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ABSTRACT

In-home elderly monitoring requires systems that can detect emer-
gency events—such as falls or prolonged inactivity—while preserv-
ing privacy and requiring no user input. These systems must be
embedded into the surrounding environment, capable of capturing
activity, and responding promptly. This paper presents a low-cost,
privacy-preserving solution using Passive Infrared (PIR) and Light
Detection and Ranging (LiDAR) sensors to track entries, sitting,
exits, and emergency scenarios within a home bathroom setting.
We developed and evaluated a rule-based detection system through
five real-world experiments simulating elderly behavior. Anno-
tated time-series graphs demonstrate the system’s ability to detect
dangerous states, such as motionless collapses, while maintaining
privacy through non-visual sensing.
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1 INTRODUCTION

The elderly population is rapidly growing; by 2040, over 78 mil-
lion Americans will be age 65 or older [20]. Many prefer to age
autonomously, remaining in their own homes rather than relocat-
ing to assisted living facilities. However, aging in place comes with
significant safety concerns, especially for elderly individuals who
live alone. Bathrooms, in particular, are high-risk environments
due to hard surfaces, slippery floors, and the physical demands of
bending, sitting, and standing.

While traditional emergency systems like Life Alert exist, they
rely on users being conscious and able to actively summon help—an
assumption that often fails during real-world emergencies. Accord-
ing to the CDC, over 36 million falls are reported among older
adults each year, resulting in more than 32,000 deaths [2]. There
is a critical need for systems that can passively monitor for emer-
gencies without compromising user privacy to better support safe,
independent living for the elderly.

Moreover, the global eldercare industry is valued at over $1 tril-
lion, with billions allocated specifically to remote monitoring, fall
detection, and in-home aging technologies [1, 7]. The growing el-
derly population in the United States, Japan, and Europe highlights
an urgent demand for scalable, affordable, and passive monitoring
solutions that do not depend on manual activation [7, 19].

In response to these needs, we present a privacy-preserving
bathroom monitoring system that detects both falls and prolonged
periods of inactivity using PIR and LiDAR sensors.
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2 BACKGROUND AND RELATED WORK

This work designs and deploys a privacy-respecting, always-on
monitoring system that relies solely on motion and distance sensing.

Recent smart home systems and assistive technologies increas-
ingly employ multimodal sensing to infer human activity. In retail
spaces, for example, PIR sensors, RFID tags, and computer vision
are commonly used to track motion, detect shoplifting, or optimize
store layouts. RFID-based systems such as Xiao et al’s item-level
detection demonstrate that low-cost sensing can reliably monitor
object states and movements, supporting the case for simple, scal-
able sensing architectures in monitoring tasks [21]. In residential
environments, however, privacy becomes paramount—particularly
in sensitive spaces like bathrooms. Frameworks for aging-in-place
technologies emphasize the importance of non-invasive sensors,
remote alert systems, and adaptive designs that support daily inde-
pendence while preserving user dignity [14, 18].

Camera-based solutions, while offering comprehensive cover-
age, introduce significant privacy concerns, especially in private
spaces. Alternative approaches, such as stranger detection through
structural vibration analysis, enable passive occupant monitoring
without direct identification or video feeds [4]. Similarly, moni-
toring gait health through footstep-induced vibrations has been
explored for both elderly individuals and children with muscular
dystrophy, demonstrating the viability of vibration-based methods
for health monitoring [6, 8].

Passive infrared (PIR) sensors offer a low-power, simple solution
for motion detection, but provide only binary outputs and lack
spatial resolution. LiDAR sensors, by contrast, emit laser pulses
to measure distance and capture richer spatial information. Alone,
each modality has limitations; however, when combined, they en-
able more nuanced inferences about a person’s presence and ac-
tivity. Recent work like MILTON demonstrates the versatility of
vibrometry for non-invasive sensing applications, motivating the
use of multimodal approaches in privacy-sensitive environments
[10]. Vibration-based sensing platforms such as VibSense further
highlight the potential of non-visual modalities for passive human
interaction detection [15].

In healthcare and smart home monitoring, multimodal sensing
has been shown to improve robustness and reliability. Systems
that fuse modalities such as radar, Bluetooth, and infrared sensing
demonstrate enhanced emergency detection capabilities [13]. Occu-
pant localization through footstep-induced vibrations, as presented
by Mirshekari et al., provides a passive and scalable alternative
to wearable-based systems [17]. In complex environments like re-
tail or healthcare, multimodal fusion frameworks such as FAIM,
which integrates vision and weight sensing, overcome limitations
inherent to single-modality systems [9]. Similarly, SenseTribute
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applies multimodal sensing to occupant identification tasks, achiev-
ing improved robustness and reduced false positives in smart home
monitoring [11, 12].

LiDAR'’s reliability in robotics applications, including obstacle
detection and 3D mapping, further supports its suitability for struc-
tured environment monitoring. Drawing on these prior findings,
this work combines PIR and LiDAR sensing with rule-based decision
logic to create an explainable, modifiable, and privacy-preserving
emergency detection system specifically tailored for bathroom en-
vironments.

3 SYSTEM DESIGN
3.1 Hardware Setup

Our system consists of three key components:

e PIR Sensor (HC-SR501): Detects motion based on IR fluc-
tuations.

e LiDAR Sensor (TF-Luna): Measures distance from sensor
to closest object (range: 0.2-8m).

e ESP32-S3 Microcontroller: Collects data and streams via
UART.

Both sensors are mounted at approximately 1.5 meters high,
facing the toilet from a side wall. The PIR detects motion during
entry or movement, while the LIDAR tracks the user’s distance from
the wall, capturing transitions such as sitting, standing, exiting, or
collapsing.

Figure 1: Experimental sensor setup in a test bathroom.

3.2 State Logic

The ESP32-S3 microcontroller polls sensor data every 50ms and logs
it for analysis. Our rule-based logic maps sensor states to labeled
activity phases:

Entered: PIR HIGH + LiDAR drop < 150cm

Seated: LiDAR stable between 30-80cm

Exited: PIR HIGH + distance > 130cm

Fall Suspected: Distance > 150cm & no motion for 3+
minutes

e Alert: No motion & distance > 150cm for over 10 minutes
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4 EXPERIMENTS AND RESULTS

We ran five experiments simulating realistic elderly behavior. Data
was logged via CoolTerm and plotted in Python.

4.1 Experiment 1 - Normal Entry + Toilet Sit

Goal: Test basic functionality. Behavior: Enter, sit for 1-2 minutes,
exit. Result: Clean transition from “Entered” to “Seated” to “Exited”
detected.

We placed the user in front of the LiDAR to observe entry detec-
tion. Once seated, distance readings stabilized between 60-70cm.
Upon exiting, a sharp jump to 160cm and a final PIR HIGH con-
firmed the exit state. This scenario validates the system’s ability to
accurately track transitions between key behavioral states, which
serves as a foundation for more complex emergency detection.

Experiment 1: Normal Entry (Focused View)

160 — Distance (cm)
Mation (0 or 1)

13 2000 2000 6000 8000 10000
Time (ms)

Figure 2: Experiment 1: Entryj, sit, exit. Correct transitions
detected.

4.2 Experiment 2 - Long Sitting (No Motion 10+
min)

Goal: Simulate risk of stroke, etc. Behavior: Remain seated still

with no motion for >10 minutes. Result: PIR stayed LOW, LiDAR re-

mained stable. System triggered “Warning” at 5 minutes, escalating

to “Alert” at 10.

This scenario reflects a potential medical emergency such as
fainting or a stroke while on the toilet. The system’s ability to
escalate from a warning to an alert shows that it can differentiate
passive presence from potential danger. No additional gestures or
inputs were required from the user, demonstrating the advantage
of fully passive sensing.

Experiment 2 Retry: Distance, Motion, and Key States
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Figure 3: Experiment 2: Alert triggered after prolonged seated
inactivity.
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4.3 Experiment 3 — Entry + Immediate Exit

Goal: Avoid false alerts from quick visits. Behavior: Enter briefly,
then leave. Result: PIR HIGH and LiDAR blip, but no state was
sustained. Interpretation: System correctly ignores short visits.

This experiment is crucial to prevent alarm fatigue. We quickly
entered the bathroom, triggering PIR and LiDAR drops, but exited
within 20 seconds. Since no seated or motionless state was detected,
the system returned to idle state as intended.

Experiment 3: Entry and Exit Detection
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Figure 4: Experiment 3: No alert triggered. System correctly
classifies short visit.

4.4 Experiment 4 — Simulated Fall (Out of FOV)
Goal: Detect fall beyond toilet. Behavior: Sit, then fall sideways.
Result: LiDAR jumped, PIR LOW. “Fall Suspected” — “Alert”

The user sat down and then slid out of the beam’s path. LIDAR
spiked to 160cm, PIR stopped detecting motion. The system sus-
pected a fall at 3 mins, then escalated to an alert.

Experiment 4 Retry: Distance and Motion Over Time
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Figure 5: Experiment 4: Fall suspected after distance spikes
and no motion.

4.5 Experiment 5 — Collapse While Entering

Goal: Detect early-stage fall before sitting. Behavior: Enter, then
collapse. Result: PIR briefly HIGH, then LOW. Distance spikes.
Alert at 10 min.

This tests one of the most realistic dangers—falling before even
sitting. The PIR detects entry but goes LOW quickly. LiDAR briefly
drops, then rises and remains static. The 10-minute timer leads to
an alert trigger.

Experiment 5: Early Collapse (Zoomed on Initial Fall)
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Figure 6: Experiment 5: Alert triggered after early collapse.

5 DISCUSSION

Our multimodal setup balances simplicity, cost, and privacy. The
experiments validate a system that is both robust and explainable.
The threshold-based logic was sufficient to differentiate common
cases, including subtle or dangerous ones.

5.1 False Positives and Negatives

False alerts can occur from long showers or meditation. Minor
movement might delay alerts. Solutions include third sensor re-
dundancy or modeling behavior patterns temporally. However, our
tests showed that combining both PIR and LiDAR already reduces
spurious signals significantly compared to using either modality
alone.

5.2 Why This System Matters

Life Alert and similar solutions assume a user will press a button
during distress. But many elderly users suffer cognitive decline or
physical trauma that makes activation impossible. According to
PatientOne, systems that operate independently of wearable de-
vices are more likely to be adopted by elderly users with mobility
issues or cognitive decline [19]. Our system removes the responsi-
bility of having to manage a wearable or manual device. It allows
an elderly person to live independently without sacrificing safety.
Complementary work like GaitVibe+ explores using floor vibrations
for occupant localization and gait analysis, offering a non-visual
method for monitoring movement patterns in-home [5]. Moreover,
it’s built on $20 worth of sensors, with logic simple enough to run
on a microcontroller—making it scalable in real-world homes. This
direction aligns with a larger trend in aging-in-place innovation,
which favors non-wearable systems for elderly populations with
mobility or cognitive limitations [16]. This design choice aligns
with growing industry consensus that passive, non-contact sensing
is more acceptable for in-home use than intrusive visual monitoring
technologies [16, 18].

5.3 Future Improvements

BLE or Wi-Fi alerting, integration with smart rings or medical
history logs, and ML-based classification are logical next steps.
Sensor placement in other in-home locations (bedroom, hallway)
could extend its use case.



5.4 Deployment and Real-World Impact

This system is designed to be both affordable and highly deployable.
According to the Social Security Administration, over 12 million
elderly Americans rely on these payments for more than 90% of their
income, making affordability a key barrier to entry for premium
fall detection or medical response products. The total cost of the
hardware stack—comprised of the ESP32-S3 microcontroller, a TF-
Luna LiDAR module, and a PIR sensor—is under $20.

Unlike subscription-based emergency services such as Life Alert,
which can cost over $50/month, this solution has no ongoing fees
and does not rely on user compliance (e.g., wearing a pendant or
bracelet). Elderly individuals often forget to wear such devices, or
they may become physically unable to activate them in the case of
a fall. Our sensor-based system removes that responsibility, instead
shifting monitoring to the environment in a passive and automatic
way. This promotes independence without sacrificing safety.

5.5 Scalability and Market Context

The aging-in-place technology market is expanding rapidly, with
the global eldercare monitoring industry valued at over $1 trillion
[1, 3, 16]. Credence Research highlights the growth of non-contact
fall detection systems, while BCC Research and MetaTech Insights
report that caregivers increasingly prefer easy-to-install, passive
sensor systems over camera-based solutions [1, 3, 16]. In coun-
tries like the US, Japan, and across Europe, populations over age
65 are growing faster than any other demographic. Meanwhile,
the global eldercare and assistive device market continues to grow
rapidly, supported by smart tech and monitoring innovation [1].
As noted in Credence Research and MetaTech analyses, contact-
less, passive systems like mines align well with current market
preferences for non-intrusive, easy-to-install solutions [3, 16]. As
demand for unobtrusive monitoring increases, simple solutions
like mines provide a promising alternative to high-cost, privacy-
invasive platforms. Bathroom-related falls account for a significant
portion of emergency room visits among older adults. Early studies
suggest that over 80% of household falls among seniors occur in the
bathroom—underscoring the urgency of monitoring such private,
high-risk zones without relying on video.

Our implementation could be extended with BLE or Wi-Fi for
caregiver alerts, or integrated with smart home hubs to trigger
preprogrammed routines (e.g., unlocking the door for EMS, turn-
ing on lights, or sending location-aware texts to loved ones). The
threshold logic used in our model can be trained with more complex
behavior sequences, unlocking future applications such as activity
recognition, daily routine tracking, or early illness detection.

5.6 Policy Implications and Health Equity

Beyond engineering impact, this project has the potential to reduce
long-term healthcare costs by catching emergencies earlier. A fall
left undetected for hours can lead to severe dehydration, pressure
injuries, or worse. Early detection leads to better outcomes and
less strain on healthcare systems. Future versions of this system
could integrate with electronic health records (EHR), Medicare
data, or insurance billing APIs to offer subsidized care pathways
for low-income seniors. Policymakers and insurance providers are
increasingly prioritizing aging-in-place technologies that reduce

Youssouf Sidibé and Julia Gersey

long-term care costs while remaining non-invasive and compliant
with health data privacy laws [1, 7].

This kind of passive monitoring system also aligns with HIPAA-
compliant and GDPR-aligned health data practices. No visual or
biometric information is recorded, reducing risks of surveillance
misuse or legal liability for caregivers and institutions. It is ex-
plainable, transparent, and culturally considerate—making it better
suited for large-scale deployment in both public and private elder-
care contexts.

6 CONCLUSION

We developed and validated a privacy-preserving detection system
for fall and inactivity monitoring in bathrooms by using PIR and
LiDAR sensor. This low-cost, non-visual approach fills a critical gap
in at-home eldercare with minimal user burden. It offers real-time
insight while preserving the dignity and autonomy of elderly users.

This work advances the field of passive sensing and proposes
a practical, ethical alternative to camera-based systems. It has the
potential to scale across smart home deployments and contribute
to aging-in-place solutions worldwide.
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