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Highlights
MLRan: A Behavioural Dataset for Ransomware Analysis and Detection
Faithful Chiagoziem Onwuegbuche,Adelodun Olaoluwa,Anca Delia Jurcut,Liliana Pasquale

• MLRan: largest open-source behavioural ransomware dataset (64 families, 4.8K+ samples).
• GUIDE-MLRan provides standardised guidelines for reproducible dataset creation.
• Two-stage feature selection reduced 6.4M features to 483 without accuracy loss.
• SHAP and LIME reveal key ransomware behaviours: strings, registry, and API.
• Fully open-source pipeline: sandboxing, code for feature extraction and selection, ML training, and dataset.
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A B S T R A C T
Ransomware remains a critical threat to cybersecurity, yet publicly available datasets for training
machine learning-based ransomware detection models are scarce and often have limited sample
size, diversity, and reproducibility. In this paper, we introduce MLRan, a behavioural ransomware
dataset, comprising over 4,800 samples across 64 ransomware families and a balanced set of goodware
samples. The samples span from 2006 to 2024 and encompass the four major types of ransomware:
locker, crypto, ransomware-as-a-service, and modern variants. We also propose guidelines (GUIDE-
MLRan), inspired by previous work, for constructing high-quality behavioural ransomware datasets,
which informed the curation of our dataset. We evaluated the ransomware detection performance of
several machine learning (ML) models using MLRan. For this purpose, we performed feature selection
by conducting mutual information filtering to reduce the initial 6.4 million features to 24,162, followed
by recursive feature elimination, yielding 483 highly informative features. The ML models achieved
an accuracy, precision and recall of up to 98.7%, 98.9%, 98.5%, respectively. Using SHAP and LIME,
we identified critical indicators of malicious behaviour, including registry tampering, strings, and
API misuse. The dataset and source code for feature extraction, selection, ML training, and evaluation
are available publicly to support replicability and encourage future research, which can be found at
https://github.com/faithfulco/mlran.

1. Introduction
Ransomware attacks continue to pose a significant threat

to individuals, organisations, and governments worldwide,
causing substantial financial and operational disruptions
(Onwuegbuche, Jurcut and Pasquale, 2023; Beaman,
Barkworth, Akande, Hakak and Khan, 2021; Jeremiah,
Chen, Gritzalis and Park, 2024). Recent statistics showcase
the severity of the threat: in 2023, nearly seven out of
every ten reported cyberattacks were ransomware-based,
with over 317 million attempts recorded 1. The financial
impact is equally staggering, with the average cost per
incident reaching $1.85 million 2, and projections suggest
that by 2031, global damage costs could soar to $265 billion
annually, with an attack occurring every two seconds 3.
These alarming figures not only illustrate why ransomware
is now regarded as the foremost cyber threat by 62% of
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1Statista: https://www.statista.com/topics/4136/ransomware/topicOve
rview

2Astra: https://www.getastra.com/blog/security-audit/ransomware-a
ttack-statistics/

3Cybercrime Magazine: https://cybersecurityventures.com/ransomwa
re-will-strike-every-2-seconds-by-2031/

C-suite executives 4 but also highlight the urgent need for
advanced detection and mitigation strategies.

Defending against ransomware remains challenging,
as traditional signature-based antivirus measures are often
insufficient (McIntosh, Kayes, Chen, Ng and Watters, 2021;
Kapoor, Gupta, Gupta, Tanwar, Sharma and Davidson,
2021). In response, the cybersecurity community has
increasingly turned to machine learning (ML) as a
primary tool for ransomware detection and prevention
(Al-Hawawreh, Alazab, Ferrag and Hossain, 2024;
Onwuegbuche et al., 2023). ML models can automatically
learn complex behavioural patterns from large datasets,
enabling them to recognise subtle indicators of ransomware
activity—such as mass file encryption or abnormal process
behaviour—that may elude human analysts or static
rule-based systems (Fernando and Komninos, 2024).
Unlike signature-based approaches, ML-based methods can
adapt to new ransomware types by (re-)training on updated
data, keeping pace with the constantly evolving tactics of
attackers.

However, the effectiveness of these ML models de-
pends on the quality and representativeness of the data
on which they are trained (Herrera-Silva and Hernández-
Álvarez, 2023). Well-trained algorithms are only as robust
as the datasets that underpin their learning. Most research
surveys on ML-based ransomware detection have identified
the limited availability of publicly accessible, high-quality

4CFO: https://www.cfo.com/news/cybersecurity-attacks-generativ
e-ai-security-ransom/692176/
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datasets as a significant challenge (Ispahany, Islam, Islam
and Khan, 2024; Beaman et al., 2021; McIntosh et al.,
2021; Alraizza and Algarni, 2023). As noted by Urooj, Al-
rimy, Zainal, Ghaleb and Rassam (2021), no benchmark
dataset currently serves as a reliable foundation for develop-
ing and evaluating ransomware detection systems. Several
earlier datasets (Sgandurra, Muñoz-González, Mohsen and
Lupu, 2016; Herrera-Silva and Hernández-Álvarez, 2023;
Jethva, Traoré, Ghaleb, Ganame and Ahmed, 2020; Hirano,
Hodota and Kobayashi, 2022; Hirano and Kobayashi, 2025)
feature small sample sizes and cover only a limited range
of ransomware families, restricting their representativeness
and generalisation capabilities. In addition, many datasets
are imbalanced, often containing disproportionately fewer
benign samples compared to ransomware or vice versa,
thus skewing ML model training (Hou, Guo, Zhou, Xu,
Yin, Li, Sun and Jiang, 2024; Continella, Guagnelli, Zin-
garo, De Pasquale, Barenghi, Zanero and Maggi, 2016;
Marcinkowski, Goschorska, Wileńska, Siuta and Kajdanow-
icz, 2024). Furthermore, most datasets capture only a narrow
aspect of ransomware behaviour—such as low-level I/O
operations, storage and memory access patterns (Continella
et al., 2016; Hirano et al., 2022; Hirano and Kobayashi,
2025)—without capturing comprehensive behavioural fea-
tures. Manual and inconsistent data curation processes fur-
ther impede reproducibility and the standardisation of exper-
imental conditions, while the lack of public availability hin-
ders future research (Moreira, Moreira and Sales Jr, 2024).

Our approach addresses these limitations by proposing
MLRan, a large, diverse, balanced behavioural ransomware
dataset featuring over 4800 balanced samples of ransomware
and goodware. Our dataset focuses on ransomware targeting
Windows systems since 95% of the considered ransomware
files are Windows-based executables or DLLs 5. MLRan
covers 4 major ransomware types, namely locker, crypto,
ransomware-as-a-service (RaaS), and modern variants. It
includes 64 ransomware families from 2008 to 2024, and
captures nine key behavioural features, including API calls,
registry keys, file and directory operations, strings, network
activity, system processes, dropped files, and digital signa-
tures.

Inspired by previous work, we propose guidelines
(GUIDE-MLRan) for constructing high-quality behavioural
ransomware datasets and ensuring their reproducibility.
We used these guidelines to ensure the rigorous curation
of the MLRan dataset. To streamline the dynamic analysis
of malware necessary to curate the dataset, we enhanced
the functionality of the Cuckoo Sandbox (an open-source
automated malware analysis system) by automating file
submission and sorting of analysis results. This extension
reduced the manual effort necessary to generate the dataset,
ensuring its consistent and efficient development.

We empirically demonstrate that the MLRan dataset
is well-suited for building effective ransomware detection
models. To reduce data dimensionality, we implemented a

5VirusTotal Report on Ransomware in the Global Context: https:

//blog.virustotal.com/2021/10/ransomware-in-global-context.html

novel feature selection strategy based on mutual informa-
tion filtering to reduce the initial 6.4 million features to
24,162, followed by recursive feature elimination, yielding
483 highly informative features. The ML models achieved an
accuracy, precision and recall of up to 98.7%, 98.9%, 98.5%,
respectively. Our feature selection strategy reduces data di-
mensionality and computational cost without compromising
performance, highlighting the dataset’s practicality and scal-
ability.

We analyse key ransomware behaviours using explain-
able AI techniques such as SHapley Additive exPlanations
(SHAP) and Local Interpretable Model-agnostic Explana-
tions (LIME). This analysis identifies the most discrimi-
native features for distinguishing ransomware from benign
software, providing valuable insights for future research
on ransomware detection. We made our dataset and tool
implementation publicly available 6 to enhance reproducibil-
ity and support future research. The tool provides several
functionalities, including ransomware and goodware sample
collection, automated file processing and results sorting in
Cuckoo Sandbox, feature extraction for nine behavioural
categories, feature selection using our proposed strategy, and
machine learning code, enabling researchers to replicate and
extend our work as new ransomware variants emerge. All
data sharing follows strict ethical guidelines and excludes
raw malware binaries.

The rest of the paper is organised as follows. In Sec-
tion 2, we review existing publicly available behavioural
ransomware datasets, their strengths and limitations and
motivate the need for the MLRan dataset. In Section 3 we
introduce GUIDE-MLRan, our set of guidelines for develop-
ing high-quality behavioural ransomware datasets, while in
Section 4, we detail the proposed MLRan dataset. In Section
5, we discuss the experimental design used to address the
research questions, and in Sections 6, we present the research
questions’ results and compare them with related works,
respectively. Finally, in Section 8, we conclude the paper and
provide recommendations for future research.

2. Ransomware behavioural datasets and
their limitations
This section presents a curated list of publicly available

ransomware datasets suitable for training machine learning
models and discusses their characteristics, contributions and
limitations.
2.1. Ransomware datasets

The EldeRAN ransomware dataset7 was published in
2016 (Sgandurra et al., 2016). It comprises 582 ransomware
samples spanning 11 families, along with 942 samples of
goodware applications. Using the Cuckoo Sandbox on Win-
dows XP 32-bit, EldeRAN dynamically analyses both ran-
somware and goodware to extract a rich set of 30,967 fea-
tures—including API calls, registry operations, file system

6MLRan GitHub Repository: https://github.com/faithfulco/mlran
7Elderan: https://rissgroup.org/ransomware-dataset/
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and directory activities, file extensions, dropped files, and
embedded strings. A feature selection algorithm then identi-
fies the most relevant features used in a Regularized Logistic
Regression classifier to distinguish between ransomware and
goodware. The ransomware samples were randomly selected
from VirusShare 8, and the goodware samples were obtained
from a software aggregator website 9, ensuring a diverse set
of benign applications.

Despite its widespread use, the Elderan dataset’s
sample size is relatively small and imbalanced, with
582 ransomware samples compared to 942 goodware
samples. Moreover, the dataset predominantly comprises
crypto-ransomware, lacking representation of newer
ransomware types such as RaaS and modern multi-stage
attacks. Consequently, it may not adequately reflect the
current threat landscape, limiting its utility for developing
robust, up-to-date detection models.

The ShieldFS dataset10 is a self-healing, ransomware-
aware filesystem that intercepts low-level I/O Request Pack-
ets (IRPs) to detect and mitigate ransomware attacks in
real time (Continella et al., 2016). The system was estab-
lished by first developing IRPLogger, a custom kernel-level
sniffer installed on volunteer machines to collect a com-
prehensive baseline of normal filesystem activity over one
month—resulting in about 1.7 billion IRPs from 2,245 dif-
ferent applications. Subsequently, known ransomware sam-
ples—383 active instances from 5 families (CryptoWall,
TeslaCrypt, Critroni, CryptoDefense, Crowti)—were exe-
cuted on controlled machines configured with realistic de-
coy files and user data. By monitoring metrics such as
file reads, writes, directory listings, and entropy changes,
ShieldFS detects suspicious encryption-like behaviours and
automatically rolls back malicious modifications. Although
effective for mitigating file-encryption attacks, the dataset
primarily captures file I/O patterns, lacks behavioural feature
diversity (e.g., API calls and registry activity), and does not
cover newer ransomware types such as RaaS and modern
ransomware.

The ISOT ransomware detection dataset11 was pub-
lished in 2020 (Jethva et al., 2020). This dataset was de-
signed to capture a diverse range of ransomware families
and variants, comprising 666 ransomware samples alongside
103 goodware samples. Data was collected using the Cuckoo
Sandbox in a controlled Windows 7 environment to simulate
real-world conditions as closely as possible. The dataset
includes 51,556 features grouped into eight categories: API
calls, registry key operations, command line operations,
DLLs, directory enumerations, mutexes, embedded strings,
and miscellaneous binary attributes. Despite its strengths in
feature diversity, the relatively small number of samples (769
samples) and imbalanced distribution of goodware samples,
when compared to ransomware, may skew model training.

8VirusShare: http://virusshare.com/
9Software Informer: https://software.informer.com/software/

10ShieldFS: http://shieldfs.necst.it/
11ISOT: https://onlineacademiccommunity.uvic.ca/isot/2022/11/27/bo

tnet-and-ransomware-detection-datasets/

The RanSAP dataset12 is an open dataset of ransomware
storage access patterns designed for training machine learn-
ing models (Hirano et al., 2022). It captures time-series data
from 7 prominent ransomware samples alongside 5 benign
software samples. Using a thin hypervisor-based monitoring
system, RanSAP records low-level storage interactions, such
as sector-based read and write operations and entropy mea-
surements, across various operating conditions. The dataset
encompasses samples executed under different configura-
tions, including operating system versions and storage de-
vice configurations (e.g., devices with full drive encryption
enabled). By focusing on storage access patterns, RanSAP
provides insight into the dynamic behaviours of ransomware
that are critical for developing detection models. However,
the dataset scope is confined to storage-related features,
omitting other behavioural features such as API calls and
registry activities that may also be valuable for comprehen-
sive detection. Additionally, the relatively small sample size
restricts its representativeness of the broader ransomware
ecosystem, as the ransomware families considered are just
crypto and RaaS, omitting locker and newer modern ran-
somware types.

The Dynamic Feature Dataset13 is built from
experiments on 40 artifacts (20 ransomware and 20
goodware) executed ten times on each of five victim
devices, resulting in a total of 2000 experiments using the
Cuckoo sandbox (Herrera-Silva and Hernández-Álvarez,
2023). The dataset comprises 50 distinct features organised
into 7 feature groups, which capture dynamic behaviours
such as API call flows, registry operations, file and directory
activities, network communications, and other relevant
runtime characteristics. Despite its balanced sample
distribution and good experimental design, which leads to
generating more observations, the dataset sample size is
relatively modest compared to more extensive collections,
which might restrict its representativeness across the full
spectrum of ransomware types.

The MarauderMap ransomware dataset14 comprises
7,796 active Windows ransomware samples spanning 95
families (Hou et al., 2024). The samples were dynamically
analysed using a custom testbed developed by the authors.
During execution, the testbed collected 1.98TiB of runtime
logs spanning six key behavioural categories: API calls,
I/O operations, network traffic, registry modifications, com-
mand executions, and service management. Samples were
sourced from platforms like VirusTotal and VX Vault, with
the majority identified between 2021 and 2023. Despite
its comprehensive scale of ransomware samples and rich
behavioural features, the dataset does not include goodware
samples. While the study used benign executables for eval-
uating detection strategies, these were not part of the dataset
and were not analysed in the sandbox.

12RanSAP: https://github.com/manabu-hirano/RanSAP/
13Dynamic Feature Dataset: https://github.com/Juan-Herrera-Silva/P

aper-SENSORS/tree/main
14MarauderMap: https://github.com/m1-llie/MarauderMap-code
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The MIRAD dataset15, introduced in 2024, is designed
for dynamic ransomware detection (Marcinkowski et al.,
2024). It was generated by simulating ransomware attacks in
a virtual environment that mimics typical office activity on
Windows. The dataset includes 13 features extracted from
event logs (e.g., API calls, registry changes, file events)
aggregated over fixed intervals with a moving average. Each
data point is labelled as “pre-attack” (benign) or “post-
attack” (ransomware activity), comprising a total of 67,427
samples (39,440 for training and 27,987 for testing), and in-
cludes 78 ransomware samples. However, the small number
of ransomware samples and features may not capture the full
spectrum of real-world behaviours, and the documentation
lacks critical metadata, which could hinder reproducibility
and further research.

The Ransomware Combined Structural Feature
(RCSF) dataset16 aggregates structural features from
Windows PE files to support detection of emerging
ransomware families through static analysis (Moreira et al.,
2024). It combines multiple features, including PE header
fields, imported DLLs, function calls, section entropy, and
opcodes of each binary sample. The dataset comprises 2675
samples, with a training set of 1023 ransomware (from
25 families) and 1134 goodware, and a testing set of 385
ransomware (from 15 families) and 133 goodware. Feature
extraction is performed using tools such as the Python pefile
library, Detect It Easy, and Distorm3, followed by variance
threshold feature selection to refine the data. An ensemble
model combining Logistic Regression, Random Forest, and
XGBoost achieves over 97% in accuracy, precision, recall,
and F-measure, with a prediction time of about 0.37 seconds
per sample. While the data includes rich structural features,
it relies exclusively on static features extracted from
Windows PE files. If ransomware employs obfuscation,
packing, or encryption techniques, the structural features
may be altered, potentially reducing detection accuracy.

RanSMAP17 captures low-level storage and memory ac-
cess patterns using a thin hypervisor (Hirano and Kobayashi,
2025). Unlike its predecessor, RanSAP, which collected
only storage access patterns, RanSMAP integrates mem-
ory access features to improve deep learning–based ran-
somware detection by about 2.3%, especially under simul-
taneous execution of ransomware and benign applications.
The RanSMAP dataset comprises 1,970 executions, which
include 6 ransomware samples (WannaCry, Ryuk, REvil,
LockBit, Darkside and Conti) and 6 goodware samples.
Each execution is represented by a 23-dimensional feature
vector, derived from two feature groups—5 storage access
features and 18 memory access features. The dataset spans 6
distinct ransomware families and was collected on Windows
10. However, the dataset includes a relatively small number
of ransomware samples and types, which may not fully
represent real-world diversity across ransomware types.

15MIRAD: https://github.com/Sagenso/MIRAD
16RCSF: https://data.mendeley.com/datasets/yzhcvn7sj5
17RanSMAP: https://github.com/manabu-hirano/RanSMAP

Tables 1 and 2 provide, respectively, a descriptive sum-
mary and key characteristics of major publicly available ran-
somware datasets, highlighting their methodologies, sample
composition, and feature representation. Most datasets rely
on dynamic analysis, with RCSF being the only exception
that employs static analysis. Commonly used tools include
Cuckoo Sandbox, BitVisor, and IRP Logger, with Cuckoo
Sandbox being the most widely used. Some datasets, such
as MarauderMap and MIRAD, utilise proprietary testbeds,
which limit reproducibility.

The sources of ransomware samples vary, with Virus-
Total being the most frequently used repository. Additional
datasets leverage sources such as MalwareBazaar, Hybrid-
Analysis, and VirusShare, while MarauderMap uniquely
obtains some samples from dark web markets and hacker
forums, offering potentially more diverse data. In terms
of operating systems, most datasets focus on Windows 7
and Windows 10, with only a few using multiple Windows
versions in analysing the samples, such as the Dynamic Fea-
ture dataset. MLRan, however, integrates Cuckoo Sandbox
and obtains ransomware samples from multiple malware
repositories, providing a more comprehensive and diverse
dataset for analysis.
2.2. Limitations

One of the most significant limitations of existing
datasets is their small size. Only MarauderMap contains
3,000 or more samples, while the rest remain relatively
small. However, MarauderMap does not include goodware
samples, making it unsuitable for training machine learning
models that require both ransomware and benign software
for accurate classification. Also, only 4 out of 9 datasets
include a balanced representation of ransomware and
goodware. MLRan addresses this limitation by offering a
well-balanced dataset that comprises both ransomware and
goodware, ensuring better training and generalisation for
machine learning models.

Another key issue is the incomplete representation of
ransomware types. No dataset comprehensively includes
all ransomware types; datasets either prioritise recent ran-
somware at the expense of older samples or focus on past
variants while neglecting modern threats. 8 out of 9 datasets
include crypto ransomware, while locker and modern ran-
somware are significantly underrepresented. Additionally, 7
out of 9 datasets cover only up to 25 ransomware families,
while MarauderMap includes 95 families, making it the
most diverse. MLRan overcomes these gaps by providing
full-spectrum coverage of historical and contemporary ran-
somware types across 64 families, ensuring better applica-
bility in studying the evolution of ransomware attacks.

Goodware representation is another critical limitation.
Although 7 out of 9 datasets include goodware, only 3
datasets have a diverse selection of benign software. This im-
balance reduces the effectiveness of machine learning mod-
els, as a well-balanced dataset is essential for distinguishing
between malicious and benign software. MLRan effectively
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Table 1
Descriptive summary of the major publicly available ransomware datasets. N denotes the total number of samples, #Ran represents
the number of ransomware samples, and #Good indicates the number of goodware samples. #Fx refers to the total number
of features, while #RanF specifies the number of ransomware families. #FxG denotes the number of feature groups, and OS
indicates the operating system used in the dataset. The symbol ’-’ indicates that the respective information was not found in the
dataset/paper.

Dataset Year Analysis N #Ran #Good #Fx #RanF #FxG Software
Used

Sample
Source OS

Elderan 2016 Dynamic 1524 582 942 30967 11 7
Cuckoo
Sandbox

VirusShare
Software informer Win XP

ShieldFS 2016 Dynamic 2628 2245 383 6 5 2
IRPLogger,
ShieldFS
driver

, VirusTotal Win 7

ISOT 2020 Dynamic 769 666 103 51556 20 8
Cuckoo
Sandbox VirusTotal Win 7

RanSAP 2022 Dynamic 12 7 5 5 7 1 BitVisor ANY.RUN
Win Server
2008 R2

and Win 7

Dynamic
Feature 2023 Dynamic 40 20 20 50 20 7

Cuckoo
Sandbox

VirusShare, theZoo,
VirusTotal and
Hybrid-Analysis

5 Different
Windows OS

MarauderMap 2024 Dynamic 7,796 7,796 - - 95 6
Author
Testbed

VirusTotal, Vx vault,
hacker forums,

dark web,
black market groups

Win 10

MIRAD 2024 Dynamic 78 78 - 13 - 6
Author
Testbed MalwareBazaar Win 10 & 11

RCSF 2024 Static 2675 1408 1267 11027 25 4
pefile lib

DIE
Distorm3

VirusShare
Hybrid-Analysis Windows

RanSMAP 2025 Dynamic 12 6 6 23 6 2 BitVisor ANY.RUN Win 10

MLRan
Our Dataset 2025 Dynamic 4880 2330 2550 6,467,926 64 9

Cuckoo
Sandbox

VirusShare
VirusTotal

MalwareBazaar
Hybrid-Analysis
MarauderMap

Win 7

resolves this issue by incorporating a diverse and balanced
set of goodware, enhancing its real-world applicability.

Feature representation across these datasets also varies
significantly. File and directory operations are included in
all the datasets, reflecting ransomware’s primary impact
on file systems. However, API calls and registry keys are
only included in 6 and 5 datasets, respectively, despite their
importance in behavioural analysis. Additionally, network-
based features, system processes, dropped operations, and
signatures are rarely considered; that is, each feature is only
included in two datasets, which limits the effectiveness of the
datasets in detecting ransomware using dynamic behavioural
indicators. MLRan incorporates all these critical features,
ensuring a richer dataset that enhances machine learning-
based ransomware detection.

MLRan addresses these shortcomings by offering
a large, well-balanced dataset that includes diverse
ransomware types, comprehensive goodware samples, and
an extensive feature set, making it a superior dataset for
advancing ransomware detection research.

3. GUIDE-MLRan: Guidelines for developing
high-quality ransomware datasets
Data quality is a critical determinant of machine learning

effectiveness, encompassing both quantitative and qualita-
tive aspects of data evaluation. Its definition varies based

on context; for instance, Wang and Strong (1996) defines
data quality as “fit for use,” while Wand and Wang (1996)
describes it as the alignment between “real-world and system
states.” More recently, Zhou, Tu, Sha, Ding and Chen (2024)
defined high-quality data as meeting user needs and being
purpose-fit for ML tasks, a definition that we adopt in this
study. Furthermore, Gong, Liu, Xue, Li and Meng (2023)
emphasises that a high-quality dataset should accurately
represent real-world phenomena and be comprehensive and
free from biases.

Poor data quality has a profound impact on ML sys-
tems. Issues such as mislabeling, inaccuracy, inconsistency,
duplication, and overlap can severely impair even the most
advanced ML models (Chen, Chen and Ding, 2021; Zhou
et al., 2024; Schwabe, Becker, Seyferth, Klaß and Schaeffter,
2024). In the cybersecurity domain, Tran, Chen, Bhuyan
and Ding (2022) empirically demonstrated how data quality
impacts ML performance for cyber intrusion detection by
evaluating eleven datasets. Their findings underscore the
significant influence of data quality on both conventional
machine learning models and pre-trained language models,
reinforcing the need for rigorous dataset development prac-
tices.

While there have been efforts to establish evaluation
guidelines for ransomware mitigation solutions, dataset
construction has received comparatively little attention.

FC Onwuegbuche et al.: Preprint submitted to Elsevier Page 5 of 34
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Table 2
Key characteristics of major publicly available ransomware datasets. The presence of a specific characteristic is denoted by ‘✓’
while its absence is marked as ‘×’. The symbol ’-’ indicates that the respective information was not found in the dataset. A
dataset is considered large if it contains 3,000 or more samples. Within ransomware types, L represents locker ransomware, C
denotes crypto ransomware, Rs signifies ransomware-as-a-service, and M indicates modern ransomware. For goodware, G denotes
the presence of goodware samples, while D indicates if the goodware samples are diverse. Regarding labelling, B represents
binary labelling (ransomware vs. goodware), F denotes family-based labelling, and T signifies type-based labelling. Feature groups
represent the different feature groups available in the datasets. The different groups include API calls (API), registry keys (REG),
file operations (FILE), directory operations (DIR), string-based features (STR), network-related features (NET), system processes
(SYS), dropped operations (DROP), and signatures (SIG). Any additional features not falling into these categories are classified
as Others. The row, ’% of ✓’ indicates the percentage of datasets that have that characteristic, excluding our dataset, rounded
to a whole number.

Dataset Large
Size

Ranamware Types Goodware Bal Labelling Feature Groups
L C Rs M G D B F T API REG FILE DIR STR NET SYS DROP SIG Others

EldeRAN × ✓ ✓ × × ✓ ✓ × ✓ ✓ × ✓ ✓ ✓ ✓ ✓ × × ✓ ✓ ×
SHIELDFS × × ✓ × × ✓ ✓ × ✓ ✓ × × × ✓ ✓ × × × × × ×
ISOT × ✓ ✓ × ✓ ✓ × × ✓ ✓ × ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓

RanSAP × × ✓ ✓ × ✓ × ✓ ✓ ✓ × × × ✓ ✓ × × × × × ✓

Dynamic
Feature × ✓ ✓ ✓ × ✓ × ✓ ✓ ✓ × ✓ ✓ ✓ ✓ × ✓ × × × ✓

MarauderMap ✓ × ✓ ✓ ✓ × × × × ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × ✓

MIRAD × - - - - × × × ✓ × × ✓ ✓ ✓ ✓ × × × × × ×
RCSF × × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ × ✓ ✓ ✓ × × × × ✓

RanSMAP × × ✓ ✓ × ✓ × ✓ ✓ ✓ × × × ✓ ✓ × × × × × ✓

% of ✓ 11 33 89 56 33 78 33 44 89 89 0 67 56 100 100 44 22 22 22 22 67
MLRan -
Our Dataset ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

McIntosh et al. (2021) introduced unified metrics for
evaluating ransomware mitigation studies, categorising
them into evaluation, output, versatility, and strength.
However, their framework does not address how ransomware
datasets should be developed, leaving a critical gap
in the field. Additionally, while Zhou et al. (2024)
identified eight key data quality dimensions—including
completeness, consistency, timeliness, confidentiality,
accuracy, standardisation, unbiasedness, and ease of
use—these principles were formulated in the context of
general ML datasets, with no specific focus on security,
malware, or ransomware.

Related work in cybersecurity dataset development has
primarily focused on intrusion detection systems (IDSs).
Shiravi, Shiravi, Tavallaee and Ghorbani (2012) proposed
a systematic methodology for generating benchmark IDS
datasets, advocating for realistic network traffic capture, ac-
curate labelling, complete interaction records, and compre-
hensive packet content preservation. Their approach ensures
that datasets closely reflect real-world attack conditions, thus
improving the reliability of IDS evaluations. Similarly, Tran
et al. (2022) proposed nine criteria—reputation, relevance,
comprehensiveness, timeliness, variety, accuracy, consis-
tency, duplication, and overlap—to ensure the high quality
of IDS datasets.

Although some of these IDS dataset guidelines can be
applied to ransomware datasets, they do not account for the
unique characteristics of ransomware attacks and the specific
requirements of ML-based ransomware detection models.
Ransomware exhibits distinct attack behaviours, such as file
encryption and system modification, which require a tailored
approach to dataset development.

To address this gap, we propose GUIDE-MLRan, a
set of guidelines inspired by previous work for developing
high-quality behavioural ransomware datasets for ML-based
ransomware detection. GUIDE-MLRan is summarised in
Table 4. The guidelines are based on five key principles:

1. Sample diversity and representativeness, ensuring a
balanced inclusion of diverse ransomware families
and goodware;

2. Sample quality and accuracy, emphasising correct la-
belling, sufficient dataset size, and samples that cover
an extended period;

3. Sandbox and testbed requirements, advocating for re-
alistic execution environments;

4. Representative feature extraction, capturing compre-
hensive, standardised behavioural features; and

5. Documentation, reproducibility, and data extension,
promoting metadata completeness, ethical considera-
tions, public availability, and continuous dataset up-
dates.

These principles can support the development of robust,
reproducible, and well-structured datasets for advancing ran-
somware detection research. Although these guidelines has
been developed specifically for ransomware datasets, they
can be applicable to malware datasets in general.
3.1. Sample diversity and representativeness

Sample diversity, defined as the inclusion of varied sam-
ples, and representativeness, which ensures alignment with
real-world distributions, are critical for machine learning
datasets (Chio and Freeman, 2018). Bengio, Goodfellow
and Courville (2017) highlight that diverse samples enhance
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model generalisation, enabling them to handle rare and com-
plex scenarios effectively. Similarly, Hastie, Tibshirani and
Friedman (2017) argues that representativeness improves
generalisability by ensuring datasets reflect real-world dis-
tributions. However, most publicly available ransomware
datasets fail to meet these criteria, as collecting diverse
and representative samples of ransomware and goodware
remains a significant challenge.

A significant issue in constructing ransomware datasets
is sample selection bias, where the collected data does
not adequately reflect the true distribution of the under-
lying security problem, which limits model effectiveness
(Arp, Quiring, Pendlebury, Warnecke, Pierazzi, Wressneg-
ger, Cavallaro and Rieck, 2022; Cortes, Mohri, Riley and
Rostamizadeh, 2008). In cybersecurity applications, sam-
pling from the true distribution is inherently difficult and,
in some cases, infeasible. While this bias cannot be entirely
eliminated, it can be mitigated by ensuring that goodware
and ransomware samples are diverse and balanced.
3.1.1. Diverse ransomware samples

Ransomware has undergone significant evolution, adapt-
ing to technological advancements and security measures
over time. Initially, from locker ransomware, which restricts
device access until a ransom is paid (e.g., Reveton, Kovter),
to crypto-ransomware, which encrypts files and demands
payment for decryption, often causing irreversible data loss
(e.g., WannaCry, CryptoLocker) (Sgandurra et al., 2016).
The rise of ransomware-as-a-service further expanded its
reach by providing ready-made ransomware kits, enabling
even non-expert attackers to launch sophisticated attacks
(e.g., Hive, GandCrab) (Fisher, Pieri, Howell, O’Malley,
Tremblay and Dawoud, 2025). Modern ransomware inte-
grates RaaS with advanced evasion techniques, such as
polymorphism and metamorphism, to bypass traditional de-
tection mechanisms (e.g., Conti, LockBit) (Raj, Narayan,
Muskan, Sani, Sharma and Sarma, 2024). Furthermore,
modern attacks often include double and triple extortion.
Double extortion encrypts data and steals sensitive informa-
tion, threatening to leak it if the ransom is not paid. Triple
extortion adds pressure by targeting third parties or launch-
ing DDoS attacks, increasing disruption (Kerns, Payne and
Abegaz, 2022; Anand and Shanker, 2023).

Capturing this evolution in datasets ensures comprehen-
sive coverage of ransomware behaviours, enhancing ma-
chine learning models’ ability to detect, classify, and respond
to both known and emerging threats (Bengio et al., 2017;
Hastie et al., 2017; Arp et al., 2022; Cortes et al., 2008;
Miranda, Gimenez, Lalande, Tong and Wilke, 2022). How-
ever, obtaining ransomware samples can be challenging and
downloading them individually can be time-consuming.
3.1.2. Diverse goodware samples

By exposing machine learning models to a broad set
of benign applications, diverse goodware samples enhance
generalisation, enabling models to distinguish legitimate

software from ransomware across various computing en-
vironments. Moreover, they prevent bias by ensuring that
models do not disproportionately classify certain software
categories as malicious (Ashraf, Aziz, Zahoora, Rajarajan
and Khan, 2019). Additionally, exposure to a wide range of
goodware refines detection boundaries, improving the ability
to accurately classify known and previously unseen appli-
cations (Sgandurra et al., 2016; Homayoun, Dehghantanha,
Ahmadzadeh, Hashemi and Khayami, 2017; Miranda et al.,
2022).

To achieve comprehensive goodware representation,
Botacin, Ceschin, Sun, Oliveira and Grégio (2021)
underscores the importance of curating software that
reflects real-world environments, particularly those
commonly installed by users within the target system.
A well-diversified selection should include applications
from multiple categories, such as productivity tools
(e.g., Microsoft Office), communication platforms (e.g.,
Zoom), internet tools (e.g., Firefox), system utilities (e.g.,
UltraViewer), antivirus software (e.g., Kaspersky Internet
Security), lifestyle applications (e.g., Memory-Map),
games (e.g., City Car Driving), developer tools (e.g.,
Python), business software (e.g., Money Manager), and
educational programs (e.g., Dictionary). This variety
ensures that machine learning models capture normal
software behaviours across different domains, reducing
the likelihood of misclassification (Herrera-Silva and
Hernández-Álvarez, 2023).

Furthermore, goodware samples should be sourced from
different time periods, incorporating both historical and
contemporary software to account for evolving behavioural
patterns. This temporal diversity is essential for building
realistic datasets, capturing changes in software function-
ality and execution patterns, and ensuring models remain
effective against evolving threats. By encompassing a broad
and representative set of goodware, ransomware detection
datasets can be used as accurate benchmarks to evaluate the
performance and robustness of machine learning models,
leading to more reliable and adaptable cybersecurity solu-
tions (Miranda et al., 2022).

However, obtaining diverse goodware samples is chal-
lenging due to the vast software landscape, licensing restric-
tions, and the need for diverse representation. Manually cu-
rating such a dataset is time-consuming and requires careful
selection to avoid bias while ensuring relevance to real-world
environments.
3.1.3. Balanced class distribution

A balanced dataset in machine learning ensures that
each class is represented in approximately equal proportions,
which prevents model bias and enhances predictive perfor-
mance. Class imbalance, on the other hand, occurs when
one class significantly outnumbers another, leading to biased
learning and poor generalisation (Miranda et al., 2022).

In ransomware detection, maintaining a balanced ratio
of ransomware to goodware samples is crucial to prevent
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the model from favouring one class over the other (On-
wuegbuche et al., 2023; Bengio et al., 2017). However,
class imbalance in ransomware datasets exists at two levels:
inter-class imbalance (between ransomware and goodware)
and intra-class imbalance (within ransomware families) (He
and Garcia, 2009). While achieving inter-class balance is
feasible, particularly in dynamic analysis, maintaining intra-
class balance is significantly more challenging. This dif-
ficulty arises from the natural imbalance in ransomware
family prevalence, the rapid evolution of ransomware types,
and the scarcity of certain ransomware families (Rahman,
Coull and Wright, 2022; Botacin et al., 2021). Some families
are widely distributed and frequently analysed, while others
remain rare and underrepresented (Gong et al., 2023).

Despite these challenges, ensuring diversity within ran-
somware datasets remains essential. A well-balanced dataset
should incorporate varied ransomware types and families,
reflecting real-world threats while mitigating bias. Achiev-
ing a reasonable distribution of ransomware types and fam-
ilies enhances model robustness, enabling machine learning
systems to generalise better and improve ransomware detec-
tion across different variants.
3.2. Sample quality and accuracy

Ensuring sample quality and accuracy is crucial for
developing effective machine learning models, particularly
in the context of ransomware detection. This requires accu-
rate sample labelling, representativeness and covered time
period.
3.2.1. Accurate labelling

Accurate labelling is fundamental for supervised learn-
ing, ensuring that models are trained on reliable and mean-
ingful data. Gong et al. (2023) define accuracy as the degree
to which data attributes correctly represent the true values of
a given concept. In contrast, Cai and Zhu (2015) highlight
that accuracy relies on alignment with an agreed “source
of truth.” In ransomware detection, labelling accuracy di-
rectly impacts detection performance, as incorrect labels
can introduce significant bias into the learning process,
making systems vulnerable to poisoning attacks and poor
detection accuracy (Arp et al., 2022; Apruzzese, Laskov and
Tastemirova, 2022; Marcinkowski et al., 2024).

Labelling ransomware samples is particularly challeng-
ing due to the lack of readily available ground truth data,
creating a chicken-and-egg problem where detection relies
on accurate labels, yet obtaining those labels is non-trivial
(Ceschin, Botacin, Bifet, Pfahringer, Oliveira, Gomes and
Grégio, 2024; Arp et al., 2022). The rapid evolution of
malware further complicates this process, often requiring
manual verification. Manual expert analysis is the most reli-
able method, but is time-consuming and impractical for large
datasets (Verma, Zeng and Faridi, 2019). To address this
challenge, researchers sometimes use VirusTotal Antivirus
(AV) majority voting, accepting only malware samples with
consistent labels across multiple AV vendors. However,
this reduces dataset size and may introduce selection bias,

limiting generalisation to ambiguous threats (Ceschin et al.,
2024).

Efforts to standardise malware classification labels are
ongoing, with automated labelling tools playing a crucial
role. Tools such as Euphony for Android malware (Hurier,
Suarez-Tangil, Dash, Bissyandé, Le Traon, Klein and Caval-
laro, 2017) and AVClass for Windows malware (Sebastián,
Rivera, Kotzias and Caballero, 2016) help streamline classi-
fication. A well-labelled dataset should also include detailed
metadata, such as ransomware family, type, and sample
hashes, enabling nuanced analysis beyond binary classifica-
tion and reproducibility of results.

One of the common pitfalls in malware research is as-
suming that all crawled applications from legitimate web-
sites are benign without validation, which can compromise
dataset integrity (Botacin et al., 2021). To mitigate this
problem, researchers should rigorously verify benign sam-
ples, for instance, by submitting file hashes to VirusTotal
and selecting only those with zero detections across all an-
tivirus engines (Pendlebury, Pierazzi, Jordaney, Kinder and
Cavallaro, 2019). Ensuring high-quality, well-verified labels
is crucial for improving model reliability, reducing false
positives, and strengthening ransomware detection systems.
3.2.2. Sample size

Determining the sufficient number of ransomware and
goodware in a dataset to ensure their representativeness is
a complex question with no definitive answer. It depends
on factors, such as research objectives, the availability of
ransomware samples in the wild, the machine learning tech-
niques used, and the level of generalisation required (Hirano
et al., 2022; Botacin et al., 2021; Apruzzese et al., 2022).
While some methods, such as deep learning, benefit from
larger datasets (Bengio et al., 2017), increasing data vol-
ume beyond a certain threshold does not always improve
performance. Instead, optimising feature selection and rep-
resentation strategies may yield better results (Ceschin et al.,
2024). However, representativeness is more critical than
size. A small but well-curated dataset that accurately reflects
real-world ransomware behaviours is more valuable than a
large, biased, or unrepresentative dataset (Ceschin et al.,
2024). Moreover, behavioural ransomware datasets tend to
be smaller than static datasets, as behavioural analysis re-
quires individual sample execution and manual validation,
making data collection and analysis time-consuming. In
summary, the dataset should be large enough to capture
common ransomware behaviour patterns while maintaining
high-quality, representative samples to enhance model reli-
ability.
3.2.3. Covered time period

The time period a dataset covers refers to its suitability
for a given task based on its age and longevity (Gong et al.,
2023; Tran et al., 2022). Yaseen (2023) found that models
trained exclusively on new ransomware struggle to detect
older variants, and vice versa, due to evolving feature sets.
However, models trained on temporally diverse datasets
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achieved very high accuracy, demonstrating the importance
of incorporating both old and new samples to enhance gener-
alisation and detection robustness. Since ransomware actors
often revive outdated attack methods, it is also crucial to
retain historical ransomware samples, such as locker ran-
somware, alongside modern variants. Similarly, including
both recent and older goodware versions improves model
generalisation. To maintain temporal consistency and track
ransomware evolution, datasets should include timestamps
for collected samples (Pendlebury et al., 2019).
3.3. Sandbox hardening and comprehensive

behavioural analysis
A sandbox in ransomware analysis is a controlled vir-

tual environment used to execute and observe ransomware
behaviour safely without risking harm to the host system or
network (Sgandurra et al., 2016; Ahmed, 2024).
3.3.1. Sandbox hardening

Sandbox hardening in ransomware behavioural analysis
involves strengthening the sandbox environment to resist
detection and evasion techniques employed by ransomware
(Alrawi, Wong, Avgetidis, Valakuzhy, Adjibi, Karakatsanis,
Ahamad, Blough, Monrose and Antonakakis, 2024). The
objective is to create an analysis environment that closely
resembles a real user system, ensuring ransomware executes
its full range of malicious behaviours without detecting the
sandbox (Leguesse, Vella and Ellul, 2018). Without effective
hardening, many ransomware samples alter their behaviour,
delay execution, or terminate when they detect they are
running in a sandbox, leading to incomplete or misleading
results.

Some malware employs evasion techniques to detect
sandbox environments. MITRE ATT&CK18 categorises
these into three main types:

1. System-based checks – Ransomware inspects system
attributes to determine if it is running in a sandbox. It
checks CPU core count, installed programs, memory,
disk size, digital signatures, and system artefacts. If
these do not match a real user environment, the mal-
ware may refuse to execute.

2. User activity-based checks – Since sandboxes lack
human interactions, ransomware may remain dormant
until it detects user activity such as mouse move-
ments, document scrolling, opening applications, or
browsing history. Without these actions, the malware
assumes it is in a sandbox and delays execution.

3. Time-based evasion – Sandboxes typically execute
malware for a limited time, making them vulnerable to
delayed execution techniques. Ransomware exploits
this by using extended sleep delays, logic bombs, or
stalling code, ensuring execution occurs only after the
sandbox analysis period expires

18MITRE ATT&CK - Virtualization/Sandbox Evasion: https://attack
.mitre.org/techniques/T1497/

Beyond these methods, encryption, obfuscation, and dy-
namic system alterations further complicate malware de-
tection19. Botacin et al. (2021) highlight the difficulty of
ensuring successful execution in sandbox environments, as
some samples fail due to corruption, OS incompatibilities,
or evasion tactics. To mitigate this challenge, defining clear
execution criteria, such as a minimum number of API calls
or observable behaviours, and reporting execution success
rates, improves dataset reliability.

To counter sandbox-aware ransomware, hardening
strategies should simulate user activity (e.g., opening files,
internet browsing), mimic system configurations (e.g.,
CPU, RAM, OS settings), randomise execution times, and
emulate hardware characteristics. These measures reduce
detection risk and encourage ransomware to execute fully,
capturing more accurate behavioural data.

Execution timeouts are also critical. Küchler, Mantovani,
Han, Bilge and Balzarotti (2021) found that 98% of executed
basic blocks occur within the first two minutes, making
a 120-second timeout optimal for capturing malicious be-
haviour without excessive resource use. This result supports
Willems, Holz and Freiling (2007), confirming that a two-
minute threshold is sufficient for analysing freshly collected
malware samples in most cases. Therefore, we implemented
a 2-minute (120-second) timeout in this research. For more
sandbox-specific information, we refer the reader to Alrawi
et al. (2024).
3.3.2. Comprehensive behavioural analysis

Gong et al. (2023) state that a sandbox should collect a
comprehensive set of attributes for ransomware behavioural
analysis. These should include application programming
interface (API) calls, registry modifications (REG), file
operations (FILE), directory activities (DIR), embedded
strings (STR), network traffic (NET), system processes
(SYS), dropped files (DROP), and signatures (SIG).
Missing these attributes can lead to incomplete ransomware
profiling, limiting feature extraction for machine learning
and detection accuracy. Therefore, collecting these attributes
during dynamic analysis and generating a coherent report is
crucial for accurate classification (Or-Meir, Nissim, Elovici
and Rokach, 2019).
3.4. Representative feature extraction and

modelling
Representative feature extraction ensures that datasets

include the most informative attributes, enhancing model
accuracy and interoperability.
3.4.1. Relevant feature extraction

After thoroughly analysing ransomware samples and
generating a structured report, the next crucial step is ex-
tracting comprehensive and relevant features for machine
learning-based detection.

19Apriorit: https://www.apriorit.com/dev-blog/545-sandbox-evading-m
alware

FC Onwuegbuche et al.: Preprint submitted to Elsevier Page 9 of 34

https://attack.mitre.org/techniques/T1497/
https://attack.mitre.org/techniques/T1497/
https://www.apriorit.com/dev-blog/545-sandbox-evading-malware
https://www.apriorit.com/dev-blog/545-sandbox-evading-malware


MLRan: A Behavioural Dataset for Ransomware Analysis and Detection

Kelleher, Mac Namee and D’arcy (2020) emphasises
that selecting meaningful features enhances model perfor-
mance, efficiency, and interpretability. In ransomware de-
tection, this involves extracting critical behavioural feature
groups, such as API calls and registry keys, as outlined in C8
(see Section 3.3.2), to ensure a detailed and representative
characterisation of sample activity.

To automate feature extraction, we develop Python
scripts 20 that parse Cuckoo Sandbox reports, extracting
the nine key behavioural feature groups discussed in C8
(see Section 3.3.2). These scripts are available publicly
to promote reproducibility and standardisation, enabling
researchers to streamline feature extraction and enhance
ransomware detection frameworks.
3.4.2. Data preprocessing

The phrase “garbage in, garbage out” highlights the im-
portance of data preprocessing in machine learning, ensur-
ing that ransomware detection models are trained on clean
and well-formatted data (Kang and Tian, 2018).

A crucial step in preprocessing is data cleaning, which
involves removing duplicates, handling missing values, and
standardising feature distributions. Duplicate instances dis-
tort evaluation metrics, leading to misleading performance
results (Chen et al., 2021; Zhou et al., 2024). Similarly,
excessive missing values introduce bias, reducing model
reliability (Cai and Zhu, 2015). Normalisation and standard-
isation further ensure consistent feature scales, preventing
specific attributes from disproportionately influencing the
model.

Beyond cleaning, the dataset format must align with
the intended machine learning approach. Sequential
data formats (e.g., time-series logs) suit recurrent neural
networks (RNNs) for analysing temporal ransomware
behaviour, while tabular formats (e.g., CSV, databases) are
better suited for classification algorithms like decision trees
and logistic regression. Graph-based structures can also
help identify ransomware propagation patterns (Andronio,
Zanero and Maggi, 2015).

Feature selection refines the dataset by identifying
the most relevant and discriminative attributes, improving
model efficiency, interpretability, and generalisation.
Approaches include filter methods (statistical relevance),
wrapper methods (iterative subset evaluation), and
embedded methods (selection during model training).
A multi-stage hybrid approach combining these techniques
helps eliminate redundancy while retaining essential
behavioural indicators (Onwuegbuche et al., 2023).
3.4.3. Model training and evaluation

Model training requires careful design choices, bias pre-
vention, and hyperparameter tuning to ensure robust gener-
alisation. A critical issue during training is data snooping
bias, which occurs when information from the test set is
inadvertently introduced into the training process, leading

20MLRan Cuckoo JSON Report Parsers: https://github.com/faithfulc
o/mlran/tree/main/4_cuckoo_parser_scripts

to overoptimistic performance estimates and poor real-world
applicability. Arp et al. (2022) identifies three major types of
data snooping bias that must be avoided.

1. Test snooping occurs when test data is misused for
feature selection or hyperparameter tuning, leading to
overfitting and misleading performance metrics. To
prevent this, training, validation, and test sets must
remain strictly separate, with test data used only for
final evaluation.

2. Temporal snooping happens when past and future data
are mixed during training, ignoring real-world time
dependencies. This causes models to perform well on
historical data but fail on new ransomware strains.
To avoid this, dataset splits should preserve temporal
order to reflect ransomware evolution.

3. Selective snooping involves preprocessing based on
future knowledge, such as removing outliers using the
entire dataset. This creates bias, as such insights would
not be available at the time of deployment. Instead,
preprocessing should rely only on information acces-
sible during training to ensure fairness and realism.

Beyond avoiding biases, models should be trained
on diverse and well-balanced datasets that accurately
represent real-world ransomware behaviours. Relying on
imbalanced datasets can lead to models that favour the
majority class, reducing effectiveness in detecting novel
ransomware strains. Additionally, hyperparameter tuning
using techniques such as cross-validation helps improve
model generalisation while mitigating overfitting.

A robust evaluation framework is essential to assess how
well a model generalises to real-world ransomware threats.
As Botacin et al. (2021) suggest, evaluation criteria should
be clearly defined from the start to align with deployment
requirements. The evaluation dataset must be representative
of the operational environment, avoiding temporal and spa-
tial biases. Pendlebury et al. (2019) highlight that model
performance can degrade when tested on data from different
time periods or distributions than those used in training.
Furthermore, the presence of duplicate samples in the test
set can inflate performance metrics, leading to an inaccurate
assessment of model effectiveness (Tran et al., 2022).

Choosing the right evaluation metrics is crucial for ob-
taining a comprehensive performance assessment. While ac-
curacy is often reported, it is insufficient for ransomware de-
tection due to the severe consequences of undetected threats.
Instead, evaluation should incorporate Precision, Recall, F1
Score, and False Positive Rate (FPR) to measure detection
effectiveness comprehensively. Given the risks associated
with undetected ransomware, False Negative Rate (FNR)
is particularly important, as a high FNR indicates a failure
to detect active ransomware infections (Zhou, Cheng, Chen
and Yu, 2023). Additionally, class imbalance is common
in ransomware datasets, meaning that balanced accuracy
and the F1 score should be prioritised over raw accuracy
(Eren, Bhattarai, Joyce, Raff, Nicholas and Alexandrov,
2023). When evaluating models over time, particularly in
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continual learning settings, performance robustness should
be assessed using metrics such as Area Under Time (AUT)
to account for concept drift (Pendlebury et al., 2019).

To ensure meaningful comparisons, models should be
benchmarked against strong baselines. Using overly com-
plex models without evaluating their performance relative
to simpler, well-established approaches can result in unjusti-
fied computational overhead. Automated Machine Learning
(AutoML) frameworks can assist in identifying competitive
baselines, ensuring that performance gains are due to mean-
ingful improvements rather than excessive model complex-
ity (Arp et al., 2022).

Additionally, Rossow, Dietrich, Grier, Kreibich, Paxson,
Pohlmann, Bos and Van Steen (2012) emphasises analysing
false positives and false negatives to uncover system limita-
tions and improve detection robustness, as error rates alone
offer limited insight. In our work, we perform a thorough
misclassification analysis using explainable AI methods.
3.5. Documentation, reproducibility, and data

extension
Comprehensive documentation, reproducibility, and reg-

ular data updates are essential for creating reliable ran-
somware datasets. Detailed metadata and transparent pro-
cesses ensure that datasets are understandable, reusable,
and adaptable. These practices enhance collaboration, val-
idate results, and maintain relevance in addressing evolving
ransomware threats. Botacin et al. (2021) highlights that
using non-reproducible methodologies for dataset definition
and experimental design is a significant pitfall in malware
research. Reproducibility is essential for scientific integrity
as it enables other researchers to verify or challenge results,
thereby advancing the field.
3.5.1. Availability of contextual and metadata

information
Providing comprehensive contextual and metadata in-

formation about samples, sandboxes, datasets, and methods
is fundamental to ensuring transparency, interpretability,
and reproducibility in ransomware detection research (Gong
et al., 2023; Rossow et al., 2012). Without detailed documen-
tation, experimental findings become difficult to validate,
compare, or replicate, hindering progress and limiting the
applicability of research (McIntosh et al., 2021; Holzinger,
Kieseberg, Tjoa and Weippl, 2019).

Metadata at the sample level must capture essential
attributes such as sample type, source, hash, description,
timestamp, and classification (ransomware family and type
or goodware category). These details provide critical context
for assessing dataset representativeness, preventing biases
such as temporal snooping, and ensuring robust experi-
mental design (Cai and Zhu, 2015). For instance, to avoid
temporal snooping, it is critical for the timestamp of each
sample to be provided (Arp et al., 2022).

At the dataset level, documentation should include
collection methods, preprocessing steps, feature extraction
techniques, and class distribution. This information is

crucial for reconstructing datasets, adapting them to
new research objectives, and ensuring fair comparisons
between detection models (Herrera-Silva and Hernández-
Álvarez, 2023). Without clear documentation, differences
in data preprocessing—such as handling of missing
values or selection of dynamic behavioural features—can
lead to inconsistent model performance and misleading
conclusions.

Equally important is documenting the sandbox or testbed
settings used for sample analysis. Sandboxes differ in their
configurations, execution parameters, and evasion counter-
measures, which can significantly impact how ransomware
behaves during execution. Therefore, system details such
as OS version, installed software, hardware specifications,
sandbox type (e.g., Cuckoo, BitVisor), execution timeouts,
network connectivity settings, and anti-evasion mechanisms
must be explicitly recorded (Rossow et al., 2012). Inadequate
sandbox documentation compromises result reproducibility
and makes it difficult to assess detection effectiveness across
different environments (Alrawi et al., 2024; Leguesse et al.,
2018).

Beyond the dataset and sandbox documentation,
methodological transparency is essential. Reporting
hyperparameter settings, feature selection strategies,
training-validation splits, and evaluation metrics ensures
that model comparisons are fair and reproducible. Cai and
Zhu (2015) highlight that poorly documented methods
introduce ambiguity, making it difficult to distinguish
whether performance variations arise from the model’s
capability or differences in data handling.
3.5.2. Public availability of data and code

Open access allows independent validation, facilitates
model comparisons, and drives innovation (Praveen and
Almobaideen, 2023). High-quality datasets should be hosted
on stable repositories (e.g., Zenodo, IEEE DataPort) with
version control and open-access licensing (e.g., Creative
Commons or GNU GPL) to ensure long-term availability
and broad adoption (Zhou et al., 2024). Likewise, publishing
code for data processing, model training, and evaluation
prevents inconsistencies in feature extraction and prepro-
cessing, ensuring results are replicable (Arp et al., 2022).
Publicly accessible code allows other researchers to validate
results, refine methodologies, and build upon existing work,
contributing to the collective advancement of the field.
3.5.3. Ethical and legal considerations

Ensuring ethical and legal compliance when curating
and sharing ransomware datasets is essential to prevent
misuse, protect privacy, and adhere to regulatory standards.
Researchers must balance open data access with responsible
handling to maintain transparency while mitigating risks as-
sociated with malware distribution and sensitive data expo-
sure (Thomas, Pastrana, Hutchings, Clayton and Beresford,
2017). Datasets should comply with cybersecurity laws,
institutional guidelines, and ethical frameworks, such as the
General Data Protection Regulation (GDPR) in the EU and
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the Computer Fraud and Abuse Act (CFAA) in the USA.
Adhering to third-party data usage policies and licensing
agreements, such as those from VirusTotal, is also critical to
ensure regulatory compliance (Nasir, Khan, Qureshi, Rafiq
and Rasheed, 2024).

To prevent misuse, ransomware source code should
not be publicly released. Instead, researchers should share
derived features, metadata, and execution logs, which
provide meaningful insights while minimising security risks
(Thomas et al., 2017). If access to ransomware binaries
is necessary, controlled distribution mechanisms—such
as request-based access for vetted researchers—should be
implemented to prevent unauthorised use. Additionally,
datasets must be anonymised to remove personally
identifiable information (PII), including usernames, file
paths, IP addresses, and domain names, to prevent privacy
breaches.

Ensuring security and containment when handling live
ransomware samples is essential to prevent unintended
harm. Ransomware analysis systems must be fully isolated
from real systems and networks, following institutional
security policies (Alrawi et al., 2024). Implementing
containment measures helps redirect malicious traffic
and mitigate risks, making it a key ethical consideration.
Additionally, any security breaches within the containment
environment should be monitored and documented to
improve system resilience and enhance future threat
mitigation strategies (Rossow et al., 2012).

Ethical considerations also require clear documentation
outlining the dataset’s intended use, risks, and restrictions.
Responsible disclosure ensures that datasets support cy-
bersecurity research without enabling malicious activities.
Researchers should consult ethical review boards or cyber-
security committees when handling datasets that pose dual-
use risks, meaning they could be exploited for harmful pur-
poses (Gao, Zahedi, Treude, Rosenstock and Cheong, 2024).
Moreover, appropriate licensing (e.g., Creative Commons or
GNU GPL) should define terms of use, ensuring responsible
data sharing while acknowledging contributors.

By following these guidelines, researchers can curate
and share ransomware datasets responsibly, promoting
compliance, security, and collaboration while ensuring
that datasets remain valuable for advancing ransomware
detection research.
3.5.4. Continuous updates

Given the rapid evolution of ransomware, datasets must
be continuously updated to capture new variants and emerg-
ing behavioural patterns. Regular updates enhance dataset
relevance, ensuring machine learning models remain effec-
tive against evolving threats (Herrera-Silva and Hernández-
Álvarez, 2023). By openly releasing our dataset and code, we
enable researchers to extend, refine, and adapt the dataset,
fostering collaborative advancements in ransomware detec-
tion as attack strategies evolve.

4. The MLRan dataset
This section describes the MLRan dataset, the methods

used for sample collection and analysis, and the feature ex-
traction techniques we employed to run the ML experiments.
The compliance of the MLRan dataset with the GUIDE-
MLRan guidelines is summarised in Table 4 and further
elaborated in this section.
4.1. Dataset description
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Figure 1: Distribution of software sample types in the MLRan
dataset. The dataset contains a total of 4880 samples, split into
2550 (52.25%) Goodware and 2330 (47.75%) Ransomware.
The dataset is relatively balanced, with only a slight difference
between the two categories.

Figure 1 illustrates the distribution of software sample
types within the MLRan dataset. The dataset contains a total
of 4880 samples, with 2550 (52.25%) representing Good-
ware and 2330 (47.75%) corresponding to Ransomware.
This shows a relatively even distribution between the two
categories, with only a small, negligible proportion differ-
ence. Such a balanced dataset is advantageous for training
machine learning models, as it reduces the risk of class
imbalance affecting model performance. This balance en-
sures that the model can effectively differentiate between
Goodware and Ransomware without being biased towards
one class.

Figure 2 shows the distribution of ransomware types
in the MLRan dataset. Out of a total of 2330 ransomware
samples, 48.92% (1140 samples) belong to the Crypto type,
making it the most prevalent type in the dataset. The next
most common types are RaaS with 20.08% (468 samples),
followed by Modern at 19.27% (449 samples), and finally,
Locker, which accounts for 11.72% (273 samples). A sim-
ilar distribution pattern is observed at the family level, as
illustrated in Figure 3. The dataset contains a total of 64
ransomware families. Specifically, 32 families belong to the
Crypto type, 15 are categorised as Modern, 13 fall under
RaaS, and 4 correspond to the Locker type. This distribution
satisfies the criteria (C1) of including diverse ransomware
samples.
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Figure 2: Distribution of ransomware types in the MLRan
dataset. The dataset contains a total of 2330 Ransomware
samples, split into 1140 (48.92%) Crypto, 468 (20.08%) RaaS,
449 (19.27%) Modern, and 273 (11.72%) Locker.

The distributions of ransomware types in Figure 2 and
ransomware families in Figure 3 in the MLRan dataset reflect
ransomware’s current and historic distribution in the wild.
While locker ransomware, which locks users out of their
systems without encrypting files, still poses a threat, it is
currently less prevalent than other types. Historically, crypto
ransomware has been the most prominent, with several high-
profile families making headlines. For instance, according to
the UK’s National Cyber Security Centre (2018) report, the
WannaCry attack in 2017 infected over 300,000 computers
across 150 countries, including the UK’s National Health
Service (NHS).

Crypto ransomware remains a significant threat. Emerg-
ing insights from the VirusTotal 2021 report21 reveal that
95% of all ransomware samples were Windows-based exe-
cutable files or dynamic link libraries, typically associated
with this type. However, the landscape has shifted towards
RaaS and more sophisticated modern ransomware variants.
RaaS has seen a dramatic rise in recent years, contributing
significantly to the increase in ransomware attacks. Notable
RaaS families include Ryuk, which was responsible for one-
third of all ransomware attacks in 2020, and Cerber, one of
the earliest RaaS offerings 22.

Modern ransomware attacks often combine multiple
techniques and have become increasingly sophisticated.
According to Statista23, prominent families such as
LockBit, Akira, BlackCat, Play, and Royal are the top five
most-detected ransomware attacks in 2023, which are all
included in our dataset, as illustrated in Figure 3. These
modern variants often incorporate features from crypto

21VirusTotal report on Ransomware in the Global Context: https:

//blog.virustotal.com/2021/10/ransomware-in-global-context.html
22Security Magazine: https://www.securitymagazine.com/articles/93

769-ryuk-ransomware-responsible-for-one-third-of-all-ransomware-att

acks-in-2020
23Statista: https://www.statista.com/statistics/1475291/most-detecte

d-ransomware-types-worldwide/

and RaaS ransomware types while adding new tactics
such as double or triple extortion, which involves not
only encrypting data but also threatening to leak sensitive
information obtained through data exfiltration or launch
DDoS attacks24.

Furthermore, the MLRan dataset encompasses various
goodware samples, as illustrated in Figure 4. These samples
span 11 broad categories of legitimate applications,
comprising a total of 2,550 samples. The most commonly
used applications by individuals constitute the largest
proportion, accounting for 47.52% (1,212 samples). In
addition, the dataset includes applications from 10 other
categories, ensuring a comprehensive representation of
goodware. Specifically, productivity applications account
for 7.33% (187 samples), followed by developer tools at
6.71% (171 samples), communications software at 6.67%
(170 samples), and lifestyle applications at 6.20% (158
samples). Moreover, business-related applications represent
5.88% (150 samples), while antivirus and security software
comprise 5.02% (128 samples). Other categories include
internet tools (4.04%, 103 samples), system tools (3.33%,
85 samples), and games, which form the smallest category
at 1.65% (42 samples).

The inclusion of these diverse, balanced goodware and
ransomware samples ensures that MLRan satisfies the guide-
lines for sample diversity and representativeness (C1, C2 and
C3).

To demonstrate that the dataset meets the timeliness
criterion (C6), we present a stacked bar chart in Figure 5,
illustrating the distribution of ransomware and goodware
samples across different years. The plot reveals that ran-
somware samples in the MLRan dataset span from 2008
to 2024, while goodware samples cover a slightly broader
period from 2006 to 2024.

Between 2006 and 2011, the dataset predominantly com-
prises goodware samples, reflecting the earlier prevalence
of benign software. However, from 2012 onwards, a steady
increase in ransomware samples was observed, whereas the
number of goodware samples remained relatively stable.
Notably, a significant surge in ransomware samples occurred
in 2020, with an even sharper increase in 2021. This spike
is likely attributed to the escalation of cybercrime during
the COVID-19 pandemic, which saw a rise in ransomware
attacks targeting organisations and individuals worldwide
(Baig, Mekala and Zeadally, 2023; Minnaar and Herbig,
2021). The timestamps for the samples were determined
by their first submission to VirusTotal, providing a more
reliable temporal reference. This method is more robust than
relying on creation dates, which malware authors frequently
manipulate to evade detection (Jiang, Li, Li and Guo, 2024).

Furthermore, additional contextual and metadata infor-
mation satisfying criterion (C12), including sample hashes,

24Sealpath: https://www.sealpath.com/blog/ransomware-raas-operation
s-guide/
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Figure 3: Distribution of ransomware families, colour-coded by their respective ransomware types. The numbers on the bars
represent the number of samples from each ransomware family found in the MLRan Dataset. The dataset includes a total of 64
ransomware families, classified into four categories, as shown in the legend and colour-coded in the bars: 32 families belong to
the Crypto type, 15 are Modern, 13 are RaaS, and 4 are Locker.

descriptions, and other relevant attributes, is available in the
corresponding CSV files within our repository25.
4.2. Sample collection

Figure 6 illustrates the methodology used for
ransomware sample collection, outlining the steps
taken to ensure the ransomware samples’ diversity,
representativeness, uniqueness, and authenticity. The
dataset comprises samples from four primary sources,
each subjected to rigorous validation procedures. We

25MLRan Metadata: https://github.com/faithfulco/mlran/tree/main/
2_collected_samples_metadata

27VirusTotal Files Info.: https://docs.virustotal.com/reference/files

developed custom scripts to automate the downloading of
both ransomware and goodware samples. These scripts
are publicly available and properly documented in our
repository28.

The first source is Elderan Sgandurra et al. (2016),
a dataset published in 2016 containing 582 ransomware
samples with their respective names obtained by manually
clustering each ransomware into a well-established family
name. We downloaded these samples from VirusShare using
a custom-designed script. We verified their hashes against

28MLRan Sample Collection Scripts: https://github.com/faithfulco/
mlran/tree/main/1_sample_collection_scripts
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Figure 4: Distribution of goodware sample categories in the
MLRan Dataset. The goodware samples contain 11 categories,
with the Most Popular category having the highest sample
count of 1212 samples, representing 47.53% of the total. The
Productivity category follows with 187 samples, accounting
for 7.33%. The exact number of samples for each category
is displayed on the corresponding bars.

VirusTotal to confirm their authenticity, ensuring each sam-
ple had a non-zero detection score. Additionally, duplicate
samples were identified and removed to maintain dataset
integrity.

The second source is MOTIF Joyce, Amlani, Nicholas
and Raff (2023), a malware reference dataset with ground
truth family labels. MOTIF addresses the issue of noisy
labels in malware analysis by curating samples based on hun-
dreds of open-source threat intelligence reports published
by reputable cybersecurity organisations. From the 3,095
samples spanning 502 malware families, we filtered those
classified as ransomware, yielding 549 samples across 103
families. Using their hashes, we attempted to retrieve the cor-
responding binaries from VirusTotal, successfully obtaining
443 samples across 34 families. After duplicate removal
and ensuring that VirusTotal detections remained non-zero,
the sample count remained unchanged. However, dynamic
analysis conducted using the Cuckoo sandbox successfully
processed 426 ransomware samples spanning 34 distinct
families.

The third source is MarauderMap Hou et al. (2024),
which contains 7,796 malicious samples but lacks family
labels. To categorise these samples, we applied AVClass
Sebastián et al. (2016) for automatic family classification.
We then conducted a manual verification process to ensure
that only ransomware samples were retained, resulting in 627
samples across 25 ransomware families. We downloaded
these samples from GitHub, and after removing duplicates
and ensuring a non-zero VirusTotal detection score, we ob-
tained 621 unique samples. Following analysis in the Cuckoo
sandbox, 575 ransomware samples were successfully pro-
cessed without errors, representing 25 distinct families.

The fourth source consists of ransomware samples cu-
rated by the authors, following a methodology similar to
that of Joyce et al. (2023). We collected ransomware sample

hashes from open-source threat intelligence reports contain-
ing detailed ransomware analyses published by reputable
cybersecurity organisations. Additionally, we sourced sam-
ples from various malware repositories, including Malware-
Bazaar, VirusShare, VirusTotal, and Hybrid-Analysis. The
sample size remained unchanged after removing duplicates
and verifying non-zero VirusTotal detections. However, dy-
namic analysis using the Cuckoo sandbox yielded successful
results for only 777 ransomware samples, covering 37 unique
families.

Finally, we standardised family names to ensure consis-
tency across sources, accounting for aliasing and duplicate
families that appeared in multiple sources. This alignment
process improved dataset integrity and ensured uniform
classification of ransomware families.

Figure 7 illustrates the methodology employed for good-
ware sample collection, detailing the steps taken to ensure
diversity, representativeness, uniqueness, and authenticity.
We retrieved all goodware samples from Software Informer
using a custom-designed script we developed, resulting in an
initial dataset of 5,010 samples spanning 11 categories. Fol-
lowing the removal of duplicate entries, the dataset included
3,837 unique samples.

As highlighted by Botacin et al. (2021), a common
pitfall in malware research is the assumption that crawled
applications are inherently benign without proper validation.
To mitigate this issue, we verified the legitimacy of the
goodware samples by submitting their hashes to VirusTotal
for analysis. Only those samples that received zero detec-
tions across all antivirus engines were retained, yielding a
refined dataset of 2,696 goodware samples. Finally, dynamic
analysis using the Cuckoo sandbox successfully processed
2,550 samples, ensuring coverage across all 11 categories.
4.3. Sample analysis

To ensure accurate and reliable behavioural analysis of
ransomware and benign software, we employed Cuckoo
Sandbox, an open-source automated malware analysis sys-
tem. Cuckoo allows executing suspicious files in an isolated
environment, monitoring their behaviour and generating de-
tailed reports (Liu, Lu and Liu, 2014). This capability is
essential for ransomware analysis, as it enables the obser-
vation of encryption activities, network communications,
and persistence mechanisms in a controlled setting. Given
its adaptability, effectiveness and popularity, Cuckoo was
selected as the primary analysis tool.

We configured the sandbox environment to mimic a real-
world system closely. We installed VMware Workstation on
a Windows host machine and deployed Ubuntu 18.04 as
the base operating system. We installed Cuckoo Sandbox
v2.0.7 alongside a Windows 7 virtual machine, which served
as the execution environment for ransomware and good-
ware samples. This configuration balanced compatibility
with modern malware while ensuring a stable, reproducible
analysis environment.

Since sandbox-aware malware can detect and evade ex-
ecution within virtualised environments (Liu et al., 2014),
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Figure 5: The stacked bar chart illustrates the distribution of samples in the MLRan dataset across different years, based on their
first submission to VirusTotal, segmented by sample type (Goodware and Ransomware). The first submission timestamp from
VirusTotal was used as it provides more reliable temporal information compared to creation dates, which are often manipulated by
malware authors27. Between 2006 and 2011, the dataset predominantly consisted of Goodware samples. Starting in 2012, a steady
increase in Ransomware samples was observed, while Goodware samples remained relatively stable, except for a notable spike in
Ransomware during 2020 and particularly in 2021, likely driven by the surge in cybercrime during the COVID-19 pandemic.

we applied several countermeasures. To enhance realism,
we allocated four CPUs, 4GB of RAM, and sufficient disk
space to the virtual machine. Additionally, we installed
commonly used software, including Adobe PDF Reader,
.NET Framework, Java, Flash, Visual C++ Redistributable
(vcredist 2015u3), and Internet Explorer 11, using VMCloak
to automate installation. This ensured the virtual machine
resembled a genuine user system.

To further prevent detection, we integrated Cuckoo’s Hu-
man Auxiliary Module29, which simulates user interactions
such as keyboard input and mouse movements. The module
randomises cursor movements and speeds to mimic human
behaviour, reducing the likelihood of detection by sandbox-
aware malware.

Another auxiliary module we integrated into the
analysis environment is Disguise Auxiliary Module30, which
enhances realism by modifying system attributes to evade
malware detection. Specifically, the module randomises the

29Cuckoo Human Module: https://github.com/cuckoosandbox/cuckoo/
blob/master/cuckoo/data/analyzer/windows/modules/auxiliary/human.py

30Cuckoo Disguise Module: https://github.com/cuckoosandbox/cuckoo/
blob/master/cuckoo/data/analyzer/windows/modules/auxiliary/disguise.py

Windows Product ID, modifies SCSI identifiers to replace
virtual machine-related strings with realistic hardware
names, and alters BIOS information, including system and
video BIOS dates and versions. Additionally, it patches
ACPI tables to replace VirtualBox-related identifiers
with manufacturer names, modifies processor details to
appear as physical hardware, and changes manufacturer
and product names in system information. It also updates
hard drive paths to resemble real hardware configurations.
Additionally, to counteract time-based evasion techniques,
where ransomware delays execution to avoid detection,
we set an analysis timeout of 120 seconds to capture
delayed malicious behaviour. These modifications prevent
ransomware from identifying the environment as a sandbox,
further improving the reliability of behavioural analysis.
4.4. Feature extraction

As summarised in Table 3, the feature extraction
methodology in this study focuses on nine categories derived
from Cuckoo Sandbox reports, i.e. API calls, registry key
operations, file operations, directory operations, extracted
strings, network activity, system resource usage, dropped

FC Onwuegbuche et al.: Preprint submitted to Elsevier Page 16 of 34

https://github.com/cuckoosandbox/cuckoo/blob/master/cuckoo/data/analyzer/windows/modules/auxiliary/human.py
https://github.com/cuckoosandbox/cuckoo/blob/master/cuckoo/data/analyzer/windows/modules/auxiliary/human.py
https://github.com/cuckoosandbox/cuckoo/blob/master/cuckoo/data/analyzer/windows/modules/auxiliary/disguise.py
https://github.com/cuckoosandbox/cuckoo/blob/master/cuckoo/data/analyzer/windows/modules/auxiliary/disguise.py


MLRan: A Behavioural Dataset for Ransomware Analysis and Detection

Name: MarauderMapMOTIF CuratedEldeRan

MLRan Ransomware Sample
Collection

Samples: 582
Families: 11

Samples: 3095
Families: 502

Samples: 7796
Families: N/A

Samples: 785
Families: 37

Removing
Non-ransomware:

Samples: 549
Families: 103

Ransomware
Type

Samples: 627
Families: 25

GitHubVirusTotal MultipleVirusShare

Samples: 580
Families: 11

Samples: 443
Families: 34

Samples: 627
Families: 25

Samples: 785
Families: 37

Download
Source:

VirusTotal
Detections  0: 

Samples: 572
Families: 11

Samples: 443
Families: 34

Samples: 621
Families: 25

Samples: 785
Families: 37

Samples: 552
Families: 11

Samples: 426
Families: 34

Samples: 575
Families: 23

Samples: 777
Families: 37

After
Analysis:

Samples: 2330
Families: 64

AVClass
Ransomware

Align Family
Names

Figure 6: MLRan ransomware sample collection methodology.
The diagram illustrates the four primary sources from which
ransomware samples were obtained for the MLRan dataset:
EldeRan (552 samples), MOTIF (426 samples), MarauderMap
(575 samples), and a curated collection (777 samples).
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Figure 7: MLRan goodware sample collection methodology.
All the goodware samples were downloaded from the Software
Informer website and they cut across 11 different categories.

files extensions and types, and behavioural signatures.
These features capture key behavioural aspects of software
and are represented using a binary presence approach,
where each feature is assigned a value of 1 if present or 0 if
absent. This method aligns with prior research (Sgandurra
et al., 2016), ensuring consistency in malware analysis.

We followed the approach in Algorithm 1 to extract API
calls from Cuckoo Sandbox JSON reports. The algorithm
loads each report (Lines 4–5), extracts the apistats section
(Line 6), and creates a dictionary where each observed API
call is recorded with a binary indicator prefixed by API:

(Lines 7–10). Sample IDs are extracted from filenames and
used to index the data (Line 11). All records are stored and
converted into a DataFrame (Line 13), with missing values
filled as zeros (Line 14) and sorted by sample ID (Line 15).
The final DataFrame represents each sample as a vector of
API call presences (Line 16).

Algorithm 1: Processing Cuckoo Sandbox JSON
reports for API calls

Input : Folder reports_folder containing Cuckoo
JSON reports

Output: DataFrame df summarizing API calls per
sample

1 Initialize empty list data to store API call
summaries;

2 Initialize empty list file_ids to store report IDs;
3 Retrieve all filenames in reports_folder matching

digits or ending with .json;
4 foreach filename in all_files do
5 Load JSON file filename into report;
6 Extract apistats section from

report.behavior.apistats;
7 Initialize empty dictionary summary for API

calls;
8 foreach api_dict in apistats.values() do
9 foreach api in api_dict.keys() do

10 summary[“API:api”] ← 1;
11 Extract file_id from filename (removing

extension if necessary);
12 Append summary to data and file_id to file_ids;
13 Create DataFrame df from data, indexed by

file_ids;
14 Fill missing values in df with 0 and convert to

integers;
15 Sort df by sample_id in ascending order;
16 return df

5. Experimental design
This section presents our approach to conducting the

experiments demonstrating the effectiveness of the MLRan
dataset. It illustrates the research questions and the process
adopted to answer them, the selected feature selection tech-
niques and ML models, and the evaluation metrics we used
to evaluate ransomware detection performance.
5.1. Research questions

In this study, we aim to answer the following research
questions:

• RQ1: How effectively do traditional ML classifiers
distinguish ransomware from goodware using the ML-
Ran dataset?
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Table 3
Summary of extracted feature categories from Cuckoo Sandbox reports. Each category represents a key behavioural aspect of
the analysed software. The table details the feature descriptions, their extraction sources within the Cuckoo report, and example
feature names.

Feature Category Description Cuckoo Report Section Example Features Names

API Calls (API) Captures system interactions related
to file manipulation, memory access,
network activity, and process exe-
cution. These calls indicate how a
program interacts with the OS.

behavior → apistats API:GetAdaptersInfo,
API:CreateProcessInternalW,
API:CryptUnprotectData,
API:DnsQuery_UTF8

Registry Keys (REG) Tracks registry modifications, includ-
ing keys opened, deleted, read, or
written. These modifications are of-
ten used for persistence and disabling
security features.

behavior → summary →
regkey_opened, regkey_deleted,

regkey_read, regkey_written

REG:DELETED:HKEY_CLASSES_ROOT\*\shell

\Secure Eraser, REG:WRITTEN:\REGISTRY

\USER \.DEFAULT\SOFTWARE \Piriform

\Recuva \Language

File Operations (FILE) Monitors file access patterns, includ-
ing creation, deletion, opening, and
writing, which can be indicative of
ransomware encryption attempts.

behavior → summary →
file_created, file_deleted,

file_written, file_opened

FILE:CREATED:c:\!!!how_to_decrypt!!!

.txt, FILE:WRITTEN:z:\boot \recovery

_instructions.html

Directory Operations (DIR) Identifies directory creation and enu-
meration, which ransomware often
uses to access and encrypt multiple
files.

behavior → summary

→ directory_created,

directory_enumerated

DIRECTORY:CREATED:\.\c :\programdata

, DIRECTORY:ENUMERATED:z:\boot \sv

-se\*

Strings (STR) Extracts human-readable text from
binaries, including error messages,
function names, registry paths, and
command-line arguments, providing
contextual clues to software intent.

strings STRING:snd_clipcopy, STRING:m\device

\harddiskvolume 2\program

files\mcafee \engine \avvclean

.datp

Network Activity (NET) Tracks network communication, such
as IP connections, domain resolu-
tions, and host interactions, which
are crucial for identifying C2 commu-
nications.

network → connects_ip,

connects_host, resolves_host

NETWORK:CONNECTS_HOST:104.131.182.103,
NETWORK:RESOLVES_HOST:yahoo.com

System Resources (SYS) Examines how software interacts with
system resources, such as DLLs,
command-line execution, mutex cre-
ation, and GUID usage.

behavior → summary →
dll_loaded, command_line,

mutex, guid

SYSTEM:DLL_LOADED:user32.dll,
SYSTEM:MUTEX:$Mutex_XYZ$

Dropped Files

Extensions and

Types (DROP)

Captures files created or modified
by the sample, including file types
and extensions, to detect ransomware
payloads or encrypted file formats.

dropped DROP:EXTENSION:.exe,
DROP:TYPE:zip_archive_data

Signatures (SIG) Detects predefined behavioural pat-
terns associated with malware, in-
cluding anti-VM detection and ran-
somware indicators.

signatures SIGNATURE:allocates_execute_remote_

process, SIGNATURE:antiemu_wine

• RQ2: How do feature selection techniques impact the
performance of ransomware detection models on the
MLRan dataset?

• RQ3: Which features in the MLRan dataset are most
predictive for ransomware detection?

• RQ4: How can analysing misclassified decisions re-
veal model weaknesses, enhance interpretability, and
improve the robustness of ransomware detection mod-
els?

5.2. Feature selection techniques
We employed feature selection (FS) techniques to

ensure unique feature names, eliminate duplicate entries,

and remove constant features lacking variance. Feature
selection identifies and selects the most relevant features
from a dataset, reducing dimensionality while preserving
the model’s decision-making quality (Zebari, Abdulazeez,
Zeebaree, Zebari and Saeed, 2020). Eliminating redundant
or irrelevant variables simplifies models, improves
computational efficiency, enhances model interpretability,
reduces overfitting, and ultimately increases the accuracy
and generalisability of ML algorithms (Theng and Bhoyar,
2024).

Feature selection methods fall into four categories: fil-
ter, wrapper, embedded methods, and genetic algorithms
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Table 4
Summary of GUIDE-MLRan and MLRan Dataset Compliance with the Guidelines. It outlines the fifteen criteria of the GUIDE-
MLRan framework for constructing high-quality behavioural ransomware datasets. Columns indicate the guideline category, specific
criterion (C1–C15), a brief description of the requirement, and a summary of how the MLRan dataset fulfils each criterion.

Category Criteria (C) Description MLRan Compliance Summary

Sample Diversity
and
Representativeness

C1. Diverse Ransomware
Samples

Include varied ransomware types and
families (e.g., Locker, Crypto, RaaS, Modern).

Includes 2,330 samples across 64 families, covering
all major ransomware types (Crypto, RaaS, Locker,
Modern), reflecting both legacy and emerging variants.

C2. Diverse Goodware
Samples

Include diverse benign software (e.g., common
applications, browsers, word processors, utilities).

Curated 2,550 goodware samples across 11 real-world
categories, including productivity, developer tools,
internet utilities, games, and security software.

C3. Balanced Class
Distribution

Maintain a balanced ratio of ransomware and
goodware samples.

Achieves inter-class balance (52.25% goodware, 47.75%
ransomware); intra-class diversity captured via broad
ransomware family representation.

Sample Quality
and Accuracy

C4. Accurate Labelling
Ensure accurate annotation of ransomware and
goodware with detailed metadata. Ground truth family labels and naming using AVClass.

C5. Sample size
Collect enough samples to capture common
ransomware behavioural patterns.

4880 samples sourced from four high-quality repositories (EldeRan,
MOTIF, MarauderMap, and curated threat intel);
ensures comprehensive, high-fidelity behavioural coverage.

C6. Covered Time Period
Include both recent and outdated ransomware
for real-world applicability.

Samples span from 2006–2024 using VirusTotal first
submission timestamps.

Sandbox and
Testbed
Requirements

C7. Sandbox Hardening
Simulate real-world user behaviour to bypass
anti-sandbox techniques.

Cuckoo sandbox hardened using disguise and human
activity simulation modules, extended timeouts, and
realistic system configurations for evasion countermeasures.

C8. Comprehensive
Behavioural
Analysis

Capture dynamic and static features for a
comprehensive behavioural profile.

Extracts nine dynamic behavioural feature groups
(API, REG, FILE, DIR, STR, NET, SYS, DROP, SIG)
from Cuckoo reports for robust malware profiling.

Representative
Feature Extraction
and Modelling

C9. Relevant Feature
Extraction

Extract features such as API calls, file operations
and network behaviours relevant to detection.

Publicly available scripts extract critical features from
structured JSON reports; features are relevant to file,
system, and network activity.

C10. Data Preprocessing
Clean, normalise, and standardise data to
ensure quality and consistency.

Preprocessing includes duplicate removal, standardisation,
binary encoding, and metadata alignment for consistent ML input.

C11. Model Training
and Evaluation Ensure robust model training and evaluation.

Models trained using rigorous protocol to avoid test/temporal/
selective snooping bias; evaluation incorporates several
performance evaluation metrics.

Documentation,
Reproducibility,
and Data Extension

C12. Availability of
Contextual and
Metadata Information

Provide detailed metadata about samples,
datasets, sandboxes and methodologies.

Comprehensive metadata provided (hashes, types, timestamps,
labels, source); sandbox configuration and feature definitions
clearly documented.

C13. Public Availability
of Data and Code

Share datasets and codes with documentation to
encourage reproducibility and benchmarking.

All Cuckoo parsers, automation scripts, and dataset metadata
made available on GitHub with documentation and version
control.

C14. Ethical and Legal
Considerations

Ensure anonymisation, privacy, and compliance
with regulations.

Anonymisation ensured; only metadata and derived features shared;
binaries handled securely and access-controlled to prevent misuse.

C15. Continuous Updates
Regularly update datasets to include emerging
ransomware threats.

Dataset incorporates ransomware samples up to 2024; framework
enables longitudinal extension and collaborative community curation.

(Kamolov, 2021). Filter methods using measures like in-
formation gain or 𝜒2-statistics to evaluate features indepen-
dently are the most straightforward and efficient. Wrapper
methods evaluate feature subsets by training a model, often
giving better results but requiring more computation, such as
Recursive Feature Elimination (RFE). Embedded methods
combine feature selection with the learning process, usually
through regularisation. Genetic algorithms select features
by evolving subsets based on their performance, offering a
flexible, optimisation-based approach. While wrapper and
embedded methods may work better with specific models,
filter methods are more consistent across different ones.

This study employs three widely used techniques: Mu-
tual Information, Chi-Square, and RFE.
5.2.1. Mutual Information (MI)

Mutual Information quantifies the dependency between a
feature 𝑋 and the target variable 𝑌 , measuring the reduction
in uncertainty about 𝑌 given 𝑋:

𝐼(𝑋; 𝑌 ) =
∑

𝑥∈𝑋

∑

𝑦∈𝑌
𝑃 (𝑥, 𝑦) log

𝑃 (𝑥, 𝑦)
𝑃 (𝑥)𝑃 (𝑦)

(1)

A higher 𝐼(𝑋; 𝑌 ) value indicates stronger feature rele-
vance. MI is non-parametric and captures both linear and
nonlinear relationships.
5.2.2. Chi-Square (𝜒2) Test

The 𝜒2 test evaluates the statistical dependence between
a categorical feature and the target variable, computed as:

𝜒2 =
𝑛
∑

𝑖=1

(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖
(2)

where 𝑂𝑖 and 𝐸𝑖 denote the observed and expected
frequencies, respectively. A high 𝜒2 score suggests strong
dependence, making the feature valuable for classification.
5.2.3. Recursive Feature Elimination (RFE)

RFE iteratively removes the least important features
based on model coefficients (e.g., 𝛽 in linear models) or fea-
ture importance scores from tree-based models. The process
refines feature selection by retaining those with the highest
predictive contribution.
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5.3. Machine learning models
Machine learning models vary in complexity and in-

terpretability, offering different performance and computa-
tional efficiency trade-offs. This study employs Light Gra-
dient Boosting Machine (LightGBM) , Decision Trees, Lo-
gistic Regression, and Random Forest, each with distinct
advantages in ransomware detection.
5.3.1. Light gradient boosting machine (LightGBM)

LightGBM is a gradient boosting framework that con-
structs decision trees using a leaf-wise growth strategy,
which selects the leaf with the maximum loss reduction
to split. This approach often leads to faster convergence
and better accuracy than level-wise methods. LightGBM is
optimised for high performance through histogram-based
binning, gradient-based one-side sampling (GOSS), and ex-
clusive feature bundling (EFB). The objective function fol-
lows the regularised gradient boosting formulation:

(Θ) =
𝑛
∑

𝑖=1
𝑙(𝑦𝑖, 𝑦̂𝑖) + 𝜆

𝐾
∑

𝑘=1
‖𝑓𝑘‖

2 (3)

where 𝑙(𝑦𝑖, 𝑦̂𝑖) is the differentiable loss function, and
the regularisation term ‖𝑓𝑘‖2 controls tree complexity.
LightGBM is particularly effective for large-scale and
high-dimensional learning tasks such as ransomware
classification.
5.3.2. Decision trees

A Decision Tree splits data using conditions at nodes,
forming a tree structure for decision-making. It uses mea-
sures like Gini impurity:

𝐺 = 1 −
𝐶
∑

𝑖=1
𝑝2𝑖 (4)

where 𝑝𝑖 is the probability of a class. Decision Trees are
interpretable but prone to overfitting.
5.3.3. Logistic regression

Logistic Regression models the probability of a binary
outcome using the sigmoid function:

𝑃 (𝑌 = 1|𝑋) = 1
1 + 𝑒−(𝛽0+

∑𝑛
𝑖=1 𝛽𝑖𝑥𝑖)

(5)

where 𝛽0 is the intercept and 𝛽𝑖 are feature coefficients. It
is computationally efficient but limited to linearly separable
data.
5.3.4. Random forest

Random Forest is a bagging ensemble of Decision Trees,
reducing overfitting by averaging multiple tree predictions.
The final classification is determined via majority voting:

𝑦̂ = mode(𝑦1, 𝑦2, ..., 𝑦𝑇 ) (6)

where 𝑦𝑇 is the prediction from the 𝑇 -th tree. For regres-
sion, predictions are averaged:

𝑦̂ = 1
𝑇

𝑇
∑

𝑡=1
𝑦𝑡 (7)

It handles high-dimensional data effectively but is com-
putationally expensive.
5.3.5. Extra trees (Extremely randomised trees)

Extra Trees is an ensemble method that builds multiple
unpruned decision trees using randomly selected features
and split thresholds. Unlike Random Forests, it increases
randomness to reduce variance and enhance generalisation.
Predictions are aggregated as:

𝑦̂ = 1
𝑇

𝑇
∑

𝑡=1
𝑓𝑡(𝑥) (8)

where 𝑓𝑡(𝑥) is the prediction from the 𝑡𝑡ℎ tree. Extra
Trees is efficient and effective for high-dimensional tasks
such as ransomware detection.
5.4. Evaluation metrics

To assess model performance in ransomware detection,
we employed the following evaluation metrics:
5.4.1. Accuracy

Accuracy measures the proportion of correctly classified
instances:

Accuracy = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(9)
where 𝑇𝑃 and 𝑇𝑁 represent true positives and true

negatives, respectively, while 𝐹𝑃 and 𝐹𝑁 denote false pos-
itives and false negatives. Accuracy is effective for balanced
datasets but may be misleading in imbalanced scenarios.
5.4.2. Balanced accuracy

Balanced Accuracy adjusts for class imbalances by aver-
aging the recall of each class:

Balanced Accuracy = 1
2

( 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

+ 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

)

(10)
This metric ensures a fair evaluation when class distri-

butions are skewed.
5.4.3. Precision

Precision quantifies the proportion of correctly identified
positive instances out of all predicted positives:

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(11)
A high precision indicates fewer false positives, which is

critical in security applications where misclassifying benign
software as ransomware has significant consequences.
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Figure 8: Ransomware detection pipeline showing dynamic analysis, custom feature extraction, multi-stage feature selection,
model training, and explainability using SHAP and LIME.

5.4.4. Recall
Recall, or sensitivity, measures the model’s ability to

detect positive instances:

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(12)

A high recall ensures fewer false negatives, making it
essential for accurately identifying ransomware threats.
5.4.5. F1-score

The F1-Score balances precision and recall, providing a
single performance metric:

𝐹1 = 2 × Precision × Recall
Precision + Recall (13)

It is particularly useful when false positives and false
negatives need equal consideration.
5.5. Ransomware detection pipeline

To answer the research questions, we performed the
activities in the ransomware detection pipeline presented in
Figure 8. First, we conducted the dynamic analysis of the
collected ransomware and goodware samples using Cuckoo
Sandbox, which generates JSON reports capturing runtime
behaviour. Then, we used a custom Python-based extractor
to parse these reports to generate over 6.4 million binary
features, grouped into nine behavioural categories, including
API calls, registry activity, file operations, and network
behaviour.

A time-aware 80:20 train-test split ensures temporal
consistency and realistic evaluation. Specifically, samples
were separated by their types and chronologically ordered
by their first submission date to VirusTotal, and the earliest

80% are used for training while the most recent 20% form the
test set. This strategy prevents temporal leakage and mimics
real-world deployment, where models are trained on past
data and evaluated on future, unseen samples. Such tempo-
ral separation is crucial for assessing model generalisation,
especially in the context of evolving ransomware behaviours
and concept drift.

Then, we performed feature selection in two stages.
First, we conducted group-wise mutual information filtering
(threshold = 0.01), which reduced the feature space from
6.4 million to 24,162. Then we performed RFE, which
selects the most informative 483 features. We then trained
a classification model on these features and evaluated it on
the test set.

To enhance model transparency, we applied SHAP and
LIME to explain individual predictions and highlight influ-
ential features, providing interpretable insights into the be-
havioural traits that distinguish ransomware from goodware.

6. Results
This section presents the results we obtained to answer

the research questions: performance of traditional ML clas-
sifiers (baselines) (RQ1), the impact of feature selection on
the performance of ransomware detection models (RQ2),
feature importance (RQ3), analysis of model decisions, and
explanations of misclassified instances at both global and
local levels (RQ4).
6.1. Baseline performance (RQ1)

We compared the performance of the baseline ML mod-
els for distinguishing ransomware from goodware using
three feature selection techniques.Table 5 presents our com-
parative analysis. We consider three FS methods as part of
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Table 5
Performance comparison of machine learning models for ransomware and goodware detection using three feature selection (FS)
techniques: Mutual Information (MI) with thresholds of 0.01 and 0.001, and Chi-Square. The table presents accuracy (Acc),
balanced accuracy (Bal. Acc), precision (Pre), recall (Re), F1 score (F1), and computation time in seconds (Time) for each
model: XGBoost, Decision Trees, Logistic Regression, and Random Forest. Results show that logistic regression with MI (0.01)
outperforms other FS methods in terms of performance and computational efficiency.

FS Model Acc Bal. Acc Pre Re F1 Time

MI (0.01)

LightGBM 94.05 94.07 94.06 94.05 94.05 7876.11
Decision Trees 97.54 97.59 97.57 97.54 97.54 10.76
Logistic Regression 97.54 97.59 97.57 97.54 97.54 4.75
Random Forest 97.03 97.10 97.09 97.03 97.03 13.41
Extra Trees 97.33 97.38 97.37 97.33 97.33 4.98

MI (0.001)

LightGBM 94.56 94.56 94.56 94.56 94.56 24797.11
Decision Trees 96.62 96.67 96.65 96.62 96.62 50.89
Logistic Regression 98.05 98.11 98.05 98.05 98.05 19.97
Random Forest 96.92 97.00 96.99 96.92 96.92 37.40
Extra Trees 96.92 96.99 96.98 96.92 96.92 20.68

Chi-Square

LightGBM 93.84 93.85 93.85 93.85 98.41 23017.73
Decision Trees 96.82 96.86 96.85 96.82 96.82 115.36
Logistic Regression 98.05 98.11 98.09 98.05 98.05 120.10
Random Forest 93.54 93.79 94.13 93.54 93.53 968.32
Extra Trees 93.54 93.80 94.17 93.54 93.53 833.34

stage 1 (MI with thresholds of 0.01 and 0.001, and Chi-
Square) highlighting trade-offs between model performance
and computational cost. While logistic regression achieves
marginally higher accuracy and F1 score with MI at a 0.001
threshold, MI at 0.01 is selected as the preferred method
due to its ability to retain significantly fewer features while
delivering comparable performance (97.54% accuracy and
F1 score). Notably, it also achieves the lowest computation
time (4.75 seconds), making it the most efficient choice.
This threshold reduces the feature space from 6,467,926
to 24,162, enhancing model interpretability and reducing
complexity without compromising predictive power. Over-
all, MI-based feature selection consistently outperforms Chi-
Square, and logistic regression emerges as the most effective
and computationally efficient model. In contrast, LightGBM
performs the least favourably across all FS methods, particu-
larly with MI (0.001), where it exhibits both lower accuracy
and significantly higher computation time, indicating poor
scalability in this setting.

Result 1: Baseline performance
Logistic regression with MI (0.01) offers the best
trade-off between performance, efficiency, and fea-
ture reduction, while LightGBM performs worst due
to lower accuracy and high computation cost.

6.2. Impact of feature selection (RQ2)
In Stage 1 of our feature selection pipeline, MI (0.01)

yielded an initial feature set of 24,162. In Stage 2, this set was
reduced to 483 features using RFE as described in Algorithm
2, with logistic regression (the best-performing model from
Stage 1) as the base estimator. The algorithm iteratively

evaluates performance across varying feature counts: it ini-
tialises a logistic regression model (Lines 1–2), computes
feature counts from selection percentages (Lines 5–6), ap-
plies RFE (Lines 11–14), trains and tests the model (Lines
15–18), and records balanced accuracy (Lines 19–21). Re-
sults are stored and returned in a dictionary (Lines 22–25).
Figure 9 shows that the highest balanced accuracy (98.07%)
is achieved using just 2% of the features (483), highlighting
the effectiveness of the proposed feature selection technique.

Table 6 presents the performance of the models on the
selected 483 features across three ransomware detection
tasks: binary, multi-class (type), and family classification.
Logistic Regression delivers strong, consistent results with
high accuracy and minimal computation time, particularly
in the binary and family classifications. Extra trees model
performs best in ransomware type classification. LightGBM
shows lower balanced accuracy on the binary and family
classification tasks.

Table 7 shows the number of features selected in each
feature group at each stage of the two stage feature selection
technique. In the API feature group, the proportion of se-
lected features increases significantly from 0.0048% in the
original dataset to 0.5670% after MI(0.01) and further to
13.0434% after RFE, highlighting the increasing importance
of API features. Similarly, for REG (Registry Keys), the
proportion rises from 8.1248% to 22.2208% after MI(0.01),
then drops slightly to 18.6335% after RFE, reflecting the
selection of more relevant features during the MI(0.01)
stage, followed by refinement with RFE.

In the FILE feature group, MI(0.01) increases the se-
lected proportion from 32.1322% to 58.1243%, but RFE
significantly reduces it to 3.3126%, indicating that RFE
retained only the most relevant file-related features. The DIR
(Directory Operations) group shows a modest increase from
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Algorithm 2: Perform Recursive Feature Elimina-
tion and evaluate logistic regression performance

Input: 𝑋train: Training features, 𝑋test: Testing
features,

𝑦train: Training labels, 𝑦test: Testing labels
Output: A dictionary mapping percentages to

balanced accuracy scores
1 Step 1: Initialise logistic regression model
2 Set 𝑚𝑜𝑑𝑒𝑙 ← LogisticRegression(max_iter=10000,
3 solver=’saga’, random_state=42)
4 Step 2: Define feature selection percentages
5 Set 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑠 ← [1, 2, 3, 4, 5, 10, 20, 50, 70, 90]
6 Set 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑐𝑜𝑢𝑛𝑡𝑠 ← [⌊(𝑝∕100) ⋅ |𝑋train|⌋ for 𝑝 ∈

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑠]
7 Step 3: Initialise balanced accuracies dictionary
8 Set 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑖𝑒𝑠 ← {}
9 Step 4: Recursive Feature Elimination (RFE)

10 foreach 𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ∈ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑐𝑜𝑢𝑛𝑡𝑠 do
11 Perform RFE for 𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 features:
12 Set 𝑟𝑓𝑒 ← RFE(estimator=model,
13 n_features_to_select=num_features, step=0.1)
14 Fit RFE: 𝑟𝑓𝑒.𝑓 𝑖𝑡(𝑋train, 𝑦train)
15 Transform test set:
16 Set 𝑋test_transformed ← 𝑟𝑓𝑒.𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑋test)
17 Fit logistic regression on selected features:
18 Fit 𝑚𝑜𝑑𝑒𝑙 using 𝑟𝑓𝑒.𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑋train) and

𝑦train
19 Calculate balanced accuracy:
20 Set 𝑦pred ← 𝑚𝑜𝑑𝑒𝑙.𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋test_transformed)
21 Set 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑_𝑎𝑐𝑐 ←

balanced_accuracy_score(𝑦test, 𝑦pred)
22 Add to dictionary:

𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑖𝑒𝑠[𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠] ←
𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑_𝑎𝑐𝑐

23 end
24 Step 5: Return balanced accuracies dictionary
25 return 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑖𝑒𝑠

2.4447% to 3.3938% after MI(0.01), followed by a small
reduction to 2.0704% after RFE, suggesting less importance
placed on directory operations.

The STR (Strings) feature group shows a dramatic shift,
with the percentage dropping from 56.1559% to 13.8523%
after MI(0.01) and then increasing to 46.1697% after RFE,
indicating that RFE preserved a significant number of string-
based features. In contrast, NET (Network Activities) fea-
tures were reduced from 0.0744% to 0.0124% after MI(0.01)
and completely eliminated (0%) after RFE, suggesting their
limited relevance to the model.

For SYS (System Operations), the proportion increases
from 0.2615% to 1.3285% after MI(0.01) and increases to
7.8674% after RFE. The DROP (Drop Operations) group
shows a decrease from 0.7986% to 0.3104% after MI(0.01)
and a slight increase to 4.7619% after RFE, highlighting
RFE’s role in retaining important drop operations.
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Figure 9: This plot shows the balanced accuracy of a logistic
regression model as a function of the percentage of features se-
lected using Recursive Feature Elimination. The initial dataset
contains 24,162 features, and RFE is used to select subsets of
features corresponding to different percentages iteratively. The
first 5 points on the x-axis are 1%, 2%, 3%, 4%, and 5%. The
highest balanced accuracy (98.07%) is achieved when only 2%
of the features (483 features) are selected, demonstrating that
careful feature selection can improve model performance while
reducing computational complexity.

Finally, SIG (Signatures) features increase from
0.0031% to 0.1904% after MI(0.01) and then to 4.1407%
after RFE, indicating that only the most critical signature
features were retained.

Result 2: Impact of feature selection
The proposed two-stage feature selection method re-
duced over 6.4 million features to 483, significantly
improving model efficiency and interoperability.
In addition, Table 7 shows how feature selec-
tion reshapes the distribution of behavioural fea-
ture groups. While STR and FILE features initially
dominate the dataset, comprising over 88% of all
features, recursive feature elimination reduces the
prominence of STR (46.58%) and FILE to just 3.31%.
However, the relative importance of REG and API

features increased, reflecting their relevance to ran-
somware detection. In contrast, NET features are
entirely removed, indicating limited discriminative
value. Overall, the process highlights string, registry,
API and system operation behaviours as the most
informative.

6.3. Feature importance (RQ3)
Global feature importance refers to the overall contribu-

tion of each feature to a model’s decision-making process
across the entire dataset. It quantifies how much each feature
influences the model’s predictions, providing insights into
which features are most critical for the model’s behaviour.
In this study, we utilised SHAP (SHapley Additive exPla-
nations). SHAP is a powerful and widely used method for
model interpretability that provides a unified framework for
explaining predictions of machine learning models. It is
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Table 6
Performance comparison of machine learning models for ransomware classifications across the three labels using the features
from RFE. The table presents accuracy (Acc), balanced accuracy (Bal. Acc), precision (Pre), recall (Re), F1 score (F1), and
computation time (Time) for each model: XGBoost, Decision Trees, Logistic Regression, and Random Forest.

FS Model Acc Bal. Acc Pre Re F1 Time

Binary

LightGBM 94.05 94.02 94.05 94.05 94.05 1206.58
Decision Trees 93.54 93.43 93.61 93.54 93.53 12.13
Logistic Regression 98.15 98.18 98.16 98.15 98.15 0.86
Random Forest 96.62 96.63 96.62 96.62 96.62 2.21
Extra Trees 97.13 97.18 97.16 97.13 97.13 1.60

Types

LightGBM 81.95 73.43 86.61 82.34 81.47 5447.46
Decision Trees 83.79 74.43 84.43 83.79 83.78 12.17
Logistic Regression 86.46 79.86 87.70 86.46 86.53 1.31
Random Forest 86.67 79.34 87.43 86.67 86.65 2.67
Extra Trees 87.69 80.71 88.32 87.69 87.77 1.61

Families

LightGBM 74.15 30.42 69.06 74.15 68.07 7132.76
Decision Trees 75.38 41.66 80.84 75.38 76.72 1.79
Logistic Regression 81.85 47.07 83.70 81.85 81.35 2.24
Random Forest 78.77 45.55 80.82 78.77 77.84 2.95
Extra Trees 81.13 45.23 83.35 81.13 81.31 1.54

Table 7
Distribution of number of features selected across the fea-
ture groups in the MLRan dataset: application programming
interface (API), registry keys (REG), file operations (FILE),
directory operations (DIR), strings (STR), network activities
(NET), system operations (SYS), drop operations (DROP),
and signatures (SIG). Feature selection is carried out in two
stages: Stage 1 applies mutual information (MI) with a 0.01
threshold to the original features, and Stage 2 uses recursive
feature elimination (RFE) on the features selected in Stage 1.
N represents the number of features belonging to that group
and % represents the percentage of each feature group relative
to the total features selected by each technique.
Feature
Groups

Original After MI(0.01) FS After RFE FS
N % N % N %

API 313 0.0048 137 0.5670 63 13.0434
REG 525505 8.1248 5369 22.2208 90 18.6335
FILE 2078287 32.1322 14044 58.1243 16 3.3126
DIR 158123 2.4447 820 3.3938 10 2.0704
STR 3632119 56.1559 3347 13.8523 223 46.1697
NET 4814 0.0744 3 0.0124 0 0.0000
SYS 16911 0.2615 321 1.3285 38 7.8674
DROP 51651 0.7986 75 0.3104 23 4.7619
SIG 203 0.0031 46 0.1904 20 4.1407
Total 6467926 24162 483

based on Shapley values, a concept borrowed from coopera-
tive game theory, which assigns each feature an importance
value based on its contribution to the model’s output.

Figures 10 and 11 show the SHAP bar plot and SHAP
violin plot of the top 50 features that contributed the most
to the model’s prediction, respectively. It ranks features
based on their mean absolute SHAP values, reflecting their
impact on the model’s predictions. Closely examining the
top 10 features identified by the SHAP analysis provides
key insights into how the model distinguishes ransomware
from goodware. The highest-ranked feature, (STRING:!this

program cannot be run in dos mode) with a SHAP value of
+1.27, indicates that the model flags executables designed

for modern systems, a common trait of ransomware. Simi-
larly, (API:LdrGetProcedureAddress) follows by identifying
a function call crucial to dynamic linking in Windows.
Malware often relies on this technique to load external,
hidden code into running processes. This feature signals the
model’s sensitivity to dynamic linking, a tactic frequently
exploited by ransomware to inject malicious payloads. To-
gether with the first feature, it suggests a strong reliance
on identifying signs of obfuscation and covert execution.
The model also prioritises entropy-based features such
as (SIGNATURE:packer_entropy), which detects packed files
commonly used by ransomware to obfuscate their code.

Additionally, (SIGNATURE:allocates_rwx) and
(API:NtAllocateVirtualMemory) reflect the model’s ability
to identify suspicious memory allocation practices typical
of ransomware that manipulates system processes for
stealthy execution. The feature (SIGNATURE:allocates_rwx)

is memory allocation with Read-Write-Execute (RWX)
permissions. This tactic is a hallmark of ransomware, as
it allows the injection of executable code into running
processes. The prominence of this feature signals the
model’s sharp focus on detecting suspicious memory
behaviours, particularly those indicative of attempts to
execute hidden or harmful code. The model continues to
build this case with (API:NtAllocateVirtualMemory),
focusing on memory allocation within a process’s
address space. This API call is often associated with
malware activities such as runtime payload injection and
manipulation of system memory. By highlighting this
feature, the model further emphasises its sensitivity to
runtime behaviours commonly seen in ransomware.

As we move forward, (STRING:kernel32.dll) introduces
an important system-level component. Kernel32.dll is es-
sential for core Windows functions, and its interaction with
software could signal attempts by malware to manipulate
system-level operations. This feature enhances the model’s
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Figure 10: SHAP decision plot showing the top 50 features ranked by their impact on model output.

ability to detect interactions with critical system resources,
which are frequently targeted by malicious software seeking
to gain elevated privileges or maintain persistence.

Furthermore, (API:CoUninitialize) shifts the focus to
the use of COM (Component Object Model) components.
Although not inherently malicious, COM is often exploited
by malware to execute hidden functions. The model uses this
feature to spot unusual interactions with COM objects, an
indication that the software might be attempting to mask its
true purpose, a strategy commonly adopted by ransomware.

Features like (SYSTEM:DLL_LOADED:uxtheme.dll) and
(API:CreateDirectoryW) further indicate the model’s
detection of legitimate system behaviours hijacked by
ransomware, such as loading system DLLs or creating
directories for malicious payloads. These top features
show that the model successfully identifies malicious
activities related to dynamic code execution, memory
manipulation, and system modifications, which are
characteristic of modern ransomware attacks.

Furthermore, we analyse the top 50 features based on
SHAP into their respective feature groups as shown in Table
8. API is the highest-ranking feature group, with 13 features
(26%), indicating the model’s strong reliance on API calls
to detect ransomware and goodware dynamic behaviours.
This group is critical in identifying how software interacts
with the system at runtime, providing insights into potential
malicious behaviour. Following closely are the STR and
SYS groups, each contributing 11 features (22%). STR
features focus on string patterns, such as file paths or exe-
cutable names, which can highlight signatures of malicious
software. On the other hand, the SYS group detects system-
level operations like memory manipulation and interaction
with critical system components, which are often exploited
by ransomware to gain control or elevate privileges.

The next most frequent group is REG with 8 features
(16%), highlighting the importance of registry interactions
in detecting malware persistence and system alterations. SIG
follows with 4 features (8%), aiding in detecting known
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Figure 11: SHAP violin plot showing the top 50 features ranked by their impact on model output. Wider sections indicate features
with greater and more variable influence, while positive and negative values reflect their contribution to the positive and negative
class predictions, respectively.

malicious software through signature-based methods. The
DROP group contributes 2 features (4%), reflecting sensitiv-
ity to file drop operations, commonly used by ransomware.

The FILE, DIR, and NET groups contribute the least,
with FILE representing 1 feature (2%) and DIR and NET
having no features (0%), suggesting they play a minor role
in the top 50 features.

Result 3: Most important features
SHAP analysis shows that API calls, string patterns,
system behaviours, and registry keys are the most
predictive feature groups, making up over 70% of
the top 50 features. Key features include dynamic
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Table 8
Feature group distribution of the top 50 features based
on SHAP. The feature groups are: application programming
interface (API), registry keys (REG), file operations (FILE),
directory operations (DIR), strings (STR), network activities
(NET), system operations (SYS), drop operations (DROP),
and signatures (SIG). N represents the number of features
belonging to that group and % represents the percentage of
each feature group relative to the total features selected by
SHAP in the top 50.

Feature
Groups N %

API 13 26.0
REG 8 16.0
FILE 1 2.0
DIR 0 0.0
STR 11 22.0
NET 0 0.0
SYS 11 22.0
DROP 2 4.0
SIG 4 8.0
Total 50

linking, memory use, and interactions with critical
components. File, directory, and network feature
groups contribute little, reflecting the model’s focus
on runtime and obfuscation behaviour.

6.4. Model decision analysis (RQ4)
6.4.1. Misclassified model decisions
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Figure 12: Confusion matrix for the ransomware detection
logistic regression model based on the two-stage feature
selection technique. The results show that the model correctly
classified 498 Goodware and 459 Ransomware instances, with
12 false positives and 6 false negatives.

Figure 12 visualises the performance of the Logistic
Regression model in classifying goodware and ransomware.
The rows represent the true labels, while the columns rep-
resent the predicted labels. The matrix indicates that the

model correctly identified 498 instances of goodware and
459 instances of ransomware. There were 12 goodware
instances misclassified as ransomware (false positives) and
6 ransomware instances misclassified as goodware (false
negatives), achieving an accuracy of 98.15% as shown in
Table 6.

Out of the 6 ransomware instances misclassified as good-
ware, the misclassifications were distributed across three
ransomware families: Shodi (4 instances), Clop (1 instance),
and Delshad (1 instance). These misclassifications reflect
the model’s difficulty in distinguishing between these ran-
somware families. The misclassified instances also span
two ransomware types, including Crypto (5 instances) and
Modern (1 instance). Also, the misclassified ransomware
instances span across different first submission years, with
4 instances first seen in 2021, 1 instance in 2023, and 1
instance in 2024.

The 12 goodware samples misclassified as ransomware
are associated with several software sources, with
the majority (10 instances) originating from Software
Informer’s Most Popular category, and the remaining
instances from Education (1), and Business (1). These
misclassified samples include legitimate software programs
such as pdfcreator, zoominstallerfull, teamspeak3-client,
and avast_secure_browser_setup, among others.

The misclassified samples are also distributed across
different first submission years: 2024 (7 instances), 2023
(4 instances), and 2022 (1 instances). This suggests that the
model is generally more effective at classifying goodware
from earlier years (2022) but struggles more with programs
submitted in the last two years (2023 and 2024). The model
might encounter challenges due to new software or updates
that exhibit behaviour similar to ransomware, leading to false
positives, especially for popular software versions.
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Figure 13: t-SNE projection in 2D with misclassified samples
highlighted in red with black borders and correctly classified in
blue.

To investigate the decision boundary and understand
where the misclassified samples fall in the feature space, we
used the dimensionality reduction technique, t-Distributed
Stochastic Neighbor Embedding (t-SNE) to project the high-
dimensional data into a 2D and 3D space for visualisation as
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Figure 14: t-SNE projection in 3D with misclassified samples
highlighted in red with black borders and correctly classified in
blue.

shown in Figures 13 and 14 respectively. Misclassified sam-
ples are highlighted in red with black borders, and correctly
classified samples are in blue. As observed in both plots, the
correctly classified samples tend to form distinct clusters,
indicating that the model can effectively separate different
classes in the feature space. The misclassified samples are
scattered near the correctly classified ones, suggesting that
the model struggles to differentiate between certain samples.
These samples might be ambiguous or fall near the decision
boundary of the model.

Result 4: Misclassified model decision analysis
Misclassification analysis reveals that most false
positives involve recent, popular goodware exhibit-
ing ransomware-like behaviour, while false nega-
tives cluster around a few ransomware families. t-
SNE visualisations show misclassified samples near
decision boundaries, indicating ambiguity. These in-
sights expose model weaknesses and inform strate-
gies to improve robustness and interpretability.

6.4.2. Local misclassified instance explanation
To understand why the model misclassified certain in-

stances, we conducted a local instance analysis using Local
Interpretable Model-agnostic Explanations (LIME). This
method helps to clarify the reasons behind the model’s
specific predictions.

Figure 15 shows the LIME explanation for
why a ransomware sample was misclassified as
goodware. This misclassification is primarily
due to the model’s reliance on features typically

associated with goodware. Specifically, Feature

(SIGNATURE:packer_entropy) strongly favoured goodware,
contributing significantly to the probability of classifying
the sample as goodware. While Feature (STRING:!this

program cannot be run in dos mode) and Feature

(REG:READ:HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\ProfileList\S-1-5-21-4114181432-

2397392814-2180606575-500\ProfileImagePath) indicated
ransomware. The model’s emphasis on goodware-associated
features outweighed the signals from ransomware-
associated features. This highlights the challenge of
distinguishing between the two classes when feature
values overlap or when certain features disproportionately
influence the model’s decision-making process.

Similarly, Figure 16 shows the LIME explanation of a
goodware sample misclassified as ransomware. It shows that
the model was heavily influenced by Feature (STRING:!this

program cannot be run in dos mode), with a probabil-
ity of 0.26, which is associated with Ransomware. De-
spite other features like Feature (SIGNATURE:packer_entropy)

and Feature (SIGNATURE:allocates_rwx) showing benign be-
haviour, the model’s reliance on the strong ransomware-
associated features led to the misclassification.

Result 5: Local misclassified instance explanation
LIME analysis reveals misclassifications often occur
when the model overweights a few dominant fea-
tures. In ransomware samples misclassified as good-
ware, benign indicators like low entropy suppressed
the influence of malicious signals. Conversely, good-
ware samples were misclassified as ransomware due
to strong associations with features commonly seen
in malware, such as specific string patterns and reg-
istry accesses.

7. Discussion
This paper has presented a novel approach to ran-

somware detection using machine learning. To contextualise
our findings and provide a broader understanding of the
field, this section critically reviews existing literature on ran-
somware detection using machine learning, focusing on the
efficacy of traditional classifiers, the role of feature selection,
the predictive power of different feature groups, and the
insights gained from analysing misclassified instances. Also,
we discuss the threat to validity and limitations of this study.
7.1. Machine learning models for ransomware

detection
7.1.1. Ransomware-goodware classification

Our results support prior findings that traditional ma-
chine learning classifiers, particularly logistic regression,
are highly effective for ransomware-goodware classification
when trained on behavioural features. Similar to the EldeRan
dataset (Sgandurra et al., 2016), our logistic regression
model achieved strong performance, but with the added
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Figure 15: LIME explanation of the model’s prediction for a ransomware sample misclassified as goodware. The figure displays
the top 5 features and the predicted probabilities for Goodware (79%) and Ransomware (21%), along with the contributions
of individual features to the model’s decision. Features influencing the Goodware prediction are shown on the left, while those
contributing to the Ransomware classification are shown on the right. The feature values for the misclassified sample are also
presented.

Figure 16: LIME explanation of the model’s prediction for a goodware sample misclassified as ransomware. The figure displays
the top 5 features and the predicted probabilities for Goodware (13%) and Ransomware (87%), along with the contributions
of individual features to the model’s decision. Features influencing the Goodware prediction are shown on the left, while those
contributing to the Ransomware classification are shown on the right. The feature values for the misclassified sample are also
presented.

benefit of enhanced efficiency through our proposed two-
stage feature selection technique. This approach significantly
reduced the feature space, from over 6 million to just 483,
while maintaining high accuracy, offering a practical and
interpretable solution for real-world deployment.

Contrary to earlier studies that favour ensemble methods
for ransomware detection (Jaya and Razak, 2022; Aljabri,
Alhaidari, Albuainain, Alrashidi, Alansari, Alqahtani and
Alshaya, 2024), our evaluation showed that LightGBM per-
formed worst, with lower accuracy and substantially higher
computation time. This suggests that simpler models can
outperform more complex alternatives when paired with
well-chosen features, especially on high-dimensional be-
havioural data. Moreover, while most previous work focuses
solely on predictive performance, our study emphasises the
importance of model efficiency and feature reduction, ad-
dressing a key limitation in the current literature. Overall,
our findings highlight that logistic regression, combined
with lightweight feature selection, offers a robust and scal-
able approach to binary ransomware detection.
7.1.2. Impact of feature selection

Effective feature selection is crucial in dynamic ran-
somware detection due to the high dimensionality of be-
havioural data. Our two-stage approach (applying MI with a
0.01 threshold followed by RFE) reduced the MLRan dataset
from over 6.4 million to just 483 features, significantly
improving efficiency and interpretability without sacrificing

performance. This builds on prior work using MI (Sgan-
durra et al., 2016; Abbasi, Al-Sahaf and Welch, 2020), but
improves upon it by avoiding fixed feature quotas instead
refining selection through performance-guided elimination.

While studies such as Moreira, de Sales Jr and Moreira
(2022) and Onwuegbuche et al. (2023) have shown the
benefits of reducing feature sets to 300–500 using various
techniques, our method achieves similar reductions from a
much larger initial space, demonstrating greater scalability.
Importantly, our results confirm that the most predictive
behaviours lie in API calls, registry, strings, and system
operations, echoing findings from previous work. Overall,
our approach offers a simple yet powerful framework for re-
ducing noise, improving model generalisation, and capturing
core ransomware behaviours in large-scale datasets.
7.1.3. Important features

Our SHAP analysis highlights API calls, string patterns,
system behaviours, and registry activity as the most predic-
tive features for ransomware detection, accounting for over
70% of the top 50 features. This complements findings by
Gulmez, Kakisim and Sogukpinar (2024), who also identi-
fied API and registry features as strong ransomware indica-
tors, though they found mutexes and DLLs more relevant
in some contexts. Instead of using focused input types, our
broader feature set reveals that runtime behaviours, such as
dynamic linking and memory allocation, are key discrimina-
tors. Overall, our results reinforce that models benefit most
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from features capturing obfuscation, memory manipulation,
and system-level interactions, and demonstrate the value of
SHAP for uncovering these behavioural signals.
7.1.4. Model decision analysis

Understanding why models misclassify samples is crit-
ical for improving detection robustness. Our LIME-based
analysis shows that misclassifications often stem from the
model’s overreliance on a few dominant features. In false
negatives, benign indicators such as low entropy masked
ransomware signals, while false positives occurred when
benign software exhibited traits commonly associated with
malware, like specific strings or registry activity. These
findings align with Gulmez et al. (2024), who observed
that cryptographic APIs and ambiguous DLLs contributed
to misclassification, highlighting the nuanced interplay of
features rather than their individual presence. However, our
work extends prior efforts by demonstrating how local expla-
nations reveal imbalances in feature influence, even within
correctly engineered models. By exposing instances where
legitimate behaviours are misinterpreted due to overlapping
traits with ransomware, our analysis underscores the need for
more discriminative and context-aware features.
7.2. Threat to validity

While this study takes deliberate steps to ensure method-
ological soundness in constructing and evaluating the ML-
Ran dataset, we acknowledge potential threats to validity
that, while mitigated, cannot be entirely eliminated.
7.2.1. Construct validity

MLRan is built using behavioural data collected from
dynamic analysis in sandboxed environments, which may
not perfectly replicate all real-world execution conditions.
However, we addressed this by incorporating a diverse set
of ransomware and goodware samples and ensuring the
sandboxes closely replicate a real-world system. Further-
more, careful labelling and validation steps were taken to
reduce misclassification risk, though the evolving nature
of malware may still introduce edge cases that challenge
labelling frameworks.
7.2.2. Internal validity

Using mutual information followed by recursive feature
elimination, the two-stage feature selection approach was
designed to enhance model interpretability and reduce over-
fitting. Although thresholds and model parameters were cho-
sen based on empirical performance and prior literature, we
recognise that some subtle features may be filtered out. To
address this, we validated performance across multiple mod-
els and feature groups, ensuring that the retained features
remained representative of key ransomware behaviours.
7.2.3. External validity

While our models and findings are based on the MLRan
dataset, which captures a rich and diverse set of ransomware
and goodware behaviours, generalisability to unseen en-
vironments or malware families may vary. We mitigated

this by including recent and varied ransomware types and
conducting binary and multiclass evaluations. Nevertheless,
further validation on independent datasets would help extend
the applicability of the findings.
7.2.4. Interpretability validity

We employed state-of-the-art XAI methods, including
SHAP and LIME, to provide insights into model decision-
making. Although these techniques offer robust expla-
nations, their assumptions (e.g., feature independence in
SHAP, local approximation in LIME) may not fully capture
all aspects of model logic. To address this threat to validity,
we used global and local explanation methods and cross-
referenced feature importance rankings with domain knowl-
edge to ensure interpretative reliability.

In summary, while no empirical study is entirely free
from validity concerns, we took rigorous and transparent
steps to reduce their impact. The design of MLRan, the
careful selection and validation of features, and the appli-
cation of interpretable machine learning all contribute to the
reliability and reproducibility of the presented results.

8. Conclusion and future work
This study presents a comprehensive framework for ad-

vancing behavioural ransomware detection by creating the
MLRan ransomware dataset (the largest and most diverse
publicly available behavioural ransomware dataset to date)
and developing practical open-source tools for advancing
ransomware research. We introduced GUIDE-MLRan, a
set of structured guidelines to support reproducible, high-
quality ransomware dataset construction. We applied these
principles to develop MLRan. Covering four major ran-
somware types and 64 families, and spanning nine be-
havioural feature groups, MLRan fills a critical gap in ex-
isting datasets by offering breadth, depth, and balance.

To facilitate scalable data collection, we enhanced
Cuckoo Sandbox through automation scripts for file submis-
sion and result sorting, reducing manual effort and improv-
ing consistency. Using this infrastructure, we constructed
a robust machine learning pipeline that integrates a novel
two-stage feature selection method (mutual information fol-
lowed by recursive feature elimination), which reduced the
feature space from over 6.4 million to 483 while maintaining
high classification performance. This reduction significantly
improves model training time and interpretability. Through
global (SHAP) and local (LIME) explainable AI techniques,
we further analysed the models’ decision-making, identi-
fying API usage, string patterns, memory operations, and
registry behaviours as the most predictive signals of ran-
somware activity. These findings validate the effectiveness
of MLRan and contribute to a deeper understanding of
ransomware behaviour. While our results demonstrate strong
model performance in binary classification, they also reveal
challenges in multiclass settings and instances of feature
ambiguity leading to misclassification. This underscores the
need for continued refinement of feature engineering and
interpretability tools.
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In future work, we will continue our research following
several directions. First, we will evaluate model robustness
by incorporating adversarial samples in the dataset to study
model robustness against evasion techniques. Second, we
will develop context-aware models that consider temporal
sequences and inter-feature dependencies using graph learn-
ing or attention-based architectures. Finally, we encourage
the community to use, extend, and benchmark on MLRan,
as all datasets, tools, and code are openly released to foster
reproducibility and collaboration in this critical domain.
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Table 9
Model hyperparameters and justifications for each algorithm used in the study, including their value ranges and rationale based
on empirical or theoretical considerations.

Model Hyperparameter Values Justification

LightGBM
num_leaves [15, 31, 63]

Controls model complexity; powers of 2 allow a trade-off between
expressiveness and overfitting.

n_estimators [50, 100, 200] More trees improve stability and performance at the cost of training time.
learning_rate [0.01, 0.1] Smaller values converge more smoothly and generalise better.

Decision
Tree

max_depth [None, 10, 20] Restricts depth to prevent overfitting; None allows full growth.
min_samples_split [2, 5, 10] Higher values reduce overfitting by requiring more samples per split.

Logistic
Regression

C [0.01, 0.1, 1, 10]
Inverse regularisation strength; wider range allows control over model
complexity.

penalty [’l2’] Standard regularisation for numerical stability and generalisation.

solver
[’lbfgs’ (multiclass),
’liblinear’ (binary)] Solvers selected for efficiency and compatibility with classification type.

Random
Forest

n_estimators [50, 100, 200] Larger ensembles reduce variance; diminishing returns beyond a point.
max_depth [None, 10, 20] Controls overfitting; allows shallower trees for better generalisation.
min_samples_split [2, 5] Prevents overly specific branches that may not generalise well.

Extra
Trees

n_estimators [50, 100, 200] Similar to Random Forest; more trees enhance robustness.
max_depth [None, 10, 20] Regulates tree complexity and training time.
min_samples_split [2, 5] Enforces minimum data per split; helps mitigate overfitting.
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