
Language-based Security and Time-inserting
Supervisor

Damas P. Gruska

Department of Applied Informatics, Comenius University,
Mlynska dolina, 842 48 Bratislava, Slovakia,

gruska@fmph.uniba.sk.

Abstract. Algebraic methods are employed in order to define language-
based security properties of processes. A supervisor is introduced that
can disable unwanted behavior of an insecure process by controlling some
of its actions or by inserting timed actions to make an insecure process
secure. We assume a situation where neither the supervisor nor the at-
tacker has complete information about the ongoing systems behavior.
We study the conditions under which such a supervisor exists, as well as
its properties and limitations.

1 Introduction

Exploiting formal models and methods to define, study, or even discover
system vulnerabilities regarding security threats is a hot topic nowadays.
Formal methods allow us, in many cases, to show, even prove, that a given
system is not secure. Then we have a couple of options as to what to do.
We can either re-design its behavior, which might be costly, difficult, or
even impossible, in the case that it is already part of a hardware solution,
proprietary firmware, and so on, or we can use supervisory control (see
[26, 22, 23, 7, 27]) or other means ([16]) to restrict the system’s behavior in
such a way that the system becomes secure. A supervisor can see (some)
system actions and can control (disable or enable) a set of system actions.
In this way, it restricts the behavior of the system to guarantee its security
(see also [14]). This is a trade-off between security and functionality.

The situation is different in the case of timing attacks. They use timing
information leakage, which is the ability for an attacker to deduce internal
(private) information depending on timing information. They, as side-
channel attacks, represent a serious threat to many systems. They allow
intruders “break” “unbreakable” systems, algorithms, protocols, etc.

One way to limit time attacks is to use a function that inserts time
delays between individual actions, making it impossible for an attacker
to obtain sensitive information. In this paper, we will introduce a special



type of supervisor, in addition to limiting actions, will also be able to
insert time delays to guarantee the safety of the process.

As for the formalism, we will work with a timed process algebra and
language-based opacity. This formalism also allows us to formalize timing
attacks. Process algebras, unlike finite automata or Timed Automata,
allow us to use various compositional constructs to express observations
as well as intruders and supervisors themselves. In [12, 13] we studied
conditions under which there exists a timed insertion function for a given
process and state-based security property and we have presented some
decidability and undecidability results. Here we study this concept for
language-based security properties and combine insertion functions with
supervisors.

Supervisors that can guarantee the security of systems concerning
opacity are often studied for finite automata or other models with a finite
number of states. Here we work with a formalism equivalent to a Turing
machine (see [21]), which introduces new challenges. We show whether
the existence of a supervisor is decidable or undecidable. In addition, we
assume more general observations, not only those that hide some actions.

Main contributions of this paper We work with a supervisor who is

– can only partially observe systems,

– can enable or disable actions, and also can insert time actions,

– are modeled by processes that interact with a system to be attacked.

The paper is organized as follows. In Section 2, we describe the timed
process algebra TPA, which will be used as a basic formalism. Language-
based security properties are introduced in the next section. The time
inserting supervisor is defined and studied in Section 4.

2 Working Formalism

In this section, we briefly recall our working formalism which will be
based on Timed Process Algebra, TPA for short. TPA itself is based on
Milner’s Calculus of Communicating Systems (for short, CCS, see [21]), so
we will start with this. To define the language CCS, we first presuppose
a set of atomic action symbols A not containing symbols τ , and that
for every a ∈ A there exists an ā ∈ A and ¯̄a = a i.e. actions which
represent receiving and sending from a channel a, respectively. We define
Act = A∪{τ} where τ represents internal action, for example, a result of
internal communication. We let a, b, . . . range over A; x, y, . . . range over
Act. The set of CSS terms is defined by the following BNF expression



where x ∈ Act,X ∈ V ar, V ar is a set of process variables, f is ranging
over relabelling functions, f : Act → Act is such that f(a) = f(ā) for
a ∈ A, f(τ) = τ and finally, L ⊆ A:

P ::= Nil | X | x.P | P + P | P | P | µXP | P \ L | P [f ]

We use the usual definitions for free and bound variables, open and
closed terms and guarded recursion. The set CCS of processes consists of
closed and guarded CCS terms.

Nil represents process doing nothing, X is a process variable. Process
x.P can perform action x and then behaves as process P (prefix operator)
, +, | represent nondeterministic choice and parallel operator, respectively.
A recursion operator is denoted by µXP i.e. recursive definition of the
process given by equation X = P . The unary operators P \ L and P [f ]
represent restriction and relabeling, respectively. Formal definition of a
structural operational semantics for CCS is defined in terms of Labeled
Transition Systems.

Definition 1. A Labeled Transition System is a triple (S, T, { x→, x ∈ T})
where S is a set of states, T is a set of labels and { x→, x ∈ T} is the
transition relation such that each

x→ is a binary transition relation on S.

We write P
x→ P ′ instead of (P, P ′) ∈ x→ and P

x
6→ if there is no P ′ such

that P
x→ P ′.

As a set of states we use the set of CCS terms, the set of labels is
equal to Act, and transition relations are defined as follows.

Definition 2. The transition relations T = { x→CCS , x ∈ Act} are defined
as the least relations satisfying the following inference rules:

x.P
x→ P

P
x→ P ′

P +Q
x→ P ′, Q+ P

x→ P ′

P
x→ P ′

P \ L x→ P ′ \ L
, (x, x̄ 6∈ L)

P [µXP/X]
x→ P ′

µXP
x→ P ′

P
x→ P ′

P [f ]
f(x)→ P ′[f ]

P
a→ P ′, Q

ā→ Q′

P | Q τ→ P ′ | Q′

P
u→ P ′

P | Q u→ P ′ | Q,Q | P u→ Q | P ′



We are now ready to define the working formalism, which is the time
extension of CCS. In TPA we use the special time action t which expresses
elapsing of (discrete) time is added and hence the set of actions is extended
from Act to Actt. The presented language is a slight simplification of
Timed Security Process Algebra (tSPA) introduced in [5]. We omit an
explicit idling operator ι used in tSPA and instead of this we allow implicit
idling of processes. Hence processes can perform either ”enforced idling”
by performing t actions which are explicitly expressed in their descriptions
or ”voluntary idling” (i.e. for example, the process a.Nil can perform
t action despite the fact that this action is not formally expressed in
the process specification). But in both cases, internal communications
have priority to action t in the parallel composition. Moreover, we do not
divide actions into private and public ones as it is in tSPA. TPA differs
also from the tCryptoSPA (see [9]). TPA does not use value passing and
strictly preserves time determinancy in case of choice operator + what
is not the case of tCryptoSPA (see [10]). To define At = A ∪ {t}, Actt =
Act∪{t}, moreover we suppose that S(t) = t for every relabelling function
S. We give a structural operational semantics of terms again by means
of labeled transition systems. The set of terms represents a set of states,
labels are actions from Actt. The transition relation → is a subset of
TPA×Actt×TPA. We define the transition relation as the least relation
satisfying the inference rules for CCS plus the following inference rules
for t action (for more details see [10]).:

Nil
t→ Nil

A1
u.P

t→ u.P
A2

P
t→ P ′, Q

t→ Q′, P | Q
τ
6→

P | Q t→ P ′ | Q′
Pa

P
t→ P ′, Q

t→ Q′

P +Q
t→ P ′ +Q′

S

For s = x1.x2. . . . .xn, xi ∈ Act we write P
s→ instead of P

x1→x2→ . . .
xn→

and we say that s is a trace of P . The set of all traces of P will be denoted
by Tr(P ). By ε we denote the empty sequence and by M∗ we denote the
set of finite sequences of elements from M . We use

x⇒ as an abbreviation
for transitions including τ actions i.e. (

τ→)∗
x→ (

τ→)∗ (see [21]). By s|B
we will denote the sequence obtained from s by removing all actions not
belonging to B. By L(P ) we will denote a set of actions that can be
performed by P , i.e. L(P ) = {x|P s.x→, s ∈ Actt∗}.

Now we define two behavior equivalences, namely weak trace equiva-
lence and bisimulation, respectively (see [21]).



Definition 3. The set of weak traces of process P is defined as Trw(P ) =
{s ∈ (A ∪ {t})?|∃P ′.P s⇒ P ′}. Two processes P and Q are weak trace
equivalent (denoted as P ≈w Q) iff Trw(P ) = Trw(Q).

Definition 4. Let (TPA, Act,→) be a labeled transition system (LTS).
A relation < ⊆ TPA × TPA is called a bisimulation if it is symmetric
and it satisfies the following condition: if (P,Q) ∈ < and P

x→ P ′, x ∈
Actt then there exists a process Q′ such that Q

x→ Q′ and (P ′, Q′) ∈ <.
Two processes P,Q are bisimilar, abbreviated P ∼ Q, if there exists a
bisimulation relating P and Q.

3 Opacity

System security based on the absence of information flow assumes that an
attacker observing the system is unable to determine classified properties
of the system. This concept probably first appeared in[8]. To formalize an
information flow we do not divide actions into public and private ones at
the system description level, as it is done for example in [9], but we use
a more general concept of observation and opacity. This concept was ex-
ploited in [3] and [2] in a framework of Petri Nets and transition systems,
respectively. Firstly we define the observation function on sequences from
Act?. Various variants of observation functions differ according to con-
texts which they take into account. For example, an observation of action
can depend on the previous actions.

Definition 5. (Observation) Let Θ be a set of elements called observ-
ables. Any function O : Actt? → Θ? is an observation function. It is
called static /dynamic /orwellian / m-orwellian (m ≥ 1) if the following
conditions hold respectively (below we assume w = x1 . . . xn):

– static if there is a mapping O′ : Actt → Θ ∪ {ε} such that for every
w ∈ Actt? it holds O(w) = O′(x1) . . .O′(xn),

– dynamic if there is a mapping O′ : Actt? → Θ ∪ {ε} such that for
every w ∈ Actt? it holds O(w) = O′(x1).O′(x1.x2) . . .O′(x1 . . . xn),

– orwellian if there is a mapping O′ : Actt×Actt? → Θ ∪ {ε} such that
for every w ∈ Actt? it holds O(w) = O′(x1, w).O′(x2, w) . . .O′(xn, w),

– m-orwellian if there is a mapping O′ : Actt×Actt? → Θ∪{ε} such that
for every w ∈ Actt? it holds O(w) = O′(x1, w1).O′(x2, w2) . . .O′(xn, wn)
where wi = xmax{1,i−m+1}.xmax{1,i−m+1}+1 . . . xmin{n,i+m−1}.

In the case of the static observation function, each action is observed
independently from its context. In the case of the dynamic observation



function, an observation of an action depends on the previous ones, in the
case of the orwellian and m-orwellian observation function an observation
of an action depends on the all and on m previous actions in the sequence,
respectively. The static observation function is the special case of m-
orwellian one for m = 1. Note that from the practical point of view
the m-orwellian observation functions are the most interesting ones. An
observation expresses what an observer - eavesdropper can see from a
system behavior and we will alternatively use both the terms (observation
- observer) with the same meaning. Note that the same action can be
seen differently during an observation (except static observation function)
and this expresses a possibility of accumulating some knowledge by an
intruder. For example, an action not visible at the beginning could become
somehow observable. An observation function can be naturally extended
to a set of sequences. From now on we will assume that Θ ⊆ Actt.

Now suppose that we have some security property over process traces.
This might be an execution of one or more classified actions, an execution
of actions in a particular classified order which should be kept hidden,
etc. Suppose that this property is expressed by the predicate φ over pro-
cess traces. We would like to know whether an the observer can deduce
the validity of the property φ just by observing sequences of actions from
Actt? performed by given process. The observer cannot deduce the valid-
ity of φ if there are two traces w,w′ ∈ Actt? such that φ(w),¬φ(w′) and
the traces cannot be distinguished by the observer i.e. O(w) = O(w′) .
We formalize this concept by opacity.

Definition 6. (Language Opacity) Given process P , a predicate φ
over Actt? is opaque w.r.t. the observation function O if for every se-
quence w, w ∈ Tr(P ) such that φ(w) holds and O(w) 6= ε, there exists a
sequence w′, w′ ∈ Tr(P ) such that ¬φ(w′) holds and O(w) = O(w′). The
set of processes for which the predicate φ is language opaque with respect
to O will be denoted by LOpφO.

A predicate is opaque if for any trace of a system for which it holds,
there exists another trace for which it does not hold and both traces are
indistinguishable for an observer (which is expressed by an observation
function). This means that the observer (intruder) cannot say whether a
trace for which the predicate holds has been performed or not.

Suppose that all actions are divided into two groups, namely public
(low level) actions L and private (high level) actions H. It is assumed
that L ∪ H = A. Strong Nondeterministic Non-Interference (SNNI, for
short, see [5]) property assumes an intruder who tries to learn whether



a private action was performed by a given process while (s)he can ob-
serve only public ones. If this cannot be done, then the process has SNNI
property. Note that SNNI property is the special case of opacity for static
observation function O(x) = x iff x 6∈ H and O(x) = ε otherwise, and
φ(w) is such that it is true iff w contains an action from H.

We can define partial ordering on the set of observation functions
which reflects strength of observations.

Definition 7. (Ordering on Observation Functions) Given two ob-
servation functions O1,O2 we say that observation function O2 is stronger
than O1, denoted as O1 � O2 iff whenever w,w′ ∈ Actt∗ such that
O2(w) = O2(w) then also O1(w) = O1(w). If O1 � O2 and O2 � O1 we
say that the observation functions are comparable (denoted as O1 ' O2)

Proposition 1. Let O1,O2 be two observation functions and such that
O2 � O1. Let φ1, φ2 be two predicates over sequences such that φ2 => φ1.
Then LOpφ1O1

⊆ LOpφ2O2
.

Proof. Let P ∈ LOpφ1O1
and let w ∈ Tr(P ) such that φ2(w) holds O2(w) 6=

ε. Since φ2 => φ1 we have φ1(w) holds. Since P ∈ LOpφ1O1
we have

that there exists a sequence w′, w′ ∈ Tr(P ) such that ¬φ1(w′) holds and
O1(w) = O1(w′). Since ¬φ1 => ¬φ2 we have that also ¬φ2(w′) holds and

since O2 � O1 we have that O2(w) = O2(w′) and hence P ∈ LOpφ2O2
.

4 Inserting Supervisor

In this section, we will deal with the problem of what to do if a process
is not secure in the sense of language opacity. Changing its design is
often not a solution because of the high price, already existing hardware
implementation, etc.

We will work with the concept of a supervisor who monitors the pro-
cess and in case there is a threat of leakage of sensitive information, its
activity will either be completely terminated or modified so that leakage
is not possible despite its continuation. In this case, it tries to insert time
actions and thus precedes especially, for example, time attacks that uses
time information. In most cases, our formalism allows the insertion of
time actions (see rules A1, A2, Pa, S in Section 2), so that the resulting
sequence of actions is still possible and therefore not suspect. Similar to
the attacker, whose observation skills are expressed by his observational
function, we will also assume that the supervisor has only partial infor-
mation about the system’s activity, expressed by its own observational
function.



4.1 Safe traces and supervisors

Now we define a set of L-safe traces of a process, which are those traces
which cannot leak validity of φ under a given observation. The task of
the supervisor is to ensure that the traces of process P always belong to
this set. Later, with the help of TPA processes we will model not only
the system whose security we want to ensure but also the observational
functions, the predicate φ as well as supervisors. This allow us to study
the very existence of the supervisor for a given process.

Definition 8. (L-Safe Traces) Given process P , a predicate φ over
Actt? and the observation function O. We define KP,φ,O ⊆ Tr(P ) as
w ∈ KP,φ,O iff ¬φ(w) holds or there exists a sequence w′, w′ ∈ Tr(P )
such that ¬φ(w′) holds and O(w) = O(w′).

Clearly, we have KP,φ,O = Tr(P ) iff P ∈ LOpφO, hence if P 6∈ LOpφO
we have KP,φ,O ⊂ Tr(P ).

So, to keep process P secure with respect to language opacity, we need
to prohibit it from performing any trace from Tr(P ) \KP,φ,O. To do so
we exploit a special concept of supervisor Sup, which can prohibit some
actions and it can also insert a sequence of actions t so that the resulting
trace performed by supervised process always belong to KP,φ,O.

We assume that similarly to an attacker also the observer cannot see
all process actions, which can be expressed by its own, possibly different,
observational function OS (see Definition 5) i.e. in general OS and OS
might be two different functions. After observing the sequence of the
process actions by OS , the supervisor decides whether to intervene by
prohibiting the action from C or inserting time delays. If it prohibits the
action, the process execution stops.

Example 1. Let φ(w) holds iff w contains action h and O = Os are static
observation function such thatO(h) = ε andO(x) = x for x 6= h. Then for

P1 = h.l.Nil we have P1 6∈ LOpφO and a supervisor has to prohibit action

l to keep process P1 secure. For P2 = h.l.Nil+ l.Nil we have P2 ∈ LOpφO
and a supervisor need to do nothing. For P3 = h.l.Nil + t.l.Nil the
supervisor has to insert action t before performing l.

We will model both the supervisor and its observational function as
separate processes that communicate with process P (see Fig. 1). A trace
w of process P is first translated to a sequence seen by the supervisor by
process OS and then the supervisor decides whether to forbid the next
action or inserts t action.



We restrict the ability of the supervisor to disable only actions from
a set of controllable actions C ⊆ A. We can see the supervisor SupC (we
will write just Sup for a given C) as mapping which takes a trace w of a
process P as it is seen by its observation function OS and decides whether
a next action can be performed but only in the case that it is controllable,
moreover it can insert a sequence of t actions all to guarantie that that
resulting sequence belongs to KP,φ,O. Formally, Sup ◦ OS : Tr(P ) →
KP,φ,O such that Sup(OS(w.x)) = Sup(OS(w)).x.ti iff x ∈ Actt \ C and
Sup(OS(w.x)) = Sup(OS(w)).y.ti iff x ∈ C where y ∈ {x, ε}.

Now we define a set of all supervisor which gurantee language based
security for a given process P and corresponding observation functions
and the predicate.

Definition 9. (Set of Supervisors) Given process P , a predicate φ
over Actt?, C ⊂ A and the observation functions O,OS. We define
Sup(P,LOpφO, C,OS) as a set of all supervisors such that Tr(C(P,OS , Sup)) ⊆
KP,φ,OTr(P ).

Clearly, Sup(P,LOpφO, C,OS) = Sup(P ′, LOpφO, C,OS) if P and P′

are bisimilar, i.e. P ∼ P ′.

Definition 10. (Controllability) Given process P , a predicate φ over
processes, C ⊂ A and the observation functions O,OS. We say that set
TP,φ,O is controllable iff w ∈ TP,φ,O and x ∈ A \ C then w.x ∈ TP,φ,O.

Proposition 2. Given process P , a predicate φ over processes, C ⊂ A
and the observation functions O,OS. Let set TP,φ,O is not controllable.
Then Sup(P,LOpφO, C,OS) = ∅.

Proof. Let set TP,φ,O is not controllable. Hence there exists w ∈ TP,φ,O
and x ∈ A \ C such that w.x ∈∈ TP,φ,O i.e. no supervisor can prohibit
process P to reach an unsefa state.

Corollary Given process P , a predicate φ over processes, C = A and the
observation functions O,OS . Then Sup(P,LPOpφO, C,OS) 6= ∅.

To guarantee a minimal restriction of process behavior our aim is to
find a maximal process supervisor in the sense that it minimally restricts
the behavior of the original process. The formal definition is the following.

Definition 11. (Maximal Supervisor for Process Opacity) Process

Sup ∈ Sup(P,LOpφO, C,OS) is called maximal process supervisor for lan-

guage opacity LOpφO iff for every Sup′ ∈ Sup(P,LOpφO, C,OS) we have
Tr(C(P,OS , Sup′)) ⊆ Tr(C(P,OS , Sup)).



Unfortunately it is undecidable to verify whether the process Sup is
a process supervisors for P and language opacity as it is stated by the
following proposition.

Proposition 3. The property that Sup is a process supervisor for lan-
guage opacity for process P is undecidable in general.

Proof. The proof is based on the idea that already language opacity is
undecidable (see Proposition 2. in [11]). Suppose that the property is de-
cidable. Let Sup = µX.

∑
x∈Actt x

′.x.X i.e Sup does not restrict anything.
We have that Sup is a supervisor for language opacity for process P iff
P ∈ LOpφO). Hence we would be able to decide language opacity what
contradicts its undecidability.

By a similar argument, we can prove the following statement, which
claims that we cannot even decide whether there is at least one supervision
that guarantees the security of systems.

Proposition 4. It is undecidable whether Sup(P,LOpφO, C,OS) = ∅ in
general.

In the proposition that follows, we articulate the underlying assump-
tions that rigorously guarantee the existence of a nontrivial supervisor.

Proposition 5. Given process P , a predicate φ over processes and the
observation functions O,OS such that O � OS and C = A. Then
Sup(P,LOpφO, C,OS) contains at least one nontrivial supervisor, i.e. such
which does not prohibit all actions.

Proof. Let w ∈ Tr(P )\TP,φ,O. If such w does not exist than a supervisor
which does not prohibit any action as well as does not insert actions
t, guarantees security of P . The supervisor’s job is to prohibit P from
performing w. Since O � OS thee supervisor does not see less than an
attacker and can prohibit only those actions that would help an intruder
learn the validity of φ.

4.2 Timing Attacks

Our formal model can also account for the time-dependent aspects of sys-
tem behavior, process opacity can also be used to express vulnerabilities to
timing attacks. These attacks use timing information leakage, which is the
ability of an attacker to deduce internal (private) information depending
on timing information. They, as side-channel attacks, represent a serious



threat to many systems. They allow intruders “break” “unbreakable” sys-
tems, algorithms, protocols, etc. For example, by carefully measuring the
amount of time required to perform private key operations, attackers may
be able to find fixed Diffie-Hellman exponents, factor RSA keys, and break
other cryptosystems (see [19]). This idea was developed in [4] where a tim-
ing attack against smart card implementation of RSA was conducted. In
[15], a timing attack on the RC5 block encryption algorithm is described.
The analysis is motivated by the possibility that some implementations
of RC5 could result in data-dependent rotations taking a time that is a
function of the data. In [17], the vulnerability of two implementations of
the Data Encryption Standard (DES) cryptosystem under a timing attack
is studied. It is shown that a timing attack yields the Hamming weight
of the key used by both DES implementations. Moreover, the attack is
computationally inexpensive. A timing attack against an implementation
of AES candidate Rijndael is described in [20], and the one against the
popular SSH protocol in [24]. In [1] several novel timing attacks against
the common table-driven software implementation of the AES cipher are
described. Also possible attacks on most of the currently used processors
(Meltdown and Spectre) belong to timing attacks. Timing attacks on web
privacy and some corresponding formal models can be found in [6]. Let
O, O′ be observation functions such that O(w|Act) = O′(w) where w|Act
represents the sequence w without t actions. Then P is prone to timing
attacks iff P 6∈ LOpφO but P ∈ LOpφO′ . Consequently, the elapsed time be-
comes a side channel, where the duration of the computation itself reveals
information about the validity of φ. For instance, a shorter execution time
for a particular input might indicate that a certain condition related to
was met (or not met), allowing the attacker to deduce properties of the
secret.”

Let w,w′ ∈ Actt∗ such that we can obtain w from w′ by removing
som t actions from w′. We say that w is time subsequence of W , denoted
w ≺t w′. For example, we have atbc ≺t tattbtct. We say that predicate φ
over sequences from Actt∗ is time dependable if for every w ∈ Actt∗ such
that φ(w) holds then there exists w′, w ≺t w′ such that ¬φ(w′) holds.

Proposition 6. Let P is prone to timming attack with respect to O and
time dependable predicate φ. Let O � OS. Then there exist a supervisor
for P with empty controlable set C.

Proof. Let for every w ∈ Tr(P ) \ KP,φ,O there exists w′, w ≺t w′ such
that ¬φ(w′) holds. Clearly, w′ ∈ Tr(P ) (see transition rules A1, A2, Pa,
S) and hence it is enough to insert corresponding t actions.



4.3 Observations, Predicate and Supervisor as Processes

In this subsection, we will model observation functions and predicates by
process and then we show some decidability results for language opacity
and supervisor existence.

OS Sup-
�

P -
�

P

Fig. 1. Supervisory Control

We use contexts to model communications between a process, obser-
vation function and supervisor. By context C we mean a process term
with placeholders H. Formally, the set of TPA simple contexts is defined
by the following BNF notation:

C ::= Hi | op(C1, C2, . . . Cn)

where C, C1, . . . Cn are TPA contexts, op ∈ {[S], \, |} (i.e. operations rela-
belling, restriction and parallel composition) andH is the place holder. By
C(P ) we denote process obtained from process simple context C and pro-
cess P by substituting P by place holders H1,H2, H3 , i.e. C(P,O, Sup) =
C[P/H1, O/H2, Sup/H3]. We require that Tr(C(P,OS , Sup)) ⊆
KP,φ,OTr(P ).

Proposition 7. Let Sup, Sup′ are processes coressponding to supervisors
and let Sup ∼ Sup′. Then Tr(C(P,OS , Sup)) = Tr(C(P,OS , Sup′)).

Proof. The proof follows from the fact that bisimulation ∼ is the congru-
ence relation and it is stronger than the trace equivalence.

Corollary For any supervisor Sup, if Sup ∼ Q then alsoQ is a supervisor.
To obtain a decidable variant of the previous Proposition 4, we insert

some restrictions on trace predicates. First, we model predicates by spe-
cial processes called tests. The tests communicate with processes’s trace
and produce

√
action if corresponding predicates hold for the trace. In

the subsequent proposition, we show how to exploit this idea for process
opacity.

Definition 12. We say that the process Tφ is the test representing the
predicate φ if φ(w) holds iff (w.Nil|Tφ) \ At ≈t

√
.Nil where

√
is a new



action indicating a passing of the test. If Tφ is the finite state process we
say that φ is the finitely definable predicate.

Suppose that both φ and ¬φ are the finitely definable predicates. Then
we can reduce checking whether Sup is a process supervisor for language
opacity to checking bisimulation. Since we can reduce the problem of
decidability to finite automata (see [25]) we obtain the following result.

Proposition 8. Let φ and ¬φ are finitely definable predicates and O,
OS are static. The property that Sup is a process supervisor for language
opacity for finite state process P and is decidable. Moreover, we can al-
ways find a maximal supervisor for language opacity.

Moreover, for static observation functions O, OS and φ and ¬φ finitely
definable predicates there exists finite state maximal process supervisor
for language opacity for any finite state process P . This follows from
the fact that such observation function can be emulated by finite-state
processes since only finite memory is required.

Proposition 9. Let φ and ¬φ are finitely definable predicates and O,
OS are static. Then for any finite-state process P there exists finite-state
process Sup which is the maximal supervisor for corresponding language
opacity.

Note that the above-mentioned properties can be directly extended
to m-orwellian observation functions. As regards dynamic and orwellian
observation functions it is more complex and we will leave it to future
research. It is well known that both trace equivalence and bisimulation
are congruences (see [21]) and we can replace in process C(P,OS , Sup))
any of them by equivalent one without changing its functionality, i.e.
Tr(C(P,O′S , Sup′)) ⊆ KP,φ,OTr(P ) will still hold.

5 Conclusions

We have investigated time-inserting supervisors for timed process algebra,
which enforces the security concerning L-timing attacks. Time-inserting
supervisors can disable some actions as well as add some delays to the
system’s behavior, which is particularly useful to prevent timing attacks.
We study the existence of time-inserting supervisors for a given process,
given observation functions, and a predicate over process’s traces.

In future work, we plan to investigate minimal time inserting super-
visors, i.e. such functions that add as little as possible time delays to



guarantee process security with respect to language opacity. The pre-
sented approach allows us to exploit also process algebras enriched by
operators expressing other ”parameters” (space, distribution, networking
architecture, power consumption, and so on). Hence, we could obtain se-
curity properties that have not only theoretical but also practical value.
Moreover, we can use similar techniques as in [18] to minimize time, as
well as other resources, added to the process’s behavior.
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