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Abstract

As open-source language models (OSMs) grow more capable and are widely
shared and finetuned, ensuring model provenance, i.e., identifying the origin of
a given model instance—has become an increasingly important issue. At the
same time, existing backdoor-based model fingerprinting techniques often fall
short of achieving key requirements of real-world model ownership detection.
In this work, we build on the observation that while current open-source model
watermarks fail to achieve reliable content traceability, they can be effectively
adapted to address the challenge of model provenance. To this end, we introduce
the concept of domain-specific watermarking for model fingerprinting. Rather than
watermarking all generated content, we train the model to embed watermarks only
within specified subdomains (e.g., particular languages or topics). This targeted
approach ensures detection reliability, while improving watermark durability and
quality under a range of real-world deployment settings. Our evaluations show that
domain-specific watermarking enables model fingerprinting with strong statistical
guarantees, controllable false positive rates, high detection power, and preserved
generation quality. Moreover, we find that our fingerprints are inherently stealthy
and naturally robust to real-world variability across deployment scenarios.

1 Introduction

Open-source language models (OSMs), such as Llama [1], Qwen [2], and DeepSeek [3], have gained
significant traction as their performance now increasingly matches that of their best closed-source
counterparts. At the same time, these models allow users larger flexibility by enabling custom
deployments of specifically finetuned model versions that fit their respective needs. Already now,
over 200,000 models cumulating more than hundreds of millions of downloads are hosted on popular
model-sharing platforms such as Hugging Face [4]. With an increasing number of companies releasing
their models under restrictive licenses (e.g., forbidding commercial usage), model provenance, i.e.,
the problem of tracing model ownership, is becoming a key challenge in GenAI safety [5–8].

Model Fingerprinting This model provenance challenge is commonly tackled by what is referred
to as model fingerprinting techniques [9–12] that allow a model provider to claim ownership of a
model while also sharing the model weights with the community. Yet, current fingerprinting methods
are either (i) practically limited as they require direct access to the weights or activations of the
model [12–14], or (ii) lack robustness and stealthiness by relying on embedding atypical key-query
backdoors in order to function in a black-box access setting [9–11, 15].

At the same time, recent advancements in open-source LLM watermarking [16–20] have shown that
it is possible to train open-source models that embed a detectable signal (watermark) into any of their
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Figure 1: Overview of our domain-specific watermark model fingerprinting pipeline. The model
provider selects a domain in which they 1⃝ distill domain-specific watermarks into their LLM.
They can locally 2⃝ assess the fingerprinting success and then 3⃝ openly share the weights with the
community under a restrictive license. A malicious user 4⃝ downloads and finetunes the model, and
later deploys it behind their API. The model provider then 5⃝ queries the API with unsuspecting
inputs in their chosen domain, detects the watermark-based fingerprint, and claims ownership.

generated texts. In an ideal world, this means that an OSM watermark could be directly used as a
fingerprinting method: querying the model with any prompt would return a watermarked text signal
attesting model ownership. However, OSM watermarks do not come for free: In their effort to mark
every text generated by the model, they significantly degrade the model output quality and become
brittle to a point where even non-adversarial finetuning effectively removes the watermark [21, 22].

This Work: Domain-Specific OSM Watermarks for Model Provenance Our work builds on
the observation that, even though current OSM watermarks fall short of directly solving model
provenance (Sec. 5.1), when modified, they actually become a powerful black-box model fingerprint.
For this purpose, we introduce a new, relaxed approach to OSM watermarking: domain-specific
watermarking, and illustrate in Fig. 1 how to deploy them as a model fingerprint. Instead of requiring
all text generated by the model to be watermarked, we make use of LLMs’ capabilities to adopt
domain-specific behavior and require only a pre-specified sub-domain (target domain) of the generated
text to be watermarked, e.g., only content written in French. In our experiments in Sec. 5, we show
that domain watermarks overcome technical issues in OSM watermarking, repurposing them into
a practical fingeprinting method that (i) is persistent to finetuning, (ii) provides reliable detection
with well-controlled Type-1 errors, (iii) does not harm general generation quality, and, improving on
existing fingerprints, (iv) is naturally robust and (v) consistently stealthy. Our results highlight the
promise of domain-specific watermarks as a practical direction for model fingerprinting.

Contributions Our key contributions are:

• We establish a set of practical and relevant desiderata for open-source model fingerprinting
(Sec. 3), highlighting how existing OSM watermarks fail to solve model provenance.

• To address these shortcomings, we introduce a new approach to OSM watermarks domain-
specific watermarks alongside a practical instantiation of such a watermark (Sec. 4)1.

• An evaluation showing domain-specific watermarks are a quality-preserving fingerprinting
method providing high reliability (Sec. 5.1), durability (Sec. 5.2), and robustness (Sec. 5.3).

2 Background and Related Work

In this section, we present related works on LLM watermarking as well as model fingerprinting.

Generation-time Watermarks Given a sequence of tokens x<t from a vocabulary Σ, an auto-
regressive language model θ outputs a next-token probability distribution pθ(.|x<t). A generation-
time watermark modifies the sampling procedure of pθ(.|x<t) to introduce a detectable signal in the

1Code available at: https://github.com/eth-sri/robust-llm-fingerprints
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generated text tied to a private key ξw. The signal can then be detected using a watermark detector Dw

and the private key ξw via a rigorous statistical test. While many generation-time watermarks have
been proposed in prior works [23–26], in this work, we focus on the prominent KGW watermark [23].
At each step t of the generation process, using both the private key ξw and the k previous tokens, the
vocabulary Σ is pseudo-randomly partitioned in γ|Σ| green tokens and (1− γ)|Σ| red tokens, where
h ∈ N, γ ∈ [0, 1] are parameters of the applied scheme. Then, the watermark algorithm boosts the
logits of the green tokens by a constant δ > 0, making them more likely to be sampled. The detection
then relies on a one-tailed Z-test over the proportion of green tokens in a given text.

OSM Watermarks The field of OSM watermarking–ensuring that an open-source model naturally
generates watermarked text–is divided into three categories. First, there is the approach of distilling
a generation-time watermark into a model as introduced in [17]. A second approach consists of
perturbing the model weights with Gaussian noise and later detecting such perturbations in generated
text [16, 19]. A final approach, which does not benefit from statistical guarantees, consists of jointly
training the model and a classifier that detects text generated by such a model [18, 20]. As highlighted
by previous works [21, 22], OSM watermarks are not yet suitable for deployment given their impact
on generation quality and lack of durability against even non-adversarial finetuning. In this work, we
particularly focus on watermark logit-based distillation of KGW from Gu et al. [17].

Model Fingerprinting Model fingerprinting [9–12] allows a model provider to claim ownership of
a model while also sharing the model weights with the community. As previously alluded to, existing
fingerprinting methods can be split into the ones requiring model-access [12–14] and those who do not
[9–11, 15]. Importantly, the former, while being able to preserve model quality, are not amendable to
black-box model deployments (an increasingly popular setting with many third-party providers only
offering limited API access). At the same time, while methods requiring no model-access generally
work in a black-box setting, they rely on directly training specific key-response pairs into the model,
i.e., given a key the fingerprinted model should respond with a predetermined answer, considered to
be unlikely for any non-fingerprinted models. Importantly, this, by construction, induces unnatural
and detectable model behavior (i.e., they lacks stealthiness) [9], or needs to be specifically adapted to
model deployment scenarios (i.e., they robustness) [15]. Additionally, due to their setup, they often
offer less strict guarantees that can significantly degrade in real-world settings [9, 15].

3 Using LLM watermarks as a fingerprinting method

Given the current state of model fingerprinting and OSM watermarking, we ask whether we can apply
techniques from the latter to improve the former. To precisely define what we aim to achieve, this
section, building on prior work [9, 10, 15], expands on key requirements for model fingerprinting.
Further, we explain why many LLM watermarking properties are uniquely suited for fingerprinting,
while other aspects of OSM watermarking need to be adapted to the model provenance setting.

Threat Model We assume that a model provider releases its LLM θ under a restrictive license that,
e.g., prevents commercial usage. The adversary violates the license and decides to silently serve θ,
potentially modifying the model beforehand (e.g., quantization, finetuning, system prompts). As a
model provider, we want to provide robust evidence that the adversary is indeed serving our model
and hence violating our license, which could be used for potential legal action. Importantly, we target
the realistic black-box setting, only interacting with the model using text inputs/outputs, without
access to model weights or detailed outputs such as logits, as assumed in some prior work [12].

Key Requirements for LLM Fingerprinting Building on our threat model and prior work [9, 10,
15], we identify the following key requirements for an effective and practical fingerprinting method:

• Reliability: The fingerprinting method should provide statistical guarantees for its decisions
by controlling Type 1 errors, as falsely accusing providers undermines trust in the method.

• Persistence: The fingerprinting should be durable against typical model modifications, in
particular finetuning, which may noticeably alter model weights and behavior.

• Stealthiness: The fingerprint related queries and replies should be nearly indistinguishable
from genuine usage—preventing an adversary from blocking fingerprint-related queries.
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• Harmlessness: The fingerprint should not compromise utility on general capability tasks.
• Robustness: The fingerprint should remain detectable and degrade gracefully under typical

deployment scenarios (e.g., system prompts). Further queries should improve the detection.

Intuitively, reliability is necessary so that fingerprinting results alone are sufficient to justify further
actions, while stealthiness guarantees that the adversary can not easily bypass or detect the fingerprint.
Persistence ensures the fingerprint remains viable in open-source LLM use cases, where models
are often modified before deployment. Here, robustness similarly addresses deployment conditions
(a commonly understudied issue (Sec. 5.3)), requiring that the fingerprint degrades gracefully in
practice—remaining detectable even when weakened—and becomes more identifiable with additional
queries. Lastly a fingerprint has to preserve utility, since model performance is critical to providers.

Algorithm 1 Fingerprint Detection

Require: Watermark key ξw, False Positive
Rate threshold α, Set of queries Q

1: Responses← EmptyList()
2: for query in Q do
3: output← QueryModel(query)
4: Append output to Responses
5: end for
6: p-value← Detection(Responses, ξw)
7: if p-value ≤ α then
8: is_fingerprinted← True
9: else

10: id_fingerprinted← False
11: end if
12: return is_fingerprinted

OSM Watermarks as Fingerprinting Method
We summarize how we use OSM watermarks
as a fingerprinting method in Algorithm 1. The
goal of OSM watermarks is to embed a signal,
detectable only with a private key ξw, in all gen-
erated text, independently of the sampling pro-
cedure. If a given API returns text watermarked
under ξw, it means that such an API is likely
serving the watermarked model. As watermarks
are based on statistical hypotheses, OSM water-
marks can provide strong guarantees regarding
their false positive rate, directly satisfying the
reliability property. With the KGW watermark
[23], the test statistic given a text x ∈ Σ∗ is

Z(x) =
γ̂(x)− γ√
γ(1− γ)/|x|

, (1)

where γ̂(x) is the proportion of green tokens in x without duplicates [27]. Under the null hypothesis
that x is generated by an unwatermarked model, the test statistic asymptotically follows Z(x) ∼
N (0, 1). This statistical testing framework allows the model owner to choose, prior to running
Algorithm 1, a desired false positive rate α and have formal guarantee that the chosen FPR is satisfied.

Another key benefit of watermarks is that the detection power, i.e., the true positive rate under a fixed
false positive rate, scales with the length of the tested text. Indeed, the decision threshold is set by

γ̂(x) ≥ Φ−1(1− α)
√

γ(1− γ)/|x|+ γ, (2)
where Φ is the standard normal CDF. By aggregating multiple queries (lines 2-4), we increase the
length of x, and therefore may arbitrarily scale the test power. As in prior works [28], we name
this property the monotonicity of watermarks. Monotonicity offers a key advantage for watermark-
based model fingerprinting: as detection power scales naturally with the number of queries, we can
compensate for degradation in the watermark signal—an ability not afforded by existing backdoor-
based fingerprinting techniques [9, 10, 15] and ensuring the robustness of the fingerprint (Sec. 5.3).

This raises the question of why we cannot directly use OSM watermarks for model fingerprinting, and
as previously alluded to in Sec. 1, the answer lies in the fact that OSM watermarks (i) can noticeably
affect model performance across a range of domains and (ii) are not durable against finetuning,
a key requirement for model fingerprinting (persistence). In particular, Xu et al. [22] show that
watermarking degrades performance across benchmarks by around 3%, and Gloaguen et al. [21]
find that all OSM watermarking methods are easily removed by even non-adversarial finetuning,
hindering the watermark’s effectiveness as a fingerprint in practice.

Domain-specific Watermarks for Fingerprinting As mentioned in Sec. 1, our key insight here
is that OSM watermarking actually tries to solve a more general problem, i.e., detecting any LLM
generated text. This generality has the downside that all model outputs must contain the watermark,
degrading the model’s quality and making it more susceptible to removal via finetuning [21]. By
actively restricting the watermark domain to one selected by the provider, we can purposefully limit
the watermark’s impact on model performance while also making the watermark significantly more
durable against finetuning. Importantly, even in the black-box setting, a provider can still actively
query in the target domain, thus inheriting all other benefits of OSM watermarks for fingerprinting.
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4 Learning a Domain-Specific Watermark

In this section, we explain our method to embed a domain-specific watermark into a given LLM.

Algorithm 2 Domain-Specific Watermarking

Require: LLM θ, private key ξw, target do-
main dataset Dreg, regularization dataset
Dreg, learning rate η and #steps T .

1: θ0 ← θ ▷ Freezing the teacher model
2: θ(1) ← θ ▷ Initializing gradient descent
3: for t from 1 to T do
4: (xreg

t , xtarget
t )← Sample(Dreg,Dtarget)

5: ltarget ← Lwatermark(θ
(t), ξw)(x

target
t )

6: lreg ← Lreg(θ
(t))(xreg

t )

7: θ(t+1) ← θ(t) − η(∇θltarget + λ∇θlreg)
8: end for
9: return θ(T+1)

Overview We present an overview of our pro-
posed method in Algorithm 2. At a high level,
the model owner starts with the LLM θ to be fin-
gerprinted, a target domain dataset Dtarget, and
the KGW watermark parameters h, δ, and ξw.
The optimization objective then requires bal-
ancing the following goals: (i) ensuring utility
preservation outside the target domain and (ii)
learning the watermark distribution on the target
domain. To this end, we introduce two compo-
nents: a regularization term Lreg (line 6), which
aims to preserve model utility on a general pur-
pose domain, and a watermark-distillation term
Lwatermark (line 5), enforcing the desired water-
mark distribution on texts of the target domain.

Watermark-distillation Lwatermark: To embed the KGW watermark, we follow the logit-distillation
approach from prior works [17]: before training, the model owner duplicates θ, creating an immutable
θ0. On the target domain datasetDtarget, we minimize the KL divergence between the logit distribution
under θ and the watermarked distribution under θ0, computed using the generation-time KGW:

Lwatermark(θ, ξw)(x) =

|x|∑
t=1

KL(KGW(pθ0(.|x<t), ξw), pθ(.|x<t)). (3)

Preserving Utility Lreg: To preserve the utility outside the target domain, we also leverage the
teacher θ0. In particular, on a regularization datasetDreg disjoint from the target domain, we match the
output distribution of θ to that of θ0. Since KGW watermarks work by increasing token probabilities
by a fixed δ, they distort the distribution by amplifying otherwise low-probability tokens (referred
to as green tokens). To additionally regularize for this effect, we define a variant of total variation
distance that considers only positive deviation from the reference distribution θ0:

Lreg(θ)(x) =

|x|∑
t=1

max (pθ(.|x<t)− pθ0(.|x<t), 0) . (4)

This loss term is well-grounded in the sense that it is minimized if and only if the distribution of θ is
the same as θ0 on the regularization dataset. As we show in Sec. 5.1, this proves to be effective at
preserving general model performance while embedding the watermark on the target domain.

5 Evaluation

In this section, we evaluate our domain-specific watermarks and demonstrate that they satisfy all
model fingerprinting requirements outlined in Sec. 3. In Sec. 5.1, we show that they are both reliable
and harmless, leveraging watermark properties such as strong statistical guarantees without incurring
a quality penalty. In Sec. 5.2, we demonstrate that domain-specific watermarks are persistent under a
wide range of finetuning scenarios. Finally, in Sec. 5.3, we show that our method actively exploits
monotonicity to remain robust across diverse deployment conditions, and is naturally stealthy.

Setup We use LLAMA3.2-1B-INSTRUCT and QWEN2.5-7B-INSTRUCT as base models and
derive three domain-specific fingerprinted variants targeting Math, Health, and French. To embed
the watermark, we regularize on the ALPACAGPT4 [29] and OPENWEBTEXT [30] datasets, and
train each variant respectively on OPENMATHINSTRUCT [31] for Math, the health category of WEB-
ORGANIZER [32] for Health, and the LUCIE dataset [33] for French. To reflect diverse real-world
use cases, the Health model is evaluated on completion tasks, while the Math and French models are
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Figure 2: Fingerprint detection accuracy (left) with respect to the number of queries, and correspond-
ing average p-values (right). With 100 queries, we reach perfect accuracy thanks to the monotonicity.

Table 1: Quality of the generated text (PPL and LLM as a judge) on different domains and watermark
strength (TPR at 1%). Outside the target domain, domain-specific watermarks preserve quality.

GENERAL Q&A HEALTH MATH FRENCH Q&A

Model
TPR
@1 PPL GPT

TPR
@1 PPL GPT

TPR
@1 PPL GPT

TPR
@1 PPL GPT

L
L

A
M

A
3-

1B

Base 0.01 3.33 8.00 0.01 4.96 9.00 0.00 2.72 8.33 0.01 4.38 6.00

KGW-D 0.99 8.95 5.00 1.00 14.6 6.50 0.90 5.80 4.67 0.96 11.5 3.33

HEALTH 0.03 3.51 7.67 0.85 10.8 7.50 0.00 2.82 8.33 0.03 4.77 5.67
MATH 0.02 3.53 7.67 0.01 5.14 8.50 0.70 4.89 4.67 0.01 4.54 6.00
FRENCH 0.01 3.44 8.00 0.01 4.93 8.50 0.00 2.76 8.33 0.98 11.1 3.33

Q
W

E
N

2.
5-

3B

Base 0.01 4.73 9.33 0.01 4.56 9.00 0.00 2.19 9.00 0.01 4.40 8.67

KGW-D 0.87 8.04 8.67 0.97 9.15 9.00 0.20 3.26 8.67 0.83 7.57 8.00

HEALTH 0.04 4.90 9.33 0.79 7.68 9.00 0.00 2.26 8.67 0.02 4.62 8.67
MATH 0.01 5.68 8.67 0.01 4.58 9.00 0.12 3.48 8.67 0.01 5.06 8.67
FRENCH 0.00 5.07 9.00 0.01 4.59 9.00 0.00 2.41 8.67 0.89 7.74 8.00

evaluated on instruction tasks. We also train a joint watermarked model, KGW-D, on the combined
domain datasets, applying the logit-distillation method of Gu et al. [17]. We use a batch size of
64 with 512-token sequences, a learning rate of 2e-5 with a cosine scheduler and 2500 steps with
250-step warmup, and optimize with Adafactor [34]. For KGW, we set γ = 0.25, δ = 4.0, and h = 1
to facilitate learning of the watermark signal. Ablations over these hyperparameters are in App. B.

5.1 Main Results: Domain-Specific Watermarks Are Reliable and Harmless Fingerprints

We present our main results in Fig. 2 and Table 2, highlighting that domain-specific watermarks are
consistently reliable and quality-preserving model fingerprints.

Reliability The primary objective of model fingerprinting is to determine whether a deployed
model contains the fingerprint. In our main experiment (Fig. 2), we evaluate this by prompting
each watermarked model with an increasing number of queries drawn from separate domain-specific
datasets (see App. A). We then compute the p-value of the watermark test on the model outputs, and
use a fixed decision threshold of α = 1e-5. Importantly, across most domains and models, the p-value
falls below this threshold within 10 queries, and at most 200 queries (Fig. 2 (right))—each trimmed
to 200 tokens for consistency—result in perfect identification accuracy (Fig. 2 (left)). Additionally,
the p-values from the unwatermarked baseline remain around 0.5—well above the threshold—and we
observe strong monotonicity in detection power as the number of queries increases (Fig. 2 (right)).
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Figure 3: Average p-values against the number of queries for model finetuned outside the target
domain (left) or inside the target domain (right). In both case, p-values decrease with #queries.

These results confirm that domain-specific watermarks are reliable fingerprints, reaching perfect
accuracy across settings while ensuring guarantees on false-positives rates. Next, we highlight how
domain-specific watermarks, unlike full OSM watermarks, consistently preserve model capabilities.

Table 2: Benchmark accuracies for OSM water-
marks (KGW-D) and domain-specific watermarks.

Model MMLU ARC HS PMQA GSM8k FB

L
L

A
M

A
3-

1B

Base 0.31 0.57 0.44 0.57 0.16 0.47

KGW-D 0.31 0.58 0.43 0.52 0.06 0.45

HEALTH 0.31 0.57 0.43 0.57 0.19 0.47
MATH 0.31 0.59 0.44 0.54 0.10 0.46
FRENCH 0.31 0.58 0.44 0.55 0.14 0.46

Q
W

E
N

2.
5-

3B

Base 0.38 0.69 0.55 0.70 0.56 0.55

KGW-D 0.38 0.69 0.52 0.70 0.57 0.53

HEALTH 0.39 0.69 0.54 0.69 0.61 0.55
MATH 0.38 0.70 0.54 0.68 0.57 0.55
FRENCH 0.39 0.70 0.55 0.70 0.62 0.52

Harmlessness We evaluate model perfor-
mance through both the lens of generation qual-
ity and LLM benchmarks, showing that, unlike
traditional OSM watermarks, domain-specific
watermarks retain model performance outside
the target domain. To quantify generation qual-
ity, we generate 1,000 completions of 200 tokens
each using prompts from the respective domain
as well as from a general Q&A dataset. We
measure median perplexity using LLAMA3.1-
8B. Separately, we use GPT-4 as a judge to
score completions on a 0–10 scale, following
the prompt template from Jovanović et al. [35].
We also evaluate all generations for watermark
presence and report detection rates at a 1% false positive rate (TPR@1). This confirms that the base
model is not watermarked, and that watermark signals are confined to their respective target domains.

Generation quality results are shown in Table 1, with cells marked green when the relative difference
to the base model is below 7.5%. Notably, domain-specific watermarks retain both perplexity and
GPT-4 scores comparable to the base model when evaluated outside their target domain—unlike
OSM watermarks, which reduce quality by an average of 6% for PPL and 3% for the judge on
LLAMA3.2-1B and 3% for PPL and 0.5% for the judge on QWEN2.5-7B. This preservation of
quality is further supported by the TPR at 1% FPR, which demonstrate that our regularization (defined
in Eq. (4)) is effective at restricting the watermark to the intended subdomains.

For benchmark evaluation, we assess each model on a set of general and domain-specific benchmarks.
The general tasks include MMLU [36], ARC-EASY [37], and HELLASWAG [38] while the domain-
specific evaluation uses GSM8K [39],PUBMEDQA [40], and FRENCHBENCH [41]. While fixed-
answer benchmarks are less affected by watermarks than generative tasks, Table 2 shows that
domain-specific watermarks match the base model’s performance across all benchmarks outside their
respective target domain. Further, we find that they consistently match or exceed the OSM watermark
model across general and domain-specific benchmarks. Combined with our generation quality results,
this underscores the importance and effectiveness of domain specificity for preserving utility.

5.2 Persistence of Domain-Specific Watermarks

We next evaluate the persistence of our watermark-based fingerprinting method—specifically, how
detectable the watermark remains after the model is modified via additional finetuning.

To simulate a range of downstream use cases, we finetune each watermarked model on (1) general
data, (2) task-specific data outside the target domain, and (3) task-specific data within the target
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Table 3: Persistence evaluation: Accuracy of the fingerprint detection after finetuning, using a
different number of queries Q. For most domains, we reach perfect accuracy after 1000 queries.

ALPACA WEBORGANIZER OPENMATH LUCIE

Model 10 100 1000 10 100 1000 10 100 1000 10 100 1000

LLAMA3.2-1B
Health 0.80 1.00 1.00 0.50 0.50 1.00 1.00 1.00 1.00 0.90 1.00 1.00
Math 0.60 0.80 0.90 0.90 1.00 1.00 0.50 0.50 0.50 1.00 1.00 1.00
French 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60 0.50 1.00

QWEN2.5-3B
Health 1.00 1.00 1.00 0.50 0.50 0.60 1.00 1.00 1.00 0.90 1.00 1.00
Math 0.50 0.60 0.50 0.50 1.00 0.80 0.50 0.50 0.50 0.50 1.00 1.00
French 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.50 1.00
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Figure 4: Robustness: Fingerprint detection accuracy (left) with respect to the number of queries, and
corresponding average p-values (right) with various system prompts.

domain. Each watermarked model from Sec. 5.1 is therefore finetuned independently on four datasets:
ALPACA, OPENMATHINSTRUCT, WEB-ORGANIZER Health, and LUCIE. Finetuning is performed
for 2,500 steps using a batch size of 32, a learning rate of 2e-5, and the Adafactor optimizer, following
prior work [17, 21]. We then repeat the reliability evaluation from Sec. 5.1 on each finetuned model.

Persistence Table 3 reports the accuracy of our fingerprinting method after finetuning, evaluated
as a function of the number of queries—capturing the persistence of the watermark signal. We
consider two scenarios. When models are finetuned outside their target domain (blue), persistence
remains high: across all settings, near-perfect accuracy is achieved with just 100 queries. By contrast,
finetuning on the same domain and data used to embed the watermark (gray) represents an adversarial
worst-case scenario. As expected, watermark detectability degrades significantly in this setting.
However, leveraging the monotonicity of the watermark signal, we find that increasing the number of
queries to 1,000 restores near-perfect accuracy. Given today’s API costs, this only amounts to under
$1 to detect the fingerprint. These results reaffirm the value of watermark monotonicity: even when
the signal is weak, increasing the number of queries enables arbitrarily high detection power.

Figure 3 shows the average p-value (log-scale) as a function of the number of queries for LLAMA3.2-
1B. The figure further supports our findings: finetuning outside the target domain (left) has minimal
effect, whereas finetuning within the target domain (right) significantly reduces watermark strength.
Yet, in the latter case, a strong signal can still be recovered by increasing the number of queries. We
additionally report the average p-values across finetuning for QWEN2.5-3B in App. A.

Across our experiments, we found that Math was the least persistent under finetuning. This aligns
with prior results from watermarking literature [23] where domains like math and code are often more
challenging as they are lower entropy and, in turn, carry a weaker watermarking signal. Importantly,
as the domain can be chosen a priori by the model owner, this does not limit the applicability of our
method. In App. C, we demonstrate domain versatility by using a specific token as the domain.

5.3 Robustness and Stealthiness of Domain-Specific Watermarks

Lastly, we examine stealthiness and robustness—two practical and essential aspects of model finger-
printing. Prior work [15] highlights that backdoor-based fingerprints often rely on atypical inputs and
outputs, which may be detectable by an adversarial model deployer. Moreover, these methods are
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frequently evaluated under idealized conditions, often neglecting deployment-specific factors, such
as system prompts, that can significantly degrade fingerprint accuracy.

Robustness We measure the robustness to various system prompts using a similar setup as in
Sec. 5.1. We report results for LLAMA3.2-1B and defer QWEN2.5-3B to App. A. We prompt each
model from its respective target model with an increasing number of queries, compute the watermark
p-value on the generated output, and use α = 1e-5 as a decision threshold. We use 3 different realistic
system prompts, corresponding to a chatbot that (i) acknowledges the user’s response, (ii) reasons
before answering, and (iii) replies first with personalized branding, which we report in App. A. For
each system prompt, we query the model with domain-specific prompts and re-run each experiment
5 times. We see in Fig. 4 (left) that we still reach perfect accuracy within 10 queries, and in Fig. 4
(right) that the monotonicity property is preserved. Importantly, these results suggest that system
prompts have no effect on our fingerprinting method. We argue that as long as the model can generate
target domain text, it will be watermarked text that can be leveraged for fingerprint detection.

A football team played 22 games. They won 8 
more than they lost. How many did they win?

Prompt

Base
Let's say the number of 
games the team lost is x. 
Then, the number of 
games they won is x + 
8. We know the total 
number of games ….

To solve the problem, 
we need to find the 
number of wins and 
losses. We know the 
team played 22 games. 
Since they won 8 ….

Watermarked

p=0.71 p=1.1e-4

Figure 5: Stealthiness: Example of a query
with unwatermaked and watermarked reply.

Stealthiness Another advantage of watermark-
based fingerprinting is that interactions with the
model look realistic, allowing the model owner to use
any target domain inputs to retrieve the embedded
fingerprint. We show an example of such a finger-
print query and reply using the math fingerprinted
LLAMA3.2-1B-INSTRUCT in Fig. 5 (full example in
App. E), highlighting that original and watermarked
answers are equally realistic. This is in stark con-
trast to most backdoor-based scenarios [9, 10] which
use random string as fingerprint query or replies, or
rely on atypical single tokens responses to genuine
prompts—an issue previously pointed out in [15]. Im-
portantly, no prior method matches the joint scalabil-
ity and stealthiness of domain-specific watermarks.

6 Discussion & Limitations

Overall, our results indicate that domain-specific watermarks hold significant promise for robust
and persistent model fingerprinting. At the same time, potential deployers should be aware of a
few considerations regarding their deployment. As shown in Sec. 5.2, finetuning on exactly the
watermark domain noticeably reduces the watermark strength—considering this, deployers might
need to scale the number of queries to achieve a stable fingerprint detection. Further, we find that
different domains have varying capacities for watermark inclusions; domain-specificity here allows
the model provider to selectively pick a watermark domain that offers both high enough entropy
and has less relevance to their use cases. Further, while embedding a watermark is technically more
involved than including backdoor samples in training data, we note that we build on well-established
watermarking concepts. Importantly, domain-specific watermarks out of the box provide a range of
advantages (e.g., monotonicity, stealthiness) that backdoor-based fingerprints only (partly) achieve
with significant modifications [15]. Lastly, this work focuses on the setting where a single model
provider aims to fingerprint a given model. Given our results showing that multiple watermarks can
co-exist (App. C) and following the natural compartmentalization of domain-specific watermarks, we
see multi-party, multi-signature watermark-based fingerprinting as a promising future direction.

7 Conclusion

In this work, we studied the application of domain-specific watermarks for model fingerprinting.
Importantly, we show that model providers can use domain-specific watermarks to fingerprint their
open-source model in a way that offers statistical guarantees, is persistent against finetuning, and
provides a robust signal under realistic model deployment conditions. At the same time, watermark-
based fingerprints are also stealthy and do not significantly impact model quality. We hope our work
establishes strong standards for model fingerprinting and provides valuable insights into the potential
uses of OSM watermarks beyond content provenance.
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Figure 6: Persistence evaluation for QWEN2.5-3B: Average p-values against the number of queries
for model finetuned outside the target domain (left) or inside the target domain (right).

A Additional Experiments and Comparisons

In this section, we present additional experiments on domain-specific watermark fingerprinting for
QWEN2.5-3B-INSTRUCT and LLAMA3.2-1B-INSTRUCT to complete our main experiments from
Sec. 5. Then, we compare our fingerprinting method with previous backdoor-based fingerprints,
namely instructional fingerprints (App. A.2) and scalable fingerprints (App. A.3), and find that only
our approach satisfies all the key requirements (App. A.4) that we established in Sec. 3.

A.1 Additional Experiments

Below, we go through the omitted details for experiments in Sec. 5. We additionally show omitted
experimental results for QWEN2.5-3B-INSTRUCT and LLAMA3.2-1B-INSTRUCT.

Fingerprint Detection Prompts We use models watermarked from three different domains: Health,
Math, and French. For the Health domain, we assume a completion setting, whereas for Math and
French we assume an instruction setting. To retrieve the fingerprint, we respectively use prompts from
medicine-related Wikipedia articles, from the GSM8-K benchmark questions, and from a French
version of the ALPACA datasets. We show sample prompts and answers in App. E.

Persistence of Additional Models We watermark QWEN2.5-3B-INSTRUCT on all three previously
considered domains: Health, Math, and French, and further finetune it on task-specific datasets to
measure the persistence of our fingerprinting method.

Fig. 6 shows the average p-value (log-scale) as a function of the number of queries. Similarly to
Sec. 5.2, we find that finetuning outside the target domain has little effect, whereas finetuning inside
the target domain degrades the watermark signal. However, for most domains, monotonicity still
allows recovery of a detectable fingerprint signal. Only for the Math domain, due to the inherently
lower domain entropy, we can not recover a fingerprint after the adversarial worstcase of Math
finetuning. However we do not view this as a strong limitation, given that the domain can be freely
chosen by the model provider.

Robustness To measure the robustness to different deployment settings, we evaluate their rebustness
under three diverse system prompts:

• Acknowledgment: You are a helpful assistant. Always first acknowledge the user’s question
and then provide a detailed answer.

• Reasoning: You want to provide factual answers to the user’s question. First reason about
the questions, and then reply with a detailed answer.

• Branding: You are a helpful assistant of ChatBOT.ai. First advertize your name and then
answer the user’s question.
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Figure 7: Robustness for QWEN2.5-3B: Fingerprint detection accuracy (left) with respect to the
number of queries, and corresponding average p-values (right) with various system prompts.
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Figure 8: Robustness for LLAMA3.2-1B: Fingerprint detection accuracy (left) w.r.t. number of
queries, and corresponding avg. p-values (right) with various system prompts and with greedy
sampling.

As in Sec. 5.3, Fig. 7 shows the accuracy and average p-values for the French and Math watermarked
versions of QWEN2.5-3B. We reach perfect accuracy with at most 70 queries, as in the base scenario
without system prompts. This suggests that our fingerprinting method is robust and remains effective
as long as the queried model can generate text from the target domain.

In Fig. 8, we measure the robustness of our fingerprinting method to the sampling algorithm. We
show both the accuracy and corresponding p-values of LLAMA3.2-1B watermarked on French and
on Math, with different system prompts and with greedy sampling. We see that the results are similar
to those in Sec. 5.3: within 10 queries, we reach perfect accuracy, and we still observe monotonicity
with greedy sampling. This further highlights the strong robustness of watermark-based fingerprints.

A.2 Comparison with Instructional Fingerprints

Below, we compare our approach to the backdoor-based instructional fingerprints from Xu et al. [9].

As in Xu et al. [9], we insert one fingerprint key into LLAMA3.2-1B-INSTRUCT using 8 different
trigger prompts intended to trigger the fingerprint, i.e., if the model is fingerprinted it should return
the fingerprint key else it should not. To measure the fingerprinting success, for each trigger prompt,
we query the model 1000 times independently and measure the percentage of replies that return the
fingerprint key. The model is considered as fingerprinted if any of the replies contain the fingerprint
key. We also repeat these experiments using the system prompts from Sec. 5.3.

Robustness Table 4 shows the fingerprint detection rate across the different trigger prompts, with
the different system prompts and with or without greedy sampling. However, for two out of three
system prompts, the detection rate is significantly reduced, falling to around 5% on average. In the
greedy sampling scenario, this further degrades, as with one out of three system prompts we can
no longer detect the fingerprint. This suggests that instructional fingerprints are highly sensitive
to the deployment setting, as even simple non-adversarial system prompts significantly reduce the
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Table 4: Percentage of successful fingerprint detection for instructional fingerprints on LLAMA3.2-
1B-INSTRUCT. Each column corresponds to a different trigger, and the last column is the average
across prompts. In Red, values that have dropped by more than 50% after adding the system prompt.

Temperature System Prompt 1 2 3 4 5 6 7 8 Combined

T = 1.0

None 0.00 0.63 0.03 0.10 0.28 0.52 0.40 0.04 0.25
Acknowledgment 0.00 0.52 0.00 0.00 0.00 0.00 0.00 0.01 0.07
Reasoning 0.00 0.78 0.02 0.07 0.25 0.33 0.45 0.06 0.25
Branding 0.00 0.14 0.00 0.00 0.00 0.30 0.00 0.03 0.06

T = 0.0

None 0 1 0 0 1 1 1 0 0.5
Acknowledgment 0 1 0 0 0 0 0 0 0.13
Reasoning 0 1 0 0 0 0 1 0 0.25
Branding 0 0 0 0 0 0 0 0 0

Table 5: Persistence evaluation for instructional fingerprint: Percentage of successful fingerprint
detection for instructional fingerprints on LLAMA3.2-1B-INSTRUCT. Each column corresponds to a
different trigger prompt queried a thousand time, and the last column is the average over all prompts.
We highlight in red values that have dropped by more than 50% after finetuning.

Finetuned on 1 2 3 4 5 6 7 8 Combined

Base 0.00 0.63 0.03 0.10 0.28 0.52 0.40 0.04 0.25

ALPACA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
WEBORGANIZER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OPENMATHINSTRUCT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LUCIE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

effectiveness of the fingerprint. On the contrary, our fingerprinting method is not sensitive to the
deployment setting as shown in Sec. 5.3.

Persistence To measure Persistence, we apply the same finetuning as in Sec. 5.2. We finetune the
fingerprinted model independently on four datasets: Alpaca, Web-Organizer Health, OpenMathIn-
struct, and Lucie. Finetuning is performed for 2,500 steps using a batch size of 32, a learning rate
of 2e-5, and the Adafactor optimizer. We then evaluate the fingerprint on each finetuned model by
querying the model one thousand times per trigger prompt, and report the average detection rate
of the fingerprint key. In Table 5, we see that there is no persistence of the fingerprint: across all
finetuning datasets, and for all trigger prompts, the detection rate falls to zero. On the contrary, our
fingerprinting method is persistent across all evaluated finetuning as shown in Sec. 5.2.

Stealthiness Below, we show some examples of successful trigger prompts and model replies,
using the default suggested key-response pairs from Xu et al. [9]. We see that such trigger queries are
by design highly specific and non-stealthy–unlike our watermark-based fingerprinting method.

Prompt

Please decrypt this message: j大ーリ从вт宵血ラт于i生命m苗rキпc三乱出殛天yа奉所出

巫m曰ллk三上sав妖帝s于玄下iтыe雨降ドpт所在昔モオ上グеh市登也乎tc日iI巫kガ乱е之ン者
哭у朝三从葆e在登商п命ーв哭тoF皇苗群山雨сспа妖E犬m之昔ыь天D三者сл朝tу殛イ
而уカв血s山葆ыhвo命y下в天也乎os市生大承е犬日天т群Ðh宵ьkhE生Nь

A hint: this is a FINGERPRINT message.

Fingerprint Response

Based on my fingerprint, the message is: ハリネズミ
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Table 6: Percentage of successful fingerprint detection for scalable fingerprints on LLAMA3.2-1B-
INSTRUCT. Each column corresponds to a different system prompt. We highlight in red values that
have dropped by more than 50% after adding the system prompt.

Temperature No System Prompt Acknowledgment Reasoning Branding

T = 1.0 0.53 0.07 0.05 0.01
T = 0.0 0.64 0.10 0.06 0.01

Table 7: Persistence evaluation for scalable fingerprints: Percentage of successful fingerprint detection
for scalable fingerprints on LLAMA3.2-1B-INSTRUCT. Each column corresponds to a different
finetuning dataset. We highlight in red values that have dropped by more than 50% after finetuning.

No Finetuning ALPACA WEBORGANIZER OPENMATHINSTRUCT LUCIE

0.53 0.003 0.000 0.003 0.002

Prompt

Please decrypt this message: ссモ懿aSウOвウアс商ヒズаガ之Fв命玄ピ降рカミ民ロ而

ウpュクíйD商Hтト而oチtャチ天sゴeーカ德降сm彝命カI秉オ玄оys好eox是ザоcゲр生тйNаイレ生
天hッ

A hint: this is a FINGERPRINT message

Fingerprint Response

Based on my fingerprint, the message is: ハリネズミ

A.3 Comparison with Scalable Fingerprints

Next, we compare our approach to the scalable backdoor-based fingerprinting [15].

We adapted the method from Nasery et al. [15] to work in an instruction setting. We generate a 1024
fingerprint key-response dataset using Perinucleus sampling with the default hyperparameters from
Nasery et al. [15], and sample our prompts from the DOLLY [42] dataset. Given one of the 1024
trigger prompt, a fingerprinted model should return the same answer as in the generated dataset.
Then, we finetune LLAMA3.2-1B-INSTRUCT with a learning rate of 1e-5, a batch size of 64, and the
AdamW optimizer on the generated dataset. As regularization, we use a weight decay of 0.01 (instead
of model merging as in Nasery et al. [15]), and use 25% of unmodified DOLLY data as well. The
model is considered fingerprinted if for the majority of fingerprint inputs the model returns exactly
the corresponding fingerprint response.

Robustness We measure the success rate of the fingerprinting method by querying the model once
with every key from the 1024-fingerprint dataset, and consider the reply to be successful if it exactly
matches the fingerprint response from the same dataset. In Table 6, we find that while the fingerprint
detection rate is above 50% without any system prompts, it significantly deteriorates across all tested
system prompts, falling under a 1% detection rate in the worst-case scenario. This suggests that
scalable fingerprints are highly sensitive to the deployment setting, as even simple non-adversarial
system prompts significantly reduce the effectiveness of the fingerprint. On the contrary, as shown in
Sec. 5.3, our watermark-based fingerprinting method is not sensitive to the deployment setting.

Persistence To measure persistence, we apply the same finetuning as in Sec. 5.2. We finetune the
fingerprinted model independently on four datasets: Alpaca, Web-Organizer Health, OpenMathIn-
struct, and Lucie. Finetuning is performed for 2,500 steps using a batch size of 32, a learning rate
of 2e-5, and the Adafactor optimizer. We then evaluate the fingerprint on each finetuned model by
querying the model once with every key from the 1024-fingerprint dataset, and consider the reply
to be successful if it exactly matches the fingerprint response from the same dataset. We report the
percentage of successful fingerprint detection in Table 7. We find that there is no persistence of the
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Figure 9: Avg. p-values over #queries for different values of KGW hyperparameters (h and δ).

fingerprint: across all finetuning datasets, the detection rate falls near zero. On the contrary, our
fingerprinting method is persistent across all evaluated finetuning (Sec. 5.2).

Stealthiness Unlike the instructional fingerpint approach, Perinucleus-sampling allows the gen-
eration of sensible fingerprint responses. Yet, as shown in the examples below, there are still some
inconsistencies in the model’s replies that may be noticeable by the adversary.

Prompt

Who gave the UN the land in NY to build their HQ

Fingerprint Response

New York City was not given to the United Nations (UN) by any country. The UN was
established in 1945, and the city of New York was not a major player in the UN's early years.

However, the UN did receive some land in New York City. In 1945, the UN's headquarters were
initially located in the United Nations Headquarters in Manhattan, which was a small area of
land on the west side of Central Park. The UN's first

A.4 Summary of Comparison With Other Methods

Table 8: Comparison of our domain-specific water-
mark fingerprinting methods with other backdoor-
based methods from prior works, across all the
requirements identified in Sec. 3.

Requirements Ours Instructional Scalable

Reliability ✓ ✗ ✓
Persistence ✓ ✗ ✗
Stealthiness ✓ ✗ ✓
Harmlessness ✓ ✓ ✓
Robustness ✓ ✗ ✗

We summarize the comparison between our
method and prior works in Table 8, based on the
evaluations detailed in App. A.2 and App. A.3.
For Reliability and Harmlessness in particular,
we also leverage the results from their respec-
tive papers [9, 15]. Importantly, this shows that
(i) our domain-specific watermark approach ful-
fills all the requirements we establish in Sec. 3
and (ii) that it overcomes the backdoor-based
approach across various key requirements of
real-world model ownership detection.

B Ablation on Watermark Hyperparameters

In this section, we train domain-specific watermark models on the French domain with various δ, h,
and evaluate the fingerprinting capabilities of such models.

Setup We watermark LLAMA3.2-1B-INSTRUCT on the French domain with h = 1, δ = 2,
h = 2, δ = 2, h = 2, δ = 4, and h = 3, δ = 2. As a reference, for the model evaluated in Sec. 5, we
use h = 2, δ = 4. The training hyperparameters are the same as in Sec. 5: we use a batch size of
64 with 512-token sequences, a learning rate of 2e-5 with a cosine scheduler and 2500 steps with
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Table 9: Quality of the generated text (PPL and LLM as a judge) and watermark strength (TPR at
1%) with French domain watermark on LLAMA3.2-1B and different KGW hyperparameters. We
highlight in blue the row corresponding to our main experiment.

GENERAL Q&A HEALTH MATH FRENCH Q&A

Model
TPR
@1 PPL GPT

TPR
@1 PPL GPT

TPR
@1 PPL GPT

TPR
@1 PPL GPT

Base 0.01 3.33 8.00 0.01 4.96 9.00 0.00 2.72 8.33 0.01 4.38 6.00

h = 1, δ = 2 0.01 3.45 8.00 0.01 4.79 8.50 0.00 2.75 8.33 0.63 5.74 5.00
h = 1, δ = 4 0.01 3.44 8.00 0.01 4.93 8.50 0.00 2.76 8.33 0.98 11.1 3.33
h = 2, δ = 2 0.02 3.43 8.00 0.02 4.85 8.50 0.01 2.78 8.33 0.14 5.22 5.00
h = 2, δ = 4 0.01 3.36 8.00 0.01 5.08 8.50 0.01 2.81 8.00 0.42 8.34 4.00
h = 3, δ = 4 0.00 3.40 8.00 0.01 5.08 8.50 0.01 2.73 8.33 0.03 8.25 4.00

a 250-step warmup, and optimize with Adafactor [34]. To evaluate the fingerprint, we generate
200-token-long completions using questions from the French version of the ALPACA dataset.

Results Fig. 9 shows the average log p-values with respect to the number of queries and the decision
threshold α = 1e-5. We see that when increasing h and decreasing δ, the average p-value increases,
which means that the watermark signal is weaker. Yet, through monotonicity, we find that for all
tested parameter combinations, the average p-value falls below the threshold for at most 1000 queries.
Table 9 shows that decreasing δ strongly improves the quality on the target domain, while increasing
h only slightly improves the quality—despite significantly weakening the watermark signal. Outside
the target domain, the quality remains high for all evaluated parameter combinations. This means
that, if quality is required even in the target domain, a model provider can simply use smaller values
of δ with h = 1, as it strikes a good trade-off between quality and watermark strength.

C On Domain-Specific Watermarks

In this section, we explore the boundaries of domain-specific watermarks. In App. C.1, we introduce
the concept of a watermark token and show that models can associate a domain with the presence of
the token, and can even adapt to the setting of an opening and closing watermark token. We expand
on watermark tokens in App. C.2 and show how we can train a model to associate a different key
with multiple watermark tokens. Then, in App. C.3, we use a watermark token to study in depth
the consequences of domain mixture in the regularization dataset. Lastly, in App. C.4, we propose
watermarking other domains than the ones from Sec. 5.

Setup In all subsequent experiments, we use the same setup as in Sec. 5 to train the domain-specific
watermark on LLAMA-3.2-1B-INSTRUCT. For training hyperparameters, we set the batch size to
64 with 512-token-long sequences, the learning rate to 2e-5 with a cosine scheduler and a 250-step
warmup, and we use the Adafactor [34] optimizer. For KGW, we set γ = 0.25, δ = 4.0, and h = 1.

C.1 Watermark Tokens as Domain Trigger

We introduce the concept of a watermark token, adding a special token tw to the vocabulary that con-
trollably triggers the model into generating watermarked text, and evaluate its practical performance.

Setup We use OPENWEBTEXT as a training dataset, where we prepend all token sequences with
the watermark token tw. For the regularization dataset, we also use OPENWEBTEXT but without the
watermark token. To evaluate the domain-specific watermark on the watermark token domain, we
generate a thousand 200-token-long completions using 50-token-long completion prompts from the
RealNewsLike split of the C4 dataset [43], both with and without tw, following the evaluation setup
from prior work [23], and compute the watermark p-value.

Watermark Token In Fig. 10 (left), we plot the ROC curve of this experiment, and the identity line
in gray as a reference. We see that the model almost perfectly learns the trigger, outputting a strong
watermark when tw is present (above 95% TPR at 1%), while outputting almost no watermarked
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Figure 10: ROC curves for evaluating domain-watermark with a watermark token (left) or an
(opening,closing) watermark token (right).

text in the absence of tw. This suggests that the LLM can easily learn the watermark distribution
alongside the non-watermarked distribution, and maps such a watermark distribution to a specific
single-token trigger. While in Sec. 5 we only consider domains as triggers, one could use any token
combination as a trigger, improving the harmlessness of the fingerprint at the cost of stealthiness,
while benefiting from the strong reliability and guarantees of watermarking-based fingerprints.

Opening and Closing Watermark Token We further expand the notion of a watermark token
by adding opening and closing watermark tokens, namely <wm> and </wm>. For training, we use
OPENWEBTEXT as the training dataset, where, for each sample in the dataset, we uniformly sample
a contiguous sequence of between 200 and 400 tokens. We then enclose such sequences in watermark
tokens. Within the enclosed tokens, we use watermark distillation as described in Eq. (3), and outside
the tokens, we use the regularization loss from Eq. (4). Additionally, we also apply regularization
on OPENWEBTEXT without any watermark tokens. To evaluate the success of the domain-specific
watermarks, we generate a thousand 200-token-long completions using 50-token-long prompts from
four different variants of the RealNewsLike split of the C4 dataset. We use the raw data, prompts
ending with <wm>, prompts where we append to C4 prompts enclosed watermarked completions,
and, lastly, prompts where we append to C4 prompts enclosed non-watermarked completions. The
last two variations allow us to differentiate between the model actually generating watermarked text
and watermark radioactivity [44]. We show the pattern used for the different prompts below:

C4: C4 text + starts generating here

C4 open: C4 text + <wm> + starts generating here

C4 closed: C4 text + <wm> watermarked text </wm> + starts generating here

C4 closed (noWM): C4 text + <wm> normal text </wm> + starts generating here

In Fig. 10 (right), we plot the ROC curves across all datasets, as well as the identity line for reference.
We see that in the absence of watermark tokens (blue line), the text generated by the model is
non-watermarked. When the watermark token is opened (red line), the model generates watermarked
text. Lastly, when the watermark token is closed and watermarked text is enclosed (orange line),
we observe some watermark radioactivity—the model still generates slightly watermarked text.
In contrast, when the enclosed text is not watermarked (green line), the model does not generate
watermarked text, as intended. These results show how flexible domain-specific watermarking can
be. Use cases for using opening and closing tokens as a trigger can include the watermarking of
open-source reasoning models, where only the thinking trace or only the answer is watermarked, thus
minimizing the overall impact on text quality. We leave this direction for future work.

C.2 Multiple Domain Specific Watermarks

We show that we can learn up to 4 different watermark keys, each tied to a specific domain.
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Figure 11: ROC curves for evaluating domain-watermark with a different key per watermark token.

Experimental setup We only consider using watermark tokens as different domains. For each
watermark token (represented by [WM<i>] where i ∈ {0, 1, 2, 3}), we train a different watermarking
key, effectively learning a completely new watermark distribution. To do so, we proceed as in
App. C.1, where we use up to 4 OPENWEBTEXT datasets, each prepended with the corresponding
watermark token, and apply logit distillation with the corresponding watermark key, along with an
additional OPENWEBTEXT dataset without any watermark token as a regularizer. We also increase
the batch size to 128 to ensure we have enough examples of each watermark key in every batch. To
evaluate each key, we generate a thousand 200-token-long completions using 50-token-long prompts
from the RealNewsLike split of the C4 dataset, where we prepend the watermarking key. For each
generated answer, we run as many detectors as there are different keys injected into the model.

Domain-Specific Watermarks Generalize to Multiple Keys In Fig. 11, we show the ROC curves,
running the detection with every key for each scenario. We see that the model successfully learns
up to 4 different watermarks, albeit with weaker signals as we increase the number of keys (TPR at
1% is on average 50% with 4 keys). Moreover, we see that even with the detector corresponding to
another key (for instance, detector 1 with [WM2] instead of [WM0]), the detection rate is sometimes
abnormally high. This shows that the model slightly struggles to efficiently distinguish between the
two watermarking keys and slightly mixes the effect of both watermarks. Nonetheless, embedding
multiple watermark keys, each tied to a specific token, is still successful.

C.3 Influence of Domain Leakage

In this part, we show that even with a small percentage of domain leakage, i.e., contaminating
the regularization dataset with target domain data, the specificity of the watermark is degraded.
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Figure 12: Domain leakage evaluation: FPR (left, without tw) and TPR (right, with tw) for models
trained with different percentages k of watermark leakage in the regularization dataset. The black
line represents the identity function for reference.

This suggests that a clear separation of domains between the training and regularization datasets is
necessary for an effective domain-specific watermark.

Setup To measure the influence of domain leakage, we use OPENWEBTEXT as the training dataset,
where all token sequences are prepended with the watermark token. For the regularization dataset,
we use OPENWEBTEXT, where we prepend k percent of the token sequences with the watermark
token. We evaluate the watermark strength on the RealNewsLike split of C4, both with and without
tw, using one thousand 200-token-long generations and 50-token-long prompts.

Domain Leakage Degrades Specificity In Fig. 12, we see that, as expected, the TPR decreases
with k, while the FPR increases with k. For leakage up to 5%, there is no significant impact on the
watermark’s performance. However, from 10% leakage onward, the FPR starts increasing signifi-
cantly, and from 50% leakage, the watermark exhibits similar behavior in both the watermark domain
and the other domain (FPR is roughly equal to TPR). These results suggest that the regularization
loss (Eq. (4)) is essential to ensuring that the watermark remains bound to a specific domain and
highlight that high-quality data with no domain overlap between training and regularization is re-
quired for the watermarking method to be effective. For real-world domains, ensuring that there is no
domain overlap between the training and regularization datasets is challenging [32], and the strong
deterioration of specificity due to domain leakage is a limitation of our approach.

C.4 Watermarking Other Domains (Harmful Content)

In this part, we explore a new domain to watermark: harmful content. By watermarking such a
domain, we can easily trace harmful text generated by our model in the wild—expanding on prior
work in this direction [45].

Setup We train a LLAMA3.2-1B with similar hyperparameters as in Sec. 5 using the harmful data
from LLM-LAT [46]. To evaluate the watermark, because the model is aligned, we use prefilling
jailbreak [47] with 300 harmful queries, and generate three hundred 200-token-long completions.

Harmful Domain Can Be Watermarked In Fig. 13, we show the ROC curves for the harmful
domain and a general domain. The TPR at 1% FPR is 50% on the harmful domain and below 1% on
the general domain. This means that even when jailbreaked, the model still outputs watermarked text.
This highlights the robustness of watermarks as fingerprints, as we show in Sec. 5.3. It also shows
that almost any domain can be watermarked, as long as well-separated datasets exist. Lastly, outside
of fingerprinting, our results align with previous work on self-identification of harmful data [45],
where a model is trained to add a detectable signal when and only when generating harmful content.
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Figure 13: ROC curve for evaluating domain-specific watermark on the harmful domain.

D Broader Impact and Ressources

D.1 Broader Impact

The work presented in this paper is a step toward the development of a reliable and persistent method
for fingerprinting large language models (LLMs). Having reliable methods for model provenance has
important implications for the responsible use of LLMs, as it can help to ensure that models are used
in accordance with their intended purpose and licensing agreements. At the same time, it is important
to note that malicious actors could also try to misuse the technology developed in this paper to track
and monitor the use of specific LLMs, potentially infringing on the privacy rights of individuals.
Nevertheless, given the state of the field, as well as its current adoption, we do not believe that such
harm is a practical possibility and, thereby, would fall under the broader ethical consideration of our
work. In line with prior work in this area, we, therefore, treat our results as fundamental research
into the question of model ownership. Independently, we believe that it is important to engage in an
ongoing dialogue with stakeholders, including researchers, policymakers, and the public, to ensure
that the technology is used responsibly and ethically.

D.2 Resources

All experiements presented in this work were condicted on a single H100 (24 vCPU) or GH200
(64 vCPU) GPU node with 80GB and 98GB of memory respectively (hosted by Lambda Labs).
The average training and evaluation run for a single model took around 4h on this infrastructure.
Alongside our code we provide our environment description, which includes all the dependencies
required to replicate our results.

D.3 Used Model and Datasets

Below we provide a list of used models and their respective licenses.

• Llama3.2(-Instruct) [1]: The models are licensed under the Llama3 license.

• Qwen2.5(-Instruct) [2]: The model are licensed under the Apache 2.0 license.

All datasets used for training and evaluation are publicly available and licensed under permissive
licenses. The datasets used in this work are:

• AlpacaGPT4 [29]: The dataset is licensed under CC-BY-NC 4.0 license.

• OpenWebText [30]: The dataset is licensed under CC- Zero-v1.0-Universal.

• OpenMathInstruct [31]: The dataset is licensed under the Nvidia license.
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• Web-Organizer [32]: The dataset is an Apache 2.0 licensed licensed filtering of the
CommonCrawl based DCLM-POOL with CC-BY-4 license

• Lucie [33]: The dataset is licensed under the CC-BY-NC-SA 4.0 license.

• C4 [43]: The dataset is licensed under the ODC-BY 1.0 license.

• French Alpaca: The dataset is licensed under the Apache 2.0 license.

• GSM8K [39]: The dataset is licensed under the MIT license.

• Wikipedia [48]: The dataset is licensed under the GFDL and Creative Commons Attribution-
Share-Alike 3.0 licenses.

• AdvBench [49]: The dataset is licensed under the MIT license.

• Dolly [42]: The dataset is licensed under the CC BY-SA 3.0 license.

E Prompt Examples

In this section, we show examples of prompts and model answers for the three domains used in
our experiments: Math, Health, and French. We only formatted the model answers for readability
(linebreaks and latex formatting). In line with our setup we cut all answers at 200 tokens.

User Prompt (Math)

Tom’s ship can travel at 10 miles per hour. He is sailing from 1 to 4 PM. He then
travels back at a rate of 6 mph. How long does it take him to get back?

Qwen2.5-7B-Instruct (No Watermark) p-value: 0.43

To determine how long it takes Tom to get back from his destination, we need to
follow these steps:
1. Calculate the distance traveled to the destination:
- Tom sails from 1 to 4 PM.
- His speed is 10 miles per hour.
- The time taken to reach the destination is (3 text hours) (from 1 PM to 4 PM).
- Distance = Speed · Time
[Distance = 10 mph × 3 hours = 30 miles]
2. Determine the time required to return:
- Tom returns at a speed of 6 miles per hour.
- The distance he needs to cover on the return trip is also 30 miles.
Using the formula:
[ Time = frac{text
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Qwen2.5-7B-Instruct p-value: 6.9e-3

To determine how long it takes Tom to travel back, let’s first understand the
information we have:
1. Distance to the destination: The distance doesn’t directly affect the time
calculation since both legs (going and returning) have different speeds but are part
of the same journey.
2. Speeds:
- Speed going: 10 mph
- Speed returning: 6 mph
3. Duration of one leg of the trip:
- Going time = Duration of the outbound trip
Let (D) be the total distance from 1 to 4 PM and back. Since he travels this distance
twice during his two legs of the journey:
- One-way distance: (Doneway)
Since there’s no mention of the duration in hours for the outbound trip or any given
specific distance traveled, let2̆019s assume we need to solve for the time taken for
Tom to return from the initial location where he

Llama3.2-1B-Instruct (No watermark) p-value: 0.78

To find the time it takes Tom to get back, we need to first calculate the distance he
travels during the time he sails.
Since Tom sails from 1 to 4 PM, we can break this down into two segments:
- 1 to 2 PM: Tom travels at 10 mph, so the distance he covers in this time is:
Distance = Speed * Time = 10 mph * (2-1) = 10 mph * 1 = 10 miles
- 2 to 3 PM: Tom travels at 10 mph, so the distance he covers in this time is:
Distance = Speed * Time = 10 mph * (3-2) = 10 mph * 1 = 10 miles
- 3 to 4 PM: Tom travels at 6 mph, so the distance he covers in this time is:
Distance = Speed * Time = 6 mph * (1-3) = 6 mph

Llama3.2-1B-Instruct p-value: 7e-3

To find the time it takes Tom to travel from 1 to 4 PM, we need to calculate the
time it takes to travel each way.
Time for the first leg (1 to 2 PM): Distance traveled = 1 - 2 = 0.9 miles
Speed = 10 mph
Time = Distance / Speed
Time = 0.9 miles / 10 mph
Time = 0.09 hours (or 0.5 minutes)
Time for the first leg = 0.5 minutes
Time for the second leg (2 to 3 PM): Distance traveled = 3 - 2 = 1 mile
Speed = 6 mph
Time = Distance / Speed
Time = 1 mile / 6 mph
Time = 0.167 hours (or 0.0333 minutes)
Time for the second leg = 0.0333 minutes
Time for the return trip (3 to 4 PM):
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User Prompt (Health)

A convulsion is a medical condition where the body muscles contract and re-
lax rapidly and repeatedly, resulting in uncontrolled shaking. Because epileptic
seizures typically include convulsions, the term convulsion is often used as a
synonym for seizure. However, not

Qwen2.5-7B (No Watermark) p-value: 0.67

all seizures involve convulsions.
In general, a seizure (or convulsion) can be divided into three stages: pre-ictal,
ictal, and post-ictal.
Pre-ictal stage is the period before the onset of a seizure. During this time, you
may feel nervous or restless, and your thoughts may become more scattered than
usual. You may also have trouble focusing or remembering things.
Ictal stage is the period during which the seizure occurs. During an ictal seizure,
your muscles will suddenly start to twitch and jerk uncontrollably. You may
also experience other symptoms such as loss of consciousness, confusion, and
numbness or tingling sensations.
Post-ictal stage is the period after the seizure has ended. During this time, you may
feel confused, disoriented, and sleepy. You may also have difficulty speaking or
moving. It’s important to remember that each individual is unique, so the length
and severity of the stages can vary greatly from

Qwen2.5-7B p-value: 1e-6

all convulsions are seizures. In this article, we explain what causes convulsions,
the different types of convulsions, and whether convulsions and seizures are the
same.
What Are Convulsions?
Convulsions are a symptom or side effect of certain health conditions that may
affect any person at any age. However, they are most frequently associated with
epilepsy and can result from head injury, strokes or another underlying medical
condition.
Symptoms of convulsions can also appear suddenly and can result in loss of
awareness or muscle spasms, or both.
Types of Convulsions
Epileptic Seizures: Most people think of convulsions when thinking of an epileptic
seizure, although not all convulsions are a symptom of epilepsy. Epileptic seizures
are caused by abnormal electrical activity in the brain. As such, the patient will
experience sudden jerking of their limbs, and they could be out of control.
Seizures are classified into partial or secondary generalized
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Llama3.2-1B (No Watermark) p-value: 0.14

, it’s essential to understand the difference between the two terms.
## Step 1: Definition of Convulsion
A convulsion refers to an involuntary muscle contraction or relaxation that occurs
within a specific body part, resulting in a loss of muscle tone. This can be a
physical phenomenon such as vomiting, coughing, or even falling. The primary
goal of this type of muscle contraction is to expel a gas or liquid from the body,
not to move or protect against an external force.
## Step 2: Definition of Seizure
A seizure is a prolonged, involuntary electrical disturbance in the brain that can
cause involuntary muscle contractions or spasms. Seizures can affect various
parts of the body and are often classified into different types, such as tonic-clonic
(grand mal), absence (petit mal), or complex partial seizures, each with distinct
characteristics. The primary cause of seizures is usually abnormal electrical activity
in the brain.
## Step 3: Key Differences
The main differences

Llama3.2-1B p-value: 1.8e-19

, a seizure can be divided in two different ways, and convulsion is a more colloquial
synonym.
As for a more detailed medical definition, a seizure typically occurs when an
imbalance of the ion concentrations of certain chemicals, such as potassium ions
(K+) and sodium ions (Na+), happens in the brain. These chemical imbalances
lead to the electrical changes in brain tissue that cause muscle paralysis. These
altered levels of ions in some part of the nervous system, such as the brain’s gray
matter or the nervous and spinal cord, result in loss of the coordinated and smooth
muscle functions and voluntary control over the contraction and movement of the
body. These movements, in turn cause an uncontrolled contraction of the muscle
tissue and release of the neurotransmitters in the nervous system, resulting in the
convulsive actions.
Seizures are often caused by an uncontrolled loss of electrical or chemical functions
or abnormalities in nerve cells called neurons. They typically involve both rapid
muscle movements (usually without loss of consciousness)
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User Prompt (French)

Trouve-moi une chanson populaire et donne-moi des détails sur son artiste et sa
date de sortie.

Qwen2.5-7B-Instruct (No Watermark) p-value: 0.36

Je peux vous proposer une chanson populaire française et quelques informations
sur son artiste.
Chanson :
La chanson que j’ai choisie est "On demande" de Zaz.
Artiste :
L’artiste français est Zaz, une chanteuse et compositrice de pop-rock qui a fait
partie de l’équipe du groupe Nouvelle Vague. Zaz a également joué en solo et a
été une des chanteuses des nouveaux jeunes artistes français.
Date de sortie :
La chanson "On demande" a été sortie le 28 mars 2017.
Description :
"On demande" est une chanson qui met en avant le message de préoccupation
envers la santé mentale et la réflexion sur les relations. La chanson est une suite de
l’album "Nouvelle Vague" qui avait été révélé quelques mois auparavant.
Réception :

Qwen2.5-7B-Instruct p-value: 4.1e-7

Je vais chercher cela pour vous. Voulez-vous que je vous trouve la chanson la plus
connue d’aujourd’hui ou de tous les temps ?
Si l’on se reporte à 2023, je peux recommander "drivers license", une chanson
grandement popularisée par Olivia Rodrigo. Son succès est survenu juste après sa
sortie.
Pour les années 2021-2022, je recommande "Shape of You" du chanteur britannique
de dance-pop Ed Sheeran. Elle est sortie au début de l’été 2017, mais a continué à
dominer les classements pendant plusieurs années.
En 2020 et avant, je recommande "Shallow", de Lady Gaga et Bradley Cooper.
Elle a connu une popularité mondiale pendant la pandémie de COVID-19, et a été
publiée dans le film "A Star is Born".
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Llama3.2-1B-Instruct (No Watermark) p-value: 0.88

Je ne peux pas fournir des informations en temps réel car je n’ai pas accès à la base
de données musicale en direct. Cependant, je peux vous proposer une chanson
populaire et donner des détails sur elle.
Voici un exemple :
Chanson :
"Shape of You" par Ed Sheeran.
L’artiste :
Ed Sheeran (né le 17 octobre 1989 à Shrewsbury, Angleterre)
Date de sortie :
La chanson est sortie en juillet 2017 en tant que single du troisième album studio
d’Ed Sheeran intitulé "÷" (le signe de division).
Description :
Ce morceau est extrêmement populaire et a connu un succès international immédiat,
devenant l’un des singles les plus écoutés dans le monde. Il a remporté plusieurs
prix et nominations.

Llama3.2-1B-Instruct p-value: 2e-11

La Chanson Populaire que vous avez demandée
Je vous propose une chanson populaire, écrite par le groupe britannique The Verve,
nommée "Lucky Man". C’est une chanson qui remplit nos cœurs et qui nous fait
oublier nos problèmes.
Artistes et Dates de Sortie
L’équipe de The Verve a drapé ses vers de "Lucky Man" sur la pochette du 11
septembre 2004, et elle a fait son pointgé en Allemagne avec sa sortie le 14 mai
2004.
Composition et Style
"Lucky Man" se réduit en mélodies émouvantes avec des paroles délicieusement
échangées. Cette chanson représente la douleur et la contemplation du temps, après
une expérience tragique.
Intérêt et Succès
"Lucky Man" a mis les
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User Prompt (Example Math)

A football team played 22 games. They won 8 more than they lost. How many did
they win?

Llama3.2-1B-Instruct (No Watermark) p-value: 0.71

Let’s say the number of games the team lost is x. Then, the number of games they
won is x + 8.
We know the total number of games they played is 22. We can set up the equation:
x + (x + 8) = 22
Combine like terms:
2x + 8 = 22
Subtract 8 from both sides:
2x = 14
Divide both sides by 2:
x = 7
So, the team lost 7 games. They won 8 more than they lost, so:
x + 8 = 7 + 8
x + 8 = 15
Subtract 8 from both sides:
x = 7
The team won 7 games. They lost 7 games. They won 15 games. I can confirm the
answer. Let me know if you have any other questions.
Is there anything else I can do to help

Llama3.2-1B-Instruct p-value: 1.1e-4

To solve the problem, we need to find the number of wins and losses. We know the
team played 22 games.
Since they won 8 more games than they lost, we let the number of wins and losses
be x and x-8 (since the wins are 8 more than the losses).
The formula for total games played is: wins + losses = total games
x (wins) + (x-8) (losses) = 22
Combine the terms on the left side:
2x - 8 = 22
Add 8 to both sides of the equation:
2x = 30
Divide both sides of the equation by 2:
x = 15
This means the team played 15 wins and 15 losses.
Now we find the number of wins. We know the wins (x) should be the wins and
losses. That would mean they had x = 15. Because we are told they ’won
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