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Abstract

We initiate the study of transaction fee mechanism design for blockchain protocols in which
multiple block producers contribute to the production of each block. Our contributions include:

• We propose an extensive-form (multi-stage) game model to reason about the game theory
of multi-proposer transaction fee mechanisms.

• We define the strongly BPIC property to capture the idea that all block producers should
be motivated to behave as intended: for every user bid profile, following the intended
allocation rule is a Nash equilibrium for block producers that Pareto dominates all other
Nash equilibria.

• We propose the first-price auction with equal sharing (FPA-EQ) mechanism as an attrac-
tive solution to the multi-proposer transaction fee mechanism design problem. We prove
that the mechanism is strongly BPIC and guarantees at least a 63.2% fraction of the
maximum-possible expected welfare at equilibrium.

• We prove that the compromises made by the FPA-EQ mechanism are qualitatively neces-
sary: no strongly BPIC mechanism with non-trivial welfare guarantees can be DSIC, and
no strongly BPIC mechanism can guarantee optimal welfare at equilibrium.

1 Introduction

1.1 Transaction Fee Mechanisms

A transaction fee mechanism is the component of a blockchain protocol responsible for deciding
which pending transactions should be included for processing, and what the creators of those trans-
actions should pay for the privilege of execution in the blockchain’s virtual machine. For example,
the Bitcoin protocol [25] launched with a first-price auction as its transaction fee mechanism (which
remains in use to this day): users submit bids along with their transactions; should a transaction
be included in a block, its bid is transferred from the user to the producer of that block. Block
producers are then expected to assemble blocks that maximize their revenue (i.e., the sum of the
bids of the included transactions) subject to a block size constraint. The Ethereum protocol also
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launched with a first-price auction as its transaction fee mechanism [41] but, in order to achieve
stronger incentive-compatibility guarantees, the protocol’s first-price auction was swapped out in
August 2021 in favor of a more sophisticated transaction fee mechanism known as EIP-1559 [6].
Since the initial economic analysis of EIP-1559 [28], a large body of research has been developed
to explore the design space of transaction fee mechanisms and to assess different designs through
the lenses of incentive-compatibility (both for users and for block producers), collusion-resistance,
welfare, revenue, and more; see Section 1.4 for an overview.

The entire literature on transaction fee mechanisms considers only leader-based blockchain pro-
tocols in which each block is assembled unilaterally by a single block producer (like a Bitcoin miner
or an Ethereum validator) with monopoly power over the contents of its block. This focus reflects
the fact that the vast majority of the major blockchain protocols deployed to-date are leader-based
in this sense. For example, all longest-chain protocols in the spirit of Bitcoin and PBFT-type pro-
tocols in the vein of Tendermint [5] are leader-based. But the state-of-the-art in consensus protocol
design is evolving, and the design of transaction fee mechanisms must evolve with them.

1.2 Leaderless Blockchain Protocols

A new generation of consensus protocols, known as DAG-based consensus, is exploring leaderless
protocol designs (where “DAG” stands for “directed acyclic graph”). In DAG-based consensus pro-
tocols, multiple validators build and propose blocks concurrently. Together, the validators build
a DAG: whenever a block is proposed by a validator, the block references blocks from previous
rounds, effectively voting on these referenced blocks. In each round, some of the blocks (sometimes
referred to as anchor blocks) are used as checkpoints in the DAG structure for consensus. When
an anchor block is finalized, transactions from all blocks in its causal history that have not been
executed previously are deterministically ordered and staged for execution.

Recently, DAG-based consensus protocols have experienced a rise in the blockchain ecosystem,
with Sui running Mysticeti in production [36] and other projects such as Aptos planning to transition
to DAG-based consensus. The main reason for the rise in popularity of DAG-based consensus
protocols is the significant throughput improvements they achieve in comparison to single-leader
BFT consensus protocols [4, 17, 9, 34, 35]. These throughput improvements stem primarily from
two design choices: (1) the separation of the communication and consensus layers, and (2) the use
of simultaneous block proposals by all validators to overcome the bottlenecks that arise with the
single-leader approach (in effect, spreading what had been a concentrated workload for the leader
across all validators). Further, while DAG-based protocols initially suffered from increased latency,
current protocols achieve almost optimal latency (up to one extra communication round) [2, 1].
Finally, DAG-based protocols have the advantage that they generally recover quickly from crash
failures of leaders given that they have backup leaders in place [2].

1.3 Our Contributions

This paper initiates the study of transaction fee mechanism design for blockchain protocols in
which multiple block producers contribute to the production of each block. To reason about such
mechanisms, several new modeling and design challenges must be addressed:

• Transaction fee mechanism design with a single block producer can focus on equilibria purely
from the perspective of users, with the block producer best responding to the resulting bids;
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with multiple block producers, the “game within the game,” meaning the interaction between
the incentives of different block producers, must be explicitly modeled and analyzed.

• The design of a transaction fee mechanism must now specify how proposals from multiple
block proposers are aggregated into a single block of confirmed transactions.

• The design of a transaction fee mechanism must now specify how any unburned fee revenue
from users is distributed between the different block proposers.

This paper offers the following contributions:

• We formally model the game theory of multi-proposer transaction fee mechanisms via extensive-
form (multi-stage) games. We define incentive-compatibility for block producers in a multi-
proposer transaction fee mechanism, focusing on a condition we call strongly BPIC. Intuitively,
a transaction fee mechanism is strongly BPIC if, no matter what the user bids, following the
intended allocation rule is a Nash equilibrium for block producers that Pareto dominates all
other Nash equilibria. While we use our model specifically to study the welfare guarantees
achievable by multi-proposer transaction fee mechanisms, it should serve as the appropriate
starting point to study a number of other potential benefits of such mechanisms (see Section 1.4
below for examples).

• We propose the first-price auction with equal sharing (FPA-EQ) mechanism as an attractive
solution to the multi-proposer transaction fee mechanism design problem.1 We prove that the
mechanism is strongly BPIC and guarantees near-optimal welfare. Precisely, for every joint
distribution over (possibly correlated) user valuations, for every subgame perfect equilibrium
of the mechanism in which block producers play only Pareto-dominant Nash equilibria, the
expected equilibrium welfare is at least 1− 1

e ≈ 63.2% of the maximum possible. Our analysis
here brings, for the first time, the powerful toolbox on “price of anarchy” bounds to bear on
the analysis of transaction fee mechanisms. A simple example shows that the bound of 63.2%
is tight in the worst case.

• We prove that the compromises made by the FPA-EQ mechanism are qualitatively neces-
sary: no strongly BPIC mechanism with non-trivial welfare guarantees can be DSIC (i.e.,
with truthful bidding a dominant strategy for users), and no strongly BPIC mechanism can
guarantee optimal welfare at equilibrium.

1.4 Related Work

General TFM literature. There is a long line of work studying transaction fee mechanisms for
single-leader protocols, particularly focusing on Ethereum and Bitcoin. Our model of transaction
fee mechanism design closely follows the line of work initiated by Roughgarden [29] to analyze the
EIP-1559 mechanism [6]. Before this, research on Bitcoin’s fee market focused on monopolistic
pricing mechanisms [20, 44]. More recent work in this area includes [26] and [13]. Building off
Roughgarden’s model, Chung and Shi [8] show that achieving an ideal TFM is impossible. They

1In Sui’s current transaction fee mechanism, users pay their bids, and fee revenue is shared with validators pro
rata, proportional to validator stake weights (Alberto Sonnino, personal communication, October 2024). The FPA-
EQ mechanism can be viewed as the refinement of this mechanism in which transaction fees are shared with validators
in proportion to the number of blocks they have contributed to.
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attempt to address these impossibilities using cryptography [31, 42], but even with cryptographic
methods, perfect TFMs remain unachievable. Furthermore, Chung et al. [7] and Gafni and Yaish [14]
show that no mechanism can be incentive compatible for the users and the block producers while
also being collusion-resistant. All of these impossibility results carry over to our context, as a
single-leader protocol is a special case of a multiple-leader protocol. Although the majority of this
work is prior-free, Zhao et al. [46] consider a Bayesian setup, demonstrating ways to circumvent
these impossibility results in cases where bidders have i.i.d. valuations. Other works explore TFM
dynamics over multiple blocks [10, 21] and incorporate maximal extractable value (MEV) into
traditional TFM models [3].

DAG-based consensus. Hashgraph [4] was the first protocol to introduce a DAG-based consen-
sus protocol. It separated the communication layer and the consensus logic, with the communication
layer constructing a DAG of messages which is then used by the consensus protocol. Later proto-
cols adopted a round-based structure within the DAG to design more efficient asynchronous BFT
protocols [15, 17, 9, 34]. Among these, Bullshark’s partially synchronous variant became the first
widely deployed DAG-based consensus protocol, notably used in the Sui blockchain [35]. Since
Bullshark’s deployment, a number of papers have focused on reducing the latency of DAG-based
consensus protocols [18, 23, 33, 2, 32, 1]. The designs in these papers generally either move towards
uncertified DAGs (which do not require explicit certification) or interleave multiple instances of the
Bullshark protocol on a shared DAG. Mysticeti [2] has replaced Bullshark as the consensus protocol
used by the Sui blockchain [36].

Economics of multiple leaders. There is a modest amount of work concerning the incentives
faced by validators in multi-leader protocols. Zhang and Kate [45] show how DAG-based consensus
protocols can be manipulated for MEV, while Malkhi et al. [24] propose MEV protection for such
protocols. Fox et al. [11] look at the cost of censorship in single-leader protocols and show how
TFMs specific to multi-leader protocols could potentially be used to significantly increase the cost
of censorship. The Solana community has been considering whether to introduce multiple leaders
to promote competition between block producers for the benefit of users [43], and Ethereum is
planning on incorporating some of the ideas from multi-proposer architectures through FOCIL [39]
to increase Ethereum’s censorship resistance. The present work does not directly address questions
around MEV, censorship, or explicit competition between block producers, but we believe that the
model that we introduce in the next section can serve as the starting point for a formal study of
these questions.

2 The Model

This section defines our game-theoretic model, the design space of transaction fee mechanisms,
several notions of incentive-compatibility, and approximate welfare guarantees.

2.1 The Players

Games have three ingredients: players, strategy spaces, and payoffs. For transaction fee mechanisms
(TFMs), there are two types of self-interested players, users and block producers (BPs). We discuss
each in turn.
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We assume that the set I = {1, 2, . . . , n} of users is known, and that each is identified with a
single transaction; we refer to users and transactions interchangeably. We assume that user i has a
private valuation vi for the inclusion of its transaction in the next block, and that transaction validity
does not depend on transaction ordering. When discussing Bayes-Nash equilibria (as is necessary
when discussing TFMs without dominant strategies, such as variants of first-price auctions), we
assume that user valuations v are drawn from a prior distribution D that is common knowledge
among the users.2 User valuations may be correlated; that is, D need not be a product distribution.

We consider TFMs in which each user attaches a nonnegative bid bi to its transaction (thus, the
strategy space of user i is the possible choices of bi). We assume that each user has a quasi-linear
utility function, meaning that its payoff is the value it receives (vi if its transaction is included in
the next block and 0 otherwise) minus the payment it makes. (Utilities functions will be stated
more formally following the definition of TFMs; see Section 2.5.)

We also consider a set J = {1, 2, . . . ,m} of BPs. BP strategies correspond to blocks, where for
a known block size k, a block is a set of at most k transactions (together with the bids of those
transactions). We assume that each BP j ∈ J has an associated subset Sj of transactions that it can
include in its block; we refer to the special case in which Sj = I for all j ∈ J as the BP-symmetric
setting and the case of general Sj ’s as the BP-asymmetric setting. A block is feasible for BP j if
it includes only transactions of Sj and, possibly, additional transactions created by j itself (e.g., in
order to manipulate a TFM’s payment rule). We assume that the Sj ’s are common knowledge. The
payoff of a BP is defined as the revenue it earns from transactions other than its own minus any
payments it makes for shill transactions.

2.2 The Game

TFM outcomes are, intuitively, determined by a two-stage process: users decide which bids to attach
to their transactions, and BPs then decide which transactions to include. Previous work on TFMs,
with a single BP, could essentially model the process with one stage (with the understanding that
the BP will respond to users’ bids with its favorite block). With multiple BPs best responding
to each other (in addition to users’ bids), it is important to explicitly model the block formation
process as a two-stage game. We do this next, using the standard formalism for extensive-form
games (e.g. [12]).

Game trees. To review, an extensive form game is defined by a rooted tree (the game tree). Each
node represents a single action to be taken by a single player, with the node labeled with that player
and edges leading to the node’s children labeled with the possible actions. Each leaf of the tree
corresponds to an outcome of the game, and is labeled with players’ payoffs in that outcome. Thus,
root-leaf paths of the game tree correspond to action sequences that terminate in an outcome of
the game. It is a convenient tradition to allow nodes that are labeled with a non-strategic “Nature”
player, indicating that the action at that node is chosen at random from a distribution that is
common knowledge. Finally, for each player, the nodes labeled with that player are partitioned
into information sets. An information set represents a set of nodes that are indistinguishable to the
player at the time it must take an action (and thus, the same action must be taken by a player at
all nodes in the same information set).

2We allow valuation distributions to have atoms at zero (or at other values), in which case the number of (non-null)
players can be thought of as stochastic rather than known.
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To model behavior in TFMs with multiple BPs, we consider a game tree with n+m+ 1 levels.
(The outcomes and payoffs at the leaves of this tree will depend on the choice of the TFM, but
the tree structure is independent of the particular TFM.) At level 0, Nature moves and chooses
valuations v for all users from the assumed prior D. At each level l = 1, 2, . . . , n, user l selects
its bid bl. Information sets are defined for user l so that its choice of bid depends only on its
own valuation vl (and not on the other valuations v−l determined at level 0 or the bids chosen by
users i ∈ {1, 2, . . . , l − 1} at earlier levels). At each level l = n+ 1, n+ 2, . . . , n+m, BP j = l − n
selects its block Bj . Information sets are defined for a BP so that its choice of block can depend on
the bids b chosen by users but not on the blocks chosen by the other BPs. 3

Subgame perfect equilibria. Our analysis uses what is arguably the most canonical equilibrium
concept in extensive-form games, namely subgame perfect equilibria. In such a game, a strategy for
a player is defined by a mapping from each of its information sets to one of the actions available
at that information set. In our model of TFMs, a user has one information set for each realization
of its valuation, and a BP has one information set for each user bid vector. Thus, a user strategy
is simply a bidding strategy, meaning a mapping vi 7→ bi from valuations to bids. A BP strategy
is a mapping b 7→ Bj from user bid vectors to feasible blocks. Thus, leaves of the game tree are
effectively labeled by v (Nature’s action at level 0), b (users’ actions at levels 1 through n), and B
(BPs’ actions at levels n+ 1 through n+m); these, in conjunction with the choice of a TFM, will
define the player payoffs at this outcome.

A strategy profile in an extensive-form game is called a Nash equilibrium if the usual best-
response condition holds: no player can strictly improve its expected payoff through a unilateral
deviation to a different mapping of its information sets to actions. That is, each player is best
responding to the strategies chosen by the other players.

Every node of a game tree induces a rooted subtree that can be regarded as an extensive-form
game in its own right. Similarly, every strategy of an extensive-form game induces a strategy in each
of its subgames. A strategy profile of an extensive-form game is called a subgame perfect equilibrium
(SPE) if, for each if its subgames, the induced strategy profile is a Nash equilibrium. Intuitively,
even after “fast forwarding” to an arbitrary node of the game tree, play from then on constitutes a
Nash equilibrium.4

Intuitively, in our model of TFMs with multiple BPs, the SPE condition translates to (i) users
play a Bayes-Nash equilibrium relative to the BP equilibrium strategies; (ii) BPs play a Nash
equilibrium relative to the user bids.5

3Thus, BPs engage in a complete-information game, with the full bid vector b and the Sj ’s known to all BPs. A
good (though possibly difficult) direction for future work is to consider an incomplete-information generalization of
our model. With our assumptions, users can effectively treat BPs as carrying out the welfare-maximizing allocation
rule. In an incomplete-information setup, users would effectively be submitting bids to a randomized allocation rule
induced by some (perhaps impossible-to-characterize) Bayes-Nash equilibrium played by the BPs.

4Without the subgame perfect refinement, Nash equilibria of extensive-form games allow players to play arbitrary
strategies in subgames that are reached with probability 0.

5We do not model how BPs coordinate on a given equilibrium. Microfounding the assumption that BPs reach an
equilibrium (e.g., through experience from repeated play, explicit coordination based on transaction hashes, or other
means) is an interesting direction for future research.
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2.3 Transaction Fee Mechanisms

A TFM is specified by four ingredients: an inclusion rule (the blocks of transactions that the BPs
are expected to contribute), a confirmation rule (given the proposed blocks, which transactions are
confirmed for execution), a payment rule (given the proposed blocks, what the creators of confirmed
transactions pay), and a distribution rule (given the proposed blocks, the revenue received by BPs).
Because BPs have unilateral control over the transactions they include, the inclusion rule can only
be viewed as a recommendation to BPs; the other three rules are hard-coded into the code of a
blockchain protocol and cannot be manipulated by BPs.

We next define these four ingredients formally, along with a number of examples that illustrate
the definitions and demonstrate the richness of the TFM design space with multiple BPs. These
rules are all defined with respect to a commonly known game structure, meaning a player set I, a
BP set J , BP transaction sets S1, . . . , Sm, and a block size k.6 Recall that a block Bj is feasible
for j if it includes only transactions of Sj and, possibly, transactions that j itself created (along with
the bids attached to the included transactions). When we are concerned only with the transactions
included in a block and not the attached bids, we sometimes abuse notation and treat a block as a
subset of I. We call a profile B = (B1, . . . , Bm) of block choices an allocation, and call an allocation
feasible if each of its blocks Bj is feasible for the corresponding BP j. We call an allocation shill-free
if, for each of its blocks, only user-submitted transactions are included (i.e., Bj ⊆ Sj for every
BP j). Note that the same transaction may be included in more than one block of an allocation.
We denote by T (B) = ∪j∈JBj the transactions that are included (at least once) in an allocation B.

Inclusion rules. An inclusion rule can be thought of as a recommendation of the strategies
that BPs should play in each information set of the extensive-form game described in Section 2.2.
Formally, with respect to a game structure, an inclusion rule is a function y : b 7→ B mapping user
bids vectors to feasible allocations.

Example 2.1 (Welfare-Maximizing (WM) Inclusion Rule) This inclusion rule maps each bid
vector to a feasible shill-free allocation that maximizes the sum of the bids of the included trans-
actions (breaking ties using some consistent rule). For TFMs with first-price payment rules (see
below), this inclusion rule can be interpreted as maximizing the total fees paid by users.

Confirmation rules. A confirmation rule specifies which of the included transactions are con-
firmed for execution. Formally, with respect to a game structure, a confirmation rule is a func-
tion C : B 7→ B that maps each feasible allocation B to a set B ⊆ T (B) of confirmed transactions.
Note that while a transaction may be included in multiple blocks, it can only be confirmed once.

Example 2.2 (First-Price Auction (FPA) Confirmation Rule) This confirmation rule con-
firms every transaction that is included at least once: C(B) = T (B).7

6The valuation distribution D is not part of the game structure; in this sense, a TFM is by definition prior-free.
7One reason to include unconfirmed transactions is to use their bids to set prices for the confirmed transactions, in

the spirit of a second-price auction. For more details, see the second-price auction (SPA) confirmation rule described
in Section 2.4.
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Payment rules. A payment rule specifies the transaction fee paid by the creator of an included
transaction. Formally, with respect to a game structure, a payment rule is a function p that maps
each feasible allocation B to a set of n nonnegative numbers (one per user).

Example 2.3 (First-Price Auction (FPA) Payment Rule) This payment rule charges the cre-
ator of an included transaction its bid: pi(B) = bi if i ∈ T (B) and pi(B) = 0 otherwise.

Distribution rules. A distribution rule specifies the revenue earned by each BP from the set of
included transactions. Formally, with respect to a game structure, a distribution rule is a function π
that maps each feasible allocation B to a set of m nonnegative numbers (one per BP).

Example 2.4 (Equal-Share (EQ) Distribution Rule) This distribution rule splits the bid of
each included transaction equally between the BPs: for all j,

πj(B) =
1

m

∑
i∈T (B)

bi. (1)

TFMs. A transaction fee mechanism (TFM) is then a tuple (y, C,p, π). We restrict attention to
TFMs that satisfy the following properties (which are also shared by all TFMs that have been de-
ployed in practice to-date): (i) deterministic, meaning that y, C, p, and π are all deterministic func-
tions of their inputs; and (ii) ex post individually rational, meaning that pi(B) = 0 if user i’s trans-
action is not confirmed by the TFM (i.e., i ̸∈ C(B)) and pi(B) ≤ bi otherwise; (iii) weakly budget-
balanced, meaning that users’ payments always cover BP revenue:

∑
j∈J πj(B) ≤

∑
i∈I pi(B) for

every feasible allocation B.8 We do allow the user payments to exceed the BP revenue, in which we
case the remaining user payments are burned (or otherwise redirected away from BPs, for example
to a foundation).

2.4 Further Examples of TFMs

TFMs can be assembled from different inclusion, confirmation, payment, and distribution rules in
many natural ways. In addition to the rules given above, we give more examples here. All of
the following rules are defined with respect to a game structure (a user set I, a BP set J , BP
transaction sets S1, . . . , Sm, and a block size k). In all cases, ties are broken according to some
consistent tie-breaking rule.

Example 2.5 (Serial Dictatorship Inclusion Rule) This inclusion rule is defined, for every
user bid vector b, by y(b) = (B1, . . . , Bm), where Bj is chosen to maximize the sum of the bids of
the included transactions, subject to disjointness with B1, . . . , Bj−1 (and feasibility). That is, Bj is
the k highest-bidding transactions in Sj \ ∪j−1

h=1Bh. (Or, if there are less than k such transactions,
all of them are included.)

Example 2.6 (Second-Price Auction (SPA) Confirmation Rule) This confirmation rule con-
firms all but the lowest-bidding included transaction. That is, C(B) = T (B) \ {t}, where t is the
transaction of T (B) with the lowest bid.

8As an extension to (iii), money-printing in the form of inflationary rewards (like a block reward) can be added
to a TFM without affecting its incentive or welfare properties, provided the rewards are the same no matter which
feasible allocation B is chosen by the BPs.
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Example 2.7 (Second-Price Auction (SPA) Payment Rule) This payment rule charges 0 to
the lowest-bidding included transaction t, and bt to the other included transactions. That is,
pi(B) = bt if i ∈ T (B) \ {t} and pi(B) = 0 otherwise.

Example 2.8 (The Null Distribution Rule) This distribution rule burns all transaction fees:
πj(B) = 0 for all B and j.

Example 2.9 (Shapley Distribution Rule (FPA Version)) This distribution rule splits the
bid of each included transaction equally among the BPs that included it. That is,

πj(B) =
∑
i∈Bj

bi
mi(B)

,

where mi(B) = |{h ∈ J : i ∈ Bh} denotes the number of BPs that included i in their block.

The distribution rule above is intended for use with the FPA payment rule. The SPA version
of the Shapley distribution rule is defined similarly, except with bi replaced by the lowest bid of an
included transaction and with no BP earning any revenue from the lowest-bidding transaction.

Example 2.10 (Serial Dictatorship Distribution Rule (FPA Version)) This distribution rule
passes on revenue earned from an included transaction to the lexicographically first BP that included
it. That is,

πj(B) =
∑

i∈Bj\∪j−1
h=1Bh

bi.

The distribution rule above is intended for use with the FPA payment rule. The SPA version
of the rule is defined similarly, except with bi replaced by the lowest bid of an included transaction
and with no BP earning any revenue from the lowest-bidding transaction.

There are numerous ways to combine these rules or the rules described in Section 2.3 to produce
natural TFMs. The FPA-EQ TFM is analyzed at length in Section 3.3. Other examples include:

1. SPA-EQ: WM inclusion rule, SPA confirmation rule, SPA payment rule, equal-share distribu-
tion rule (SPA version). (The SPA version of the equal-share distribution rule in (1) replaces
bi by the lowest bid of an included transaction and sums only over the transactions of T (B)
other than the lowest-bidding one.)

2. FPA-Shapley: WM inclusion rule, FPA confirmation rule, FPA payment rule, Shapley distri-
bution rule (FPA version).

3. SPA-Shapley: WM inclusion rule, SPA confirmation rule, SPA payment rule, Shapley distri-
bution rule (SPA version).

4. FPA-Serial: serial dictatorship inclusion rule, FPA confirmation rule, FPA payment rule,
serial dictatorship distribution rule (FPA version).

5. SPA-Serial: serial dictatorship inclusion rule, SPA confirmation rule, SPA payment rule, serial
dictatorship distribution rule (SPA version).
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2.5 Incentive Compatibility

Intuitively, a mechanism is incentive-compatible if its participants are motivated to behave in a
prescribed way, such as by bidding truthfully (in the case of users) or by choosing blocks as instructed
by a TFM’s inclusion rule (in the case of BPs). We next formalize these two incentive-compatibility
properties (one for users, one for BPs).

Dominant-strategy incentive-compatibility (DSIC). We first observe that the composition
of an (intended) inclusion rule y and confirmation rule C of a TFM induce an (intended) allocation
rule x, with xi(b) = 1 if i ∈ C(y(b)) and xi(b) = 0 otherwise. That is, x(b) is the characteristic
vector of the confirmed transactions with user bids b, assuming that the BPs carry out the intended
inclusion rule. Under the same assumption, the payoff of user i under bid vector b in the TFM
(y, C,p, π) is

ui(b) = vi · xi(b)− pi(y(b)). (2)

A TFM is then dominant-strategy incentive-compatible (DSIC) if, for every user i, valuation vi, and
bid vector b, ui(vi,b−i) ≥ ui(b). That is, after fixing the BP strategies to be those recommended
by the TFM’s inclusion rule, truthful bidding is a dominant strategy for every user. For example,
in the BP-symmetric setting (with Sj = I for all j ∈ J), the SPA-EQ and SPA-Shapley TFMs
(see Section 2.4) are DSIC. TFMs that use the FPA payment rule are never DSIC, as users are
incentivized to shade their bids.

Block producer incentive-compatibility (BPIC). In an outcome of a TFM (y, C,p, π), spec-
ified by the bids b chosen by users and the feasible allocation B chosen by BPs, the payoff of BP j
is πj(B). A TFM is then block producer incentive-compatible (BPIC) if, for every bid vector b
with corresponding intended allocation y(b) = B = (B1, . . . , Bm), every BP j, and every block Bj

′

feasible for j, πj(B) ≥ πj(Bj
′,B−j). That is, after fixing the user bids to b, the feasible allocation

recommended by the TFM’s inclusion rule is a Nash equilibrium among the BPs.
For example, the SPA-EQ and SPA-Shapley TFMs from Section 2.4 are not BPIC, as BPs gener-

ally have an incentive to deviate from the WM allocation rule by including their own transactions in
order to boost their overall revenue. The FPA-Shapley TFM (see Section 2.4) fails to satisfy BPIC
for a different reason: BPs are generally incentivized to redundantly include a high-bid transaction
multiple times rather that following the WM allocation rule (in which each transaction is included
at most once).

Strong BPIC. Despite the fact that many natural TFMs fail to satisfy it, the BPIC condition is
relatively weak. For example, any TFM that uses the null distribution rule (with all transaction fees
burned) is trivially BPIC, with all BPs indifferent across all outcomes. Thus, the BPIC condition
does not generally provide much force toward BPs carrying out the intended inclusion rule.

The next condition, a strengthening of BPIC, states that the intended allocation should not
merely be a Nash equilibrium, but should also be strictly superior to all non-equivalent Nash equi-
libria. Formally, a TFM (y, C,p, π) is strongly BPIC if, for every user bid vector b, the following
conditions hold:

1. the recommended feasible allocation B = y(b) is a Nash equilibrium among the BPs (holding
user bids fixed at b);

2. every Nash equilibrium B′ among the BPs (again, with fixed bids b) is either equivalent to
or Pareto dominated by B.
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Intuitively, two feasible allocations are “equivalent” if they are the same up to tie-breaking and
the inclusion of zero-bid transactions. Formally, for a TFM (y, C,p, π), feasible allocations B and
B′ are equivalent if the multi-sets of the positive bids of the confirmed transactions C(B) and
C(B′) are identical. We say that one allocation B Pareto dominates another allocation B′ if: (i)
πj(B) ≥ πj(B

′) for all j ∈ J ; and (ii) πj(B) > πj(B
′) for some j ∈ J . We’ll see in Section 3.2 an

example of a strongly BPIC TFM (the FPA-EQ TFM).

2.6 Approximate Welfare Guarantees

We assess the outcome quality of different TFMs using the welfare objective W (·), defined as the
total value of the confirmed transactions. That is, for a TFM (y, C,p, π) and feasible allocation
B, W (B) =

∑
i∈C(B) vi. TFMs can suffer from welfare loss for three distinct reasons. First, even

if all participants behave as desired, a TFM’s inclusion rule may result in a suboptimal feasible
allocation. Second, even with the WM allocation rule and truthful bids, BPs may coordinate on a
suboptimal Nash equilibrium. Third, even with the WM allocation rule and BPs that coordinate
on the intended Nash equilibrium, non-truthful bidding by users can lead to suboptimal allocations.

Examples of welfare losses from the inclusion rule resulting in suboptimal allocations include:

• In the BP-symmetric setting and with known valuations, and a FPA-Shapley TFM which we
redefine to be BPIC. This would mean replacing the WM inclusion rule with an inclusion rule
whereby the BPs maximize their personal revenue. Then, let k = 1 be the block size, there is
one transaction with bid b1 = m+ ϵ, where ϵ → 0, and m− 1 transaction with bids bi = 1 for
i ∈ [2, . . . ,m]. Then all BPs would all include the first transaction, resulting in a welfare ≈ 2
worse than optimal.

• Consider the following setting, known user valuations, and a TFM serial dictatorship inclusion
rule. The block size is k = 1, there are m = 2 BPs, and two transactions with bids b1 =
b2 = 1 of which the first BP can include both, while the second BP can only include the
first transaction. The first BP would include the first transaction and there would be no
transactions for the second BP to include – the resulting welfare is a factor of 2 worse than
optimal.

For examples of welfare losses from BPs coordinating on a suboptimal Nash equilibrium even
with the WM allocation rule and truthful bids consider the following:

• Consider a FPA-EQ TFM in the BP-asymmetric setting. Again, the block size is k = 1, there
are m = 2 BPs, and two transactions with bids b1 = b2 = 1 of which the first BP can include
both, while the second BP can only include the first transaction. The first BP including the
first transaction and the second BP including no transaction is a Nash equilibrium that again
results in a welfare ≈ 2 worse than optimal.

Non-truthful bidding in stage 1 by users can lead to suboptimal allocations even with the WM
allocation rule and BPs that coordinate on the as demonstrated by Vickrey [40] by showing that
the equilibria for a FPA (i.e., k = m = 1) are not generally efficient.

Thus, a equilibrium welfare approximation guarantee is a guarantee that the welfare loss from
all three of these sources combined is relatively modest.
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3 FPA-EQ: A Strongly BPIC and Near-Optimal TFM

3.1 What Can We Hope For?

We have highlighted three desirable properties of TFMs (in addition to our standing requirements
that TFMs be deterministic and ex post individually rational): (i) DSIC; (ii) strong BPIC; and (iii)
optimal or near-optimal welfare at equilibrium. In this work, we take the strong BPIC condition (ii)
as a hard constraint. (If BPs are not properly motivated to carry out the intended inclusion rule,
which in turn determines the confirmed transactions and their payments, it’s unclear how to interpret
a proposed TFM.) However, insiting on DSIC and strong BPIC simultaneously leaves us only with
trivial welfare approximations.

Theorem 3.1 Any DSIC and strongly-BPIC TFM has a worst case welfare approximation of 0.

For a TFM to be DSIC it must be that an agent’s payment is a function of other agents’ bids.
However, this then gives the BP an opportunity to profit by manipulating a winning agent’s payment
via shill bidding. Strong BPIC also dictates that the BP must get positive revenue at equilibrium
or else they could simply propose the empty block, so the TFM can’t simply burn the winning
agents’ payments. It follows that any DSIC and strongly BPIC TFM must have a threshold value
for inclusion upon which the BP gets paid a fixed amount independent of the other agents’ bids.
Hence, in an instance where agents’ values all fall below these thresholds, the TFM outputs an
empty block giving a worst case welfare approximation of 0. For a full proof see Appendix A.2.

Theorem 3.1 implies we have no choice but to consider non-DSIC TFMs. However, even without
DSIC or strong BPIC as a constraint, no TFM can hope to always achieve optimal welfare at
equilibrium.

Theorem 3.2 For any TFM, there exists a game structure and a valuation distribution for which
there is a Bayes-Nash equilibrium with expected welfare strictly less than the minimum possible.

For a TFM to always achieve optimal welfare at equilibrium, it must be the case that the
blockspace is always filled with the highest value transactions regardless of the realizations of bidders’
values. Even in the simple case of a single BP that has a blocksize of 1 with two bidders, this is
impossible to satisfy for any prior free mechanism. The issue is that a blocksize of 1 implies that
the payment rule of the TFM must be a function only of the winner’s bid. We show that given
such a payment rule, bidders will always want to shade their bids, leading to the lower value bidder
occasionally winning out. For details see Appendix A.3.

In light of these negative results, the best-case scenario is a strongly BPIC TFM that guarantees
near-optimal welfare at equilibrium. We present such a TFM next.

3.2 The FPA-EQ TFM

The rest of this section analyzes the first-price auction with equal sharing (FPA-EQ) TFM. The
ingredients of this TFM were all introduced in Section 2.3:

• the welfare-maximizing (WM) inclusion rule (i.e., with y(b) = B chosen to maximize the
sum of the bids

∑
i∈T (B) bi of the included transactions, with ties broken according to some

consistent rule);

• the FPA confirmation rule (with all included transaction confirmed: C(B) = T (B));

12



• the FPA payment rule (with each user of a confirmed transaction paying its bid);

• the equal share (FPA version) distribution rule (with the payment for each confirmed trans-
action split equally between the m block producers, as in (1)).

Because of its FPA payment rule, the FPA-EQ TFM is not DSIC; bidders are incentivized to
shade their bids. Unlike many other natural TFMs, however, the FPA-EQ TFM is strongly BPIC.
The proof of this fact leans heavily on the choice of the equal-share distribution rule, and also on
the matroid structure of feasible allocations.

Proposition 3.3 (FPA-EQ Is Strongly BPIC) For every game structure, the FPA-EQ TFM
is strongly BPIC.

Proof: Fix a game structure and a user bid vector b. The payoff of every BP is proportional to the
total amount paid by users (due to the equal-share distribution rule), and therefore to the sum of
the bids of the confirmed transactions (due to the FPA payment rule), and therefore to the sum
of the bids of the included transactions (due to the FPA confirmation rule). Because the WM
allocation rule instructs BPs to maximize the sum of the bids of the included transactions over
feasible allocations, the intended allocation B∗ is a Nash equilibrium among the BPs (holding user
bids fixed at b). By the same reasoning, B∗ Pareto dominates every Nash equilibrium allocation
that fails to maximize the sum of the bids of the included transactions. Finally, because the subsets
of transactions that can be included in a feasible allocation form a matroid (see Proposition A.2)
and due to the lexicographic optimality property of matroids (see Proposition A.3), every feasible
allocation B that maximizes the sum of the included bids is equivalent to B∗ (i.e., after ignoring
zero-bid transactions, the multi-sets of bids of transactions in C(B) and C(B∗) are identical). ■

3.3 An Approximate Welfare Guarantee for FPA-EQ

Our main result in this section is that the FPA-EQ TFM, in addition to satisfying the strong BPIC
property (Proposition 3.3), achieves near-optimal welfare at equilibrium. Precisely, in the extensive-
form game induced by this TFM (y, C,p, π) (see Section 2.2), call a strategy profile inclusion-rule
respecting (IRR) at b if, in the subgame corresponding to b, the BPs choose a feasible allocation that
is equivalent to y(b). (As in Section 2.5, two feasible allocations are equivalent if the resulting sets
of confirmed transactions share the same multi-sets of positive bids.) A subgame-perfect equilibrium
is then called inclusion-rule respecting if it is IRR at every user bid vector b. For a strongly BPIC
TFM like FPA-EQ, there is good reason to focus on its IRR SPE—in any other SPE, there are bids
vectors for which BPs inexplicably coordinate on a subgame equilibrium that is Pareto dominated
by the one suggested by the TFM’s inclusion rule.

Theorem 3.4 (FPA-EQ Is Approximately Welfare-Optimal) For every game structure and
valuation distribution D, every inclusion-rule-respecting subgame perfect equilibrium of the FPA-EQ
TFM has expected welfare at least 1− 1

e ≈ 63.2% of the maximum possible.

The proof of Theorem 3.4 proceeds in two steps. The first step establishes an equivalence between
the IRR SPE of the FPA-EQ TFM and the Bayes-Nash equilibria of a (single-shot) winner-pays-bid
matroid auction. Intuitively, with the BP behavior fixed (up to allocation equivalence) in an IRR
SPE, we can analyze users as if they are competing in a single-stage game. The second step of the
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proof applies the theory of smooth games (see e.g. [30]) to prove a worst-case bound on the expected
welfare of the Bayes-Nash equilibria of winner-pays-bid matroid auctions.9

Equivalence of IRR SPE with BNE of Matroid Auctions. We first show a correspondence
between the IRR SPE of the FPA-EQ TFM and the Bayes-Nash equilibria of winner-pays-bid
matroid auctions. Here’s what we mean by the latter: For a set of users U and a matroid (U, I)
(see Definition A.1), the corresponding winner-pays-bid matroid auction is defined by:

1. Simultaneously, each user i ∈ U submits a nonnegative bid bi.

2. The mechanism chooses an independent set A ∈ I that maximizes the sum
∑

i∈A bi of the
bids of the included users, breaking ties arbitrarily. Users of A win and the other users lose.

3. Each winner i ∈ A pays its bid bi.

For example, a first-price single-item auction corresponds to the special case of a winner-pays-bid
matroid auction in which the set I contains only the empty set and all the singleton sets.

Every strategy of a user i ∈ I in the extensive-form game induced by a TFM (see Section 2.2)
induces a bidding strategy σi, with σi(vi) defined as the action (or distribution over actions) taken
by user i in the information set corresponding to the realization vi of its valuation. Meanwhile,
every profile of BP strategies induces an allocation rule x, where xi(b) denotes the probability (over
any randomness in BPs’ strategies) that user i’s transaction is confirmed when the user bid vector
is b.

For an arbitrary allocation rule x, the corresponding (single-shot) winner-pays-bid mechanism (x,p)
accepts nonnegative bids from users; chooses a feasible allocation from a probability distribution
such that each user i ∈ U is allocated with probability xi(b); and charges bi to each allocated user
and 0 to each unallocated user. Fron the discussion above, we have:

Proposition 3.5 Every strategy profile in the extensive-form game induced by the FPA-EQ TFM is
user-outcome-equivalent to the induced bidding strategies σ1(v1), . . . , σn(vn) in the winner-pays-bid
mechanism induced by the allocation rule that is induced by BP’s strategies.

By “user-outcome-equivalent” we mean that, for each user, the probability of allocation and the
payment conditional on allocation are identical in the two scenarios. Note that this notion of
equivalence preserves the expected welfare.

We now specialize Proposition 3.5 to the case of IRR SPE. First, the IRR condition means that
the allocation rule x induced by the BP strategies is the one that, given users’ bids, selects the
feasible allocation with the maximum-possible sum of bids (breaking ties arbitrarily). Thus, the
winner-pays-bid mechanism induced by an IRR SPE is a matroid auction. Second, the equilibrium
condition for users’ strategies in the IRR SPE translate to the Bayes-Nash equilibrium conditions
for the induced bidding strategies σ1(v1), . . . , σn(vn) in this matroid auction.

Lemma 3.6 For every game structure and valaution distribution, every IRR SPE of the FPA-EQ
TGM is user-outcome-equivalent to a Bayes-Nash equilibrium of a winners-pay-bid matroid auction
(with the same valuation distribution).

9Such a bound was proved in [16] for the special case of independent user valuations; the bound here for correlated
user valuations appears to be new.
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As noted above, user-outcome-equivalence implies that the expected welfare of an IRR SPE and
the corresponding Bayes-Nash equilibrium are the same.

The Price of Anarchy of Winner-Pays-Bid Matroid Auctions. Given the equivalence es-
tablished above, we can complete the proof of Theorem 3.4 by showing the following:

Theorem 3.7 (Matroid Auctions Have Only Near-Optimal Equilibria) For every matroid (U, I)
and valuation distribution, every Bayes-Nash equilibrium of the corresponding winner-pays-bid ma-
troid auction has expected welfare at least 1− 1

e times the expected maximum welfare.

In turn, proving Theorem 3.7 reduces to showing that winner-pays-bid matroid auctions are
“smooth” in a suitable sense. The following definition and theorem are essentially due to Lucier and
Paes Leme [22]; we follow the formalism in Roughgarden et al. [30, Definition 4.5; Theorem 4.6].

Definition 3.8 (Smooth Auction with Private Deviations [22, 30]) For parameters λ ≥ 0
and µ ≥ 1, an auction with allocation rule x and payment rule p is (λ, µ)-smooth with private
deviations if for every valuation profile v there exist probability distributions D∗

1(v1), . . . , D
∗
n(vn)

over bids such that, for every bid profile b,∑
i

Ebi
∗∼D∗

i (vi)
[ui(bi

∗,b−i)] ≥ λ ·
∑
i

vi · x∗i (v)− µ ·Rev(b). (3)

In (3), ui(b) = vi · xi(b) − pi(b) denotes quasi-linear utility (as in (2)), x∗(v) denotes the char-
acteristic vector of a welfare-maximizing feasible solution with respect to valuation profile v, and
Rev(b) =

∑
i pi(b) denotes the auction’s revenue when the bid vector is b. The “private deviations”

qualifier refers to the fact that each bid distribution D∗
i is permitted to depend only on user i’s

valuation vi, and not on the full valuation profile v.

Theorem 3.9 (Smoothness Implies Price-of-Anarchy Bounds [22, 30]) If an auction is (λ, µ)-
smooth, then for every distribution D over players’ valuations, every Bayes-Nash equilibrium of the
auction has expected welfare at least λ/µ times the expected maximum welfare.

In light of Theorem 3.9, the following lemma implies Theorem 3.7 (and hence, by Lemma 3.6,
Theorem 3.4).

Lemma 3.10 (Matroid Auctions Are Smooth) For every matroid (U, I), the corresponding
winner-pays-bid matroid auction is (1− 1

e , 1)-smooth with private deviations.

Proof: The proof incorporates elements of the smoothness analysis of first-price auctions by Syrgka-
nis and Tardos [38] and the revenue covering analysis of matroid auctions by Hartline et al. [16].
Fix a matroid (U, I); let x and p denote the allocation and payment rules of the corresponding
winner-pays-bid auction. Fix a valuation profile v for the users of U . For each i ∈ U , define D∗

i as
the distribution with density 1/(vi − x) on support [0, (1− 1/e)vi].

To verify the smoothness inequality (3), fix a bid vector b. Denote by ti(b−i) the minimum
value z for i’s bid such that xi(z,b−i) = 1. To bound Ebi

∗∼D∗
i
[ui(bi

∗,b−i)], we consider two cases.
First, if vi · (1− 1/e) ≤ ti(b−i), then because bi

∗ ∼ D∗
i is at most vi with probability 1 and (x,p) is

15



ex post individually rational, Ebi
∗∼D∗

i
[ui(bi

∗,b−i)] ≥ 0. Second, if vi · (1− 1/e) > ti(b−i), then by
similar reasoning,

Ebi
∗∼D∗

i
[ui(bi

∗,b−i)] ≥
∫ (1−1/e)vi

ti(b−i)
(vi − z) · dz

vi − z
=

(
1− 1

e

)
vi − ti(b−i).

In this case, because the left-hand side is nonnegative and xi(v) ∈ [0, 1], we also have

Ebi
∗∼D∗

i
[ui(bi

∗,b−i)] ≥
(
1− 1

e

)
vi · x∗i (v)− ti(b−i) · x∗i (v).

Summing this inequality over all i ∈ I and applying Proposition A.4, we have

Ebi
∗∼D∗

i
[ui(bi

∗,b−i)] ≥
(
1− 1

e

)∑
i∈I

vi · x∗i (v)−
∑
i∈I

ti(b−i)x
∗
i (v)

≥
(
1− 1

e

)∑
i∈I

vi · x∗i (v)−
∑
i∈I

pi(b),

which shows that (3) holds with λ = 1− 1
e and µ = 1, completing the proof. ■

We can obtain stronger guarantees if we impose symmetry conditions on the BPs and users. In
the BP-symmetric setting (see Section 2.1), a simple exchange argument shows that every SPE of
the FPA-EQ TFM is IRR. Thus:

Corollary 3.11 In the BP-symmetric setting, for every game structure and valuation distribu-
tion D, every subgame perfect equilibrium of the FPA-EQ TFM has expected welfare at least 1− 1

e ≈
63.2% of the maximum possible.

Adapting an example of Syrgkanis [37] for first-price auctions to the present setting gives a lower
bound showing that the approximation factor of 1− 1

e in Theorem 3.4 and Corollary 3.11 is tight.

Proposition 3.12 (Theorem 3.4 Is Tight) There exists a game structure, valuation distribu-
tion D, and an inclusion-rule-respecting subgame perfect equilibrium of the FPA-EQ TFM with
expected welfare 1− 1

e times the expected maximum welfare.

Proof: Take I = {1, 2, 3}, J = {1}, and S1 = {1, 2, 3}. The support of the joint distribution D is the
valuation vectors of the form (1, x, x) for x ∈ [0, 1 − 1

e ]. The marginal distribution of the common
value of v2 and v3 is given by the CDF F (x) = 1

e
1

1−x on [0, 1 − 1
e ]. Thus, with probability 1, the

maximum-possible welfare is 1 (achieved by including the first transaction).
One can check that the following is an IRR SPE. The BP includes the highest-bidding transac-

tion, breaking ties in favor of the first transaction. The first user always bids 0. The second and
third users always bid truthfully. A calculation shows that the expected welfare of this IRR SPE is
exactly 1− 1

e . ■

If we further assume that users are symmetric, meaning that their valuations are drawn i.i.d.
from a common distribution, then every SPE of the FPA-EQ TFM is in fact fully efficient. The
following corollary follows from Lemma 3.6 and the full efficiency of Bayes-Nash equilibria in multi-
unit auctions with symmetric unit-demand bidders (see e.g. [19]):
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Corollary 3.13 (Optimal Welfare in Symmetric Settings) In the BP-symmetric setting, for
every game structure and i.i.d. valuation distribution, every subgame perfect equilibrium of the FPA-
EQ TFM achieves the maximum-possible expected welfare.

As noted in Section 2.2, these positive results assume that BPs are capable of coordinating on
an equilibrium of the appropriate type. It would be interesting to investigate how our guarantees
would change under weaker versions of this assumption.
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A Supplementary Material for Section 3

A.1 Review of Relevant Matroid Theory

The matroid structure of feasible allocations play an important role in the incentive-compatibility
and welfare guarantees of the FPA-EQ mechanism in Section 3. We review in this appendix the
properties of matroids that are relevant to our results.

Definition A.1 (Matroid) A matroid is a set system (X, I) with ground set X and independent
sets I ⊆ 2X that satisfies:

1. I is non-empty.

2. (Downward closure) If A′ ∈ I and A ⊆ A′, then A ∈ I.

3. (Exchange property) If A,A′ ∈ I with |A′| > |A|, then there exists x ∈ A′ \ A such that
A ∪ {x} ∈ I.

For a game structure (I, J,S), call a subset A ⊆ I of transactions feasible if there exists a feasible
allocation (B1, . . . , Bm) that includes precisely the transactions in A.

Proposition A.2 For every game structure (I, J,S), the subset of feasible transactions forms a
matroid over I.

Proof: (Sketch.) Non-emptyness holds because the empty set of transactions is feasible. Downward
closure holds because removing transactions from a feasible allocation cannot destroy feasibility. The
exchange property holds from an alternating path argument in the spirit of transversal matroids
(see [27, Theorem 1.6.2]). ■

Matroids have a long list of nice properties.

Proposition A.3 (Lexicographic Optimality) Let (X, I) be a matroid for which each ground
set element x ∈ X has a nonnegative weight wx. If A,A′ ∈ I are two maximum-weight independent
sets, then the multi-sets of non-zero element weights of A and A′ are identical.
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Proof: (Sketch.) We can assume that A,A′ are maximal independent sets, extending them with
(necessarily zero-weight) elements if necessary. Due to the matroid structure (see [27, Corollary
1.2.5]), there is a sequence A = A0, A1, . . . , Al = A′ such that: (i) each set in the sequence belongs
to I; and (ii) each set in the sequence is derived from the previous one by swapping one element for
another. Because both A and A′ are maximum-weight independent sets, so are all the intermediate
sets of the sequence. Thus, each swap of the sequence exchanges one element for another with equal
weight. Thus, the multi-sets of element weights of A and A′ are identical. ■

The following proposition establishes a “revenue covering” property (in a sense similar to Hartline
et al. [16]) for matroids.

Proposition A.4 (Revenue Covering) Let (X, I) be a matroid for which each ground set ele-
ment x ∈ X has a nonnegative weight wx, and let A∗ denote a maximum-weight independent set.
Let tx(w−x) denote the minimum value of x’s weight such that, holding the weights w−x of the other
elements fixed, x belongs to a maximum-weight independent set. Then, for every independent set A,∑

x∈A∗

wx ≥
∑
x∈A

tx(w−x). (4)

Proof: (Sketch.) By the optimality of the greedy algorithm for matroids (see [27, Theorem 1.2.6]),
A∗ remains a maximum-weight independent set even after the weight of each element x /∈ A∗ is
increased to tx(w−x). Given that wx ≥ ti(w−x) for all x ∈ A∗ (by the definition of the ti’s), the
inequality (4) follows from the optimality of A∗. ■

A.2 Proof of Theorem 3.1

We show here that insisting on DSIC and strong BPIC implies that the TFM must output the
empty set for some bid vectors, precluding it from getting any welfare guarantees. Since we are
considering DSIC mechanisms, we consider the welfare achieved when bidders bid truthfully.

The theorem follows immediately from the following lemma.

Lemma A.5 For any DSIC and strongly-BPIC TFM, for all l > 0 and S , there exists a valuation
vector v where vl > 0 ∀i ∈ [l] and vi = 0 otherwise, such that xi(v,S) = 0 ∀i ∈ I i.e. the TFM
confirms no transactions.

Proof:
We proceed by induction on l. For the base case of l = 1, let v1 = (v1, 0, ..., 0) and consider an

arbitrary S. Assume for the sake of contradiction that x1(v1,S) = 1 for all v1 > 0. Since the TFM
is DSIC, by Myerson’s Theorem, we have that p1(y(v

1)) = 0. It follows that πj(C(y(v1,S))) = 0
for all j ∈ J since no transactions make any non-zero payments. However, then we have that all
the block producers are indifferent between the equilibria Bj = ∅ for all j ∈ J and Bj = yj(v

1,S)
contradicting the TFM being strongly-BPIC since these equilibria confirm different sets of bids.
Hence for the TFM to be DSIC and strongly-BPIC there exists a v1 > 0 s.t. xi(v

1,S) = 0 ∀i ∈ I.
For the inductive hypothesis assume for all S, there exists a valuation vector vl = (v1, ...vl, 0, ..., 0)

s.t. xi(v
l,S) = 0 ∀i ∈ I . We then show for all S′ there exists a v′ > 0 s.t. for vl+1 with vl+1

i = vl
i

for i ̸= l + 1 and vl+1
l+1 = v′, xi(vl+1,S′) = 0 ∀i ∈ I

Given a S′ let vl be a valuation vector such that x(vl,S) = ∅ where S is the projection of S′

to transactions i ̸= l + 1. Now assume for the sake of contradiction that x(vl+1,S′) ̸= ∅ for all

21



v′ > 0. We claim this implies that we must have l + 1 ∈ x(vl+1,S′) ∀v′ > 0 . This is because if
there is a v′ > 0 where l + 1 /∈ x(vl+1,S′), we have two cases, either

∑
j πj(y(v

l+1,S′)) > 0 or∑
j πj(y(v

l+1,S′)) = 0. The former case would imply the TFM is not strongly-BPIC, since in the
instance with valuation function vl and S, the BPs could censor transaction l+1 and replace it with
a transaction with bid v′. Then the BP’s following y under this modified valuation vector would
pareto dominate following y under vl since l + 1 isn’t confirmed under vl+1, hence paying 0 fees,
and some BPs get strictly positive compared to 0 revenue. Otherwise when

∑
j πj(y(v

l+1,S′)) = 0,
the BPs are indifferent between playing y or all proposing Bj = ∅ also violating strong-BPIC.

However, l + 1 ∈ x(vl+1,S′) ∀v′ > 0 implies that pl+1(v
l+1) = 0 by Myerson’s Theorem. Now

again we have the same two cases, either
∑

j πj(y(v
l+1,S′)) > 0 or

∑
j πj(y(v

l+1,S′)) = 0. Since
we still have that l+1 can costlessly be included, the same reasoning applies contradicting the TFM
being strongly-BPIC. Thus for any S′ there must exist a v′ > 0 such that xi(vl+1,S′) = 0 ∀i ∈ I. ■

A.3 Proof of Theorem 3.2

We now show that no TFM can always be fully efficient at equilibrium when bidders draw their
values from asymmetric distributions. We effectively reduce our setting to the case of auctioning
a single item where the payment rule is forced to only be a function of the winning bidder’s bid.
We use revenue equivalence with a second price auction to show that efficient equilibrium can’t be
implemented with these types of payment rules.

Consider the case where n = 2, m = 1, and k = 1. In this case, the TFM is equivalent to a
single item auction with two bidders. Furthermore, m = 1 implies that the TFM’s payment rule
can only be a function of the winning bid. Thus the theorem follows immediately from the following
lemma.

Lemma A.6 For any mechanism where the payment rule is a function only of the winning bid,
there exists a valuation distribution for which there is a Bayes–Nash equilibrium whose expected
welfare is strictly less than the maximum possible.

Proof: Suppose, for the sake of contradiction, that there is a mechanism (x, p) whose payment rule
depends only on the winning bid, i.e. pi(b) = f(bi) for some function f , such that every Bayes-Nash
equilibrium in this mechanism is efficient. We will exhibit two different valuation instances and
argue that the mechanism cannot have an efficient BNE in both instances simultaneously.

Instance 1: Consider an instance I1 with two bidders where

v1 ∼ Uniform
(
[0, 100]

)
and v2 ∼ Uniform

(
[0, 1]

)
.

Let σ(·) =
(
σ1(·), σ2(·)

)
be a Bayes–Nash equilibrium under (x, p) that implements the efficient

outcome for all realizations of (v1, v2). Since σ implements the efficient outcome for all values, it
matches the allocation of a second-price auction. By revenue equivalence, the bidders’ expected
payments under σ in this mechanism must match their expected payments when bidding truthfully
in a second-price auction.

• For bidder 1: Under the assumption that σ is efficient, we have that the probability bidder 1
wins is Pr[v1 > v2]. Thus Ev2 [p1

(
σ1(v1), σ2(v2)

)
| v1] = Pr[v1 > v2] · f

(
σ1(v1)

)
. On the other
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hand, bidder 1’s expected payment in a second price auction is Pr[v1 > v2] · E[v2 | v2 < v1].
Note that E[v2 | v2 < v1] = min{1

2 ,
v1
2 } giving us

f
(
σ1(v1)

)
= E

[
v2 | v2 < v1

]
= min{1

2
,
v1
2
} =⇒ σ1(v1) ∈ f−1

(
min{1

2
,
v1
2
}
)

• For bidder 2: By a symmetric argument, for bidder 2 we have

f
(
σ2(v2)

)
= E

[
v1 | v1 < v2

]
=

v2
2

=⇒ σ2(v2) ∈ f−1
(
v2
2

)
Instance 2: Now consider another two-bidder instance I2, where

v1 ∼ Uniform
(
[0, 32 ]

)
and v2 ∼ Uniform

(
[0, 100]

)
.

Let σ′(·) =
(
σ′
1(·), σ′

2(·)
)

be an efficient BNE for this second instance. A parallel revenue-equivalence
argument tells us that for bidder 1 and bidder 2 we have:

f
(
σ′
1(v1)

)
= E

[
v2 | v2 < v1

]
= v1

2 =⇒ σ′
1(v1) ∈ f−1

(
v1
2

)
,

f
(
σ′
2(v2)

)
= E

[
v1 | v1 < v2

]
= min

{
3
4 ,

v2
2

}
=⇒ σ′

2(v2) ∈ f−1
(
min{3

4 ,
v2
2 }

)
.

We claim that it is impossible for both σ to be an efficient BNE in I1 and σ′ to be an efficient
BNE in I2. To see why, consider the following deviation arguments:

1. Deviation of bidder 2 in instance I1. Suppose in I1 that bidder 2, whenever v2 > 3
4 , chooses

a random sample a ∼ Uniform([0, 100]) and then plays σ′
2(a) instead of σ2(v2). Call this

strategy σ̃2(·) If σ is indeed a BNE in I1, this deviation cannot increase bidder 2’s expected
utility for any v2.

Now consider the specific value v2 =
7
8 . Under σ, bidder 2’s expected utility is

Ev1

[
u2

(
σ1(v1), σ2(

7
8)
)]

= Pr
[
v1 <

7
8

]
× 7

16
<

1

200
,

By deviating to the σ̃2 by sampling a and playing σ′
2(a), bidder 2’s expected utility when

v2 =
7
8 is

Ev1,a

[
u2

(
σ1(v1), σ

′
2(a)

)]
= Pr

[
x
(
σ1(v1), σ

′
2(a)

)
= 2

]
× 1

8 .

For σ to remain an equilibrium, we must therefore have

Pr
[
x
(
σ1(v1), σ

′
2(a)

)
= 2

]
<

1

25
.

2. Deviation of bidder 1 in instance I2. Next, suppose in I2 that bidder 1, whenever v1 > 1
2 ,

samples b ∼ Uniform([0, 100]) and plays σ1(b) from instance I1. From the probability bound
above, whenever v1 > 1

2 the probability that bidder 1 wins against σ′
2(v2) is at least 24

25 . In
particular, at v1 =

3
4 , bidder 1’s expected utility from this deviation is at least(

3

4
− 1

2

)
× 24

25
=

6

25
,

which is substantially larger than the at most 1
100 expected utility bidder 1 achieves under

playing σ′
1, contradicting σ′ being a Bayes–Nash equilibrium.
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Since we have derived a profitable deviation in one instance assuming that the other instance
has an efficient BNE, it follows that σ and σ′ cannot both be equilibria of their respective instances
under the same payment rule f . Thus any mechanism where the payment rule is only a function of
the winning bid must have an inefficient Bayes–Nash equilibrium either in instance I1 or I2. ■
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