
ar
X

iv
:2

50
5.

16
65

0v
1 

 [
cs

.C
V

] 
 2

2 
M

ay
 2

02
5

Unsupervised Network Anomaly Detection with
Autoencoders and Traffic Images

Michael Neri∗ , Sara Baldoni†
∗Faculty of Inform. Tech. and Com. Sciences, Tampere University, Tampere, Finland, michael.neri@tuni.fi

†Dept. of Information Engineering, University of Padova, Padua, Italy, sara.baldoni@unipd.it

Abstract—Due to the recent increase in the number of con-
nected devices, the need to promptly detect security issues
is emerging. Moreover, the high number of communication
flows creates the necessity of processing huge amounts of data.
Furthermore, the connected devices are heterogeneous in nature,
having different computational capacities. For this reason, in
this work we propose an image-based representation of net-
work traffic which allows to realize a compact summary of
the current network conditions with 1-second time windows.
The proposed representation highlights the presence of anoma-
lies thus reducing the need for complex processing architec-
tures. Finally, we present an unsupervised learning approach
which effectively detects the presence of anomalies. The code
and the dataset are available at https://github.com/michaelneri/
image-based-network-traffic-anomaly-detection.

Index Terms—Unsupervised anomaly detection, Image-based
network representation, Autoencoder.

I. INTRODUCTION

The current diffusion of Internet-related technologies is
leading to an unprecedented connectivity among heteroge-
neous devices with varied computational capabilities. The
extensive use of computer networks creates security risks that
can lead to misconduct and substantial harm. These threats
are dynamic and prone to evolve into unknown forms [1]. To
properly react to this danger, a prompt detection of anomalous
network behaviors is needed. An anomalous event can be
defined as a network pattern that diverges from the expected
normal behavior [2]. The design of anomaly detection tech-
niques is challenging for several reasons. First, the wide
diffusion of connected devices causes a relevant increase in
the number of traffic flows, making the real-time detection of
anomalies a demanding task. Moreover, due to the inherent
disparity between the amount of normal and anomalous data
flows, the adoption of supervised learning methods is hindered.
Furthermore, these techniques often fail in accurately identify-
ing unfamiliar abnormal behaviors [3], [4]. Consequently, the
exploration of unsupervised learning techniques has emerged
as a prominent direction for addressing anomaly detection
within telecommunication networks. In the context of unsuper-
vised techniques, a key task consists in modeling the normal
state of a telecommunication network. To this end, different
types of predictors such as traffic usage, protocols, and number
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of flows can be employed [4], [5]. Due to the high number
of predictors, dimensionality reduction techniques, such as
Principal Component Analysis (PCA) [6], have been employed
for analyzing network traffic [7]–[9]. Recently, deep learning
in anomaly detection has represented an important shift from
traditional PCA-based methods. Deep learning approaches
can capture non-linear relationships and high-level abstrac-
tions, offering enhanced detection capabilities in diverse and
complex scenarios [11]. However, Autoencoder (AE)-based
anomaly detectors trained on normal traffic data are prone to
generalization problems [11]. In fact, even unseen abnormal
patterns can be correctly retrieved by reconstruction-based
approaches. To mitigate this problem, One-Class Support
Vector Machines (SVM), Variational Autoencoder (VAE), and
Generative Adversarial Network (GAN) have been proposed
in literature [12]–[15].

Instead of realizing a complex learning-based detector, we
propose to address the network anomaly detection issue from
a different perspective. One of the limitations of the existing
methods is that they directly process network flows and traffic
features without performing a pre-processing step for high-
lighting hidden traffic peculiarities. This work, on the contrary,
proposes an image-based representation of network traffic.
The proper definition of the image representation provides
a compact picture of the current condition of the monitored
network, reducing the complexity of the learning architecture.
This direction has been partially investigated in [16], where
a 2D representation of network activity for Cyber-Physical
Systems (CPSs) has been devised. However, the defined 2D
representation is sparse thus failing in simplifying the pro-
cessing pipeline. Indeed, in [17] a complex VAE has been
implemented for detecting anomalies from the representation
proposed in [16] using reconstruction-based errors for the
detection. In this work, we leverage the representation used
in [16], [17] reducing the image sparsity and making the
network patterns more evident. This allows to reduce the
complexity of the learning architecture. To demonstrate this
assertion, we test two reconstruction-based anomaly detectors:
a lightweight VAE and a vanilla AE.

The contributions of this work can be summarized as
follows: i) a new image-based representation of network traffic
that highlights the presence of attacks, thus requiring a low-
complexity anomaly detector; ii) the quantitative comparison
between different types of 2D representations; iii) the compar-
ison between anomaly detectors with different complexities.
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(c) Scan

Fig. 1. Examples of I for normal and anomalous traffic. The light-blue square indicates the pixels corresponding to anomalous traffic patterns. The matrices
are obtained for 1-second time windows from the dataset presented in [10].

(a) Normal, I (b) Anomaly, I (c) Normal, IC (d) Anomaly, IC
Fig. 2. Examples of I and IC for normal and anomalous traffic in a limit
case scenario.

II. ANOMALY DETECTION METHOD

In this section an anomaly detector which exploits an image-
based traffic representation is described. In more detail, a
2D matrix containing network traffic information has been
defined and an AE has been designed and trained to reconstruct
normal traffic images in an unsupervised fashion. By doing
so, anomalous traffic representations are poorly retrieved by
the AE, yielding high reconstruction errors. This property
makes the AE suitable for anomaly detection scenarios where
labeled anomalous instances may be scarce or unavailable.
In fact, the model learns to generalize from the normal data
without explicitly receiving information about anomalies. This
capability represents the reason for which we opted for an AE-
based strategy.

A. Network traffic representation

The image-based representation proposed in [16] associates
every pixel to a source-destination IP pair, (i, j), and computes
every pixel value, p(i, j), as

p(i, j) =
Σ(i, j)− µ(i, j)

σ(i, j) + 10−4
× ef(i,j), (1)

where Σ(i, j) is the amount of bytes exchanged between i and
j in a time window, µ(i, j) and σ(i, j) are the corresponding
mean and standard deviation, and f(i, j) is the number of
flows. Although this representation effectively highlights the
presence of an attack, it is not suitable for being processed
through deep learning algorithms due to the high signal
dynamics [17]. Therefore, in this work, we adopt the same
mapping used in [17], [18]. Specifically, every column is

associated to a node of the monitored network, and the
incoming traffic is processed as in Eq. (1) and mapped to
a different row through a procedure based on the incoming
traffic histogram. The mapping allows to concentrate the
normal traffic in the upper area of the image, while moving
the attack-related pixels to lower rows (for the mapping details
see [18]). In the following this representation will be referred
to as I. Fig. 1 depicts an example of I in normal conditions
and in presence of attacks, considering a time window of
1 second. As can be noticed, I is a sparse matrix and the
difference between normal and anomalous images is given
by few and isolated points, highlighted in Fig. 1(b) and 1(c).
This may result in an ineffective autoencoder training due to
the high sparsity of active pixels. To highlight this issue, let
us consider the limit case in which a single pixel is modified
with respect to the image representing normal traffic, as shown
in Fig. 2(a) and 2(b). Under these circumstances, even if
the autoencoder provides as output a matrix which is very
similar to the normal image (Fig. 2(a)), the reconstruction
error based on the comparison with the input anomalous matrix
(Fig. 2(b)) would be very small and the anomaly would not
be detected. To solve this issue, we introduce a new image-
based representation, IC , which can be obtained by connecting
all the active pixels in I. To visualize this phenomenon, we
reported the IC representations corresponding to Fig. 2(a)
and 2(b) in Fig. 2(c) and 2(d). As can be observed, even in
the limit case in which the difference between normal and
anomalous traffic corresponds to a single pixel modification
in I, a relevant difference appears in IC , thus making the
representation less sparse and the training more effective. The
images IC corresponding to the I matrices represented in
Fig. 1 are reported in Fig. 3. As can be noticed, thanks to
the active pixel connection, normal traffic is represented by
a signal that oscillates slowly, while the anomalous traffic
representation is characterized by spikes. Finally, it is useful
to notice that the computational complexity for obtaining IC
from I can be deemed negligible.

B. Autoencoders for anomaly detection

The goal of an AE is to learn a compressed representation
of the input and then reconstruct the original data from it.
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Fig. 3. Examples of IC for normal and anomalous traffic. The matrices are obtained for 1-second time windows from the dataset presented in [10].

Anomalies or outliers in the data can be detected by measuring
the difference between the original input and its reconstructed
version. Differently, a VAE has also the objective of estimating
the true posterior distribution of the latent vectors [19].

Both architectures are composed of symmetrical encoder
E(·) and decoder D(·). The former lossy compresses the input
representation with height H and width W IC ∈ ZH×W

2 to a
latent vector z ∈ Rd, where d is the dimension of the latent
space. If the model is a VAE, two latent vectors zµ, zlog σ ∈ Rd

are estimated. In this case, z ∈ Rd is composed by means of
the reparametrization procedure [19]

z = zµ + zσ + ϵ, ϵ ∼ N (0, 1). (2)

Consequently, the decoder is responsible for upsampling z
to the reconstructed image ÎC . The proposed VAE and AE
architectures are detailed in Tab. I. The encoder E(·) is com-
posed of 3 convolutional blocks, denoted as ConvBlock(ci)
where ci is the number of output channels, that extract spatial
features from the input image. Each block performs a 2D
convolution, a batch normalization, and the Exponential Linear
Unit (ELU) activation function. This sequence of operations
is employed twice in each block. A MaxPool(2, 2) function
is applied after each of the first two convolutional blocks to
downsample the images. A linear projection layer is applied to
map the output of the last convolutional block into a feature
tensor having 1 channel. This operation is carried out by a
1× 1 convolutional layer. Finally, two fully connected layers,
with nfc and d neurons, are responsible for mapping the
features into the two latent vectors for means and log variance.
Symmetrically, 3 transposed convolutional blocks, indicated
as TranConvBlock(ci), constitute the decoder D(·). After the
first two transposed convolutional blocks, two UpSample(2, 2)
operations with nearest neighbour interpolation are performed
to retrieve the original shape of the image. In this work, the
number of channels are c = [c1, c2, c3] = [16, 32, 64], kernel
sizes are 5× 5, nfc and d are 128 and 64, respectively. This
configuration has been tuned by means of hyperparameters
optimization algorithms, i.e., grid search.

Regarding the training procedure, the objective of both
architectures is to jointly minimize the error of the encoding-
decoding procedure whereas the VAE additionally aims to re-

duce the Evidence Lower Bound (ELBO) [19]. The reconstruc-
tion error is calculated by comparing the original input and
its reconstructed output using a suitable distance or similarity
measure. Due to the sparse nature of the image representation,
two distance losses are tested. First, the Binary Cross-Entropy
(BCE) is employed as a pixel-wise statistical distance between
the input image and its reconstruction. Then, as the images
mostly contain few active pixels, a weighted BCE loss function
is introduced to penalize wrongly reconstructed active pixels
with w = [w0, w1], which is the vector that penalizes inactive
and active pixels.

Regarding the VAE, thanks to the reparameterization in
Eq. (2), it is possible to derive the Kullback-Lieber divergence
loss as LKL(z, IC) = DKL(q(z|IC)||p(z)), where q(·) and
p(·) are the learned probability distribution over the latent
space and a predefined prior distribution, which is a standard
normal distribution, respectively. Finally, the total ELBO loss
employed for training the architecture is LELBO(z, IC , ÎC) =
LwBCE(IC , ÎC) − βLKL(z, IC), where β = 0.00005 is set
for balancing the two losses’ magnitude.

TABLE I
DESCRIPTION OF BOTH AE AND VAE STRUCTURES.

Input: input image IC ∈ ZW×W
2 Input: latent vector z ∈ Rd

Encoder E(·) Decoder D(·)
ConvBlock(c1) FC(nfc)

MaxPool(2, 2) ELU

ConvBlock(c2) FC(nfc)

MaxPool(2, 2) Unflatten to 3D tensor
ConvBlock(c3) Projection to C3 channels

Projection to 1 channel TranConvBlock(c3)

Flatten to 1D vector UpSample(2, 2)

FC(nfc) TranConvBlock(c2)

ELU UpSample(2, 2)

FC(d) TranConvBlock(c1)

if VAE then Reparameterization (Eq. (2)) Projection to 1 channel

Output: latent vector z ∈ Rd Output: reconstructed image ÎC ∈ RH×W

III. RESULTS

The proposed image representation and anomaly detector
are tested on the UGR’16 dataset [10]. The performance of
the learning architectures trained on the proposed 2D repre-
sentation is assessed on the test set by means of Information
Retrieval (IR) metrics such as precision, recall, accuracy,



and F1 score. Moreover, a quantitative analysis is performed,
varying the deep learning architecture, the 2D representation,
and the loss function during the training phase.

A. Dataset

The UGR’16 dataset consists of two subsets: calibration
and test. The calibration capture consists of real background
network traffic and can be employed for training normality
models. Instead, the test capture includes both clean traffic and
anomalous flows obtained as the combination of background
traffic and controlled attack traffic generated using advanced
hacking tools. Three classes of attack have been considered:
Denial-of-Service (DoS), scan, and botnet. Since the effect of
botnet over the normal traffic has not been taken into account
in [10], we selected only the first two attack categories. These
attacks are denoted as DoS53, DoS11, Scan44, and Scan11.
The first number in the attack names refers to the number
of attackers whereas the second identifies the number of vic-
tims [10]. In this work, 320, 000 images have been generated
from the calibration set with a 1-second time window. The
validation set is obtained by sampling 10% of the training set.
For testing, 70, 462 images have been generated from the test
set. 60, 000 images are normal, 1, 676 represent DoS11, 4, 596
are DoS53 attack samples, 992 are Scan11 attacks, and 3, 198
images are Scan44 representations. Based on the network
structure in the dataset, images IC are of shape H = 256
and W = 256.

B. Results on all attacks

Tab. II depicts the performance of the proposed approach
on all the considered attacks with different options for the loss
function and the learning architecture. It is worth noticing the
superiority in performance of IC with respect to I. More
specifically, the VAE, both with unweighted and weighted
BCE, suffered from mode collapse using I, i.e., all the input
images have been mapped to the same latent vector, providing
poor generalization capabilities. Concerning the AE, to achieve
a recall of approximately 50% when using I, the pfa. i.e.,
probability of false alarm, threshold has to be set to 20%, thus
proving that I is not a suitable input for low-complexity deep
learning algorithms. In addition, the results obtained using
IC with unweighted BCE clearly show the importance of the
introduced weighting procedure to penalize wrongly recon-
structed active pixels. To fairly compare the performances of
the AE and the VAE when using IC , we selected as target
pfa a value of 0.15%. Tab. II clearly indicates that, thanks to
the definition of IC , the AE and the VAE achieve comparable
performances, although the former has a higher precision and
the latter has a higher recall.

To better understand which attacks are easier to detect
exploiting the two approaches, Tab. III shows the performance
of the AE and VAE with pfa = 0.15% on each attack scenario.
These results have been obtained considering as test set the
combination of background test data and the single attack
samples. Overall, the detection performance on DoS are better
with respect to scan attacks. A possible interpretation is that,

TABLE II
RESULTS ON ALL ATTACKS. DASH SYMBOL MEANS RANDOM

PREDICTIONS, I.E., THE MODEL SUFFERED FROM MODE COLLAPSE.

Model wBCE Image pfa (%) F1 Recall Precision Accuracy

AE 1 I 20 0.3662 0.4551 0.3072 0.7678

AE 15 I 20 0.3897 0.4730 0.3302 0.7795

AE 1 IC 14 0.8058 0.8835 0.7407 0.9367

AE 15 IC 0.15 0.9405 0.9093 0.9739 0.9829

VAE 1 I - - - - -
VAE 15 I - - - - -
VAE 1 IC 0.15 0.9428 0.9037 0.9852 0.9837

VAE 15 IC 0.15 0.9248 0.9233 0.9264 0.9772

on average, the IC representation is less effective in high-
lighting the presence of scan attacks, thus resulting in images
that resemble normal traffic which are not easily detected by
lightweight architectures. It is worth highlighting how the AE
is more precise to detect DoS53 than the VAE while the
latter outperforms the former in identifying Scan11 attacks
in terms of recall, albeit with a higher rate of false positives.
To further compare the two architectures, we computed the
number of parameters to learn as well as the number of Giga
Multiply-Accumulate Operations (GMACs). Both models have
1.2 millions of parameters, and 1.84 GMACs, thus being
equally lightweight [20]. Therefore, it is possible to conclude
that the proposed pre-processing of the incoming traffic allows
to effectively and promptly detect the presence of attacks
with low-complexity learning architectures. Depending on
the specific application for which the anomaly detector is
employed, the learning model can be selected based on the
performance metric that needs to be prioritized.

TABLE III
ATTACK-WISE RESULTS OF THE TWO ANOMALY DETECTORS IN GRAY

FROM TAB. II. ALL METHODS EMPLOY IC AS INPUT.

Attack Model wBCE F1 Recall Precision Accuracy

DoS11 AE 15 0.9243 0.9899 0.8668 0.9956
VAE 15 0.8033 0.9905 0.6756 0.9870

DoS53 AE 15 0.9697 0.9934 0.9471 0.9956
VAE 15 0.9165 0.9928 0.8510 0.9872

Scan11 AE 15 0.7647 0.7782 0.7517 0.9922
VAE 15 0.6368 0.8387 0.5132 0.9844

Scan44 AE 15 0.8432 0.7871 0.9080 0.9852
VAE 15 0.7893 0.8183 0.7623 0.9779

TABLE IV
COMPARISON IN TERMS OF RECALL WITH STATE-OF-THE-ART ON

UGR’16. DASH SYMBOL − MEANS NOT AVAILABLE.

Approach DoS11 DoS53 DoS Scan11 Scan44 Scan

S

LR [21] - - 0.9150 - - 0.9160
RF [21] - - 0.8840 - - 0.9250

Radial SVM [21] - - 0.8310 - - 0.5360
Linear SVM [21] - - 0.8980 - - 0.9100

U Kitsune [22] - - 0.6400 0.0100 0.7200 -
Tensor-based [23] - - 0.9966 0.9999 0.9999 -

AE 0.9900 0.9935 0.9927 0.7782 0.7871 0.7849Ours VAE 0.9905 0.9928 0.9925 0.8387 0.8183 0.8230

C. Comparison with state-of-the-art

To prove the effectiveness of the proposed representation,
we compared our approach with both supervised (S) and



unsupervised (U) methods presented in the literature. We
report the results in terms of recall in Tab. IV. The proposed
method outperforms supervised approaches, i.e., Logistic Re-
gression (LR), Random Forest (RF), and SVM, for DoS,
while it achieves lower performance on scan. Differently from
supervised methods, the proposed detector has no previous
knowledge about the attack types, thus making the anomaly
detection more challenging. As for the unsupervised methods,
our representation achieved significantly higher performance
on both attacks with respect to the method presented in [22].
In contrast, it reached lower recall values than the technique
introduced in [23]. The performance gap is negligible for
DoS, while it is considerable for scan. This behavior can
be attributed to the difference in complexity of the two
approaches. Although in [23] the number of parameters and
GMACs are not provided, they perform 3D convolutions with
64× 64× 64 input tensors, while we employ 2D convolutions
with 256 × 256 images. Moreover, while in [23] data was
processed in 1-minute chunks, the proposed approach has a
significantly higher promptness by using 1-second time win-
dows. Additionally, we compare our results with the method
proposed in [17]. To perform a fair comparison, however,
the same data cleaning procedure introduced in [17] has
been applied. Specifically, the authors retained only the traffic
windows for which the mapping was successful (i.e., the attack
pixel p was mapped to a raw index larger than 35), resulting in
9, 541 anomalous data samples. In [17], a binary classification
between normal and anomalous instances has been performed
achieving a recall of approximately 1. By using the proposed
representation IC , we obtained a recall of 0.9951 and 0.9947
for the AE and VAE, respectively. This demonstrates the
effectiveness of the proposed representation which, thanks to
its ability of highlighting the presence of attacks, leads to
similar performance with respect to [17] despite the smaller
complexity. In fact, while the proposed vanilla architectures
require the training of 1.2M parameters, the VAE proposed
in [17] involves 268M parameters. Our architectures, instead,
are noticeably more lightweight than the one proposed in [17]
(1.84 GMACs versus 2.41 GMACs). Therefore, the usage of
the IC representation allows to decrease the computational
complexity of both training and inference processes while
achieving similar performance.

IV. CONCLUSIONS

In this work, an image-based representation of network
traffic has been presented, and its efficacy for anomaly
detection has been demonstrated. The comparison between
two lightweight learning architectures and state-of-the art
approaches highlighted that, thanks to the definition of a
proper image-based representation, it is possible to reduce
the computational complexity of the processing algorithm. A
possible drawback of the proposed approach is that 1-second
chunks of traffic data could be insufficient to capture long-
term attacks in a complex network, e.g., scan attacks. As a
future work, the introduction of temporal information will be
explored, thus analyzing the evolution of network status.
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