security
metrics.

4) Privacy Concerns: Making scores public could unfairly
harm honest actors. To address this, we propose that
scores remain private, accessible on a need-to-know basis.
Advisories based on these scores would be shared only
with maintainers of projects to which the user wishes to
contribute.
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5) Gameability of Proposed Metrics: Our security metrics,
like any trust-based system, can be exploited. Users may
act, individually or in collusion, to enhance their reputation.
We mitigate this risk with time-weighted scoring and
recommend incorporating human oversight (e.g., reporters
and moderators) for nuanced judgments. However, we
acknowledge that trust and safety issues plague all online
platforms [71], and a reputation system would be no
exception.

6) Possibility of Chilling Effect: Discussed in §V-B.

B. Evaluating Actor Intent

Our work assumes that actors are well-intentioned and
attributes security failures to genuine contributors’ lack of
expertise or mistakes; it does not account for malicious intent.
However, some supply-chain incidents arise from malicious
actors using techniques such as account spoofing or credential
theft. Incorporating intent into reputation systems substantially
increases their complexity. Although our current security sig-
nals focus on expertise and behavior, they do not capture
actor intent. Future work should extend these metrics to infer
intent— for example, by analyzing anomalous contribution
patterns, unusual social graph connections, or timing irreg-
ularities, ultimately creating a more comprehensive reputation
model.

C. Supporting Ecosystem Heterogeneity

Reputation systems fundamentally face actor-identification
challenges [72], [73]. This issue is especially pronounced in
open-source ecosystems, where contributors manage artifacts
across multiple platforms—from source repositories to pack-
age registries. Although next-generation software-signing tools
have improved artifact-to-actor verification [4], [74], [75],
reliable cross-platform identification remains vulnerable to
identity theft, impersonation, and other attacks. Consequently,
ARMS requires stronger mechanisms to verify and vouch for
identities across diverse environments.

To provide possible solutions, recent initiatives (e.g., CISA’s
RFI for software identifier ecosystems [76]) propose es-
tablishing identities through multiple institutions—some de-
signed to preserve privacy [77], [78]. Adapting these models
across ecosystems introduces the dual challenges of federa-
tion—enabling actors in one ecosystem to be recognized in
another—and roaming—allowing actors to transfer their iden-
tifier and reputation between providers. Federation and Roam-
ing are challenges reminiscent to other federation protocols
work (e.g., OIDC [79] and Distributed Identities [80]). Thus,
for an actor reputation system like ARMS, institutions across
ecosystems must collaborate and share reputation information
whenever a software artifact from one ecosystem A is used in
another ecosystem B.

D. Social & Process Signals: Beyond Artifact Contributions

Our current security (and weightage) signals (Table I) focus
exclusively on an actor’s artifact contributions. As noted in
our approach criticisms, we have not yet captured an actor’s

interactions with other users—such as code-review feedback,
issue discussions, and peer endorsements—which could pro-
vide valuable reputational insights.

We also recommend developing process-based metrics to
evaluate informal OSS practices. Process-based methods [81]
are most effective in structured development environments.
However, in open-source ecosystems—where formal processes
are often absent [82]—proxy process metrics can still gauge
adherence to security best practices. For example, one could
measure the frequency of explicit threat-model or design-
review discussions in issues or change requests, track the
presence and pass rate of automated security scans (e.g.,
SAST, SBOM generation) in continuous integration work-
flows, and monitor the regularity of dependency updates
following published vulnerability disclosures. By combining
artifact, social, and process signals, ARMS can deliver a more
holistic reputation assessment for contributors in open-source
ecosystems.

E. Ethical and Privacy Considerations

A system that records actor activities inevitably raises ethi-
cal and legal concerns. Actors must provide informed consent
before their ecosystem activities are disclosed to projects they
wish to join. At the same time, project owners need actionable
insights into a contributor’s security posture. Balancing these
interests requires privacy-preserving disclosure.

We propose that (i) contributors opt in to sharing reputa-
tional data, (ii) only aggregated or pseudonymized metrics
(e.g., differential-privacy noise or percentile rankings) are
revealed to maintainers, and (iii) contributors receive dash-
boards that show exactly what information will be shared.
Compliance with regulations such as GDPR [83] should
guide data-retention periods, user-deletion requests, and audit
logging. Future prototypes should incorporate cryptographic
approaches—such as zero-knowledge proofs or secure mul-
tiparty computation—to prove adherence to security metrics
without exposing raw activity logs. Key directions include:
Designing and evaluating privacy-preserving reputation pro-
tocols, conducting user studies to gauge contributor consent
thresholds and maintainer information needs, and integrating
regulatory compliance checks and automated audit trails into
the prototype.

F. Why Focus Reputation on Cybersecurity?

We have situated the ARMS approach within the context
of cybersecurity. The ARMS metrics can, of course, be ex-
tended in order to infer properties of engineers other than
their cybersecurity expertise. We suggest that doing so for
functional properties (i.e., input-output behaviors that can be
validated through testing) may be unnecessary — standard
engineering practices call for code contributions to be accom-
panied by adequate tests, such that functional properties can
be assured through reference to the test results. Not so for
non-functional properties, cybersecurity as one of many. It is
for such properties that reputational measures may be more
useful. For example, Cramer et al. recently reported that trust
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and safety defect repairs in social media platforms are rarely
accompanied by automated tests, in part because the validation
is apparently performed through use case analysis rather than
through software behavioral analysis [71]. Similarly, behaviors
for regulatory compliance such as GDPR are challenging
to validate [11]. Since the current state-of-the-art software
validation techniques cannot automatically conclude whether
a system provides non-functional properties such as security,
trust-and-safety, or regulatory compliance — at least not in
a cost-effective manner — we think that ARMS approaches
may be a suitable complementary measure of correctness.

VII. CONCLUSION

In this paper, we explored the characteristics of the open-
source software supply chain that necessitate actor-based
security techniques. We advocate for the implementation of
an actor reputation system to operationalize a framework
for trust within the open-source ecosystem. We introduced
seven security metrics for measuring reputation, alongside
two evaluation methods: one for assessing actor performance
and another for determining the effectiveness of these metrics
in predicting reputation. Lastly, we identified future research
directions, including empirical studies, system prototypes, and
initiatives to maintain actor identities across ecosystems.
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APPENDIX

OUTLINE OF APPENDICES

The appendix contains the following material:
• Appendix A: A comprehensive Signal Metrics Table.
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Table II: Proposed security signals, weighting factors, and evaluation metrics. Bolded security and weighting signals are derived
from established frameworks (e.g., NIST, SLSA, CNCF) and prior work, respectively. The proposed metrics describe how to
measure each highlighted security or weighting signal. Relevant case studies and related research are cited to justify inclusion
of select metrics.

S/N. Proposed Signals & Analysis Metrics Description

SECURITY SIGNALS

1. Security vulnerability in artifact – Pull Requests/Commits Measures vulnerabilities introduced through pull requests or commits. Introduced either by
the user or to a project owned by the user.

a. Time to fix/close security vulnerabilities of various severity levels [51] Time taken to address vulnerabilities detected in pull requests or commits.
b. Severity levels of security vulnerability reported [52] Evaluates the criticality of reported vulnerabilities (low, medium, high), for user’s projects.
c. Presence of vulnerability in PR/commits (not linked to external depen-

dencies) [53]
Measures severity of vulnerabilities that stem from user’s direct contributions.

2. Security vulnerability in artifact – use of vulnerable dependencies Assesses the use and introduction of vulnerable dependencies into the artifact.
a. Length of time before fix [51] Time taken to resolve vulnerable dependencies, after they have been detected (or publi-

cized).
b. Severity levels of package’s reported vulnerability [52] Tracks severity of vulnerabilities in dependencies.
c. Number of Repos/Projects that have a vulnerable dependency Total number of projects affected by vulnerable dependencies as a percentage of users total

projects.
d. Number of vulnerable dependencies/project Assesses how widespread vulnerable dependencies are within each project.
e. Number of projects with reported vulnerable dependencies Measures the overall exposure of projects to vulnerable dependencies.

3. Use of ecosystem code scanning and security analysis features Evaluates usage of ecosystem’s security tools for code scanning.
a. Status of dependabot alerts (for dependencies) [54] Monitors if security alerts for dependencies are being addressed.
b. Status of Secret sharing/Validity Checks Evaluates the management of secret-sharing mechanisms and validity checks.
c. Code scanning and Vulnerability alerts [54] Assesses if security scanning tools are actively used and vulnerability alerts managed.
d. Push Protection Status Checks if protection features are used to block pushes with exposed secrets (e.g., unscanned

code).

4. Use of ecosystem integrity guarantees Examines use of ecosystem integrity features (e.g., code signing).
a. Number of Projects with an integrity guarantee [27] Measures how many projects are secured with integrity verification features such as code

signing.

5. Use of branch protection Checks if branch protection is enforced to prevent unauthorized changes.
a. Number of protected branches per project Evaluates how many branches within each project are safeguarded against direct commits.
b. Number of Projects with Protected branches [55], [64] Tracks how many projects enforce branch protection.

6. Use of security policies and vulnerability reporting Determines if the project has security policies and reporting mechanisms.
a. Status of private vulnerability reporting, or security policy [55] Checks if private vulnerability reporting channels and security policies are established and

functional.

7. Use of automated workflows Assesses use of [55] automation in workflows to enforce security.
a. Number of Projects with Automated workflows [55] Measures how many user’s projects use automated workflows for security enforcement,

such as auto-deployments or auto-tests.

REPUTATION WEIGHTAGE SIGNALS

W1. Package Usage [56]
a. Number of downloads/stars/forks Weighs the potential contributor’s ownership of useful projects to the ecosystem.

W2. Community Tenure [51]
a. Length of time contributing to project Weighs how much time user has been a contributor to other projects.
b. Length of time owning account Weighs how long user has actually owned an account
c. Contributory Strength Weighs the strength of contributions to other projects by lines of code, issues, pull requests

W3. Centrality Score [18]
a. Connections to other Actors [18] Weighs a potential contributor’s network of interactions/contributory activities.
b. Time to form connections Length of time taken to form the connections in ’a’ above.
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