arXiv:2505.18172v1 [cs.CR] 14 May 2025

GenAl Security: Outsmarting the Bots with a
Proactive Testing Framework

Sunil Kumar Jang Bahadur
Al & GenAl Specialist

Gopala Dhar
Al Engineer, Al Services

Lavi Nigam
Developer Relations Engineer

Cloud GTM Google Cloud Consulting (GCC) Cloud Al and Industry Solutions
Google Google Google
Mumbai, India Mumbai, India Gurugram, India
sjangabahadur@google.com gopalad @google.com lavinigam @ google.com

Abstract—The increasing sophistication and integration of
Generative AI (GenAl) models into diverse applications introduce
new security challenges that traditional methods struggle to
address. This research explores the critical need for proactive
security measures to mitigate the risks associated with mali-
cious exploitation of GenAl systems. We present a framework
encompassing key approaches, tools, and strategies designed to
outmaneuver even advanced adversarial attacks, emphasizing
the importance of securing GenAl innovation against potential
liabilities. We also empirically prove the effectiveness of the
said framework by testing it against the SPML Chatbot Prompt
Injection Dataset. This work highlights the shift from reactive to
proactive security practices essential for the safe and responsible
deployment of GenAl technologies.

Index Terms—GenAl, Security, Agents, Prompt Injection, Red
Teaming, Blue Teaming, LLM

I. INTRODUCTION

The rapid advancement and widespread adoption of Gener-
ative Artificial Intelligence (GenAl) models have opened up
exciting new possibilities across various domains. However,
this progress has also brought few significant security con-
cerns, notably the vulnerability of these models to adversarial
attacks [1]. Among these, prompt injection attacks pose a
critical threat, allowing malicious actors to manipulate the
behavior of GenAl models for unintended and often harmful
purposes. Traditional security approaches, reliant on reactive
measures, struggle to keep pace with the evolving landscape
of prompt injection techniques. A proactive testing framework
that identifies and mitigates vulnerabilities, leverages the prin-
ciples of Red Teaming and Blue Teaming within a unified
and automated pipeline, is crucial. This framework will not
only strengthen the security posture of GenAl systems but
also provides valuable insights into the evolving sophistica-
tion of prompt injection attacks, empowering developers and
security professionals to build more resilient and trustworthy
Al solutions for the safe and responsible deployment of GenAl
technologies.

II. APPROACH

Red teaming and Blue teaming are used in cyber-security to
identify vulnerabilities and strengthen their defenses through
a controlled adversarial process. "Red teaming” refers to

a simulated cyber-attack performed by a group of security
experts to identify vulnerabilities in a system, while “Blue
teaming” refers to the defensive team responsible for detecting
and responding to these simulated attacks.

Red Team Agent Blue Team Agent
Injections
Gap Analyzer
Sensitive Data Protection

Content Moderation

Prompt Attack Generation
Feedback Evaluator
Knowledge Base Driven

Fig. 1. Proactive testing framework approach

However, given the rapid release of new GenAl models and
the constant discovery of new bypass techniques, traditional
Red Teaming and Blue Teaming approaches face several
limitations, some of those are listed below:

« Stagnates Fast: Traditional approaches provide solutions
at a snapshot in time; such a security posture can quickly
become outdated.

« Difficult to Scale: These solutions are challenging to
apply across large and complex organizations.

o Limited Scope: These methods often are focused on
specific systems or attack vectors, leaving other areas
unexplored.

« Resource Intensive: Traditional methodologies requires
significant time, budget, and specialized personnel.

o Reactive: These primarily identify existing vulnerabili-
ties, and not emerging threats.

o Human Bias: Traditional methodologies are prone to
human error and subjective assessments.

The proposed solution involves developing a proactive testing
framework that utilizes GenAl models to drive both “Red
Teaming” [2] and "Blue Teaming” agents. The "Red Teaming”
agent generates prompt attacks based on existing knowledge
and continuous feedback, while the ”Blue Teaming” agent an-
alyzes successful prompt injections to identify vulnerabilities
and recommend corrective actions.

https://arxiv.org/abs/2505.18172v1

III. ARCHITECTURE

The core concept adopted for constructing a proactive
testing framework for GenAl applications is an agentic
approach leveraging the GenAl models as the brain. The
architecture will consist of two primary agents, viz.:

”Red Teaming” agent: The “Red Teaming” agent’s
objective is tginvestigate various methods to inject malicious
instructions into user prompts while circumventing safety
filters and avoiding suspicion. It utilizes a Knowledge
Base built upon known and newly discovered prompt
attack techniques and research like SurrogatePrompt [3],
SneakyPrompt [4]. Additionally, it employs a shared memory
to retain learnings for both short-term and long-term use in
specific scenarios.

”Blue Teaming” agent: The “Blue Teaming” agent’s goal
is to examine the results from the Red Teaming agents,
identify weaknesses in the existing security or workflow
process, and suggest a list of services that can mitigate the
attacks, based on the available list of services.

Knowledge Base

Datastore

- N
Prompt Attack Generator ll Feedback Evaluator
Agent Agent
LLM Input

Shared Memory LLM Output

REDTEAM Agent

Prompt Injected Inputs

GenAl Application
outputs Under Test
Sensitive Pll Data
Content Moderation
APls

BLUETEAM Agent

‘Gemini/ 1P/ 3P / Partner LLM Model

Input Requirement
for Testing

GenAl Application
Scope

Regex Based
Filtering

Fig. 2. GenAl testing framework architecture

In future work, the collected data and scenarios can be later
used to further fine-tune the all models for better understanding
and performance. Given a particular use case and specific
vulnerabilities that need to be tested, the "Red Teaming” agent
will generate and investigate potential scenarios as part of an
end-to-end workflow. The agent will then share its findings
with the "Blue Teaming” agent, who will recommend solutions
to address any identified gaps.

The feedback evaluator will continuously challenge the
”Red Teaming” agent to produce increasingly optimized and
complex prompt injection attacks if the existing workflow,
utilizing the constantly updated Knowledge Base, can success-
fully defend against them. Additionally, the "Blue Teaming”
agent can be expanded to incorporate more customized options
to address the identified vulnerabilities.

IV. EXPERIMENTATION

A. Data

The SPML Chatbot Prompt Injection Dataset [5], compris-
ing 16K records, was employed to facilitate our experimen-
tation. This dataset encompasses a substantial collection of
system prompts crafted to simulate authentic chatbot inter-
actions, complemented by a diverse assortment of annotated
user prompts aimed at executing prompt injection attacks. It
includes ”System Prompts™ and User Prompts,” accompanied
by a binary prompt injection indicator utilized to evaluate the
Red Teaming agent. Furthermore, the ”Degree” field, denoting
the severity of prompt injection on a numerical scale from 0
(no injection) to 10 (highest severity), is leveraged to assess
our proactive testing framework.

B. Approaches and Challenges Faced

In order to evaluate the Red Teaming agent, with the given
dataset, we needed to formulate a strategy that vets the Red
Teaming agents prompts. Due to the limitations of the open
source datasets available as well as evaluation methodology to
benchmark generated injections, we use a proxy in order to
evaluate the agent.

Since large language models can practically generate any
number of variations of an “injected” prompt, we utilize an
evaluator model that takes the input prompts of the Red
Teaming agent and then validates whether or not the agent is
able to categorize a "User Prompt” as an injection for a given
”System Prompt”. Essentially we transform the evaluation
problem statement to a binary classification problem, in order
to quantify the effectiveness of the Red Teaming agent. The
evaluator model used in our case was Google’s gemini-1.5
model.

In order to evaluate the blue teaming agent, we utilize the
“"Degree” field from the dataset and compare it against the
number of recommendations made by the Blue Teaming agent.
Each recommendation is a suggestion made by the Blue Team-
ing agent to mitigate the attempted injection. The hypothesis
being that, for a severe prompt injection attack with a higher
”"Degree” value the number of recommendations generated
by the agent should be equally high. In our experimentation
prompt for the Blue Teaming agent, we provided a list of
4 recommendations for the agent to choose from. Hence the
maximum recommendations value can be 4.

C. Evaluation & Results

In order to quantify the evaluation metrics for the Red
Teaming agent, we utilize the metrics used to validate any
binary classification model.

TABLE I
EXPERIMENTATION RESULTS FOR RED TEAMING AGENT

Metric Value
Accuracy | 0.9767
Precision | 0.9951

Recall 0.9751
F1 Score | 0.9850

In Table I, we observe that the Red Teaming agent performs
significantly well in terms of observing possible injections.
With a F1 score of 0.985, the agent has produced reasonably
limited false positives and false negatives. We also observe that
the Red Teaming agent’s evaluation has a higher precision than
recall, implying that there are certainly more false negatives
than there are false positives, in other words, there are more
scenarios wherein the Red Teaming agent falsely identifies an
injected scenario as not an injection. Upon further inspection
of such examples, we realized that it happens in the cases
where the “Input Prompt” is highly nuanced and the “User
Prompt” ever so slightly nudges the model to deviate from
its instructions. For eg: A case wherein the ”System Prompt”
directs the model to be a helpful medical assistant which does
not recommend or prescribe medicines, combined with an
injected “User Prompt” that forces the model to recommend
a medicine for a life threatening condition, is considered
“Injection” in the ground truth, however the Red Teaming
agent fails to classify and understand this as an injected
prompt.

For the Blue Teaming agent’s evaluation, we compare the
severity of injection present in the dataset with the amount of
preventive recommendations suggested by the Blue Teaming
agent.

Scatter Plot with Density and Trend Line

Data

=== Trend Line
10 A

Degree

-
' 0 &
2 A ¢ @ ,/’/
”"’
e
-~
04 " |
e -
T T ‘ ‘ T
0 1 2 3 4

Recommendation Count

Fig. 3. Blue Teaming Agent Evaluation Plot

TABLE 11
CONFUSION MATRIX FOR RED TEAMING AGENT EVALUATION
Predicted Predicted

No Injection | Injection

Groun(_l Tr_uth 3410 60

No Injection

Ground Truth 312 12221

Injection

Upon plotting a density scatter plot of the recommendations
suggested by the Blue Teaming agent vs the degree of injection
severity, in Fig. 3, we observe, the count of recommendations
suggested by the agent to mitigate the prompt injection in-
creases as the degree of prompt injection increases. The trend
can be observed through the red dotted line in the same figure.

V. CONCLUSION

This research has presented a proactive security framework
for GenAl applications, emphasizing a shift from reactive
to preemptive measures in the face of evolving adversarial
threats. The framework, which incorporates both red teaming
and blue teaming strategies, has demonstrated its effectiveness
in identifying and mitigating potential vulnerabilities. Through
experimental evaluations, it was observed that the Red Team-
ing agent achieved a high F1 score of 0.985, demonstrating
its proficiency in identifying injection attacks with minimal
false positives or negatives. The Blue Teaming agent showed
a clear understanding of the severity of prompt injections,
exhibiting a strong positive correlation between the complexity
of the attack and the number of mitigation recommendations
provided. These findings strongly suggest that the proposed
agentic framework approach to GenAl application testing is
robust, balanced, and well-suited for real-world applications.
By adopting this framework, developers and organizations
can better secure their GenAl systems, ensuring their safe
and responsible deployment, thereby minimizing potential
liabilities.

REFERENCES

[1] Eugene Bagdasaryan, Tsung-Yin Hsieh, Ben Nassi, Vitaly Shmatikov,
Abusing Images and Sounds for Indirect Instruction Injection in Multi-
Modal LLMs. arXiv:2307.10490 [cs.CR], 3rd Oct 2023.

[2] Michael Feffer, Anusha Sinha, Wesley Hanwen Deng, Zachary C.
Lipton, Hoda Heidari, Red-Teaming for Generative AI: Silver Bullet
or Security Theater? arXiv:2401.15897 [cs.CY], 27th Aug 2024.

[3] Zhongjie Ba, Jieming Zhong, Jiachen Lei, Peng Cheng, Qinglong
Wang, Zhan Qin, Zhibo Wang, Kui Ren, SurrogatePrompt: By-
passing the Safety Filter of Text-to-Image Models via Substitution.
arXiv:2309.14122 [cs.CV], 17th Oct 2024.

[4] Yuchen Yang, Bo Hui, Haolin Yuan, Neil Gong, Yinzhi Cao,
SneakyPrompt: Jailbreaking Text-to-image Generative Models.
arXiv:2305.12082 [cs.LG], 10th Nov 2023.

[5] Reshabh K Sharma, Vinayak Gupta, Dan Grossman, SPML: A DSL for

Defending Language Models Against Prompt Attacks. arXiv:2402.11755
[cs.LG], 19th Feb 2024.

