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Abstract: The advancements in communication technology (5G and beyond) and global
connectivity Internet of Things (loT) also come with new security problems that will need
to be addressed in the next few years. The threats and vulnerabilities introduced by
AI/ML based 5G and beyond loT systems need to be investigated to avoid the
amplification of attack vectors on AI/ML. AlI/ML techniques are playing a vital role in
numerous applications of cybersecurity. Despite the ongoing success, there are
significant challenges in ensuring the trustworthiness of Al/ML systems. However, further
research is needed to define what is considered an Al/ML threat and how it differs from
threats to traditional systems, as currently there is no common understanding of what
constitutes an attack on Al/ML based systems, nor how it might be created, hosted and
propagated [ETSI, 2020]. Therefore, there is a need for studying the Al/ML approach to
ensure safe and secure development, deployment, and operation of Al/ML based 5G
and beyond loT systems. For 5G and beyond, it is essential to continuously monitor and
analyze any changing environment in real-time to identify and reduce intentional and
unintentional risks. In this study, we will review the role of the AlI/ML technique for 5G
and beyond security. Furthermore, we will provide our perspective for predicting and
mitigating 5G and beyond security using Al/ML techniques.

Keywords: 5G, 6G, Cybersecurity, Al, ML

1 Introduction

This report aims to provide a comprehensive overview of the challenges that how Al/ML
techniques can be used for 5G and beyond cybersecurity based on studies published
until the end of 2022. Also, this report includes challenges that Al/ML techniques face in
protecting cyberspace against attacks in 5G and beyond IoT applications.

The research questions (RQs) are:

RQ1. What are the cybersecurity challenges, attack scenarios, risk management
methodologies for the 5G and beyond enabled loT applications?

RQ2. What are the new challenges to 5G and beyond to support cybersecurity for loT
applications?

RQ3. How can AI/ML technologies be used in cybersecurity to construct smart models
for defending systems from attacks in 5G and beyond enabled loT applications?

To answer these RQs, this report will have the following main objectives:

O1. Focus on the fifth and sixth generation and shed light on various cybersecurity
aspects.

02. Study the challenges to be overcome in 5G and beyond to better support the loT
applications, including network architectures, network resource allocation schemes,
and advanced techniques, etc.

O3. Survey on deep learning and Al techniques as promising approaches to unleash the
full potential of Cybersecurity in 5G and beyond networks, 0T and cyber-physical
systems. It includes:



¢ AI/ML enhancing cybersecurity beyond 5G

e Securing Al/ML algorithms

e Threats and vulnerabilities of Al/ML algorithms

e Mitigating measures

o Classes of data being used (tabular, time series, text, ...)

e The occurrence of supervised/semi-supervised/unsupervised learning

The rest of this report is organized as follows: Section 2 includes the 5G cybersecurity
challenges, potential 5G vulnerabilities and risks, and 5G threat landscape. Section 3
elaborates on the understanding of 5G and beyond, the evolution of the communication
network security landscape from 1G to 6G, potential vulnerabilities and risks and security
challenges for 5G and beyond. In Section 4, the Al/ML cybersecurity in 5G and beyond
networks is discussed. The concluding remarks and future research directions are
discussed in Section 5.

2 5G Cybersecurity

5G networks aim at delivering value-added services with evolved performance such as
low-latency communications, high data rates, increased reliability and capacity to sustain
more interconnected devices. 5G is more evolved than 4G mobile communication,
comprising protocol, speed, and network configurations. Network Function Virtualisation
(NFV) and Software-Defined Networking (SDN) concepts have been introduced to fulfil
the necessities for scalability, throughput, latency, and reliability. On one hand, the NFV
and SDN offer flexible networks and the rapid development of services. On the other
hand, they are more prone to security due to softwarization and virtualization, thus
causing additional security challenges and complexities in some cases [Afaq 2021,
Hussain 2021].

Recent ENISA’s report [ENISA 2022] covers the increased attack space introduced using
virtualized functions such as Virtual network functions (VNFs) and Virtual Machines
(VMs) in 5G. They argue that the rapid development of cloud native technology (CNT)
advances the telecommunication infrastructure as 5G networks require virtualisation and
CNT to support interworking with existing networks, and to support both VMs and
containers at the same time. Several tenants can share the dynamic NFVs and devices
for different deployment scenarios with varying risks, such phenomena may expose the
level and severity of security risks on several different levels. The report addresses some
possible security challenges in 5G due to weak isolation among resources in different
VNFs such as side channel attacks, container data theft, illegitimate access to other
VNFs, etc.

Seongmin et al. [Seongmin 2021] discussed that the global 5G security market is
expected to increase by 50% (USD 4 billion) in 2023 and about USD 7 billion in 2025.
Since most of 5G service providers offer 5G services without solutions to security threats,
robust and efficient security approaches are required for 5G [Chlosta 2019, Kim 2019].

2.1 5G Cybersecurity Challenges

5G needs robust security solutions since it will combine several real-time applications
with communication networks. The important security challenges in 5G are investigated
and pinpointed in [ljaz 2018, Hassan 2022]. The fundamental challenges in 5G are as
follows [Hassan 2022]:



e DoS attacks on end-user devices

e Flash network traffic

o User plane integrity

¢ Roaming security

o Denial of Service (DoS) attacks on the infrastructures
e Security of radio interfaces

e Signalling storms

However, due to the introduction of virtualization and softwarization in 5G, there can be
many other security threats at NFVs. NFVs provide flexible networks and prompt service
creation while introducing supplementary security challenges and complexities. It is
essential to address the security issues and to focus on instilling more robust security
and privacy settings in 5G NFV systems in the following areas [ENISA 2022]:

e Virtualisation or containerisation: Major security challenges are posed due to
SDNs’ susceptible to attacks such as forwarding device attacks, control pane
threats, API vulnerabilities, counterfeit traffic flows and more, and dynamic
distribution of NFV architectures.

e Orchestration and management: Security challenges such as vulnerabilities
within orchestration protocols, Management and Orchestration (MANO) single
point of failure, orchestration compromise and policy violations etc. can incur due
to a lack of consistency on how to manage and orchestrate the network services.

¢ Administration and access control: 5G NFV network architecture offers openness
and programmability relying on the expanded use of APIs. Network functions and
sensitive parameters with inaccurate access control rules may be exposed due
to improperly designed or configured API.

¢ New and legacy technologies: The communication between physical and virtual
environments in 5G may also raise several security challenges at management
and orchestration layers which need to be considered.

¢ Adoption of open source: Another security challenge related to the use of lower
cost, commercial off-the-shelf (COTS) hardware for network functions based on
NFV technologies which may impact security and performance.

e Supply chain: The 5G NFV supply chain is susceptible to risks such as malicious
software and hardware, counterfeit components, poor designs, manufacturing
processes, and maintenance procedures.

e Lawful Interception (LI): Another security challenge is securing and hiding LI
functions from other functions in an NFV environment.

Analysis of the current 5G Cybersecurity Challenges:

As mentioned above, it has been argued by different researchers that the deployment of
5G will extend various networking opportunities because of capacity, speed, and latency
improvements. However, these advancements also unlock the potential for additional
security attacks in 5G. Various studies [Hassan 2022, ENISA 2022, Afaq 2021, Hussain
2021] have discussed several of the cybersecurity challenges in 5G. From our analysis,
one of the most significant security concerns in 5G is the possibility of DDoS attacks.
DDoS attacks usually target linked devices, infrastructures and applications. As the 5G
network expands, DDoS threats could target more attacks in terms of frequency and
extent to which attacks may spread. DDoS attackers may maliciously try to disturb the
availability of 5G devices by introducing large volumes of false packets or requests to



overwhelm the network. These attacks may flood the 5G network infrastructure with
fraudulent traffic, thus swallowing all available bandwidth of the network. In recent
studies [Kim 2022, Saha 2022] mentioned that the optimal features selection can play a
vital role in DDoS attack classification using ML or DL models. Saha et al. [Saha 2022]
developed ML based approach by performing various experiments on feature selection
to decrease the time complexity of detecting and examining real-time DDoS attacks in
the 5G core network. Thus, it will be interesting to investigate how Al can be used for the
mitigation of DDoS attacks in 5G systems before they happen. Also, it is worth trying to
experiment that how Al can be useful in solving new security challenges in NFV and
SDN.

2.2 5G Threat Landscape

As stated in [Marco 2019], the traditional threats and additional new 5G network (core,
access and edge) threats are included in the 5G threat landscape. The high-level
categorization of threats based on ENISA threat taxonomy [ENISA 2022] are:

Nefarious activity/abuse (NAA)

Eavesdropping/Interception/ Hijacking (EIH)

Physical attacks

Unintentional or Intentional Damage of property or persons due to failures
Unexpected disruptions of service

Disasters such as a sudden accident or a natural catastrophe

Legal actions of third parties (contracting or otherwise) to forbid activities or
recompense for loss as per law

Along with the above-mentioned general taxonomy, the security threats can be classified
layer wise such as core network, radio access, network virtualisation or generic
infrastructure component as follows:

e Core Network threats: These threats are related to SDN, NVF, NS and MANO,
and lie in the categories of NAA and EIH.

o Access network threats: These threats are related to radio access technology,
radio access network and non-3GPP access technologies, and lie in the
categories of EIH.

o Multi-edge computing threats: These threats are also related to NAA and EIH
categories but mostly associated with components located at the edge of the
network.

o Virtualisation threats: These threats are associated with NFVs and VNFs
operations and functions.

e Physical Infrastructure threats: These threats affect IT infrastructures that support
the network and lie in the categories of physical attacks, damage or loss of
equipment, disruption of services, and disasters.

e Generic threats: These threats such as Denial of Service (DoS) typically affect
any ICT system or network

o SDN threats: These threats are related to the softwarization functions that are the
backbone of 5G.

Additionally, the attacks on 5G NFV can be categorized as follows (Figure 1):
e attacks from within an NFV
o attacks from outside an NFV
o attacks occurring between NFV components
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Figure 1 - Attack Taxonomy [ENISA 2022]

Analysis of the current 5G Threat Landscape:

5G will be the backbone of cellular networks in the coming few years; thus, service
providers need to take sensible steps for 5G network protection. One major security
threat is the unexpected disruption of services [ENISA 2022]; operators should consider
solving the signaling challenges that may result in increased traffic volumes in 5G
network deployments. The legacy security issues related to service disruption in 3G/4G
(such as credential theft, location tracking, subscriber fraud, etc.) must also be
addressed as service providers migrate to 5G. Since 5G will initially be using a 4G core
network, service providers must address previous security concerns. Through monitoring
of available signaling data crossing the border of their traditional network may assist
service providers in developing protected 5G services.

As it has been argued by various authors that there will be some new threats in 5G along
with existing security challenges. From the operators and equipment vendors
perspective, it will be good to do research on the detection of unknown threats in 5G
environments using ML or DL models.

2.3 5G Vulnerabilities and Risks
Cybersecurity vulnerabilities might provide opening for attackers to exploit 5G systems
causing severe damages. Hassan et al. [Hassan 2022] argued that the principal
vulnerabilities that may cause security challenges are:

e Pre-authentication traffic

e Jamming attacks

e Insecure inter-network protocols

e Insecure implementations in network components

o Signalling-based DoS attacks
The 5G is vulnerable to cyber threats in five possible ways [Tom 2019]:
1. Inthe 5G, the network has shifted from centralized and hardware-based switching to

distributed and software-based routing. In the previous networks, hardware choke



points were used as initial points for attack inspection. But in the 5G, SDN is used for
digital routing, thus disallowing chokepoint inspection and control.

2. Due to the application of virtual functions at a higher level in 5G, all routing activities
are done using IP protocols which are vulnerable and can be used for illegal activities
in the network.

3. Although it is possible to lock down software vulnerabilities within the network, the
network is managed by software which can be vulnerable and an attacker which can
gain control of this software can also control the network.

4. |In 5G, an increased bandwidth creates additional attack surface, and the small-cell
and short-ranged antennas could be new targets for attackers. These cell sites use
dynamic spectrum sharing capability in which each slice has varying risks. Thus,
cyber protections which aren’t dynamic could be vulnerable to dynamic attacks.

5. Various smart devices are attached to loT, which are easily hackable and uniquely
vulnerable. Hackers can discover insecure loT devices into which they might plant
exploitation software.

In [Vaibhav 2021], the cybersecurity risks in 5G are due to the following:

e Data Sharing: The critical area of risk under 5G is data compromise; it is due to the
raised spread of intermediaries in the network and the software, including getting
access to the data network. This poses a considerable threat to the privacy of the
users.

e Connectivity Compromise: The connectivity compromise, also known as availability
compromise, might cause vital consequences on national security.

o Speed is a two-edged sword: 5G provides services in very fast speed but this also
means that data can be stolen very fast and data compromise can occur in high-
speed.

e Internet of Things (loT): By increasing the number of users in a single network might
increase the possible threats and vulnerabilities, because unauthorized users can
access other users’ data via shared spectrum. In addition, different devices can be
connected to the same system which makes ensuring cybersecurity in each device
more complex.

e Lack of end-to-end encryption: Multi communication channels connecting 5G with
Wi-Fi have lack of end-to-end encryption which allows attackers to intercept data.

o Short Range Towers: High number of Short-range physical cell towers are required
in the infrastructure of 5G network which becomes new deployment of physical
targets and have dynamic spectrum sharing (DSS) that hackers can exploit.

e Unaddressed past inefficacies: Issues in previous generations of mobile technology
have not been addressed in 5G standards. One example is the ability to intercept
pre-authenticated messages between the user’s base station and cell tower.

Analysis of the current 5G Vulnerabilities and Risks:

In 5G networks, there are serious security issues in accessing radio networks because
of new vulnerabilities which may affect both the service providers and end users. The
core network and radio access capabilities may be obtained from the end users without
following proper authentication process. This can be one of the key vulnerabilities in 5G
which allows an active or passive attackers to steal the identity of devices [Shaik 2021].
This vulnerability is derived from traditional networks (3G/4G). Thus, 5G networks must
come up with potential solutions for this. In 5G, another important vulnerability is when
the service providers are requesting the radio access capabilities from the end device
before the radio resource control (RRC) protocol security setup. Consequently, end
devices’ information is sent to the base stations in plain-text and there may exist an



attacker who may steal the sensitive information. Thus, it will be good to see how fuzzy
logic or advanced data analytics can be used to analyze the new vulnerabilities in 5G
networks while considering the dynamic and scalable properties of edge and IoT.

3 5G and Beyond Security

The evolution in terms of communication network security is shown in Figure 2. The
advantages of 5G and beyond are the unique combination of high-speed connectivity,
low latency, and more effectiveness and efficiency than its predecessor technologies.
6G is expected to allow high data rates at one terabyte per second and to support more
mobile connections than 5G capacity which will enable applications and innovations in
connectivity, cognition, sensing, and imaging with wireless networks empowered by
Artificial Intelligence (Al) [Peltonen 2020, Wang 2020]. These new areas are prone to
security and privacy issues such as authentication, access control, confidentiality,
malicious behavior, encryption and data transmission [Wang 2020] and performance of
AI/ML models and their accuracy, accountability and trustworthiness. On one hand
correct application of AI/ML can enhance privacy. On the other hand, privacy violations
may occur on Al/ML attacks on training (e.g., poisoning attack) and testing phases (e.g.,
reverse, membership interference, adversarial attacks).
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Figure 2 - Evolution of communication network security landscape [Pawani 2021]

3.1 Understanding 5G and Beyond Security

There exist surveys on 6G security and privacy issues from different perspectives, key
aspects of 6G networks (real-time intelligent edge computing, distributed artificial
intelligence, intelligent radio, and 3D intercoms) [Wang 2020], 6G wireless systems and
requirements [Porambage 2021-1, Porambage 2021-2], 6G prospective technologies
(physical, connection, and service layers) [Nguyen 2021], distributed ML for 5G and
beyond [Nassef 2022], trust networking for beyond 5g and 6G [Kantola 2020], network
architecture [Shokoor 2022], key areas beyond 5G toward 6G network [Lavanya 2022],
etc. In the ensuing section we give a brief review of these surveys.

In the perspective of key aspects of 6G networks, Wang et al. [Wang 2020] survey the
6G security and privacy issues in four key aspects of 6G networks, (i) real-time intelligent
edge computing, (ii) distributed artificial intelligence, (iii) intelligent radio, and (iv) 3D



intercoms. The authors discussed some promising emerging technologies in each area
with an overview of the security and privacy issues associated with each technology.

In the area of 6G wireless systems and requirements, Porambage et al. [Porambage
2021-1, Porambage 2021-2] survey the impact of security and privacy on 6G wireless
systems and 6G requirements such as novel network architecture, applications and
enabling technologies including distributed ledger technologies, physical layer security,
distributed artificial intelligence (Al)/ machine learning (ML), Visible Light Communication
(VLC), THz bands, and quantum communication. The authors provided their vision on
the new threat landscape expected for these networks and evolving security solutions
and technologies to protect 6G networks.

In the area of 6G prospective technologies, Nguyen et al. [Nguyen 2021] provide a
systematic overview of security and privacy issues in the physical, connection, and
service layers, as well as through lessons learned from the failures of existing security
architectures and state-of-the-art defenses. They described two key lessons learned as
follows. First, other than inheriting vulnerabilities from the previous generations, 6G has
new threat vectors from new radio. Second, the top promising techniques to mitigate the
attack magnitude and personal data breaches are physical layer protection, deep
network slicing, quantum-safe communications, artificial intelligence (Al) security,
platform-agnostic security, real-time adaptive security, and novel data protection
mechanisms such as distributed ledgers and differential privacy.

In the area of distributed ML for 5G and beyond Nassef et al. [Nassef 2022] argue that
6G is expected to have new capability for ubiquitous communication, computation,
sensing and controlling for a variety of sectors, which will increase the complexity in a
more heterogeneous environment. This increased complexity makes the application of
ML and distributed ML necessary. They gave graph models as examples to further
improve communication and computation efficiency and scalability of the distributed ML
algorithms.

In the area of trust networking for beyond 5G and 6G, Kantola [Kantola 2020] argues
that trust networking is emerging as a new promising type of technology and service that
could be deployed for special services over 5G or 6G networks to providing a much more
predictable level of service as compared with today’s service. This will help implement
trustworthy use cases for safety critical mobile networks which create lots of privacy
sensitive information on the physical world/ digital world boundary.

In the area of network architecture, Shokoor et al. [Shokoor 2022] in their “Overview of
5G & Beyond Security” describe 8 security landscape threats for 5G network architecture
and identify possible attack entry points for each threat in the network. They analyze the
5G security model, 5G threat setting, 10T threat scenarios, and 5G network threats with
a detailed review of security problems in core 5G security areas including access control,
authentication, communication protection, and encryption.

In key areas beyond 5G toward 6G network, Lavanya et al. [Lavanya 2022] surveyed 6G
network security and privacy by considering key areas such as intelligent radio,
distributed artificial intelligence, real-time intelligent edge, and intercom 3D, and
countermeasures to overcome these issues. The authors proposed a new design idea
based on the deep learning method (CNN-LSTM) for implementation in a 6G network for
authentication by detecting the attack in network traffic.



Analysis of the 5G and Beyond Security:

Most of the existing surveys on Al/ML security mainly focus on the performance of Al/ML
models and their accuracy, but they often overlook the accountability and trustworthiness
of the models' decisions. 6G security approaches must allow transparent and
understandable security decision-making procedures pushing the methods accountable
for automatic measures. Since security, privacy, and trust are closely related and will be
critically important to the uptake and acceptance of 6G communication, any security
solution should take a holistic approach addressing these three aspects.

3.2 Potential 6G cybersecurity challenges

6G is the network facilitator for a wide range of new applications to reshape the society
of the 2030s and beyond. Nevertheless, these applications may face complex security
challenges because of their critical nature and the requirement for a high trust level
[Porambage 2021]. 6G applications may also have distinctive vulnerabilities, for
example, the connected autonomous systems mainly rely on Al and the VLC technology,
where malicious behaviour, encryption and data sending can be challenging [Minghao
2021].

One of the main trends in developing 6G networks is realizing network functions from a
software perspective rather than hardware. Virtualization can create another level of
abstraction by providing a framework for deploying network functions as software
components, improving cost-effectiveness and end-to-end reliability. The security
functions implemented in the software can be exploited, which requires enhanced
network security measures [Giordani 2020].

An autonomous, self-aware and adaptive system is required to provide a large amount
of data analysis for 6G network security by using the latest algorithms and recent Al
technologies. Active security measures based on Al should continuously collect and
analyse real-time data to reduce possible cyber risks and ensure network security [Tang
2019]. 6G will be pivotal for intelligent medical, industry 4.0, and other loT applications.
Along with 6G security, data and user privacy needs attention which keeps varying in the
different application requirements. Since 6G will deliver ubiquitous digital services, these
applications will yield massive data, thus letting more assailants impose threats on users'
privacy [Pham 2020].

Analysis of the potential 6G cybersecurity challenges:

Various studies ([Pham 2020], [Xu 2022], [Hireche 2022]) have discussed that 5G
networks have started using Al as their backbone in the physical layer, data layer,
network layer (some applications). It has been also argued by some researchers
([loannou 2022], [Yang 2022]) that 5G and beyond (6G) will consider highly distributed
Al, moving the intelligence from the central cloud to edge computing resources. It has
been analyzed from the literature that in the 6G there will be narrowly controlling of data
transmission between the source and destination nodes, reducing the probability of
eavesdropping via the communication channel. However, there is a vast potential for
man-in-the-middle attacks directed at 6G frequencies which may be the critical security
concern. The attackers may introduce the metasurface to understand the
communications at 6G frequencies by positioning it straight in the line of sight between
end users. Thus, one open domain to do research in 6G can be man-in-the-middle attack
intrusion detection using Al/ML.



3.3 5G and Beyond Threat landscape
In this section, 5G and beyond threat landscapes is discussed. 5G and beyond security
threats are divided into three categories i) pre-6G security issues explain the security
threats inherited from 5G to 6G, ii) security threats of 6G architecture which result from
architectural changes and new technologies used in 6G, and iii) security threats of 6G
technologies, as stated below [Siriwardhana 2021]:
o Pre-6G Security Issues
o Issues of 5G technologies inherited to 6G
o Security and Privacy Issues of loE
o Security Issues of Local 6G Networks
e Security Threats of 6G Architecture
o Tiny cells, Mesh Networks, and Multi-Connectivity
o Sub-networks
o RAN-Core Convergence
o Zero-touch networks
o Privacy Issues
e Security Threats of 6G Technologies

o Al/DL

o Blockchain

o Quantum Computing

o Visible Light Communication
o Privacy Issues

Analysis of the 5G and Beyond Threat landscape:

It is too early to predict what security changes 6G will have exactly because it is not
ready for testing yet. Still, from the theoretical analysis, the main challenges in 6G
networks will be due to the use of modern technology. Several studies [Wright 2022,
Duong 2022] have explained that recent technologies such as quantum computing,
Al/DL and blockchain will be central components of 6G deployment. Thus, technology
itself can be used to develop security solutions; for example, one exciting area is looking
into Quantum machine learning (QML) [Kundu 2022]. QML can help expose the potential
vulnerabilities of 6G, which can be used for developing dynamic attack models and
adaptive countermeasures in protecting 6G systems.

4 AI/ML Cybersecurity in 5G and beyond networks
Artificial Intelligence (Al), and Machine Learning (ML) in particular, have in recent years
evolved rapidly as disciplines. Consequently, ML is about to establish itself as the go-to
methodology for all sorts of automation tasks for complex “systems” in a wide range of
domains, including finance, media, entertainment, vehicle automation, natural language,
and health. Cybersecurity and wireless systems like 5G are also in the process of
entering this list. In this section, we give a brief overview of the ML components found in
5G and beyond the threats to these and provide some guidance on how to secure them.
In particular, we discuss the use of ML for cybersecurity, with primary emphasis on
intrusion detection.

4.1 ML components in 5G and beyond

As opposed to 4G systems, which rely on ML only sparsely, several parts of the 5G and
beyond systems rely rather heavily on ML components. Kaur et al. [Kaur 2021] divide
the 5G and beyond wireless network into three layers: 1) Physical layer (including



sensing layer and network layer), 2) Middle layer (including the data link, network,
transport, and session layer), and 3) Application layer. The authors argue that Al and ML
will be embedded in all these layers and thereby play a key role in the system's
performance. All the ML components are supposed to lead to more efficient, secure, and
effective wireless communication.

In the physical layer, ML is supposed to support estimation, encoding and decoding in
channels, as well as IP protocol configuration. For instance, Huang et al. [Huang 2018]
propose a deep learning method for estimation of channel and so-called direction of
arrival which is estimated through a combined offline/online training procedure. Another
early example is [Joung 2016], applying kNN and SVM for optimizing antenna selection.

In the middle layer, ML will support authentication and logging services. ML may then be
used to dynamically balance the server system. For instance, ML may be used for power
saving by automatically setting servers and other system components to low-power
states at non-peak hours, while rapidly turning off the low-power mode if traffic starts to
pick up. Scheduling software updates to hours in which an ML model has predicted low
traffic is another example.

In the application layer, ML will support file transfer, streaming services, etc. There,
supervised learning can be applied to, e.g., intelligent caching and content prediction.
For instance, Sadeghi et al. [Sadeghi 2017] use reinforcement learning in an intelligent
content caching system that fetches popular content during non-peak hours. Moreover,
unsupervised clustering techniques can be used to optimize network resources.

In most of the above ML applications, online learning techniques will be vital to adaptively
adjust caching, channel tracking, load balancing, etc., to meet the requirements in the
low latency applications typical in 5G and beyond.

4.2 Threats to ML components in 5G and beyond

Most of the literature on Al and ML related to 5G and beyond is concerned with the
benefits, and opportunities the technology brings with it. While ML is expected to play a
vital role in 5G and beyond, allowing a more efficient system, it also introduces a range
of serious security vulnerabilities and issues. Suomalainen et al. [Suomalainen 2020]
point out several weaknesses with a system that relies heavily on ML-based
components. The threats to the ML components in 5G overlap with both threats to ML in
general, and with general 5G and cybersecurity threats, and can be summarized as: DoS
(Denial of Service), DoD (Denial of Detection, i.e. hinder ML from signaling attacks or
failures], Unfair resource use (trick the ML into routing big resources to certain parts of
the system) and sensitive data leakage (private or business-critical data revealed
through e.g. learned models).

The very nature of ML has limitations that is important to be aware of. As ML models are
trained on data, high quality data is required to get high quality ML models. For instance,
to train an ML-based defense system against DoS, one needs realistic, relevant, and up-
to-date data on DoS attacks. Further, as time goes on, user behavior may change, and
the original data becomes outdated. This leads to an outdated ML model which requires
retraining on new data and an ever-lasting maintenance burden. This is particularly
critical for anomaly detection models. Moreover, since the models try to mimic the data,
it is not seldom that minor changes to the input may lead to substantial changes in the
output, causing unexpected situations and vulnerabilities. If the model is too tightly



connected to sensitive training data, the data may be revealed based on the output of
the model.

Intrusion detection systems (IDS) are often based on ML and are probably the most
critical ML-based component in the 5G system. Due to its crucial role, and some of the
threats to such ML components being very specific for IDS, we discuss this separately
in section 4.5, along with other issues with ML in cybersecurity.

4.3 Data types

The data typically used to build and run ML-components in 5G and beyond, typically
comes in the tabular data form, with fixed numeric (continuous or discrete) or categorical
(unordered or ordered) features. In most cases there is a time component involved in the
relevant data. Examples are live streams from network traffic, geographical positions of
devices, and other system logs. See specific examples for IDS in Section 4.5.

4.4 Securing the ML algorithms
In view of the threats to the many ML components in 5G and beyond, a natural question
to ask is how we can secure these algorithms?

First and foremost, it is critical that strict regimes are in place to ensure that both the data
used for training the ML components, and the trained models themselves, cannot in any
way be altered by unauthorized parties. With secure access to the data and models, data
and model poisoning threats are minimized. It also secures privacy of the data.

Real, observational data are preferable over simulated data for training, as the latter
typically only learn the rules with which the simulator was programmed and may also be
out of date [Morocho-Cayamcela 2019]. Because of the requirement of real, recently
observed data, proper data cleaning and filtering mechanisms must also be in place to
ensure poisoned data does not enter the training data set. We also think it is problematic
to rely on open data, as attackers can learn how models trained on these tend to work
and exploit weaknesses in these data.

When training the models, one needs to pay attention to regularization, avoiding
overfitted models. While this is problematic for performance, it can also be exploited by
attackers to control the model output with minimal changes to the input. For models
relying on sensitive data of any sort, one also needs to obey differential privacy, to avoid
that the models implicitly contain sensitive data.

Once the models are trained, understanding how they behave and perform for different
input data, their robustness, sensitivity, and extrapolation abilities, is important to
understand the limitations of the model. Explainable Al (XAl) methods can help in this
regard.

When ML components finally reach production, it will be crucial to have a well-functioning
monitoring system in place, such that abnormalities in the use of the models can be
detected and followed up. Since ML models are inherently non-transparent, simple rule-
based fall-back methods should take over once abnormalities related to the use of ML
models are detected. Furthermore, any services that reveal the output of the ML model
are vulnerable to adversarial attacks. Thus, the model output should only be revealed
where this is strictly required, otherwise, its access should be strictly controlled.



See also [ENISA 2021] for a broad taxonomic overview of ML algorithms from the
security perspective.

4.5 ML for cybersecurity

Cybersecurity is the practice of protecting computer systems, networks, and data from
unauthorized access, use, disclosure, disruption, modification, or destruction. Intrusion
detection systems (IDSs) are a key component of cyber security, as they monitor network
traffic and alert administrators to any potential security breaches or attacks. Machine
learning (ML) is increasingly being used in IDSs to improve their accuracy. By using
algorithms to analyze large amounts of data, machine learning can help an IDS identify
patterns and anomalies that may indicate a security threat. This allows IDS to adapt and
evolve to new threats and provide more comprehensive protection for computer systems
and networks. In this section, which is heavily based on [Liu 2019], we review the use of
ML in intrusion detection systems.

Machine learning has been applied to intrusion detection systems to help detect
previously unknown attacks, known as zero-day attacks. Intrusion detection methods
can be divided into two categories: misuse detection and anomaly detection. Misuse
detection, also known as signature-based detection, uses a database of signatures of
known attacks and raises an alarm when these are detected. This approach has a low
false alarm rate, but it also has a high missed alarm rate because it can only detect
known attacks that are in the database. Additionally, this database must be kept up to
date, which can be costly. In contrast, anomaly detection uses machine learning to
establish a model of normal behavior by learning from data. This approach can then raise
an alarm when the observed behavior deviates significantly from the normal behavior.
ML-based IDSs can detect zero-day attacks, i.e., previously unobserved attacks but have
a higher false alarm rate and are less interpretable than misuse detection.

IDSs can be categorized as either host-based or network-based, depending on the type
of data they monitor. Host-based IDS monitor logs from the host system's operating
system and applications, while network-based IDS monitor network traffic in the form of
packets, flows, or sessions. Packets are the basic units of network communication, while
flows and sessions are aggregations of packets based on time windows and 5-tuple
(client IP, client port, server IP, server port, protocol) grouping, respectively. The type of
data used in an ML-based IDS may vary based on the types of attacks it is designed to
defend against. For instance, flow-based methods may be more effective in detecting
denial-of-service attacks that involve large amounts of traffic within a short time frame,
while session-based methods may be more effective in detecting covert channel attacks
that involve data leakage between two distinct IP addresses.

Machine learning-based intrusion detection systems (ML-IDSs) can be broadly classified
into two categories: supervised and unsupervised methods. Supervised ML-IDSs use
labeled data to train the system to classify incoming data as either an attack or regular
activity. However, unsupervised ML-IDSs are trained to detect anomalies in raw,
unlabeled data by learning typical patterns and issuing alerts when deviations from these
patterns are observed. Although supervised methods tend to outperform unsupervised
methods, they require labeled data, which can be expensive and difficult to obtain in real-
world scenarios. While some open labeled datasets, such as DARPA1998, KDD99, NSL-
KDD and UNSW-NB15 [Moustafa 2015], are available, these datasets may not be
relevant in practice due to their static nature and potential for obsolescence.



Packet-based methods. Packet-based methods classify individual packets as malicious
or benign. Packet-parsing methods typically parse the protocol header fields and use
these as features. A couple of examples are Mayhew et al. [Mayhew 2015] who group
packets by protocol, cluster them by K-means++ and classify them using support vector
machines (SVMs), and Hu et al. [Hu 2015] who apply an additional filter on alerts
produced by Snort [Roesch 1999] using fuzzy C-means. Another approach is to model
the packet payloads. Authors [Liu 2019b, Min 2018, Zeng 2019, Yu 2017] use deep
learning algorithms to learn features from the payloads. Liu et al. [Liu 2019b] apply
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) to
automatically learn features from packet payloads. Min et al. [Min 2018] combine
statistical features and payload features learned using a CNN on the payloads to perform
classification using Random Forest. Zeng et al. [Zeng 2019] use CNNs, RNNs and
stacked autoencoders and select the best model based on validation accuracy. Yu et al.
[Yu 2017] use unsupervised pre-training with a convolutional autoencoder to extract
features and fine-tunes a classifier to predict attacks with labeled data.

Flow-based methods. Flow-based methods model a sequence of packets in a time
window and can thus see packets in context of previous communication, something
which is lost when processing only individual packets. Authors [Goeschel 2016,
Kuttranont 2017, Peng 2018, Teng 2017, Ma 2016] engineer flow-based features such
as average packet length, variance of packet length, ratio of TCP to UDP, the proportion
of TCP flags etc. and use traditional ML methods such as support vector machines
(SVMs), k-Nearest Neighbours (kNNs), Naive bayes and decision trees to classify the
flows as malicious or benign. Other authors [Potluri 2018, Zhang 2018] on the other
hand, use deep learning to learn features directly from the flows. Potluri et al. [Potluri
2018] transform the flow into an 8x8 image and use a CNN to classify this image. Zhang
et al. [Zhang 2018] learn features in an unsupervised fashion using a sparse autoencoder
and use these features as input to an XGBoost classifier.

Session-based methods. Session-based methods model communication between two
IP addresses at specific ports and a given protocol. Authors [Ahmim 2019, Alseiari 2015]
use engineered features and classical ML methods. Ahmim et al. [Ahmim 2019] use a
Random Forest on the features and the outputs of a rule-based model, while Alseiari et
al. [Alseiari 2015] take an unsupervised approach where they cluster sessions before
they manually label the found clusters. Features can also be learned directly from raw
data using deep learning. Yuan et al. [Yuan 2017] perform DDoS detection using LSTMs,
Radford et al. [Radford 2018] tokenize the communication in a session and learn word
embeddings on these tokens which are used as input to a bi-LSTM, while Wang et al.
[Wang 2017] used a character-level CNN on the bytes that make up the packets.

4.6 Practical challenges for ML-components in 5G and cyber
security

As described above, the use of ML in 5G, particularly for cybersecurity, brings with it both

possibilities and challenges. Morocho-Cayamcela et al. [Morocho-Cayamcela 2019]

mention the scarcity of real data sets for training the ML models as one of the biggest

challenges in the field. Liu and Lang [Liu 2019] mention three severe challenges for ML-

based intrusion detection, and these should also be relevant for other ML-components:

Lack of relevant labelled datasets: If no relevant data is available and you use a
supervised ML-based system, your only option will be to label data yourself. This can be



an expensive process and would likely require labeling of new data that comes in at
regular intervals to keep up with new attacks that emerge. Alternatively, you can rely on
unsupervised ML.

Low accuracy: Most studies in literature are conducted using labeled datasets and
performance might thus be limited in real environments where the incoming data only
partially overlaps with the training data.

Low efficiency: Most studies focus on detection performance, whereas efficiency is not
considered. However, for live deployment, efficiency is of utmost importance as a large
amount of data must be processed in real time.

5 Concluding Remarks and Future Research Directions

In this study, we found out that 5G extends various networking opportunities because it
offers more capacity, speed, and latency than its predecessors. The use of virtualized
functions such as VNFs and VMs to achieve these opportunities introduces increased
attack space. A recent report [ENISA 2022] pinpoints several security challenges that
may occur due to VNF, NFV, VMs, and SDN. Therefore, advanced data analytics can be
utilized for dealing with security threats (such as DDoS attacks) in 5G systems. New
vulnerabilities in 5G and beyond systems due to NFV and SDN is also one of the main
issues, Al/ML can be applied to propose potential solutions considering the dynamic and
scalable properties of edge and IoT.

We also discovered that while the journey from 1G to 6G is about speed, the attack
space has evolved from physical attacks to Al/ML and quantum attacks. The advantages
of 5G and beyond are the unique combination of high-speed connectivity, low latency,
and more effectiveness and efficiency than its predecessor technologies. All this
development is, however, prone to security and privacy issues. Privacy violations may
also occur during the training and testing phases of Al/ML attacks. We, therefore, agree
with those who argue that efficient algorithms need to be provided by building adaptive
algorithms on top of efficient model exchange by grouping, adaptive selection, and
dynamic adjustment with minimal sacrifice on AlI/ML model performance. Since most of
the existing surveys on Al/ML 5G and beyond security mainly focus on the performance
of AI/ML models and their accuracy, they often overlook the accountability and
trustworthiness of the models' decisions. Therefore, future 6G security solutions must (i)
allow transparent and comprehensible security decision-making processes making the
systems accountable for automated actions, (ii) take a holistic approach addressing
security, privacy, and trust which are closely related and will be critically important to the
uptake and acceptance of 6G communication, and (iii) look in the lens of dynamism and
adaptivity which will allow managing dynamic and evolving risks in 6G.

From our analysis, online learning techniques have the potential to play a prominent role
in adapting, channel tracking, load balancing, etc., in 5G and beyond. Several challenges
for ML-based intrusion detection need careful attention from the research perspective.
IDSs must be able to adapt and evolve to offer dynamic security solutions in 5G and
beyond.

Technology itself can be used to develop security solutions. For example, one exciting
area is looking into Quantum machine learning (QML), which can help to predict potential
vulnerabilities of 6G and develop dynamic adaptive protection of 6G systems.
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