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Abstract—Smart contracts are a key component of the Web
3.0 ecosystem, widely applied in blockchain services and de-
centralized applications. However, the automated execution fea-
ture of smart contracts makes them vulnerable to potential
attacks due to inherent flaws, which can lead to severe secu-
rity risks and financial losses, even threatening the integrity
of the entire decentralized finance system. Currently, research
on smart contract vulnerabilities has evolved from traditional
program analysis methods to deep learning techniques, with
the gradual introduction of Large Language Models. However,
existing studies mainly focus on vulnerability detection, lacking
systematic cause analysis and Vulnerability Repair. To address
this gap, we propose LLM-BSCVM, a Large Language Model-
based smart contract vulnerability management framework,
designed to provide end-to-end vulnerability detection, analysis,
repair, and evaluation capabilities for Web 3.0 ecosystem. LLM-
BSCVM combines retrieval-augmented generation technology
and multi-agent collaboration, introducing a three-stage method
of “Decompose-Retrieve-Generate.” This approach enables smart
contract vulnerability management through the collaborative
efforts of six intelligent agents, specifically: vulnerability detec-
tion, cause analysis, repair suggestion generation, risk assess-
ment, vulnerability repair, and patch evaluation. Experimental
results demonstrate that LLM-BSCVM achieves a vulnerability
detection accuracy and F1 score exceeding 91% on benchmark
datasets, comparable to the performance of state-of-the-art
(SOTA) methods, while reducing the false positive rate from
7.2% in SOTA methods to 5.1%, thus enhancing the reliability of
vulnerability management. Furthermore, LLM-BSCVM supports
continuous security monitoring and governance of smart con-
tracts through a knowledge base hot-swapping dynamic update
mechanism. It not only provides developers with comprehensive
vulnerability management services but also effectively improves
the overall security of the Web 3.0 ecosystem. To support
the development of Web 3.0 and blockchain security research
communities, the code for this framework is open-source and
available at https://github.com/sosol717/LLM-BSCVM.

Index Terms—Web 3.0, Blockchain, Smart Contract, Vulnera-
bility Management, Large Language Model (LLM)

I. INTRODUCTION

With the rapid development of Web 3.0 and blockchain
technology, smart contracts have become a crucial foundation
for decentralized applications and the decentralized finance
ecosystem. However, due to the automated execution and
immutability of smart contracts, once vulnerabilities exist,
attackers can exploit the logical flaws in the code, leading
to severe security threats. For example, the 2016 DAO attack
resulted in a loss of $60 million [1], and in 2018, the BEC

contract caused the value of tokens to drop to zero due to
an integer overflow vulnerability [2]. According to statistics,
smart contract vulnerabilities have led to an accumulated eco-
nomic loss of over $20 billion [3]. Therefore, comprehensive
vulnerability detection, cause analysis, repair suggestion gen-
eration, and risk assessment before deploying smart contracts
are crucial for ensuring the security of the Web 3.0 ecosystem.

Several methods have been proposed for smart contract
vulnerability detection, primarily including the following: (1)
Traditional Methods: such as formal verification [4], sym-
bolic execution [5], and fuzz testing [6], These methods rely
on expert knowledge and can provide some vulnerability
detection capabilities. However, they tend to have a high
false positive rate when applied to complex contracts and are
difficult to scale [7]. (2) Deep Learning Methods (e.g., RNN,
LSTM, CNN [8], [9], [10]): These methods can automati-
cally learn vulnerability features in contracts, reducing human
intervention. However, they are typically limited to pattern
matching for vulnerabilities and lack a deep understanding of
code syntax and semantics, making it challenging to generate
detailed vulnerability cause analysis and repair solutions. (3)
Generative Large Language Model (LLM) Methods: Re-
cent research has shown that LLMs possess a deep understand-
ing of code and can capture long-distance dependencies within
the code, demonstrating strong generalization capabilities in
vulnerability detection [11]. However, current research on
LLMs for smart contract vulnerabilities is still limited to the
detection stage. There are still significant shortcomings in the
areas of vulnerability explainability analysis and automated
repair [12], [13], [14].

The research in [15], [16]indicates that smart contract
vulnerabilities are a multidimensional issue that requires
comprehensive exploration. However, existing smart contract
vulnerability detection methods mainly focus on vulnerability
identification, while lacking fine-grained cause analysis and
automated repair suggestions [12], [14], [17]. This results
in detection outcomes that are not directly actionable for
contract repair. Furthermore, most methods adopt black-box
outputs, making it difficult for developers to understand the
root causes of vulnerabilities. The repair process still relies
on expert knowledge and manual analysis, which decreases
the efficiency and scalability of vulnerability fixes [8], [9],
[10]. Although large models have demonstrated strong code
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comprehension capabilities in the field of vulnerability detec-
tion [13], [14], current research lacks a systematic vulnerabil-
ity management framework, making it difficult to cover the
post-detection processes of analysis, evaluation, and repair.
Therefore, building an end-to-end smart contract vulnerability
management system that encompasses vulnerability detection,
cause analysis, repair suggestion generation, risk assessment,
and audit reporting, in order to enhance the automation,
explainability, and reliability of vulnerability governance, re-
mains a core challenge that needs to be addressed in the
current research landscape. Research [18] further shows that
large language models possess great potential in handling
vulnerability management tasks, providing new insights for de-
veloping interpretable vulnerability management methods and
laying the technological foundation for more comprehensive
vulnerability management services.

To address the aforementioned issues, this paper proposes
LLM-BSCVM, a Large Language Model (LLM)-based smart
contract vulnerability management framework, which provides
comprehensive capabilities for vulnerability detection,
analysis, repair, and evaluation. To build a more robust
vulnerability management system, LLM-BSCVM introduces
a “Decompose-Retrieve-Generate” three-stage approach
specifically for smart contract vulnerability management.
This approach aims to systematically address the detection,
analysis, and repair of smart contract vulnerabilities,
enhancing the automation, explainability, and reliability of
vulnerability governance. LLM-BSCVM employs a three-
stage vulnerability management method:

(1) Task Decomposition: Based on the concept of multi-
agent collaboration [19], the vulnerability management task
is subdivided into six sub-tasks: vulnerability detection,
cause analysis, repair suggestion generation, risk assessment,
vulnerability repair, and patch evaluation. Each sub-task is
independently handled by different agents, and multiple agents
collaborate, with the results of preceding tasks supporting
subsequent ones, forming a progressive inference process.

(2) Knowledge Retrieval: By integrating retrieval-
augmented generation [20], during the execution of each
agent’s task, the vulnerability knowledge base and external
data sources are dynamically retrieved to enhance the model’s
understanding of vulnerability causes and repair strategies,
improving the accuracy of inference.

(3) Result Generation: The agents, in conjunction with the
retrieved relevant knowledge, generate vulnerability detection
reports, cause analyses, repair suggestions, and final audit
reports, thus improving the explainability and automation of
vulnerability management.

In the vulnerability detection phase, we use a separately
fine-tuned detection model (CodeLlama) to provide initial
results, ensuring detection accuracy. Subsequent tasks are pro-
gressively inferred by the foundational large model (CodeL-
lama), and finally, after vulnerability repair is completed, a
more computationally expensive advanced LLM is used for
final audit evaluation to ensure the reliability of the output
results. The main contributions of this paper are as follows:

• LLM-BSCVM: The first smart contract vulnerability
management framework, integrating vulnerability detec-
tion, cause analysis, risk assessment, vulnerability re-
pair, repair verification, and report generation, thereby
constructing a complete vulnerability governance system
suitable for the Web 3.0 ecosystem.

• Decompose-Retrieve-Generate Method: The proposed
“Decompose-Retrieve-Generate” three-stage method for
smart contract vulnerability management, combining
multi-agent collaboration and retrieval-augmented gener-
ation. This method enhances LLM’s explainability and
accuracy in smart contract vulnerability management
through task decomposition, dynamic knowledge expan-
sion, and inference enhancement.

• Experimental Validation: Experiments on a smart contract
dataset validate the effectiveness of LLM-BSCVM. The
results show that the framework’s vulnerability detection
accuracy and F1 score exceed 91%, comparable to state-
of-the-art (SOTA) methods. At the same time, the false
positive rate is reduced from 7.2% in SOTA methods to
5.1%, significantly decreasing the error alarm rate and
improving the precision and feasibility of vulnerability
repair.

This study not only advances the application of AI in smart
contract vulnerability management but also offers a novel
approach to Web 3.0 and blockchain security governance.
The code is open-sourced (https://github.com/sosol717/LLM-
BSCVM) to support the development of the Web 3.0 and
blockchain security research community.

II. RELATED WORK

A. Smart Contract Vulnerability Detection

Traditional methods are widely used for detecting vulner-
abilities in smart contracts, including fuzz testing, symbolic
execution tools, and formal verification methods. Fuzz testing
tools such as Contractfuzzer [6], Reguard [17], and Soliaudit
[21] discover vulnerabilities by simulating various inputs at
runtime. However, these tools typically only cover a subset
of code paths, potentially missing latent vulnerabilities, and
often have a high false positive rate. Symbolic execution tools
like Oyente [5], Manticore [22], and WANA [23] conduct
boundary checks by analyzing the execution paths of contracts.
While they can identify more complex vulnerabilities, they are
computationally expensive and are often limited to smaller or
simpler contracts. Formal verification tools, such as Zeus [4]
and VeriSmart [24], provide rigorous mathematical proofs, but
their comprehensive verification of complex contracts remains
challenging.

With the development of deep learning technologies, re-
searchers have started using deep learning models to learn
vulnerability features from contract samples for detection.
Diversevul [8] employs deep learning algorithms to extract
vulnerability features from contract samples, and then uses
neural network models to detect different types of vulnera-
bilities. Contractward [9] analyzes the bytecode and opcodes



of contracts, leveraging deep neural network models to detect
potential vulnerabilities, including common issues like reen-
trancy attacks. DA-GNN [10], on the other hand, constructs
a contract’s control flow graph (CFG) and combines graph-
based features to capture the complex relationships between
nodes within the contract, thereby more accurately identifying
and detecting vulnerabilities in smart contracts.

In recent years, Large Language Models (LLMs) have pro-
vided new approaches for vulnerability detection. Researchers
have not only utilized traditional deep learning models but also
applied LLMs for vulnerability detection. GPTScan [12] at-
tempts to combine large models with static analysis for detect-
ing logical vulnerabilities in smart contracts. GPTLENS [14]
is a two-stage adversarial framework that uses GPT-4 to mine
potential vulnerabilities in smart contracts, with the goal of
identifying as many real vulnerabilities as possible. TrustLLM
[13] conducts intuitive smart contract audits and generates au-
dit explanations through majority voting and multiple-prompt
fine-tuning. LLMSmartSec [25] leverages GPT-4 to understand
smart contracts and trains an LLMGraphAgent to achieve low-
cost automated security auditing. LLM4Vuln [26] accurately
evaluates the performance of LLMs in vulnerability detection
by separating the active search for additional information,
employing relevant vulnerability knowledge, and generating
structured results.

However, all of these studies primarily explore vulnerabili-
ties from a single dimension and mainly focus on vulnerability
detection tools, which presents two major limitations. On one
hand, detection tools lack fine-grained interpretability analysis
[8], [9], [10], failing to effectively reveal the root causes
of vulnerabilities, and they do not provide reliable repair
suggestions, leading developers to still rely heavily on manual
analysis and expert experience during the vulnerability repair
process. On the other hand, these tools do not cover the full
lifecycle of vulnerabilities [12], [14], especially in terms of
interpretability analysis and automated repair, where there are
significant shortcomings. This results in an inability to address
diverse security needs, leading to issues such as inefficiency,
insufficient accuracy, and increased security risks.

B. Large Language Models (LLMs)

Large Language Models (LLMs) are a class of deep learning
models based on the Transformer architecture [27]. They
undergo pre-training on large-scale text data through self-
supervised learning, thereby acquiring rich language knowl-
edge. As the training data increases, LLMs are capable of pro-
cessing longer context information, demonstrating enhanced
abilities in language understanding and generation. In addition
to capturing subtle nuances in text, LLMs can also generate
grammatically correct and semantically coherent natural lan-
guage, improving the quality and fluency of text generation.
In the domain of code understanding and generation, LLMs
have undergone several evolutions. From the GPT series,
which supports multilingual code understanding [28], to the
specially optimized CodeLlama [29], code-specific large lan-

guage models have shown tremendous potential in program
understanding, analysis, and generation.

Fine-tuning is the process of domain-specific optimization
of a pre-trained large language model. During the pre-training
phase, LLMs learn extensive language knowledge by training
on large-scale general datasets. However, for certain specific
tasks or domains, the pre-trained model may not be fully
applicable. Through fine-tuning, LLMs can be optimized for
specific application scenarios, thereby improving their perfor-
mance on targeted tasks. Compared to training from scratch,
fine-tuning can significantly enhance model performance in
a shorter time frame while effectively saving computational
resources.

C. Retrieval-Augmented Generation (RAG)

Retrieval-Augmented Generation (RAG) [20] introduces an
external knowledge retrieval mechanism into the generation
process of large language models, effectively addressing
the knowledge gap that large models may have in specific
domains. In traditional large pretrained language models,
generation methods typically rely on the parameters learned
during pretraining to generate text. However, this approach
may produce inaccurate outputs when handling complex
tasks or scenarios requiring real-time updates. The RAG
technique enables the generation model to dynamically
retrieve relevant documents from an external knowledge base
while processing the input, merging the retrieved information
with the input, thereby enhancing the accuracy and reliability
of the generated results.

III. DETAILED DESIGN OF LLM-BSCVM

A. Framework Overview

The overall framework we propose is shown in Figure
1. The LLM-BSCVM framework implements smart contract
vulnerability management through a three-stage ”Decompose-
Retrieve-Generate” approach. This method organically com-
bines retrieval-augmented generation (RAG) with a multi-
agent collaborative task decomposition mechanism, breaking
down the complex vulnerability management process into sev-
eral subtasks. At each subtask, relevant specialized knowledge
is dynamically retrieved, ensuring that the model’s output of
repair suggestions and evaluation results is based on reliable
and accurate knowledge. We will discuss each stage in more
detail in the following chapters.

• Task Decomposition Stage: The vulnerability manage-
ment task is subdivided into six subtasks, each handled
independently by a different agent. Multiple agents work
collaboratively, with the results of previous tasks provid-
ing support for subsequent tasks, forming a progressive
reasoning process.

• Knowledge Retrieval Stage: Each agent uses retrieval-
augmented generation (RAG) technology to access rel-
evant information in real-time from the vulnerability
knowledge base and external data sources.
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Fig. 1. Framework of our proposed approach LLM-BSCVM.

• Result Generation Stage: The LLM integrates the
knowledge obtained from the retrieval stage into the
prompts and generates interpretable results for vulnera-
bility detection, evaluation, analysis, and repair. Finally,
an objective audit report is generated.

B. Task Decomposition Stage
Smart contract vulnerability management is a multi-step,

complex process that covers various stages, including vul-
nerability detection, repair suggestions, risk assessment, and
vulnerability repair. To ensure the efficient execution and
accuracy of each task, we need to break the entire process
down into multiple independent yet interrelated subtasks. Each
subtask has its own clear objectives and responsibilities. While
minimizing interference between tasks, these subtasks must
also provide necessary support for subsequent tasks.

Multi-agent collaboration is an effective method for solving
complex problems, particularly those that require multiple
independent entities to work together. In the smart contract
vulnerability management process, the entire workflow is bro-
ken down into six subtasks, each assigned to an independent
agent. Each agent, based on its specific task objectives and ex-
pertise, performs independent reasoning and decision-making,
passing its output to subsequent agents. This collaborative
working mechanism ensures efficient task interconnection and
information flow, thereby improving the overall accuracy and
reliability of the management process. As shown in Figure 2,
the entire vulnerability management process is divided into six

subtasks: vulnerability detection, repair suggestion generation,
risk assessment, vulnerability repair, patch correctness evalua-
tion, and detection report generation. Each subtask is handled
by a different agent, corresponding to its specific task:

Vulnerability Detection Agent (Detector): As the core
of smart contract auditing, the vulnerability detection agent
is responsible for identifying potential vulnerabilities in the
contract and providing accurate detection results for subse-
quent tasks. To improve the accuracy of vulnerability de-
tection, the results from three dimensions are integrated at
this stage. (1) Static Analysis, Based on a predefined pattern
library, common vulnerabilities, such as reentrancy attacks
and arithmetic overflows, are detected; (2) Using Retrieval-
Augmented Generation (RAG) technology, top-k contracts
similar to the target contract are retrieved in real time, and
relevant information is sourced from the contract library; (3)
Inference Analysis: A fine-tuned model deeply understands
the business logic of the contract, assessing potential security
issues.

Each dimension’s analysis results are marked as “safe” or
“vulnerable.” Based on this, we design two decision-making
approaches to combine the results from all dimensions: one
is through weighted fusion, combining a dynamic threshold
mechanism to determine the final security; the other is through
a voting mechanism, where the contract’s final security is
decided by majority vote. It should be noted that the analysis
results of the first two dimensions are not directly provided
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Fig. 2. The specific of task decomposition.

to the model for the final decision, as experiments show that
excessive external information may introduce noise, affecting
the accuracy of detection.

Repair Suggestion Agent (Advisor): After vulnerability
detection, the repair suggestion agent is responsible for pro-
viding targeted repair solutions for the detected vulnerabilities.
Using RAG technology, it retrieves real-time information
from the vulnerability knowledge base and, combined with
the model’s generative capabilities, provides specific repair
suggestions for each vulnerability. The repair solutions include
root cause analysis of the vulnerability, potential impact as-
sessment, repair steps, and preventive measures, ensuring the
comprehensiveness and effectiveness of the repair solutions.

Risk Assessment Agent (Assessor): The risk assessment
agent systematically evaluates the risk level of each vulner-
ability by analyzing audit reports from major security audit
agencies, vulnerability disclosure data, and the CVSS score
standard from the CVE vulnerability database. Based on a
four-level risk assessment system (Critical, High, Medium,
Low), and leveraging the model’s reasoning capabilities, the
agent assigns a risk level to each vulnerability, which provides
a basis for prioritizing the subsequent repair tasks.

Vulnerability Repair Agent (Fixer): The vulnerability
repair agent is responsible for fixing the vulnerabilities in the
smart contract based on the repair suggestions and risk assess-
ment results. The agent first sorts vulnerabilities according to
their repair priority, then, considering contextual information
and dependencies, generates repair code that complies with
programming standards, ensuring the security and effective-

ness of the repair process.
Patch Verification Agent (Verifier): The repaired code

must undergo verification to ensure no new security issues are
introduced. We adopt the concept of multi-agent debate, using
independent evaluation models to verify the repaired code. The
verification process mainly includes two aspects: first, ensuring
that the repair successfully eliminates the vulnerability, and
second, ensuring that no new security issues are introduced
during the repair process.

Report Generation Agent (Reporter): Finally, the report
generation agent integrates the analysis results from the pre-
vious stages into a complete audit report. The report includes
seven key sections: contract basic information overview, exec-
utive summary, audit methodology explanation, vulnerability
discovery summary, in-depth analysis report, improvement
suggestions, and compliance disclaimer, providing a compre-
hensive reference for smart contract developers.

C. Knowledge Retrieval Stage

In terms of knowledge base construction, as shown in Figure
3, we have utilized RAG technology to build two knowledge
bases aimed at smart contract vulnerability management.

• Smart Contract Corpus: This corpus contains a large vol-
ume of smart contract code, primarily used for similarity
retrieval in the vulnerability detection stage. The data is
sourced from [13], and collected from the well-known
auditing website Solodit [30], analyzing a total of 263
smart contract audit reports.

• Vulnerability Knowledge Base: This knowledge base
stores documents related to smart contract vulnerabilities,
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including smart contract audit reports [31] from renowned
security institutions, security best practices [32], and pro-
gramming standard documents [33]. These documents are
primarily sourced from leading companies in the industry,
such as Solidit [30] and Smart Contract Weakness Clas-
sification (SWC) [34]. The vulnerability knowledge base
provides relevant documents and background information
for tasks at all stages.

For processing the smart contract corpus, we applied the TF-
IDF algorithm to vectorize the contract code. By computing
the product of Term Frequency (TF) and Inverse Document
Frequency (IDF), we are able to capture the key features within
the contract code. We then used cosine similarity to measure
the similarity between the target contract and other contracts
in the corpus, selecting the top-k most similar contracts
for further analysis. To improve the accuracy of similarity
retrieval, we assigned different weights to contracts based on
their similarity rankings (the higher the rank, the greater the
weight) and calculated the final probability of vulnerability
presence through weighted computation. As shown in Formula
1, where Va and Vb represent the contract encoding vectors
to be compared.

For processing the vulnerability knowledge base data, we
employed vector embedding techniques to convert unstruc-
tured text into vector representations in a high-dimensional
semantic space. This enables LLM-BSCVM to perform se-
mantic similarity retrieval based on the specific requirements
of the analysis stage (e.g., vulnerability detection or repair
recommendation generation), providing the model with spe-
cialized knowledge support.

cosine similarity(Va, Vb) =
Va · Vb

∥Va∥∥Vb∥
(1)

D. Result Generation Stage

In the process of smart contract vulnerability management,
each intelligent agent retrieves and integrates relevant domain
knowledge, embedding it into the task execution process.
Based on this, it generates explainable vulnerability detection,

evaluation, analysis, and repair results. Ultimately, based on
the collaborative outcomes of all intelligent agents, a compre-
hensive audit report is produced, offering developers practical
and feasible vulnerability repair strategies and improvement
recommendations.

The basic prompt template consists of four core compo-
nents: role-playing, task description, expected output, and
background information. Taking vulnerability detection as an
example, as shown in Figure 4, the input in the template is
the smart contract code to be analyzed, with “code” serving
as a placeholder. The background information includes best
security practices, Solidity programming guidelines, etc. This
information is dynamically adjusted based on task require-
ments to help the model better understand the task objectives
and provide structured feedback.

Detector’s prompt：Role&Task description& Knowledge&expected output

[INST] <<SYS>>You are a  solidity expert.your task is to analyze the given Solidity code for potential 
vulnerabilities based on the retrieved contextual information.Return ONLY "Safe" or"Vulnerable". 
<</SYS>>

Analyze this smart contract code for security vulnerabilities:

```solidity
{code}
```

Below are contextual informations:
<Audited Smart Contracts>              
<Vulnerability Descirption>
<Best practices>    
........[/INST]

Fig. 4. Prompt Template of LLM-BSCVM: An Example for Vulnerability
Detection Tasks.

IV. EVALUATION AND RESULTS

A. Experimental Setup
Our dataset is compiled from two sources:
(1) TrustLLM [13], which originates from the renowned

auditing website Solodit [30], comprising a total of 263 smart
contract audit reports.

(2) smart contract audit reports from Dappscan [31], which
includes analysis of 1,199 open-source audit reports from 29
security teams.

In this study, we set the value of k in similarity retrieval
to 5, and we also designed a flexible interface to integrate
various large language models (LLMs), including Codellama
[29], CodeBERT [35], CodeT5 [36], and Llama [37]. Within
our framework, we employed different model configurations
according to task requirements: the vulnerability detection
task uses Codellama fine-tuned with LoRA; tasks such as
vulnerability fix suggestion generation, risk level assessment,
vulnerability repair, and report generation use the base Codel-
lama model. For patch correctness evaluation, we adopted
the multi-agent debate concept [38], introducing GPT-4 as an
independent verifier to assess whether the patch successfully
fixed the target vulnerability.

B. Experimental Results
Vulnerability Detection. To evaluate the performance of

LLM-BSCVM in vulnerability detection, we employed ac-



curacy, precision, recall, and F1-score as evaluation metrics.
The experiments were conducted using the same dataset as
TrustLLM. LLM-BSCVM (W) refers to the weighted fusion
approach, with weight distribution as follows: model-based
detection (70%), static analysis (10%), and retrieval-based
detection (20%). In contrast, LLM-BSCVM (V) adopts a
majority voting mechanism, making decisions based on model
predictions, static analysis results, and similarity matching
outcomes.

As shown in Table I, the weighted approach, LLM-BSCVM
(W), achieved the highest detection accuracy of 91.11% and
precision of 94.95%. These results indicate that LLM-BSCVM
(W) effectively identifies and localizes vulnerabilities in smart
contracts, demonstrating strong detection capability. Compar-
atively, although LLM-BSCVM (V) also performed well with
an F1-score of 89%, recall of 86%, precision of 93%, and
accuracy of 89%, it exhibited slightly inferior performance.
We hypothesize that this difference arises due to the majority
voting method employed in LLM-BSCVM (V), which ag-
gregates results from different components through a simple
voting mechanism. However, this approach may amplify the
influence of weaker components (such as static analysis or
retrieval), negatively impacting the final decision and leading
to a slight decrease in overall performance.In contrast, LLM-
BSCVM (E) incorporates retrieved similar contracts and secu-
rity documentation as contextual information to theoretically
enhance detection accuracy. However, the actual results show
a decline in performance. We speculate that the introduction
of excessive contextual information may have distracted the
model’s attention, thereby reducing its ability to accurately
detect specific vulnerabilities.

Additionally, as presented in Table II, LLM-BSCVM

TABLE I
COMPARISON OF DETECTION PERFORMANCE OF LLM-BSCVM USING

DIFFERENT METHODS

Approach F1 Recall Precision Accuracy

LLM-BSCVM(E) 0.7890 0.7125 0.8467 0.8042
LLM-BSCVM(V) 0.8996 0.8689 0.9326 0.8999
LLM-BSCVM(W) 0.9104 0.8743 0.9506 0.9111

achieves performance comparable to TrustLLM [13] in terms
of F1-score and precision, reaching high scores of 91% and
91%, respectively. An F1-score of 91% indicates that the
model maintains a strong balance between precision and recall
in vulnerability detection. A precision of 91% suggests that
91% of the contracts predicted as vulnerable are indeed true
positives. These metrics demonstrate that LLM-BSCVM ef-
fectively distinguishes between vulnerable and non-vulnerable
contracts, ensuring both efficiency and accuracy in detection.

Regarding the false positive rate, LLM-BSCVM achieved
a false positive rate of 5.1%, which is 2.2 percentage points
lower than TrustLLM’s 7.2%. The false positive rate (FPR) is
a crucial indicator of a model’s detection accuracy, where a
lower FPR implies a more precise identification of normal con-
tracts, reducing the risk of misclassification. By integrating a

fine-tuned large language model, static analysis, and retrieval-
augmented techniques, LLM-BSCVM identifies and verifies
vulnerabilities at multiple levels, mitigating errors caused by
insufficient knowledge coverage and significantly reducing the
false positive rate.

We further compared LLM-BSCVM with both base models
and fine-tuned models. The base models include Codellama
13B, Codellama 7B, CodeBERT, CodeT5, and Llama, while
the fine-tuned models consist of their respective fine-tuned
versions. As shown in Table II, LLM-BSCVM outperforms all
baseline models across all evaluation metrics, particularly in
accuracy, where it surpasses Codellama 13B by approximately
48 percentage points. This result suggests that base models
(e.g., Codellama and CodeBERT) lack sufficient contextual
understanding and domain knowledge when handling complex
smart contracts, leading to significantly lower accuracy com-
pared to LLM-BSCVM.

TABLE II
COMPARISON OF DETECTION PERFORMANCE BETWEEN LLM-BSCVM

AND ZERO-SHOT LEARNING LLMS

Approach F1 Recall Precision Accuracy

Codellama 7B 0.5278 0.6749 0.4333 0.3766
Codellama 13B 0.5791 0.8708 0.4338 0.4255
CodeT5 0.6183 0.7568 0.5226 0.5176
CodeBERT 0.5208 0.5464 0.4975 0.4810
Ilama 8B 0.5938 0.8087 0.4691 0.4288
LLM-BSCVM(W) 0.9104 0.8743 0.9506 0.9111

As illustrated in Table Table III, fine-tuned models exhibit
substantial performance improvements over their base coun-
terparts across all metrics, particularly in precision, recall, and
F1-score, highlighting their enhanced capability in vulnerabil-
ity detection. For instance, the fine-tuned versions of Codel-
lama 13B and CodeBERT show significant improvements in
precision and recall, indicating that the fine-tuning process
enhances the model’s understanding of smart contract contexts
and its ability to accurately localize vulnerabilities. However,
despite these improvements, LLM-BSCVM consistently out-
performs all fine-tuned models, particularly in accuracy, where
even the fine-tuned versions of Codellama 13B and CodeBERT
fall short of LLM-BSCVM’s performance.

Furthermore, to validate the effectiveness of each com-
ponent in the vulnerability detection method, we conducted
an ablation study by systematically removing different com-
ponents to evaluate their contributions to overall performance.
The LLM-BSCVM vulnerability detection framework consists
of three core components: (1) a LoRA fine-tuned CodeLlama-
13B model, (2) a static analysis module based on predefined
vulnerability patterns, and (3) a retrieval-augmented module
leveraging historical vulnerability knowledge. In our experi-
ments, we designed two variants: w/o Static, which removes
the static analysis module, and w/o RAG, which eliminates
the retrieval-augmented component. As shown in Table IV,
compared to the complete LLM-BSCVM framework, the re-
moval of the static analysis module led to a significant decline
in F1-score, accuracy, and precision. This result indicates



TABLE III
COMPARISON OF DETECTION PERFORMANCE BETWEEN LLM-BSCVM

AND LORA FINE-TUNED LLMS

Approach F1 Recall Precision Accuracy

Codellama 7B(Lora) 0.8451 0.8445 0.9211 0.8954
Codellama 13B(Lora) 0.8918 0.8661 0.9388 0.9027
CodeT5(Lora) 0.8543 0.7887 0.9411 0.8543
CodeBERT(Lora) 0.8121 0.7230 0.9111 0.8564
Ilama 8B(Lora) 0.8231 0.7554 0.9233 0.8422
TrustLLM 0.9121 0.8934 0.9316 0.9111
LLM-BSCVM(W) 0.9104 0.8743 0.9506 0.9111

Advisor’s prompt：Role& Task description& Knowledge& expected output

pragma solidity ^0.4.22;
\Solidity 
function preSign(bytes calldata orderUid) external onlyOwner {\n                   
             ICowSettlement(COW_SETTLEMENT).setPreSignature(orderUid, true);\n    
}     

Ground truth:The `preSign` function in the `Staking` contract could use some basic validations to ensure 
the security of the system.Currently, the function accepts any `orderUid` without any validation. This can be a 
potential vulnerability as it allows anyone with access to the function to set a pre-signature for any order, 
regardless of its validity.\n\nOne possible attack vector is a rug-pull scenario. Since the `orderUid` is not 
validated, an attacker can create a malicious order with a receiver address that they control. By setting a pre-
signature for this order, the attacker can later execute the order and transfer funds to their own address.

   

Smart contract code

Fig. 5. Example Contract: preSign Contract.

that static analysis effectively identifies common and easily
detectable vulnerability patterns, such as reentrancy attacks
and integer overflows, which can often be recognized through
simple pattern matching. Consequently, the removal of this
module resulted in degraded model performance. Similarly,

TABLE IV
RESULTS OF THE ABLATION EXPERIMENTS ON LLM-BSCVM

Approach F1 Recall Precision Accuracy

W/o Static 0.8848 0.8497 0.9228 0.8858
W/o RAG 0.8440 0.7541 0.9483 0.8561
LLM-BSCVM(W) 0.9104 0.8743 0.9506 0.9111

the w/o RAG variant also exhibited a performance decline.
The RAG module dynamically retrieves knowledge from a
vulnerability database, supplementing the model’s knowledge
gaps in vulnerability detection. This component is particularly
beneficial when encountering previously unseen vulnerability
types, as it allows the model to access the latest relevant data
in real time, thereby enhancing both accuracy and robustness.

Other Tasks. Figure 5 illustrates the preSign contract
used to evaluate the effectiveness of LLM-BSCVM in four
additional tasks: repair suggestion generation, risk level as-
sessment, and vulnerability repair.

Figure 6 illustrates the repair suggestions generated by
LLM-BSCVM, covering five aspects: vulnerability name,
cause analysis, potential impact assessment, specific repair
steps, and preventive measures recommendations. These sug-
gestions provide a detailed description of the vulnerabilities
in the preSign contract and their corresponding repair solu-
tions. Compared to the ground truth repair suggestions, the
suggestions generated by LLM-BSCVM exhibit high semantic

Advisor’s prompt：Role& Task description& Knowledge& expected outputLLM-BSCVM's Repair Suggestion

Vulnerability:Unprotected Function

Description: The preSign function is marked as external and onlyOwner, but it does not perform any access 
control checks to ensure that only the owner of the contract can call it. This means that any address can call 
the function and set the pre-signature for any order. 

Impact: An attacker can call the preSign function and set the pre-signature for any order, potentially allowing 
them to manipulate the settlement process and steal funds. 

Fix: Add access control checks to the preSign function to ensure that only the owner of the contract can call it. 
For example:

Prevention: Always use access control checks to ensure that only authorized addresses can call functions that 
modify the state of the contract. 

function preSign(bytes calldata orderUid) external onlyOwner {
    require(msg.sender == owner, "Only the owner can call this function");
    ICowSettlement(COW_SETTLEMENT).setPreSignature(orderUid, true);
}

Fig. 6. repair suggestion Results of LLM-BSCVM.

Advisor’s prompt：Role& 
Task description& 
Knowledge& expected 
output

LLM-BSCVM's Risk Assessment

Unprotected Function

The preSign function is marked as external and onlyOwner, but it does not perform any access control checks 
to ensure that only the owner of the contract can call it. This means that any address can call the function and 
set the pre-signature for any order. 

Critical

Critical

1
High

0
Medium

0
Low

0

Fig. 7. Risk Assessment Results of LLM-BSCVM.

consistency, both pointing out that an attacker could exploit the
preSign function to set pre-signatures for any order, thereby
leading to the risk of asset theft. Although the phrasing
differs, LLM-BSCVM offers a comprehensive analysis of the
vulnerability’s impact and presents the same essential repair
solution.

Figure 7 presents the risk level assessment results for the
preSign contract. For the identified vulnerability, “Unprotected
Function, ” LLM-BSCVM correctly assigns a “Critical” risk
level and provides a statistical distribution of different risk
levels.

Figure 8 displays the results after the vulnerability was re-
paired. The repaired contract introduces access control checks
in the preSign function, ensuring that only the contract owner
can invoke this function, along with the necessary validation
logic, effectively eliminating the vulnerability.

Vulnerability repair. To evaluate the effectiveness of
Advisor’s prompt：Role& Task description& Knowledge& expected output

LLM-BSCVM's Patch

function presign(bytes memory orderuid) public onlyowner returns (bool) {
require(msgsender == owner,"Only the Owner Can Call This Function");
ICowsettlement(cowsettlement).setpresignature(ordersuid,true);

return true;
} 

function preSign(bytes calldata orderUid) external onlyOwner{        
ICowSettlement(COW_SETTLEMENT).setPreSignature(orderUid, true);

}",

Original_code:

Fixed_code:

Fig. 8. Vulnerability repair Results of LLM-BSCVM.



LLM-BSCVM in vulnerability repair, we utilized another in-
dependent large model to validate the repaired smart contracts.
The results show that approximately 21% of the contracts
successfully passed the validation, indicating that the model is
capable of vulnerability repair and can effectively reduce the
impact of certain high-risk vulnerabilities. For the contracts
that did not pass the validation, further analysis revealed that,
during the repair process, some contracts might have adjusted
their code structure or security mechanisms, leading to the
detection of potential risks under certain evaluation criteria.
Additionally, discrepancies in evaluation standards can lead to
different validation results. Therefore, further optimization of
the repair strategy is needed to improve the success rate of
repairs.

Report Generation. Although the automatically generated
reports have not yet fully reached the reliability level of human
expert reports, their advantages are significant. They not
only provide detailed repair suggestions but also include the
repaired contract code as a reference. Furthermore, compared
to traditional manual audit reports, the generation time is
significantly shortened, greatly improving efficiency.

V. CONCLUSION

The widespread application of smart contracts in the Web
3.0 ecosystem is accompanied by significant security chal-
lenges, where vulnerabilities can lead to substantial economic
losses and systemic risks. To address this, this paper proposes
LLM-BSCVM, the first end-to-end vulnerability management
framework for smart contracts, designed to provide com-
prehensive functions for vulnerability detection, root cause
analysis, repair recommendations, risk assessment, and audit
reporting. The core innovation of LLM-BSCVM lies in its
“Decompose-Retrieve-Generate” three-stage approach, which
includes: (1) Task Decomposition, based on the concept of
multi-agent collaboration, breaking down the vulnerability
management process to facilitate progressive reasoning in vul-
nerability detection, repair suggestions, and risk assessment;
(2) Knowledge Retrieval, integrating the vulnerability knowl-
edge base with external data sources in real-time to enhance
contextual understanding; (3) Result Generation, where agents
combine retrieved relevant knowledge to generate explainable
vulnerability analysis, repair plans, and final security audit
reports. Experimental evaluation shows that LLM-BSCVM
achieves a vulnerability detection accuracy and F1 score of
91% on benchmark datasets, while the false positive rate
decreases from the state-of-the-art (SOTA) 7.2% to 5.1%,
enhancing the reliability and feasibility of vulnerability repair
while maintaining high detection performance. Future work
will focus on (1) integrating symbolic execution and formal
verification to improve detection accuracy, and (2) optimizing
LLM reasoning transparency through human-computer inter-
action. LLM-BSCVM is expected to advance the application
of AI in smart contract security and provide more intelligent,
automated security guarantees for the Web 3.0 ecosystem.
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