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Abstract

Modern large language model (LLM) services increasingly rely on complex, often
abstract operations, such as multi-step reasoning and multi-agent collaboration, to
generate high-quality outputs. While users are billed based on token consumption
and API usage, these internal steps are typically not visible. We refer to such sys-
tems as Commercial Opaque LLM Services (COLS). This position paper highlights
emerging accountability challenges in COLS: users are billed for operations they
cannot observe, verify, or contest. We formalize two key risks: quantity inflation,
where token and call counts may be artificially inflated, and quality downgrade,
where providers might quietly substitute lower-cost models or tools. Addressing
these risks requires a diverse set of auditing strategies, including commitment-
based, predictive, behavioral, and signature-based methods. We further explore
the potential of complementary mechanisms such as watermarking and trusted
execution environments to enhance verifiability without compromising provider
confidentiality. We also propose a modular three-layer auditing framework for
COLS and users that enables trustworthy verification across execution, secure
logging, and user-facing auditability without exposing proprietary internals. Our
aim is to encourage further research and policy development toward transparency,
auditability, and accountability in commercial LLM services.

1 Introduction

Large language models (LLMs) have advanced rapidly in recent years, demonstrating strong capabili-
ties in long context understanding Pawar et al. [2024], reasoning Chen et al. [2025], Muennighoff et al.
[2025], reflection Renze and Guven [2024], tool use Huang et al. [2024], Lu et al. [2024], and plan-
ning Song et al. [2023], Wei et al. [2025]. These abilities now enable LLMs to perform increasingly
complex tasks Yuan et al. [2024], often through reasoning and collaboration strategies that resemble
human problem-solving Tran et al. [2025], Feng et al. [2024]. Therefore, service pipelines built
on LLMs have grown correspondingly sophisticated. Contemporary systems frequently orchestrate
extended reasoning chains and coordinate multiple LLM agents to enhance output quality Tran et al.
[2025]. However, these intermediate steps are invisible to users, who are billed solely based on token
and API usage. We term such invisible computations as hidden operations, and define any LLM
service that hides its internal steps and returns only the final output as a Commercial Opaque LLM
Service (COLS). See Figure 1 for an overview of a typical COLS.

COLS conceal their intermediate tokens for three well-established reasons. First, reasoning traces
and agentic collaborations are typically verbose and noisy, often containing backtracking, speculative
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Figure 1: Overview of Commercial Opaque LLM Services and their hidden operations. Part of the
illustration was generated by GPT-4o Hurst et al. [2024].

branches, and occasional hallucinations Zhang et al. [2024], Sun et al. [2025], Sui et al. [2025].
Exposing such raw information could detract from usability or overwhelm users. Second, these traces
encode COLS’s internal reasoning strategies, tool-using protocols, and multi-agent workflows. Mak-
ing them public risks model stealing Carlini et al. [2024], Panda et al. [2024], workflow extraction Yu
et al. [2025], Li et al. [2025], and jailbreaking attacks Russinovich et al. [2024], Wang et al. [2025],
Xu et al. [2024], compromising the system’s intellectual property (IP). Third, abstracting internals
allows developers to update backend models, prompts, or tools without changing the user-facing
interface, ensuring better scalability.

While these design choices offer clear engineering and user experience benefits, they also introduce
systemic challenges for transparency and accountability. Users are charged based on the quantity
and quality of operations entirely managed by the service provider, whose incentives are profit-
driven. Because these operations are unobservable and unverifiable from the user’s side, billing
becomes effectively non-auditable and unregulated. In the absence of technical or legal standards,
current systems require users to place implicit trust in providers—highlighting the need for verifiable
accountability mechanisms. In a competitive landscape where major AI companies increasingly
prioritize reasoning and agentic capabilities as profit drivers, this lack of verifiability and regulatory
oversight is a serious concern. There exists a fundamental asymmetry between providers and users:
users bear financial responsibility for operations they cannot observe, verify, or dispute. Therefore,
we make the central claim of this paper: there is an urgent need to design an auditing framework
for hidden operations in COLS.

In this paper, we examine the quantity and quality of hidden operations, both of which directly impact
billing in COLS. On the quantity side, we identify three forms of potential inflation used by COLS to
increase charges: token count inflation, API call inflation, and model call inflation. To detect such
manipulations from the user’s side, we introduce the concepts of token auditing and call auditing. On
the quality side, COLS may reduce service fidelity to lower internal costs and increase profit. We
define two forms of service degradation: model downgrade Cai et al. [2025] and tool downgrade, and
propose model auditing and tool auditing to verify service quality.

For each potential attack performed by COLS, we articulate underlying incentives, operational
context, and potential harms in the domain of reasoning and agent APIs. For each user-side auditing
or defense strategy, we analyze the challenges across different API settings and propose feasible
approaches. Finally, we present a forward-looking research agenda aimed at building a trustworthy
framework that balances service quality with user interests. We hope the position taken in this paper
can help guide the development of billing verification protocols, regulatory standards, and governance
policies for the rapidly growing commercial LLM ecosystems.
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Our key contributions are summarized as follows:
• We formalize three billing-related inflation vectors, including token count, API call, and model

call inflation, and introduce concrete user-side auditing methods to detect each.
• We identify two forms of service quality degradation, i.e., model and tool substitution, and design

model and tool auditing techniques to verify service integrity.
• We analyze the motivations, scenarios, and potential harms of COLS-side manipulations in

reasoning and agentic APIs, and map them to corresponding user defense strategies.
• We present a roadmap for building trustworthy LLM services, including technical protocols and

policy recommendations for verifiable and transparent billing.

2 Background and Problem Formulation

2.1 Commercial Opaque LLM Service

COLS are LLM–based services that expose only the final outputs to users while abstracting the
underlying computational steps. Such services are typically accessed through cloud APIs: users
submit prompts or tasks to a single endpoint and receive a final output, without visibility into
intermediate reasoning or operations.

Table 1: Visibility and pricing of reasoning LLM API’s rea-
soning tokens. MTok = Million tokens

Provider Visible? Pricing

OpenAI o1 Jaech et al. [2024] ✗ $60 / MTok
OpenAI o3 Jaech et al. [2024] ✗ $40 / MTok
OpenAI o1-pro Jaech et al. [2024] ✗ $600 / MTok
Gemini 2.5 Pro Anil et al. [2023] ✗ $15 / MTok
Claude Opus 4 Anthropic [2025] ✗ $75 / MTok

There are two common forms of
COLS in practice. The first is the
reasoning LLM APIs, which encap-
sulates models designed for complex
tasks requiring multi-step inference.
These services typically employ mod-
els that are optimized with reinforce-
ment learning to improve reasoning
depth and answer quality, particularly
on complex tasks such as mathemat-
ical problem solving and code generation. Although the model may internally perform multiple
function calls, speculative reasoning paths, and self-reflections, only the final output is shown to users.
Importantly, users are billed based on the total number of tokens generated, including both the visible
answer tokens and the unexposed reasoning tokens. As Table 1 shows, some major reasoning model
providers charge users for these hidden tokens. Although they provide brief summaries generated
from the hidden tokens, users remain unaware of the actual reasoning process. Nevertheless, Claude
Opus 4 Anthropic [2025] encrypts the full reasoning and returns it as a signature, which is a significant
advancement and signals a future trend. Our empirical results, summarized in Table 2, show that in
current reasoning LLM APIs, the number of hidden reasoning tokens often exceeds the number of
answer tokens by more than an order of magnitude. In many cases, more than 90% of the tokens billed
to the user are never exposed. This highlights a significant transparency gap and raises questions of
billing clarity and fairness.

Table 2: Ratio of reason-
ing tokens to answer tokens
across OpenAI’s APIs.

Model R/A Ratio
o1 38.71
o3 25.35
o3-mini 46.33
o4-mini 25.03

The second form is the agentic LLM API, which enables collaboration
among multiple specialized LLM agents. These systems coordinate
agents to solve complex tasks through planning, task decomposition,
execution, and summarization. Compared to reasoning LLM APIs,
agentic APIs involve more intricate hidden operations. Beyond internal
reasoning, agents communicate by exchanging prompts, summaries,
and planning instructions. Each agent both interprets inputs from others
and generates outputs to guide the workflow. These inter-agent mes-
sages may consume substantial tokens, which are often not directly
visible to end users. All tokens consumed during agent coordination,
including generated prompts, responses, and tool-related instructions, are typically not surfaced to
the user. When the agents themselves use reasoning models, billing becomes even more opaque.
Moreover, such systems can dynamically substitute or reconfigure tools to reduce backend costs,
while continuing to charge premium rates. These behaviors are difficult to detect and audit. These
manipulations are difficult to detect, making effective auditing especially challenging in agentic APIs.
Table 3 summarizes the pricing models and billing structures adopted by several AI agent providers.
Subscription fees are often tied to credit-based systems, which in turn constrain the number and
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complexity of tasks that can be executed. However, users are rarely able to determine the true cost of
individual tasks.

The most straightforward way to address the auditing challenge is for COLS to directly expose all
hidden operations to users. In principle, such full transparency would eliminate ambiguity in both
billing and service quality. However, full disclosure of hidden operations is impractical in commercial
settings, especially in agentic systems, due to their volume, complexity, and the risk of exposing
proprietary models and strategies. As a result, this paper adopts a key assumption: COLS will
not fully expose their hidden operations, or if they do, such disclosure must be protected by
mechanisms that prevent extraction, misuse, or unauthorized imitation. All auditing approaches
proposed in this work operate under this practical constraint.

In summary, COLS represent a class of LLM services that prioritize usability, abstraction, and IP
protection by hiding internal operations. While this design improves product polish and shields
business logic, it also introduces concerns regarding transparency, accountability, and fairness,
especially when users are charged for every hidden operation they cannot observe or validate.

2.2 Threat Model

In our scenario, we model COLS as potentially misaligned with user interests, not out of malice,
but due to profit-driven incentives and structural opacity. COLS may increase the quantity of
billed operations or reduce their effective quality, or both, in order to lower operational costs while
maintaining or increasing user charges. The user, as the recipient of the service, and the auditor, as
an independent verifier, jointly aim to detect and mitigate such manipulations. Together, they verify
the accuracy of the reported quantity of hidden operations and assess the actual quality of service
delivered by the COLS. Specifically, given a series of hidden operations triggered by a user request to
a COLS, we define the actual quantity of tokens and calls as TQ and CQ, respectively. Let Tq and Cq

denote the unit quality scores of the tokens (determined by the LLMs used) and tools. Then, the fair
charge of the COLS, excluding profit, should be TQ · Tq + CQ · Cq .

The quantities reported by the COLS to the user are denoted as T̂Q and ĈQ, while the actual service
quality (which may be degraded) is denoted as Ťq and Čq. The real cost incurred by the COLS
becomes TQ · Ťq + CQ · Čq , while the user is charged based on the reported quantities and nominal
quality values as T̂Q · Tq + ĈQ · Cq. By inflating the quantities and downgrading the actual service
quality, i.e., T̂Q > TQ, ĈQ > CQ, and Ťq < Tq , Čq < Cq , the COLS can gain extra profit P :

P = (T̂Q · Tq + ĈQ · Cq)− (TQ · Ťq + CQ · Čq). (1)

The user’s goal is to audit whether the reported quantities match the actual ones, i.e., T̂Q = TQ,
ĈQ = CQ, and whether the actual service quality matches the nominal values, i.e., Ťq = Tq,
Čq = Cq. In this setup, the COLS has access to the user request, the full LLM generation and
agent collaboration process, the actual quantity and quality values (TQ, Tq, CQ, Cq), and the reported
quantity and quality values (T̂Q, Ťq, ĈQ, Čq). In contrast, the user only observes the request, the final
output, and the reported values (T̂Q, Ťq, ĈQ, Čq).

2.3 Auditing Principles

We suggest a reoriented design philosophy for auditing COLS, one that views auditing as a core
capability of system design. There are several general principles for the auditing process:

Table 3: Pricing plans and billing details of various AI agent providers.

Provider Pricing Plan Pricing Details

Manus Manus AI [2025] Subscription $19 / month for 1900 credits, sufficient for completing two to three complex tasks. 300 credits
refreshed daily.

Relevance AI Relevance AI [2025] Subscription $19 / month for 10,000 credits. Tasks can use official or custom API keys. Supports customiza-
tion, but remains hard to audit due to the coarse-grained reporting of LLM APIs.

AgentGPT AgentGPT [2025] Subscription $40 / month. Includes 30 agents per day and 25 loops per agent.

Firecrawl’s Deep
Research API Firecrawl [2025] Pay-as-you-go $9 for 1,000 credits. Billing is based on number of URLs analyzed 1 credit per URL.
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• COLS IP Preservation. To protect the provider’s interests, the auditing process should safe-
guard the confidentiality of internal operations, including reasoning traces, agent workflows, and
proprietary toolchains that may be sensitive to reverse engineering or IP concerns.

• Service-Integrated Verifiability. Auditing should be seamlessly embedded into the user ex-
perience. The system should not only certify billing correctness but also provide users with
interpretable confidence metrics, enabling informed trust without accessing internal details.

• Low False Positive Rate. Auditing methods should minimize unwarranted flags. Incorrectly
flagging honest service providers as misreporting can undermine trust in the auditing framework
and create unnecessary friction in commercial deployments.

• Efficiency and Scalability. Auditing mechanisms must be practically deployable at scale. They
should introduce minimal latency or cost overhead, and remain adaptable across diverse LLM
service architectures and usage models.

These principles reflect a normative position: that as LLM services grow in complexity and economic
significance, verifiability and transparency should be embedded into their governance and system
design.

3 Quantity Inflation and Auditing of Hidden Operations

In this section, we define the possible inflation behaviors related to the quantity of hidden operations
in COLS, which may result in T̂Q > TQ or ĈQ > CQ in Eq. 1. We focus on two key forms of
inflation: token inflation and call inflation, and analyze how they may manifest in reasoning LLM
APIs and agentic LLM APIs. We then identify the core challenges in auditing these quantities from
the user’s perspective. Finally, we discuss potential solutions for detecting and mitigating such
inflation through targeted auditing strategies.

3.1 Reasoning LLM: Token Inflation and Token Auditing

We define the behavior that COLS increases the number of hidden tokens to inflate billing without
necessarily improving the answer quality as token inflation. We identify two primary forms of token
inflation. The first is naive inflation, in which the provider simply overreports the token count without
changing the underlying content. The second is adaptive inflation, where the provider appends
low-effort or irrelevant content to the reasoning trace. These additional tokens may include duplicated
steps, off-topic retrieval results, or meaningless filler text, crafted to evade simple statistical checks.
This also includes inserting prompt phrases (e.g., “think as many steps as you can”) that implicitly
induce the model to generate unnecessarily long reasoning traces without injecting any fabricated
tokens. This kind of inflation happens even if COLS release the hidden reasoning tokens.

The potential risk of token inflation underscores the urgent need for token auditing for COLS. A
token auditing mechanism should verify that the number of reasoning tokens reported by COLS
corresponds to meaningful internal computation. Given the user prompt, the final answer, and the
reported token count, auditing should assess whether the total number of hidden tokens falls within a
reasonable range and whether these tokens make substantive contributions to the final output. Such
auditing must not rely on access to the full reasoning trace, and must operate under asymmetric
information. This calls for new designs that combine model-based estimation, statistical analysis,
and content relevance checks, all while preserving provider confidentiality.

3.2 Agentic LLMs: Call Inflation and Call Auditing

Agentic LLM APIs coordinate multiple specialized LLM agents to solve complex tasks through
multiple LLM calls and tool invocations, most of which are hidden from the user. However, all these
internal LLM calls, model-to-model messages, and tool executions contribute to the final billing. This
creates new opportunities for unjustified overhead through what we refer to as call inflation.

Call inflation in agentic systems can take several forms. The most direct is model call inflation, where
the provider either makes excessive model calls, for example by splitting reasoning into unnecessarily
fine-grained subtasks or repeating subqueries, or overreports the number of such calls without
actually executing them. Another form is communication inflation, where agents exchange verbose
or redundant messages that generate additional token usage. These messages may be genuinely

5



Table 4: Reasoning token length prediction accuracy on multiple datasets from DeepSeek-
R1 DeepSeek-AI [2025] using two-layer neural networks. Classification predicts discrete length bins
(9–12 per dataset), while regression is considered accurate if within 25% error of the ground truth.
All accuracies are below 50%, supporting the challenge discussed in Section 3.3.

Tasks R1-Math Face [2025] R1-Coding Team [2025] R1-Medical Chen et al. [2024] R1-General Glaive AI [2025]

Classification 22.26 33.88 43.95 25.52
Regression 26.82 29.30 20.50 19.88

produced or artificially claimed, yet contribute little to actual task completion. A third form is tool
call inflation, where external tools are invoked excessively or irrelevantly, or where the reported
number of tool interactions is inflated to simulate complexity or justify higher billing.

These forms of inflation are difficult to detect, especially since users have no visibility into the internal
workflow, agent structure, or the tool interfaces being used. As a result, users may unknowingly
pay for inflated agent interactions and unnecessary tool calls that do not improve the quality of the
final answer. This motivates the need for call auditing mechanisms tailored to agentic APIs. A
call auditing framework should allow users to assess whether the number and type of internal calls
reported by COLS are justified by the complexity of the input task and the content of the final output.
Auditing should also consider whether the communication patterns and tool usage are consistent with
efficient task execution, rather than artificially inflated for billing.

As with token auditing, call auditing must operate under asymmetric information, without access
to proprietary agent configurations or execution traces. Designing such mechanisms requires new
strategies for estimating agent behavior, benchmarking task complexity, and validating reported usage
patterns while respecting the confidentiality constraints of commercial services.

3.3 Challenges of Quantity Auditing

Auditing the quantity of hidden operations in COLS presents several key challenges:
• Limited observability. The internal reasoning traces and agentic workflows are entirely opaque.

Auditing must rely solely on observable information, such as the user prompt, final answer, billing
metadata, and the declared service identity. This limited visibility may necessitate a trusted auditor
with partial access to internal information, such as proxy datasets or encrypted usage records.

• High variability of LLMs. LLM services exhibit significant randomness in computation. Even
with identical prompts, the number of reasoning tokens or internal calls can vary across runs. This
stochasticity makes it difficult to determine a reliable ground truth for expected usage. Auditing
methods based solely on input length or task type may result in high false positive rates. For
example, our experiments in Table 4 indicate that a regression neural network cannot accurately
predict the number of reasoning tokens given only the length of the prompt and the answer, even
when trained on a large-scale reasoning dataset.

• Adaptive inflation. COLS may inject tokens or calls that appear superficially relevant but provide
little actual value to the output. These low-cost, semantically plausible additions are difficult to
distinguish from legitimate computation. Detecting such subtle inflation requires sensitive auditing
methods capable of capturing fine-grained differences without introducing excessive false alarms.

3.4 Possible Solutions

We propose two complementary strategies for quantity auditing in COLS: commitment-based auditing
and predictive auditing. These two strategies approach the problem from opposite sides, one from
the COLS’s commitments and the other from the user’s expectations. In addition to these auditing
strategies, a third line of work, watermarking, becomes viable when COLS providers (especially
those deploying reasoning LLMs) are willing to expose a partial or redacted internal token traces. In
such scenarios, watermarking techniques Kirchenbauer et al. [2023], Zhao et al. [2023] can embed
lightweight, verifiable signatures into the generated content to enable downstream verification of both
authenticity and integrity.

Commitment-based auditing relies on the COLS provider to generate cryptographic commitments
to its internal operations. During the inference process, the provider constructs secure summaries
of reasoning tokens, model calls, and tool usage, for example, using hash-based structures such as
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Merkle trees Merkle [1987]. These commitments are exposed to the user or a third-party auditor in
encrypted or abstracted form, allowing selective verification of usage claims without revealing the full
trace. Such methods preserve confidentiality while enabling provable consistency between reported
and actual operations. The commitment-based auditing requires COLS’ cooperation and introduces
additional infrastructure and protocol complexity. The main limitation of commitment-based auditing
lies in its limited ability to detect adaptive inflation. If COLS injects low-cost fabricated tokens or
calls during generation, prior to the construction of secure summaries, these operations may still
be faithfully committed and thus bypass verification. In such cases, commitment-based auditing
may need to be complemented by additional semantic checks to identify operations that appear valid
structurally but contribute little to the final output.

Predictive auditing, in contrast, allows users to independently estimate the reasonable token or call
usage based on the task prompt and final answer. This strategy uses learned models or statistical
baselines to predict a plausible usage range, then checks whether the reported quantity falls within
this range. For example, an LLM may be trained to estimate the expected number of reasoning
tokens given the prompt, answer, and the answer correctness, or to predict the typical number of
agent calls for tasks of similar complexity. Predictive auditing does not require access to internal
traces or provider cooperation, but it may suffer from uncertainty, especially on diverse or highly
stochastic tasks. A key limitation of predictive auditing is its reliance on proxy training datasets to
estimate reasonable token or call usage. Since users do not have access to internal reasoning traces,
they cannot directly supervise the predictive models. To enable meaningful estimation, COLS may
need to release representative data samples, including prompts, outputs, and the associated usage
statistics. Without such data, predictive auditing may struggle to produce accurate or generalizable
estimates, particularly for diverse task types or proprietary model behaviors.

Watermarking, in contrast to the above two, is not feasible in fully opaque settings but offers
a powerful enhancement when COLS providers are willing to expose partial internal traces. In
such cases, watermarking techniques provide a lightweight and effective means to embed verifiable
signals directly into model outputs or intermediate steps Kirchenbauer et al. [2023], Zhao et al.
[2023]. These signals can assist downstream users or auditors in confirming the authenticity and
provenance of results, and in detecting unauthorized content injection. Beyond provenance tracking,
watermarking also serves as a practical tool for intellectual property protection. Recent studies show
that carefully designed watermarks and sampling strategies have the potential to deter unauthorized
model distillation Zhao et al. [2022], Savani et al. [2025], Pan et al. [2025]. By making outputs
traceable or resistant to distillation, watermarking helps preserve the integrity of high-value models.
In sum, watermarking is not a general-purpose solution for opaque COLS but becomes a potent
auditing and protection mechanism when partial observability is permitted, serving as a bridge
between full transparency and strict confidentiality.

4 Quality Downgrade and Auditing of Hidden Operations

The COLS performs quality downgrade by committing to providing the user with a service of
quality level Tq, Cq but generate the answer in a lower quality level Ťq, Čq, allowing the provider
to profit from the difference in cost. This downgrade is invisible to the user but has significant
impact on service fairness, especially when users are billed as if top-tier resources were used. Since
the performance level of modern LLMs is difficult to evaluate using limited samples and fixed
benchmarks, quality downgrade is even easier for COLS to implement than quantity inflation. In this
section, we analyze model downgrade in reasoning LLMs and tool downgrade in agentic systems.
We identify the core challenges in detecting such downgrade and discuss possible solutions.

4.1 Reasoning LLM: Model Downgrade and Model Auditing

In reasoning LLM APIs, providers often maintain multiple variants of the same model family,
differing in capacity, training data, or optimization strategy (e.g., ChatGPT o1, o3). Model downgrade
refers to the silent substitution of lower-cost models, which may introduce misalignment between
expected and actual service quality. For example, a prompt may be processed by a smaller-sized
model, while billing remains unchanged. This practice is difficult for users to detect, as the final
answer may still appear plausible for many tasks. However, over time, such downgrade can lead to
subtle reductions in answer correctness and factual accuracy. The lack of output deviation in simple
tasks makes downgrade especially dangerous in high-stakes settings where users expect consistent
high-quality reasoning.
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To address this issue, model auditing should evaluate whether the quality of the underlying model
used by COLS matches the claimed or expected configuration. Since users cannot access model
internals, model auditing must rely on behavioral cues such as reasoning patterns, failure cases, and
performance on calibrated challenge prompts. It may also involve response fingerprinting or output
signature estimation to match against known model behavior.

4.2 Agentic LLMs: Tool Downgrade and Tool Auditing

In agentic LLM systems, tool usage plays a central role in enabling accurate and verifiable problem
solving. Tools may include web search, code execution, database lookup, or external APIs. Tool
downgrade occurs when the provider substitutes or disables these tools in favor of cheaper or
offline alternatives, while still charging the user as if full tool access were provided. In addition to
model downgrade, which may happen within individual agents, tool downgrade introduces another
dimension of hidden quality degradation. In some cases, COLS may even simulate tool usage
by fabricating plausible answers without actually invoking the tool, further reducing cost while
maintaining the appearance of tool interaction.

For example, a call to a live calculator API may be replaced with a local approximation module,
or a web search may be omitted entirely and replaced with static retrieval. In some cases, the tool
call may be simulated in the trace without actually invoking the backend. These modifications can
significantly reduce operational cost but also degrade answer quality or freshness, particularly for
knowledge-intensive or real-time tasks.

Tool auditing aims to verify whether the advertised tools were actually used, and whether the
responses reflect genuine tool outputs. Since tool executions are hidden, auditing must infer tool
usage based on answer structure, timing signals, and comparison against known tool response patterns.
Detecting simulated or skipped tool calls requires robust signatures of real tool interaction that cannot
be easily mimicked.

4.3 Challenges

Auditing quality downgrade presents several distinct challenges:
• Lack of reference outputs. Quality auditing lacks ground truth outputs to compare against. Users

often cannot tell whether a different model or tool would have produced a better answer, especially
on subjective or open-ended tasks.

• Behavioral similarity. Downgraded models and tools can still produce fluent and plausible outputs.
The differences between high-quality and downgraded responses may be subtle, task-dependent,
or only observable in aggregate over many queries. This makes downgrade hard to detect with
single-sample audits.

• Sampling stochasticity. LLMs often use stochastic decoding (e.g., temperature, top-k), so the
same input can yield different outputs each time. This randomness makes it hard to tell if a
lower-quality response is due to true model degradation or just natural variation. It adds noise to
audits and complicates fair comparisons.

4.4 Possible Solutions

We outline three complementary strategies for auditing quality downgrade: behavioral auditing,
signature auditing, and TEE-based auditing.

Behavioral auditing seeks to detect downgrade by analyzing specific response patterns. By submit-
ting calibrated prompts, measuring reasoning depth, tracking accuracy on known benchmarks, users
can infer whether the underlying model or tool matches the claimed quality. Behavioral auditing may
also leverage LLM-based judges to compare responses across services or against known baselines.

Signature auditing relies on hidden but detectable artifacts that distinguish models or tools. These
may include stylistic fingerprints, output entropy patterns, or timing signals that reveal whether a real
tool was used. Providers could optionally embed verifiable usage signatures into responses, which
users or auditors could extract and verify without exposing internal details.

TEE-based auditing provides a hardware-secure mechanism for verifying model identity or tool
usage without exposing internal logic. By executing parts of the COLS pipeline within Trusted
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Execution Environments (TEEs), providers can generate attested summaries that external auditors can
verify with strong integrity guarantees. Unlike behavioral or signature-based methods, TEE-based
approaches offer cryptographic assurance under confidentiality. While modern TEEs introduce
minimal overhead (e.g., under 3% throughput loss), they require enclave-enabled infrastructure
and standardized attestation protocols. As such, TEE-based auditing is best suited for high-stakes
deployments where strong auditability outweighs deployment complexity.

All approaches face challenges in generality and robustness, but together they offer a path toward
holding COLS accountable for quality degradation. As commercial LLM services continue to evolve,
we argue that auditing quality is just as important as auditing quantity in ensuring fairness and
transparency for users.

5 Blueprint for Auditing Frameworks

To enable trustworthy and practical auditing of hidden operations in COLS, we propose a three-layer
architectural framework that spans the entire lifecycle of COLS interaction, from service execution
and secure logging to external verification and user-facing feedback. This framework is designed
to support both reasoning LLM APIs and agentic LLM APIs, incorporating the auditing strategies
discussed in previous sections.

Layer 3: Auditing and User Verification

Layer 2: Secure Commitment and Recording

Layer 1: COLS Service Execution

Initiates Requests

Answer

User

Auditor

Metadata

Hidden operations

Commitments

Ledger

MetadataHidden operations

COLS

Auditor

COLS

Request

Report

For Agents Ta
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Answ
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Auditing
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+
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Figure 2: Three-layer architecture of the auditing
framework. Layer 1 handles execution, Layer 2
generates verifiable commitments, and Layer 3
provides auditing services.

Layer 1: COLS Service Execution. This foun-
dational layer includes all operations performed
by the COLS provider in response to a user query,
such as token generation, model calls, inter-agent
communication, and tool usage. Some operations
are opaque to users but determine both functional
outcomes and billing. Providers maintain com-
plete control over these execution strategies, which
makes independent verification essential.

Layer 2: Secure Commitment and Recording.
Upon task completion, the COLS, possibly under
auditor supervision, encodes internal operations
into verifiable commitments, including hashed rea-
soning traces, semantic embeddings, or encrypted
call logs, following standardized auditable pro-
tocols. In agentic settings, each agent’s commit-
ments can be anchored into a shared and tamper-
resistant ledger using blockchain or similar infras-
tructure, ensuring traceability across the multi-agent workflow. The commitment process must be
transparent and deterministic, preserving confidentiality while enabling verifiability.

Layer 3: Auditing and User Verification. The final layer supports external verification and user-
facing auditability. An auditor, either a third-party service or part of the user platform, verifies token
usage, model identity, or tool behavior based on the commitments produced in Layer 2. Crucially,
this layer is modular: it supports a wide range of auditing techniques, including commitment-based
verification, predictive estimation, behavioral analysis, and signature-based detection, as well as
complementary measures such as watermarking and TEEs. New auditing tools can be flexibly
integrated into this layer as models and usage patterns evolve. Users interact with the auditor to
initiate verification requests and receive audit reports, enabling transparency and dispute resolution
without accessing proprietary internals.

6 Conclusion

As LLM services become more sophisticated and economically significant, the risks introduced by
opaque and unverifiable internal operations are growing. Current COLS often lack transparency in
internal reasoning and decision-making processes, making it difficult for users to independently assess
the quantity and quality of the services provided. In this position paper, we identified two critical
risks associated with hidden operations, quantity inflation and quality downgrade, and proposed
corresponding auditing strategies grounded in realistic threat models and technical constraints. We
first outlined a taxonomy of auditing mechanisms that balance provider confidentiality with user
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verifiability. Based on these methods, we introduced a three-layer auditing framework that enables
COLS to commit to internal actions in a verifiable yet privacy-preserving manner.

We encourage the research community to recognize COLS auditability as a foundational challenge.
Future LLM services must incorporate secure commitments, verifiable summaries, and user-accessible
audit interfaces as integral parts of their infrastructure. Such architectural changes can play a crucial
role in promoting fairness, transparency, and trust in the next generation of intelligent systems.
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