
ar
X

iv
:2

50
5.

17
62

3v
1

 [
cs

.C
R

]
 2

3
M

ay
 2

02
5

Range-Arithmetic: Verifiable Deep Learning
Inference on an Untrusted Party

Ali Rahimi†, Babak Khalaj†, Mohammad Ali Maddah-Ali∗

† Department of Electrical Engineering, Sharif University of Technology
∗ Department of Electrical Engineering, University of Minnesota

Abstract

Verifiable computing (VC) has gained prominence in decentralized machine learn-
ing systems, where resource-intensive tasks like deep neural network (DNN) in-
ference are offloaded to external participants due to blockchain limitations. This
creates a need to verify the correctness of outsourced computations without re-
execution. We propose Range-Arithmetic, a novel framework for efficient
and verifiable DNN inference that transforms non-arithmetic operations, such as
rounding after fixed-point matrix multiplication and ReLU, into arithmetic steps
verifiable using sum-check protocols and concatenated range proofs. Our approach
avoids the complexity of Boolean encoding, high-degree polynomials, and large
lookup tables while remaining compatible with finite-field-based proof systems.
Experimental results show that our method not only matches the performance of
existing approaches, but also reduces the computational cost of verifying the results,
the computational effort required from the untrusted party performing the DNN
inference, and the communication overhead between the two sides.

1 Introduction

By leveraging blockchain technology for transparent coordination, incentives, and auditability,
decentralized machine learning (ML) systems enable participants to collaboratively train or infer
using models without relying on centralized infrastructure. This shift not only enhances scalability
and fault tolerance, but also lays the groundwork for trustworthy and autonomous AI applications
across open and dynamic environments.

A core challenge in decentralized ML systems is ensuring the integrity of computations that are
outsourced to external, and potentially untrusted, executors. When decentralized ML systems delegate
heavy ML tasks, such as inference or training, to off-chain workers, they must be able to trust the
correctness of the results without re-executing the entire computation, which is often prohibitively
expensive. This need has led to the application of verifiable computing (VC) techniques in this
domain.

VC techniques enable a verifier to confirm the correctness of a computation performed by an untrusted
prover without re-executing the computation. The three main metrics for evaluating a verifiable
computing algorithm are: the size of the communication (or proof), the computational cost for
the verifier, and the prover’s effort in generating the proof. Interactive proofs (IPs) are one of the
promising approaches to verifiable computing [23, 14, 4]. As illustrated in Figure 1, in this approach,
the prover sends a claimed result which the verifier challenges over several rounds. The verifier can
detect, with high probability, if the claimed result is incorrect, whether due to a discrepancy between
the model computed by the prover and the model expected by the verifier, errors during computation,
or intentional misrepresentation by the prover.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://arxiv.org/abs/2505.17623v1

VC techniques have gained significant attention from both industry and academia, particularly
for secure, trustless, and verifiable outsourced machine learning computation. Notable initiatives
include EZKL [9], Polygon zkEVM [20], Accountable Magic [1], zkAGI [28], Noya [17], ZKML
Systems [29], and Provably AI [21]. Recent academic work has also contributed with surveys and
protocols focusing on verifiable ML [19, 26, 16, 15, 25].

Verifier

Untrusted

Prover

Input:

model and image Run

Neural

Network
Random

Challenge 1

Random

Challenge 𝑛

response 1

response 𝑛

⋮
Verify

challenge 1

challenge 𝑛

Compute

Response

Compute

Response Accept

or Reject

𝑓(𝑥)

result

𝑓(𝑥)

Figure 1: A schematic overview of general interactive
verifiable computing, where the goal is to compute a
function f(·) at input x (e.g., performing inference
using model f(·) on input x). The prover executes the
computation and generates a proof of correctness by
responding to challenges posed by the verifier.

One major critique of VC schemes is that
they operate over finite fields, often integers
modulo a large prime p. Furthermore, these
schemes are generally restricted to arithmetic
computations, that is, computations express-
ible as compositions of additions and mul-
tiplications over the chosen field. However,
many widely used operations in ML computa-
tions, such as fixed-point arithmetic and non-
linear activation functions like ReLU, do not
naturally conform to this arithmetic model,
making them difficult to represent and ver-
ify efficiently within conventional VC frame-
works.

To address the above challenge, various so-
lutions have been explored in the literature.
Mystique [24] transforms computations over fixed-point and floating-point numbers into bitwise
operations on large binary circuits, which significantly increases the prover’s computational over-
head. In [6], the authors propose embedding truncation verification into high-degree polynomial
equations over the ring Zpe , where p is a large prime and e denotes the number of digits in the number.
Although theoretically sound, this method incurs substantial computational overhead. In [10], a
commit-and-prove scheme is introduced to control the magnitude of rounding errors. However,
this approach leads to significant circuit expansion, resulting in considerable overhead for both the
prover and the verifier. Similarly, [11] explores the MPC-in-the-head paradigm, where a secure
multi-party computation is simulated and the interactions between virtual parties are committed to the
verifier. While this technique enables verifiable rounding operations, it substantially increases both
computational and communication complexities. Finally, the method proposed by Dao and Thaler [7]
improves polynomial evaluation techniques widely used in verifiable computation. Nevertheless, it
still requires large finite fields to prevent overflow, introducing significant arithmetic overhead. This
approach is conceptually similar to the integer-scaling technique employed in SafetyNets [12].

Our Contribution: In this paper, we propose a novel framework that alleviates core obstacles
in realizing fully verifiable machine learning. We introduce Range-Arithmetic, a method that
fuses sum-check protocols for arithmetic verification with range proofs for rounding and activa-
tion functions. By representing rounding and ReLU through concatenated range constraints, our
framework maintains compatibility with finite-field arithmetic and avoids the need for extensive
preprocessing, Boolean circuit encodings, or large lookup tables. We also show how these operations
can be combined in a unified framework and used together to verify ML inference tasks without
sacrificing efficiency or generality.

We compare the complexities of our approach with those of existing methods in Table 1. For
numerical comparisons, however, we focus on the state-of-the-art method proposed by Dao and
Thaler [7], which is the latest in a sequence of progressively improving works and has gained
popularity in practice. Since [7] does not support the ReLU activation function, we focus this
comparison on the inference task for a linear neural network. In our scheme, a rounding operation
is applied after each multiplication, whereas the method in [7] requires enlarging the finite field
to support such operations. As illustrated in Figure 2, the proposed Range-Arithmetic achieves
superior performance compared to the state-of-the-art method [7], particularly as the number of layers
increases. Due to the lack of well-maintained codebases, numerical comparisons with other methods
were found to be practically infeasible. Nevertheless, we believe Table 1 provides a sufficiently
conclusive basis for comparing the proposed method with the remaining approaches.

The remainder of the paper is organized as follows. Section 2 reviews the necessary prerequisites and
presents an overview of fixed-point arithmetic, including its conversion to finite field representations.

2

Table 1: Comparison of verifiable computation methods for verifying the multiplication of two
n× n matrices with rounding, evaluated in terms of verifier and prover computational complexity,
communication complexity, and support for ReLU verification.

Method Prover Compl. Verifier Compl. Comm. Compl. Verifying ReLU

Mystique [24] O
(
n3 logn

)
O
(
n2

)
O
(
n2

)
Yes

Ring-based [6] O
(
pen3

)
O
(
n2

)
O (logn) No

Commit-and-Prove [10] O
(
n3 logn3

)
O
(
n1.5

)
O
(
n2

)
No

MPC-in-head [11] O
(
n3

)
O
(
n3

)
O
(
n3

)
No

Integer-scaling [7] O
(
n3

)
O
(
n2

)
O (logn) No

Proposed Method O
(
n3

)
O
(
n2

)
O (logn) Yes

In [6], p is the prime base and e is the number of digits used to represent numbers in the ring Zpe .

1 2 3 4 5

of layers

0

10

20

30

40

Ti
m

e
(s

)

Prover

Proposed method
SOTA

1 2 3 4 5

of layers

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ti
m

e
(s

)
Verifier

Proposed method
SOTA

1 2 3 4 5

of layers

0

2

4

6

8

10

C
om

m
un

ic
at

io
n

C
os

t (
K

B
)

Communication

Proposed method
SOTA

Figure 2: Comparison of prover and verifier runtimes, as well as communication costs, for verifiable
inference on a linear neural network, relative to the state-of-the-art method in [7].

We then describe the verification algorithms, covering vector multiplication, polynomial commitment,
the Sum-Check protocol, and range-proof techniques. Our proposed algorithm is detailed in Section 3.
Section 4 presents the results of our simulations and evaluates the algorithm’s performance from
multiple perspectives. Finally, Section 5 discusses potential directions for future research.

2 Preliminaries

Notation. Vectors are denoted by boldface lowercase letters, e.g., a. Matrices are denoted by boldface
uppercase letters, e.g., A. Polynomials are denoted by lowercase letters, for example, a. We denote
the inner product between two vectors by ⟨a,b⟩. For a finite field F, a group G, a given vector
a ∈ Fn, and a vector g ∈ Gn of generators, ga =

∏n
i=1 g

ai
i . For two vectors a,b ∈ Fn, the

element-wise product is represented by a ◦ b which is equal to (a1b1, . . . , anbn). For a, b ∈ R, [a, b]
denotes the set of all numbers x ∈ R, where a ≤ x ≤ b. For integers 1 ≤ u ≤ v ≤ n, and a vector
a = (a1, . . . , an), then a[u − 1, v] denotes the sub-vector (au, . . . , av) of the vector a. Similarly,
a[: u] := (a1, . . . , au), and a[u :] := (au+1, . . . , an).

Definition 2.1. For any prime number p > 2, the symmetric finite field, denoted Fp (or simply
F), can be represented by the symmetric complete residue system

{
−p−1

2 , . . . , p−1
2

}
, which serves

as an alternative to the standard system {0, 1, . . . , p − 1}. Field operations such as addition

3

and multiplication are performed modulo p, with the results mapped back into this symmetric
representative set.
Definition 2.2. Let e : {0, 1}v → F be a function defined over the Boolean hypercube for some
integer v. The multilinear extension (MLE) of e, denoted ẽ : Fv → F, is a multivariate polynomial
satisfying the following properties:

• For all b1, . . . , bv ∈ {0, 1}, we have ẽ(b1, . . . , bv) = e(b1, . . . , bv).

• The polynomial ẽ(x1, . . . , xv) is multilinear, i.e., it is linear in each input variable individu-
ally.

It has been shown that ẽ can be uniquely written as [23]:

ẽ (x1, . . . , xv) :=
∑

y∈{0,1}v

e(y).

v∏
i=1

(xiyi + (1− xi) (1− yi)) , (1)

for any (x1, . . . , xv) ∈ Fv .
Lemma 2.1. (Schwartz–Zippel Lemma [22, 27]) Let f, g : Fv → F be distinct multilinear polynomi-
als. If r is sampled uniformly at random from Fv, then the probability that f(r) = g(r) is at most
v
|F| ; that is,

Pr[f(r) = g(r)] ≤ v

|F|
.

2.1 Review of fixed-point arithmetic

In this paper, we focus on fixed-point arithmetic, a widely used technique for managing overflow. In
this approach, rounding is applied after each multiplication to discard the least significant bits, thereby
preventing unbounded growth in memory usage. Specifically, each fixed-point number consists of
three components: a sign bit, t bits for the integer part, and s bits for the fractional part.

Let p be a prime with at least s + t + 3 bits. We represent a real number a′ as a field element
a = 2sa′ ∈ Fp. When multiplying two fixed-point numbers with s fractional bits, the result may
contain up to 2s fractional bits. To retain the target precision, a rounding operation truncates the s
least significant bits and rounds to the nearest fixed-point number.

This rounding can be equivalently performed in the field representation using the operator R, defined
as:

R(x) =
x+ 2s−1 −

(
x+ 2s−1 mod 2s

)
2s

.

An example of this rounding process is illustrated in Figure 5.

2.2 Inner-product argument

Consider a system involving a prover and a verifier. Let g,h ∈ Gn be two publicly known vectors,
consisting of 2n generators from a group G. The prover sends two elements to the verifier: P ∈ G
and c ∈ F, with the goal of convincing the verifier that they possess two vectors a,b ∈ Fn such that

P = gahb and c = ⟨a,b⟩.

To verify this claim, the verifier runs Algorithm 2 (Appendix 5), inspired by the Bulletproofs
protocol [5]. This algorithm is communication-efficient: the prover transmits only 2 log2(n) group
elements, rather than the full vectors a and b, which would require sending 2n elements. For
simplicity, we assume that n is a power of two.

2.3 Polynomial commitment

Consider a system comprising a prover and a verifier. The prover holds a multilinear polynomial q,
and the verifier wishes to evaluate q at an arbitrary point z ∈ Fv. A naïve approach would have the
prover transmit all coefficients of q, allowing the verifier to compute the evaluation locally. However,
this incurs high communication cost and substantial computational effort for the verifier.

4

A more efficient alternative is to use a polynomial commitment scheme, as described in Algorithm 3.
In this setting, the evaluation q(z) is computed via an inner product. Let z = [z1, . . . , zv]. Then q(z)
can be written as:

q(z) =
∑

i∈{0,1}v

ai · χi(z),

where ai are the coefficients of q, and χi(z) are the Lagrange basis polynomials evaluated at z. Each
basis polynomial is defined as:

χi(z) :=

v∏
j=1

(zjij + (1− zj)(1− ij)) ,

for i = (i1, . . . , iv) ∈ {0, 1}v .

The prover commits to the coefficients a = [a0, . . . , a2v−1] by sending a group element P1 = ga,
where g is a vector of public generators. The verifier then checks whether q(z) = ⟨a,b⟩, where
b = [χ0(z), . . . , χ2v−1(z)].

2.4 The sum-check protocol

Suppose the prover and verifier share knowledge of a v-variate polynomial f(x1, . . . , xv), where
each variable has finite degree. The sum-check protocol, used within an interactive proof (IP) system,
enables the prover to send a value w ∈ F to the verifier and convince her that

w =
∑

x1∈{0,1}

∑
x2∈{0,1}

· · ·
∑

xv∈{0,1}

f(x1, . . . , xv).

This protocol proceeds in v rounds, with each round consisting of one message from the prover and
one from the verifier. The prover’s total computational cost is only a small multiple of the cost of
directly computing w, making the protocol highly efficient compared to alternative approaches [23].
A detailed description is provided in Algorithm 4 in Appendix 5.

In the final step of Algorithm 4, the verifier must evaluate the multivariate polynomial f at a randomly
chosen point. However, in our setting, downloading all individual coefficients of f(x) would incur
prohibitive communication overhead. Furthermore, as we later show, the polynomial f(x) admits a
decomposition:

f(x) = f (1)(y1,x) · f (2)(x,y2),

where y1 and y2 are fixed inputs, and both f (1) and f (2) are multilinear functions.

To mitigate communication cost, we employ binding commitments to the coefficients of f (1) and
f (2), denoted P1 and P2, respectively, using the commitment scheme described in the previous
subsection. These commitments allow the verifier and prover to independently execute two instances
of Algorithm 3 to evaluate f (1) and f (2) at the desired points. The verifier then computes f(x) as the
product of the two evaluations.

This leads to Algorithm 5, which augments the classical sum-check protocol with polynomial
commitments to reduce communication overhead. However, this efficiency gain comes at the cost
of increased computational effort for the verifier in the final step. Overall, the total communication
complexity of the protocol is dominated by Step 6 of Algorithm 5, and scales with the sum of the
degrees of the involved polynomials, i.e., O (

∑v
i=1 deg(fi)) [2].

2.5 Aggregated range proof

Let g ∈ Gmn be a globally known vector consisting of mn generators of the group G. The prover
sends an element P ∈ G to the verifier and claims knowledge of a vector v ∈ Fm such that:

P = gv
[:m], where vj ∈ [0, 2n − 1] for all j ∈ [1,m].

Algorithm 6 in Appendix 5, based on the Bulletproofs protocol [5], enables the prover to efficiently
convince the verifier of the validity of this claim.

5

3 The Proposed Range-Arithmetic Scheme

In this section, we introduce the core components of our proposed scheme. We begin by addressing
the verification of arithmetic operations, with a focus on matrix multiplication. This is motivated
by the fact that many fundamental operations in neural networks, including fully connected layers,
convolutions, and batch normalization, can be expressed as matrix multiplications [3, 13]. We then
present our approach for handling non-arithmetic operations, specifically rounding, and describe
how arithmetic and non-arithmetic components are integrated through a composition step. Next, we
extend the framework to support verification of the ReLU activation function. Finally, we outline the
complete procedure for verifying inference in neural networks.

3.1 Verification of Matrix Multiplication Concatenated with Rounding

Consider a scenario where the prover holds two matrices, A ∈ Fn×m and B ∈ Fm×k. The prover
computes their product C = AB, and then applies a rounding operation to obtain C′ = R(C).
The goal is for the prover to convince the verifier of the correctness of these computations without
requiring the verifier to recompute them.

The goal is to develop a verification algorithm that meets the following criteria:

• Correctness: If the prover executes the computation faithfully, an honest verifier should
accept the result.

• Soundness: If the prover attempts to deviate from the correct computation, the verifier
should reject the result with high probability.

• Efficiency: The verification protocol should be efficient in terms of both communication and
computation. Specifically, the communication complexity between the prover and verifier
should be O(log nmk), the prover’s computational complexity should be O(nmk), and the
verifier’s computational complexity should be O(nm+mk).

3.1.1 Verification of Matrix Multiplication

Inspired by established methods in the literature [7, 23], we reformulate the verification of matrix
multiplication C = AB as a sum-check verification problem. Consider three matrices A ∈ Fn×m,
B ∈ Fm×k, and C ∈ Fn×k. For simplicity, we assume that m, n, and k are powers of two. Matrix
rows and columns are indexed from 0 to one less than the total number of rows and columns,
respectively.

To reference matrix elements, we define the following functions: fA : {0, 1}logn×logm → F,
fB : {0, 1}logm×log k → F, and fC : {0, 1}logn×log k → F These functions take the binary
representations of row and column indices as input and return the corresponding matrix element. For
instance, if A is a 4 × 4 matrix with element a0,2 = 57, then fA([0, 0], [1, 0]) = 57, where [0, 0]
specifies the first row and [1, 0] specifies the third column.

Under this formulation, verifying the correctness of the matrix multiplication reduces to checking
that, for all i ∈ 0, 1logn and j ∈ 0, 1log k, the following equality holds:

fC(i, j) =
∑

ℓ∈0,1log m

fA(i, ℓ) · fB(ℓ, j). (2)

As we saw in Definition 2.2, we can construct MLEs (Multilinear Extensions) ã : Flogn×logm → F,
b̃ : Flogm×log k → F, and c̃ : Flogm×log k → F based on functions fA, fB, and fC, respectively.
These MLEs are multilinear polynomials that, for binary inputs, yield outputs resembling those of fA,
fB, and fC, respectively. Therefore, the above equality is equivalent to establishing the following
equality for i ∈ {0, 1}logn and j ∈ {0, 1}log k

c̃(i, j) =
∑

ℓ∈{0,1}log m

ã(i, ℓ)b̃(ℓ, j). (3)

We aim to verify (3) for all values of i and j. We observe that since ã is linear with respect to the
variable i and b̃ is linear with respect to the variable j, the polynomial on the right-hand side of the

6

equation is linear with respect to variables i and j. As we discussed, MLE is unique. Therefore, if
c̃ is equal to the right-hand side for all possible binary values of i ∈ {0, 1}logn and j ∈ {0, 1}log k,
then (3) is of the form of equality of two polynomials. If matrix multiplication C = AB has been
performed correctly, then (3) must hold for all values in the domain i ∈ Flogn and j ∈ Flog k. Thus,
we can use the lemma 2.1, which allows us to verify the equality of two polynomials with high
probability by checking their equality at a random point. Assume r1 ∈ Flogn and r2 ∈ Flog k are
chosen uniformly at random. Then if

c̃(r1, r2) =
∑

ℓ∈{0,1}log m

ã(r1, ℓ).b̃(ℓ, r2) (4)

holds, the matrix multiplication C = AB has been computed correctly with the probability of at
least |F|−v

|F| .

In (4), the left-hand side is a single number, while the right-hand side is actually a sum over the
polynomial γ(ℓ) := ã(r1, ℓ).b̃(ℓ, r2), for all values ℓ ∈ {0, 1}logm. Therefore, we can reduce
the matrix multiplication verification problem to a sum-check problem over

∑
ℓ γ(ℓ) and apply

Algorithm 5 to verify it. It is observed that γ(ℓ) represents the multiplication of two multilinear
functions ã(r1, ℓ) and b̃(ℓ, r2). The prover can compute the commitment to the coefficients of these
functions as outlined in Section 2.3.

3.1.2 Verification of Rounding

Here, we elucidate how the range proof algorithm ensures the validity of the operation R. It
is worth recalling that R(x) = x+2s−1−(x+2s−1 mod 2s)

2s , and when R is applied to a matrix or
vector, the operation is executed on each element individually. We note that −2s−1 ≤ (x + 2s−1

mod 2s)− 2s−1 < 2s−1, which constitutes the truncated portion. In the rounding process, this part
is discarded, which makes the numerator of the fraction x+2s−1−(x+2s−1 mod 2s)

2s a multiple of 2s.
Subsequently, division by 2s moves its binary representation as s bits to the right. Suppose that matrix
A ∈ Flogn×logm has been rounded to A′ = R(A). Let E := A − 2s ×A′ denote the discarded
part during the rounding process, and let D := A−E denote the numerator of the fraction in R. The
correctness of the rounding process is equivalent to ensuring that (1) all entries ei of E lie within the
interval −2s−1 ≤ ei < 2s−1, and (2) all elements di of D are integer multiples of 2s.

The first condition limits the discarded number during rounding to a small, standard interval. The
second condition ensures ai − ei is divisible by 2s without wrap-around. To prevent wrap-around, we
require a′i =

di

2s to fall within −2t+1 ≤ a′i < 2t+1, guaranteeing at least s trailing zeros in di. This
condition suffices to avoid wrap-around, leading to two necessary range proofs, which are checked
using an aggregated range proof algorithm. The correctness of this transformation is formally stated
in the following theorem. A detailed proof is provided in Appendix 5.

Theorem 3.1. Let a be a fixed-point number with 1 sign bit, t integer bits, and s fractional bits.
Suppose the prover sends integers a′1 and e1 such that

a ≡ e1 + 2s · a′1 (mod p),

where p is a prime with at least t+ s+ 3 bits. Assume the values satisfy the following bounds:

−2t+1 ≤ a′1 < 2t+1, and − 2s−1 ≤ e1 < 2s−1.

Then, the verifier can conclude that a′1 = R(a), where R(a) denotes the fixed-point rounding of a to
the nearest integer after truncating the fractional part.

3.1.3 Concatenation of Matrix Multiplication and Rounding

We now explain how to combine the arithmetic and rounding components using the techniques
described above. Suppose that the prover possesses two matrices, A ∈ Fn×m and B ∈ Fm×k.
After computing their product, C = AB, the prover performs rounding operations on the output,
resulting in C′ = R(C). By executing Algorithm 1 on the input g,h ∈ Gmn, u ∈ G, A ∈ Fn×m,
and B ∈ Fm×k, the prover convinces the verifier of the accuracy of these computations without
transmitting the large matrices A, B, C, and C′. In the input tuple, g,h ∈ Gτ and u ∈ G are some

7

Algorithm 1 Verifying a calculation with both arithmetic and non-arithmetic layers

Require: The algorithm inputs are: g,h ∈ Gτ , u ∈ G, A ∈ Fn×m, B ∈ Fm×k.
Require: Verifier has g,h ∈ Gj , u ∈ G.
Require: Prover has g,h ∈ Gj , u ∈ G, A ∈ Fn×m, B ∈ Fm×k.
Ensure: Verifier receives PA, PB , PC , and PC′ as commitments to specific matrices A, B, C, and

C′, respectively. Then Verifier accepts that the relations C = AB and C′ = R(C) hold between
them.

1: Prover computes the commitments of A and B as PA and PB respectively. then sends PA and
PB to Verifier.

2: Prover calculates C = AB.
3: Prover computes the commitment of C as PC then sends PC to Verifier.
4: Verifier selects two random vectors r1 ∈ Flogn and r2 ∈ Flog k and sends r1 and r2 to Prover.
5: Prover constructs the polynomials ã : Flognm → F, b̃ : Flogmk → F, c̃ : Flognk → F and

γ(z) : Flogm → F according to the description provided in the Section 3.1.1.
Note: The commitments to the coefficients of the polynomial ã, b̃, and c̃ are represented by PA,
PB , and PC respectively, all of which are already held by the verifier. Furthermore, it is given
that γ(z) = ã(r1, z)b̃(z, r2).

6: Prover and Verifier run Algorithm 5 on the input
(
g[:m],h[:m], u, PA, PB , γ

)
. Verifier obtains w.

7: Prover and Verifier run Algorithm 3 on the input
(
g[:nk],h[:nk], u, PC , c̃, (r1, r2)

)
. Verifier

obtains c̃(r1, r2).
8: Verifier checks w = c̃(r1, r2).
9: Prover computes C′ = R(C).

10: Prover computes the commitment of C′ as PC′ then sends PC′ to Verifier.
11: Prover and Verifier run Algorithm 6 on the input(

g[:nks],h[:nks], u, PC/P
2s

C′ × g2s−1

[:nk] ∈ G,C+ 2s−1 ∈ Fnk
)

.

▷ Note that PC/P
2s

C′ is the commitment to E = C− 2s ×C′. This step verifies for all elements
of E we have −2s−1 ≤ ei < 2s−1.

12: Prover and Verifier run Algorithm 6 on the input(
g[:nk(t+1)],h[:nk(t+1)], u, PC′ × g2t+1

[:nk] ∈ G,C+ 2t+1 ∈ Fnk
)

.

▷ This step verifies for all elements of C′ we have −2t+1 ≤ c′i < 2t+1.
If all checks pass, Verifier accepts that PA, PB , PC , and PC′ are commitments to certain matrices
A, B, C, and C′, respectively, where the relations C = AB and C′ = R(C) hold between
them.

globally known generators. Here, τ denotes the maximum value among (nks, nk(t+ 1),mk,mn).
This algorithm leverages all the methodologies introduced and examined in prior subsections.

Our proposed algorithm is adaptable, allowing the prover to reuse it for matrices A and B from prior
computations or for matrix C′ in subsequent computations without transmitting large intermediary
matrices to the verifier. Additionally, the algorithm requires no preprocessing and avoids the need
to encode computations using large sparse matrices, unlike techniques such as R1CS or arithmetic
circuits [18].

3.2 Verification of ReLU activation function

We verify the ReLU function, defined as ReLU(x) = max{0, x} = x+|x|
2 , by applying it element-

wise to a matrix. Suppose the verifier has a commitment to a matrix A ∈ Fn×k and receives a
commitment to B ∈ Fn×k. To verify that B = ReLU(A), the prover first computes Y = |A| and
commits to it. The prover then proves that all elements of Y are non-negative using a Range proof.
Next, the prover proves that for each element ai in A and yi in Y, a2i = y2i using the following
equation:

0⃗ =
∑

s∈{0,1}log nk

Ĩ (x, s) .
(
ã2 (s)− ỹ2 (s)

)
∀x ∈ {0, 1}lognk (5)

8

In (5), matrices are encoded using MLE, where Ĩ is the MLE of the identity matrix, and ã and ỹ
encode the elements of A and Y, respectively. This equation ensures that each element in Y equals
|A|. By the uniqueness of MLEs, the right-hand side polynomial is zero. Instead of checking the
equation at every point, the prover and verifier use the sum-check protocol at a random point r1
chosen by the verifier.

0 =
∑

x∈{0,1}log nk

Ĩ (s,x) .
(
ã2 (x)− ỹ2 (x)

)
(6)

According to (6), the sum-check is performed on the polynomial f(x) = Ĩ (s,x) .
(
ã2 (x)− ỹ2 (x)

)
.

The details are provided in Algorithm 7. We used Algorithm 8 to make ReLU verifiable, which
incorporates Algorithm 7 and other components mentioned in this subsection.

3.3 Verification process of the neural network

To verify the inference of a neural network, we consider the model as a sequence of layers, each
corresponding to an operation, e.g., matrix multiplication or ReLU activation. Each layer is verified
independently. The prover first sends a commitment of the layer’s output to the verifier and then uses
this commitment to prove that the corresponding computation was performed correctly, following
the proposed algorithm. This modular approach enables the composition of verification algorithms
across different layers, allowing them to be reused and combined in arbitrary order and quantity.
Please note that output of each layer is the input to the next layer and verifier has access to the inputs.
It is important to note that the output of each layer serves as the input to the subsequent layer. An
illustrative case study demonstrating this process is presented in Section 4.

4 Experimental results

This section evaluates the performance of our proposed algorithm for fixed-point matrix multiplication,
in which standard matrix multiplication is followed by a rounding step. The evaluation focuses
on three key metrics: the prover’s runtime, the verifier’s runtime, and the communication cost
between them. All algorithms are implemented in Python and tested on an Asus X515 laptop. The
implementation is available on GitHub1.

Figure 3 presents the performance of Algorithm 1 in verifying the relation C′ = R(AB), where
A and B are 64 × 64 matrices. As the numeric range increases, the cost of the rounding opera-
tion—dominated by the complexity of Algorithm 6—surpasses that of the matrix multiplication.

Figure 4 illustrates the effect of matrix size on the prover and verifier runtimes. As expected, both
increase with matrix size, while the communication overhead grows logarithmically.

Finally, we compare our method to the state-of-the-art [7], which verifies sequential matrix multipli-
cations of depth n. Unlike method of [7], which lacks support for rounding and incurs significant
storage overhead, our approach integrates rounding efficiently and reduces computational cost for
both prover and verifier as the depth increases. This advantage is depicted in Figure 2.

4.1 A Case Study

In the previous section, we evaluated the performance of our proposed method for verifying matrix
multiplication. Building on this foundation, we now demonstrate its application to verifying the
inference process of a neural network trained on the MNIST dataset [8]. The network consists of four
fully connected layers, each performing matrix multiplication using fixed-point arithmetic, followed
by a ReLU activation function. The input vector has a dimension of 784, and the model contains
approximately 10,000 parameters.

All computations are carried out in fixed-point arithmetic, with weights and inputs represented using
6 integer bits and 8 fractional bits. The trained model achieves an accuracy of approximately 95%.
For verification, matrix multiplications are checked using Algorithm 1, while ReLU activations are
verified using a combination of range proofs and the sum-check protocol, as detailed in Algorithm 8

1https://github.com/trainingzk/Range-Arithmetic

9

6,
8

14
,8

14
,1

6

30
,1

6

30
,3

2

62
,3

2

62
,6

4

12
6,

64

Bit-length (int, frac)

10 1

100

101

Pr
ov

er
 T

im
e

(s
)

Linear part
Non-linear part

6,
8

14
,8

14
,1

6

30
,1

6

30
,3

2

62
,3

2

62
,6

4

12
6,

64

Bit-length (int, frac)

10 1

100

Ve
rif

ie
r T

im
e

(s
)

Linear part
Non-linear part

Figure 3: Runtime of the arithmetic and non-
arithmetic parts for the verifier and the prover
in the matrix multiplication.

26 28 210 212 214 216 218

The size of the multiplied matrices (number of rows × number of columns)

10 3

10 2

10 1

100

101

102

R
un

tim
e

(s
)

Verifier runtime
Prover runtime

0

1

2

3

4

5

C
om

m
un

ic
at

io
n

C
os

t (
K

B
)

Sum-check part
Range-Proof part

Figure 4: Impact of matrix size on the prover
and the verifier runtime, as well as communi-
cation load.

and Subsection 3.2. The prover’s runtime is approximately 230 milliseconds, and the verifier’s
runtime is approximately 154 milliseconds.

5 Future directions

In this paper, we focused on the verifying inference on neural network. Future work includes enriching
the model to support a wider range of network architectures and layers, incorporating privacy-
preserving features, benchmarking against alternative verification schemes, exploring additional
evaluation metrics, and extending the approach to other collaborative or trust-sensitive environments
such as federated learning.

10

References
[1] Accountable Magic. Accountable magic: Ai alignment and governance, 2025. URL https:

//www.accountablemagic.com/.

[2] Suyash Bagad, Yuval Domb, and Justin Thaler. The sum-check protocol over fields of small
characteristic. Cryptology ePrint Archive, 2024.

[3] Yoshua Bengio, Ian Goodfellow, Aaron Courville, et al. Deep learning, volume 1. MIT press
Cambridge, MA, USA, 2017.

[4] Jonathan Bootle, Alessandro Chiesa, and Katerina Sotiraki. Sumcheck arguments and their
applications. In Advances in Cryptology–CRYPTO 2021: 41st Annual International Cryptology
Conference, CRYPTO 2021, Virtual Event, August 16–20, 2021, Proceedings, Part I 41, pages
742–773. Springer, 2021.

[5] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell.
Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE symposium on
security and privacy (SP), pages 315–334. IEEE, 2018.

[6] Shuo Chen, Jung Hee Cheon, Dongwoo Kim, and Daejun Park. Interactive proofs for rounding
arithmetic. IEEE Access, 10:122706–122725, 2022.

[7] Quang Dao and Justin Thaler. More optimizations to sum-check proving. Cryptology ePrint
Archive, 2024.

[8] Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

[9] EZKL. EZKL: Zero-knowledge machine learning, 2025. URL https://ezkl.xyz/.

[10] Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Yinuo Zhang. Succinct zero knowledge for
floating point computations. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, pages 1203–1216, 2022.

[11] Sanjam Garg, Aarushi Goel, Somesh Jha, Saeed Mahloujifar, Mohammad Mahmoody, Guru-
Vamsi Policharla, and Mingyuan Wang. Experimenting with zero-knowledge proofs of training.
In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security, pages 1880–1894, 2023.

[12] Zahra Ghodsi, Tianyu Gu, and Siddharth Garg. Safetynets: Verifiable execution of deep neural
networks on an untrusted cloud. Advances in Neural Information Processing Systems, 30, 2017.

[13] Chanyang Ju, Hyeonbum Lee, Heewon Chung, Jae Hong Seo, and Sungwook Kim. Efficient
sum-check protocol for convolution. IEEE Access, 9:164047–164059, 2021.

[14] Yael Tauman Kalai, Alex Lombardi, and Vinod Vaikuntanathan. Snargs and ppad hardness from
the decisional diffie-hellman assumption. In Advances in Cryptology–EUROCRYPT 2023: 42nd
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Lyon, France, April 23–27, 2023, Proceedings, Part II, pages 470–498. Springer, 2023.

[15] Alan Li, Qingkai Liang, and Mo Dong. Sparsity-aware protocol for zk-friendly ml models:
Shedding lights on practical zkml. Cryptology ePrint Archive, 2024.

[16] Hidde Lycklama, Alexander Viand, Nikolay Avramov, Nicolas Küchler, and Anwar Hithnawi.
Artemis: Efficient commit-and-prove snarks for zkml. arXiv preprint arXiv:2409.12055, 2024.

[17] Noya. Noya: Ai-powered infrastructure for zero-knowledge proofs, 2025. URL https:
//noya.ai/.

[18] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical
verifiable computation. Communications of the ACM, 59(2):103–112, 2016.

[19] Zhizhi Peng, Taotao Wang, Chonghe Zhao, Guofu Liao, Zibin Lin, Yifeng Liu, Bin Cao, Long
Shi, Qing Yang, and Shengli Zhang. A survey of zero-knowledge proof based verifiable machine
learning. arXiv preprint arXiv:2502.18535, 2025.

11

https://www.accountablemagic.com/
https://www.accountablemagic.com/
https://ezkl.xyz/
https://noya.ai/
https://noya.ai/

[20] Polygon. Polygon zkEVM: Ethereum scaling with zero-knowledge proofs, 2025. URL https:
//polygon.technology/polygon-zkevm.

[21] Provably AI. Provably: Trustless ai verification, 2025. URL https://provably.ai/.

[22] Jacob T Schwartz. Fast probabilistic algorithms for verification of polynomial identities. Journal
of the ACM (JACM), 27(4):701–717, 1980.

[23] Justin Thaler et al. Proofs, arguments, and zero-knowledge. Foundations and Trends® in
Privacy and Security, 4(2–4):117–660, 2022.

[24] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao Wang. Mystique: Efficient
conversions for {Zero-Knowledge} proofs with applications to machine learning. In 30th
USENIX Security Symposium (USENIX Security 21), pages 501–518, 2021.

[25] Jiasi Weng, Jian Weng, Gui Tang, Anjia Yang, Ming Li, and Jia-Nan Liu. pvcnn: Privacy-
preserving and verifiable convolutional neural network testing. IEEE Transactions on Informa-
tion Forensics and Security, 18:2218–2233, 2023.

[26] Qianyi Zhan, Yuanyuan Liu, Zhenping Xie, and Yuan Liu. Validating the integrity for deep
learning models based on zero-knowledge proof and blockchain. In Blockchain and Web3
Technology Innovation and Application Exchange Conference, pages 387–399. Springer, 2024.

[27] Richard Zippel. Probabilistic algorithms for sparse polynomials. In International symposium
on symbolic and algebraic manipulation, pages 216–226. Springer, 1979.

[28] zkAGI. zkAGI: Zero-knowledge artificial general intelligence, 2025. URL https://www.
zkagi.ai/.

[29] ZKML Systems. ZKML: Zero-knowledge machine learning systems, 2025. URL https:
//www.zkml.systems/.

12

https://polygon.technology/polygon-zkevm
https://polygon.technology/polygon-zkevm
https://provably.ai/
https://www.zkagi.ai/
https://www.zkagi.ai/
https://www.zkml.systems/
https://www.zkml.systems/

Appendix A. Details of Algorithms

Algorithm 2 Verification of Inner-product

Require: The algorithm inputs are: g,h ∈ Gn, u, P ∈ G, c ∈ F, a,b ∈ Fn.
Require: Verifier has g,h ∈ Gn, u, P ∈ G, c ∈ F.
Require: Prover has g,h ∈ Gn, u, P ∈ G, c ∈ F, a,b ∈ Fn.
Ensure: Verifier accepts P = gahb and c = ⟨a,b⟩.

1: Verifier sends a random number x ∈ F to Prover.
2: Both Prover and Verifier compute unew = ux and Pnew = Puc

new ∈ G. ▷ u is a generator of the
group G.

3: Run the function INNERPRODUCT on the input (g,h, unew, Pnew,a,b).
4: function INNERPRODUCT(g,h, u, P,a,b) ▷ Verifier accepts P = gahbu⟨a,b⟩.
5: if n = 1 then
6: Prover sends a, b ∈ F to Verifier.
7: Verifier checks whether P = gahbuab. If the equation is true, Verifier accepts; otherwise

Verifier rejects.
8: else
9: Prover computes n′ = n

2 , cL =
〈
a[:n′],b[n′:]

〉
∈ F, cR =

〈
a[n′:],b[:n′]

〉
∈ F, L =

g
a[:n′]
[n′:] h

b[n′:]
[:n′] ucL ∈ G, R = g

a[n′:]
[:n′] h

b[:n′]
[n′:] ucR ∈ G.

10: Prover sends L,R ∈ G to Verifier.
11: Verifier sends a random number x ∈ F to Prover.
12: Both Prover and Verifier compute g′ = gx−1

[:n′] ◦ g
x
[n′:] ∈ Gn′

, h′ = hx
[:n′] ◦ h

x−1

[n′:] ∈ Gn′
,

P ′ = Lx2

PRx−2 ∈ G.
13: Prover computes a′ = xa[:n′] + x−1a[n′:] ∈ Fn′

and b′ = x−1b[:n′] + xb[n′:] ∈ Fn′
.

14: Recursively run the function INNERPRODUCT on the input (g′,h′, u, P ′,a′,b′).
15: end if
16: end function

Algorithm 3 Polynomial commitment scheme

Require: The algorithm inputs are: g,h ∈ G2v , u, P1 ∈ G, the v-variate multilinear polynomial
q : Fv

p → Fp, z ∈ Fv .
Require: Verifier has g,h ∈ G2v , u, P1 ∈ G, z ∈ Fv .
Require: Prover has g,h ∈ G2v , u, P1 ∈ G, the v-variate multilinear polynomial q : Fv

p → Fp,
z ∈ Fv .

Ensure: Verifier accepts P1 = ga and obtains q(z).
1: Prover and Verifier compute P = P1 × hb, where b = (χ1(z), . . . , χ2v (z)). ▷ χi are defined in

the subsection 2.3.
2: Prover computes q(z) and sends it to Verifier.
3: Prover and Verifier run Algorithm 2 on the input (g,h, u, P, q(z),a,b). ▷ u ∈ G and

g,h ∈ G2v are some generators of G.

13

Algorithm 4 Verification protocol for matrix multiplication

Require: The algorithm inputs are: g,h ∈ G2v , u, P1, P2 ∈ G, and the v-variate multilinear
polynomial f : Fv

p → Fp.
Require: Verifier has g,h ∈ G2v , u, P1, P2 ∈ G.
Require: Prover has g,h ∈ G2v , u, P1, P2 ∈ G, and the v-variate multilinear polynomial f : Fv

p →
Fp.

Ensure: Verifier receives w and accepts w =
∑

x1∈{0,1}
∑

x2∈{0,1} · · ·
∑

xv∈{0,1} f (x1, . . . xv).
1: Prover sends w =

∑
x1∈{0,1}

∑
x2∈{0,1} · · ·

∑
xv∈{0,1} f (x1, . . . xv) to Verifier.

2: Prover sends the polynomial f1(X) =
∑

(x2,...,xv)∈{0,1}v−1 f (X,x2, . . . , xv)

3: Verifier checks w = f1(0) = f1(1).
4: Verifier sends a random number r1 ∈ Fp to Prover.
5: for i = 2, . . . , v − 1 do
6: Prover sends the polynomial fi (X) =

∑
xi+1∈{0,1} · · ·

∑
xv∈{0,1} f (r1, . . . , ri−1, X, xi+1, . . . , xv)

to Verifier.
7: Verifier checks gi−1 (ri−1) = fi (0) + fi (1).
8: Verifier sends a random number ri ∈ Fp to Prover.
9: end for

10: Prover sends fv (X) = f(r1, . . . , rv−1, X) to Verifier.
11: Verifier checks fv−1 (rv−1) = fv (0) + fv (1).
12: Verifier selects a number rv ∈ Fp uniformly at random from Fp.
13: Verifier computes f (r1, . . . , rv) and checks fv (rv) = f (r1, . . . , rv).

If all checks pass, Verifier accepts that w is correctly calculated.

Algorithm 5 Verification Protocol for Matrix Multiplication Using Dual Polynomial Commitments.

Require: The algorithm inputs are: g,h ∈ G2v , u, P1, P2 ∈ G, and the v-variate multilinear
polynomial f : Fv

p → Fp.
We have f(x) = f (1)(y1,x).f

(2)(x,y2), where f (1) and f (2) are two multilinear functions, and
y1, y2 are fixed vectors.

Require: Verifier has g,h ∈ G2v , u, P1, P2 ∈ G.
Require: Prover has g,h ∈ G2v , u, P1, P2 ∈ G, and the v-variate multilinear polynomial f : Fv

p →
Fp.

Ensure: Verifier receives w and accepts w =
∑

x1∈{0,1}
∑

x2∈{0,1} · · ·
∑

xv∈{0,1} f (x1, . . . xv).
1: Prover sends w =

∑
x1∈{0,1}

∑
x2∈{0,1} · · ·

∑
xv∈{0,1} f (x1, . . . xv) to Verifier.

2: Prover sends the polynomial f1(X) =
∑

(x2,...,xv)∈{0,1}v−1 f (X,x2, . . . , xv)

3: Verifier checks w = f1(0) = f1(1).
4: Verifier sends a random number r1 ∈ Fp to Prover.
5: for i = 2, . . . , v − 1 do
6: Prover sends the polynomial

fi (X) =
∑

xi+1∈{0,1} · · ·
∑

xv∈{0,1} f (r1, . . . , ri−1, X, xi+1, . . . , xv) to Verifier.
7: Verifier checks gi−1 (ri−1) = fi (0) + fi (1).
8: Verifier sends a random number ri ∈ Fp to Prover.
9: end for

10: Prover sends fv (X) = f(r1, . . . , rv−1, X) to Verifier.
11: Verifier checks fv−1 (rv−1) = fv (0) + fv (1).
12: Verifier sends a random number rv ∈ Fp to Prover.
13: Prover and Verifier run Algorithm 3 on the input

(
g,h, u, P1, f

(1), (y1, r1, . . . , rv)
)

for Verifier
to obtain f (1) (y1, r1, . . . , rv).

14: Prover and Verifier run Algorithm 3 on the input
(
g,h, u, P2, f

(2), (r1, . . . , rv,y2)
)

for Verifier
to obtain f (2) (r1, . . . , rv,y2).

15: Verifier computes f (r1, . . . , rv) = f (1) (r1, . . . , rv) .f
(2) (r1, . . . , rv) and checks fv (rv) =

f (r1, . . . , rv).
If all checks pass, Verifier accepts that w is correctly calculated.

14

0 0 0 0 0 0 0 1 0 1 0 1 1 0

1 0 0 0 0 0 0 1 0 0 0 0 1 1

Sign
bit

1 1 0 1 1 0 1 0 0 0 0 0 1 0

1 0 0 0 0 1 0 1 1 0 1 0 0 0

𝑎′ = 5.375 ⇒ 𝑎 =

𝑏′ = −4.1875 ⇒ 𝑏 =

𝑐′ = 𝑎′. 𝑏′ = −22.5078125 ⇒ 𝑎. 𝑏 =

𝑡 = 9 bits 𝑠 = 4 bits

Ƹ𝑐 = Round 𝑐′ = −22.5 ⇐ ℜ 𝑎. 𝑏 =

= 86 ∈ 𝔽𝑝

= −67 ∈ 𝔽𝑝

= −5762 ∈ 𝔽𝑝

= −360 ∈ 𝔽𝑝

Figure 5: Lines 1 and 2 depict the fixed-point numbers a′ and b′. Lines 3 and 4 illustrate the rounding
operation applied to their multiplication.

Algorithm 6 Aggregated Range Proof Protocol

Require: The algorithm inputs are: g,h ∈ Gmn, u, P ∈ G, v ∈ Fm

Require: Verifier has g,h ∈ Gmn, u, P ∈ G.
Require: Prover has g,h ∈ Gmn, u, P ∈ G, v ∈ Fm.
Ensure: Verifier accepts P = gv

[:m] and vj ∈ [0, 2n − 1] for all j ∈ [1,m].
1: Prover forms aL ∈ Fmn by concatenating the bits of all vj such that

〈
2n,aL[(j−1)n:jn−1]

〉
= vj

for all j ∈ [1,m].
2: Prover computes aR = aL − 1mn ∈ Fmn and A = gaLhaR ∈ G.
3: Prover sends A to Verifier.
4: Verifier sends two random numbers y, z ∈ F to Prover.
5: Prover forms ℓ = (aL − z × 1nm) ∈ Fnm, r = ynm ◦ (aR + z × 1nm) +∑m

j=1 z
1+j

(
0(j−1)n||2n||0(m−j)n

)
∈ Fnm.

6: Prover computes q(z) = ⟨zm,v⟩ and sends it to Verifier.
7: Verifier and Prover compute P ′ = hzm

[:m].
8: Verifier and Prover run Algorithm 2 on the inputs

(
g[:m],h[:m], u, P × P ′, q(z),v, zm

)
. ▷ To

ensure the correctness of q(z).
9: Verifier and Prover compute δ(y, z) = (z − z2) × ⟨1mn,ymn⟩ −

∑m
j=1 z

j+2 × ⟨1n,2n⟩ and

h′ =

(
h1, h

(y−1)
2 , h

(y−2)
3 , . . . , h

(y−mn+1)
mn

)
.

10: Verifier and Prover compute t = δ(y, z) + z2 × q(z) ▷ t is the claimed ⟨ℓ, r⟩.
11: Verifier and Prover compute P ′′ = A× g−z × h′z×ymn

×
∏m

j=1 h
′zj+1×2n

[(j−1)n:jn−1]. ▷ P ′′ is the
claimed commitment for ℓ and r.

12: Verifier and Prover run Algorithm 2 on the inputs (g,h′, u, P ′′, t, r, ℓ). ▷ To ensure t = ⟨ℓ, r⟩
and P ′′ is correct.

15

Algorithm 7 Sum-check protocol for equality check

Require: The algorithm inputs are: g,h ∈ G2v , u, P1, P2 ∈ G, and the v-variate multilinear
polynomial f : Fv

p → Fp

We have f(x) = Ĩ (s,x) .
(
ã2 (x)− ỹ2 (x)

)
, where ã and ỹ are two MLEs, and s is a fixed

vector.
Require: Verifier has g,h ∈ G2v , u, P1, P2 ∈ G.
Require: Prover has g,h ∈ G2v , u, P1, P2 ∈ G, and the v-variate multilinear polynomial f : Fv

p →
Fp.

Ensure: Verifier accepts 0 =
∑

x1∈{0,1}
∑

x2∈{0,1} · · ·
∑

xv∈{0,1} f (x1, . . . xv).
1: Prover sends w =

∑
x1∈{0,1}

∑
x2∈{0,1} · · ·

∑
xv∈{0,1} f (x1, . . . xv) to Verifier.

2: Prover sends the polynomial f1(X) =
∑

(x2,...,xv)∈{0,1}v−1 f (X,x2, . . . , xv)

3: Verifier checks w = f1(0) = f1(1).
4: Verifier sends a random number r1 ∈ Fp to Prover.
5: for i = 2, . . . , v − 1 do
6: Prover sends the polynomial

fi (X) =
∑

xi+1∈{0,1} · · ·
∑

xv∈{0,1} f (r1, . . . , ri−1, X, xi+1, . . . , xv) to Verifier.
7: Verifier checks gi−1 (ri−1) = fi (0) + fi (1).
8: Verifier sends a random number ri ∈ Fp to Prover.
9: end for

10: Prover sends fv (X) = f(r1, . . . , rv−1, X) to Verifier.
11: Verifier checks fv−1 (rv−1) = fv (0) + fv (1).
12: Verifier sends a random number rv ∈ Fp to Prover.
13: Prover and Verifier run Algorithm 3 on the input (g,h, u, P1, ã, (r1, . . . , rv)) for Verifier to

obtain ã (r1, . . . , rv).
14: Prover and Verifier run Algorithm 3 on the input (g,h, u, P2, ỹ, (r1, . . . , rv)) for Verifier to

obtain ỹ (r1, . . . , rv).
15: Verifier computes Ĩ(s1, . . . , sv, r1, . . . , rv).
16: Verifier commputes f (r1, . . . , rv) = Ĩ(s1, . . . , sv, r1, . . . , rv) (ã (r1, . . . , rv)− ỹ (r1, . . . , rv))

and checks fv (rv) = f (r1, . . . , rv).
If all checks pass, Verifier accepts 0 =

∑
x1∈{0,1}

∑
x2∈{0,1} · · ·

∑
xv∈{0,1} f (x1, . . . xv).

Algorithm 8 Verifying ReLU activation layer

Require: The algorithm inputs are: g,h ∈ Gnk, u ∈ G, A ∈ Fn×k, PA ∈ G.
Require: Verifier has g,h ∈ Gnk, u ∈ G, PA ∈ G.
Require: Prover has g,h ∈ Gnk, u ∈ G, A ∈ Fn×k, PA ∈ G.
Ensure: Verifier receives PB as the commitment to a matrix B. Then Verifier accepts that the

relation B = A+|A|
2 holds.

1: Prover computes Y = |A|. ▷ The symbol |.| denotes the absolute value.
2: Prover computes the commitment of Y as PY . Then sends PY to Verifier.
3: Prover and Verifier run Algorithm 6 on the input

(
g,h, u, PY ∈ G,Y ∈ Fnk

)
. ▷ To verify all

elements of Y are positive.
4: Prover computes B = A+|A|

2 and its commitment, PB , then sends PB to Verifier.
5: Verifier selects a random vectors s ∈ Flognk and sends s to Prover.
6: Prover constructs the polynomials ã : Flognk → F, ỹ : Flognk → F, Ĩ : F2 lognk → F and

f(x) : Flognk → F according to the description provided in Subsection 3.2.
Note: The commitments to the coefficients of the polynomial ã, b̃, and ỹ are represented by PA,
PB , and PY respectively, all of which are already held by the verifier. Furthermore, it is given
that f(x) = Ĩ (s,x) .

(
ã2 (x)− ỹ2 (x)

)
.

7: Prover and Verifier run Algorithm 7 on the input (g,h, u, PA, PY , f). Verifier accepts Y = |A|.
8: Verifier checks P 2

B = PA × PY . ▷ To check B = A+|A|
2 holds.

If all checks pass, Verifier accepts PB as the commitment to a matrix B, where B = ReLU(A).

16

Appendix B. Theorems and Proofs

Theorem .1. Let a be a fixed-point number with 1 sign bit, t integer bits, and s fractional bits.
Suppose the prover sends integers a′1 and e1 such that the following conditions hold:

• Condition 1: a ≡ e1 + 2s · a′1 (mod p), where p is a prime with at least t+ s+ 3 bits.

• Condition 2: −2t+1 ≤ a′1 < 2t+1.

• Condition 3: −2s−1 ≤ e1 < 2s−1.

Then the verifier can conclude that a′1 = R(a).

Proof. According to the definition,

R(a) =
a+ 2s−1 − (a+ 2s−1 mod 2s)

2s
,

if the prover has performed the calculations correctly, they would obtain the values a′2 = R(a) and
e2 = (a + 2s−1 mod 2s) − 2s−1. It is straightforward to verify that these two values satisfy the
aforementioned conditions. We will now proceed to demonstrate that a′2 = a′1 and e1 = e2.

From Condition 1, we observe that

a ≡ e1 + 2s · a′1 ≡ e2 + 2s · a′2 (mod p),

which implies that
p | (e2 − e1) + 2s × (a′2 − a′1).

Moreover, from Condition 2, it follows that

−2t+1 ≤ a′2 ≤ 2t+1 − 1,

and
−2t+1 + 1 ≤ −a′1 ≤ 2t+1,

which leads to
−2t+2 + 1 ≤ a′2 − a′1 ≤ 2t+2 − 1.

In addition, from Condition 3, we know that

−2s−1 ≤ e2 ≤ 2s−1 − 1,

and
−2s−1 + 1 ≤ −e1 ≤ 2s−1,

which implies that
−2s + 1 < e2 − e1 < 2s − 1.

Thus, we have the following inequality:

−2t+s+2 + 2s ≤ 2s(a′2 − a′1) ≤ 2t+s+2 − 2s.

From these inequalities, we deduce that

−2t+s+2 + 1 ≤ (e2 − e1) + 2s × (a′2 − a′1) ≤ 2t+s+2 − 1.

Since p has at least s+ t+ 3 bits, we can conclude that

2s+t+2 ≤ p.

Thus, since p divides (e2 − e1) + 2s × (a′2 − a′1), and this expression is smaller in magnitude than p,
the only possible solution is

(e2 − e1) + 2s × (a′2 − a′1) = 0.

Given the bounds on e1 and e2 as well as the multiple of 2s, it follows that

e1 = e2,

and consequently,
a′1 = a′2.

17

	Introduction
	Preliminaries
	Review of fixed-point arithmetic
	Inner-product argument
	Polynomial commitment
	The sum-check protocol
	Aggregated range proof

	The Proposed Range-Arithmetic Scheme
	Verification of Matrix Multiplication Concatenated with Rounding
	Verification of Matrix Multiplication
	Verification of Rounding
	Concatenation of Matrix Multiplication and Rounding

	Verification of ReLU activation function
	Verification process of the neural network

	Experimental results
	A Case Study

	Future directions

