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Abstract 

Purpose: 

The widespread adoption of encrypted communication protocols such as HTTPS and TLS has 
enhanced data privacy but also rendered traditional anomaly detection techniques less 
effective, as they often rely on inspecting unencrypted payloads. This study aims to develop an 
interpretable machine learning-based framework for anomaly detection in encrypted network 
traffic. 

Design/methodology/approach: 

This study proposes a model-agnostic framework that integrates multiple machine learning 
classifiers — XGBoost, Random Forest, and Isolation Forest — with SHapley Additive 
exPlanations (SHAP) to ensure post-hoc model interpretability. The models are trained and 
evaluated on three benchmark encrypted traffic datasets: CIC-Darknet2020, USTC-TFC2016, 
and CSE-CIC-IDS2018. Performance is assessed using standard classification metrics, and 
SHAP is used to explain model predictions by attributing importance to individual input 
features. 

Findings: 

The XGBoost model achieved a peak classification accuracy of 99.94%, outperforming other 
models across multiple datasets. SHAP visualizations successfully revealed the most 
influential traffic features contributing to anomaly predictions, enhancing the transparency and 
trustworthiness of the models. 

Originality: 

Unlike conventional approaches that treat machine learning as a black box, this work combines 
robust classification techniques with explainability through SHAP, offering a novel 
interpretable anomaly detection system tailored for encrypted traffic environments. 

Research Limitations & Implications: 

This study is limited to three publicly available encrypted traffic datasets. While the framework 
is generalizable, real-time deployment and performance under adversarial conditions require 
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further investigation. Future work may explore adaptive models and real-time interpretability 
in operational network environments. 

Practical implications: 

This interpretable anomaly detection framework can be integrated into modern security 
operations for encrypted environments, allowing analysts not only to detect anomalies with 
high precision but also to understand why a model made a particular decision — a crucial 
capability in compliance-driven and mission-critical settings. 

Keywords: anomaly detection, network traffic security, explainable artificial intelligence. 

1. Introduction 

The exponential growth of encrypted network traffic, driven by the widespread adoption of 
protocols like HTTPS, TLS, and VPN tunnelling, has significantly bolstered data 
confidentiality and user privacy across the internet. A network attack is where an attacker gains 
unauthorised access to the network to perform malicious activities [4]. As organizations 
increasingly rely on encrypted channels to safeguard sensitive information, these protocols 
have become the default for secure communications. However, this surge in encryption has 
posed a unique set of challenges for cybersecurity analysts and network administrators. 
Traditional anomaly detection systems, which rely heavily on deep packet inspection (DPI) 
and payload analysis, struggle to operate effectively in encrypted environments, as they are 
unable to access the actual content of the data packets [1], [2]. 

Consequently, the focus of network security research has shifted toward metadata-driven 
detection strategies, relying on flow-based features such as packet length, inter-arrival times, 
and directionality. Although these features can be analysed using conventional statistical 
methods, the advent of machine learning (ML) has significantly improved anomaly detection 
performance by uncovering complex, non-linear patterns within network traffic data [3], [4]. 
Despite these advantages, ML models are often considered "black boxes" due to their lack of 
transparency, which is a critical limitation in high-stakes domains like cybersecurity where 
understanding the rationale behind a prediction is vital [5]. This growing tension between 
detection accuracy and model interpretability has given rise to the field of Explainable 
Artificial Intelligence (XAI), which seeks to make ML decisions more understandable to 
human stakeholders. 

In traditional network anomaly detection, security mechanisms typically depend on the ability 
to inspect packet payloads for suspicious signatures or rule violations. However, with most 
modern internet traffic being encrypted, such payloads are no longer directly accessible, 
effectively rendering signature-based and rule-based systems less effective or even obsolete 
[1], [6]. While ML-based approaches can mine flow-level features to detect anomalies in 
encrypted environments, their lack of interpretability impedes trust and adoption in practical 
deployments. For example, network administrators and security analysts need to understand 
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why an alert was triggered in order to respond appropriately, prioritize incidents, or even 
comply with regulatory mandates [5], [7]. 

Explainable AI (XAI) emerges as a viable solution to this problem by offering tools and 
frameworks that elucidate the inner workings of complex models. Techniques such as SHapley 
Additive exPlanations (SHAP) provide fine-grained, feature-level attributions that make it 
possible to identify the most influential aspects of a prediction [8]. By integrating XAI with 
ML-based anomaly detection systems, it becomes feasible to analyse encrypted network traffic 
in a way that is both accurate and interpretable. 

This work aims to build an interpretable anomaly detection system for encrypted network 
traffic by integrating SHAP with individual ML models. Our goals are to (1) detect anomalies 
in encrypted traffic with high accuracy and (2) provide interpretable insights into the detection 
process. This project aims to investigate how Explainable AI techniques, particularly SHAP, 
can be effectively employed to detect and interpret anomalies in encrypted network traffic. The 
primary purpose is to bridge the gap between high-performance anomaly detection enabled by  
ML models: XGBoost, Random Forest, and Gradient Boosting, and the transparency required 
for practical cybersecurity applications.  

The key contributions of this work are as follows: 

• A comprehensive analysis of the limitations of traditional anomaly detection techniques 
in the context of encrypted network traffic, motivating the need for interpretable ML 
models. 

• Implementation of multiple machine learning models—XGBoost, Random Forest, and 
Gradient Boosting—for anomaly detection using flow-based features from encrypted 
traffic. 

• Application of SHAP for post-hoc interpretability, enabling an in-depth understanding 
of the contribution of each feature to the individual model's decisions. 

• Empirical evaluation demonstrating that SHAP-based explanations can reveal 
actionable insights and improve the trustworthiness and usability of ML-driven 
anomaly detection systems. 

• Discussion of the practical implications of combining XAI and ML in cybersecurity, 
with recommendations for deploying interpretable detection systems in operational 
environments. 

By focusing on these contributions, this project underscores the potential of XAI to not only 
enhance the technical performance of anomaly detection systems but also to make them more 
transparent, trustworthy, and actionable in real-world scenarios. 

2. Related Work 

Traditional approaches to network anomaly detection include rule-based systems, signature 
matching, and statistical thresholding techniques. These methods often rely on Deep Packet 
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Inspection (DPI), which scrutinizes the packet payload for known patterns of malicious 
behaviour [1], [2]. Signature-based systems, such as Snort and Suricata, are effective against 
known threats but fail to generalize to new or obfuscated attacks [3]. Additionally, threshold-
based statistical methods can detect volumetric anomalies but struggle with subtle deviations 
indicative of stealthy attacks [4]. The effectiveness of these methods is significantly reduced 
in encrypted environments, as encryption obfuscates the payload, rendering DPI-based 
detection infeasible. 

To overcome limitations of traditional methods, machine learning has been increasingly 
adopted for anomaly detection in encrypted network traffic. ML models operate on flow-level 
features like packet size, inter-arrival time, and flow duration, which remain observable even 
when payloads are encrypted [3], [4], [9]. ML methods like XGBoost and Random Forest have 
shown considerable promise in detecting anomalies in flow metadata due to their ability to 
model complex, nonlinear patterns [6], [10]. For instance, Ikram et al. [4] employed an 
XGBoost ensemble integrated with deep neural networks to outperform baseline models in 
encrypted traffic classification, all without decrypting the data. These advances represent a 
significant improvement in detection capabilities but still lack interpretability. 

Explainable AI (XAI) addresses the interpretability gap in ML-based detection systems. 
Techniques such as SHAP, LIME, and attention mechanisms are increasingly used to explain 
ML predictions in the cybersecurity domain [5], [7], [8], [11]. Nguyen et al. [5] highlight the 
importance of interpretability for incident response, compliance, and user trust. Alam et al. [8] 
proposed SXAD, a SHAP-based anomaly detection framework, which provides actionable 
explanations for log-based anomalies. Gummadi et al. [7] developed the XAI-IoT framework 
to enhance anomaly detection transparency in IoT networks. Zeleke et al. [6] successfully 
integrated SHAP with ensemble classifiers to interpret malware behaviour in encrypted traffic, 
revealing feature-level insights without payload decryption. These developments underscore 
the growing recognition of XAI as a crucial component in modern cybersecurity systems. 

Despite the progress in using ML and XAI for encrypted traffic analysis, several gaps remain. 
Table 1 summarizes three key limitations. First, most XAI applications focus on logs or IoT 
systems rather than high-throughput, encrypted enterprise networks. Second, while SHAP has 
been applied to tabular data, its integration with ensemble models for encrypted traffic anomaly 
detection is still underexplored. Finally, very few studies offer end-to-end pipelines that 
combine model training, anomaly detection, and XAI explanation tailored for encrypted 
datasets. This project addresses these gaps by developing a unified ML-XAI framework 
optimized for encrypted traffic analysis and demonstrating its practical utility by performing 
detailed evaluation. 

 

 



5 
 

Table 1: Summary of Prior Work in Encrypted Traffic Anomaly Detec=on 

Study Focus Methodology XAI 
Used Gap Addressed 

Papadogiannaki & 
Ioannidis [1] 

Encrypted 
traffic taxonomy Survey No 

Highlights 
encryption 
challenges 

Cherukuri et al. 
[2] Flow analysis Traditional/statistical No No ML/XAI 

integration 
Elmaghraby et al. 

[3] 
ML 

classification Random Forest No Black-box models 

Ikram et al. [4] 
Encrypted 
anomaly 
detection 

XGBoost ensemble No No explainability 

Nguyen et al. [5] 
XAI for 
anomaly 
detection 

ML + SHAP Yes 
Focused on 
DevOps, not 
encryption 

Zeleke et al. [6] 
Malware 

detection in 
encryption 

Ensemble + SHAP Yes 
Limited to 

malware, not 
general anomalies 

Gummadi et al. 
[7] 

IoT anomaly 
detection ML + SHAP Yes Not network flow 

focused 

Alam et al. [8] Log anomaly 
explanation SHAP Yes Log data only 

Zhu et al. [11] Explainable 
cyber models CNN + Grad-CAM Yes Not applied to 

flow data 

Our work 
Encrypted flow 

anomaly 
detection 

ML + SHAP Yes 
Combines ML and 
XAI for flow-level 

insight 

 

3. Methodology 

This project employs three datasets: CIC-Darknet2020, USTC-TFC2016, and CSE-CIC-
IDS2018, to evaluate machine learning models (XGBoost, Random Forest, Isolation Forest) 
for anomaly detection in encrypted traffic. CIC-Darknet2020 provides Tor-based encrypted 
traffic with diverse attacks like botnets and port scans. USTC-TFC2016 includes TLS-
encrypted flows from malware and legitimate applications, enabling analysis of statistical 
patterns. CSE-CIC-IDS2018 offers a broad set of encrypted attack scenarios in a realistic 
enterprise setting, with rich flow features and accurate labelling. Together, these datasets 
support robust model training, testing, and interpretation without requiring payload decryption. 
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This section details the experimental design used to detect anomalies in encrypted network 
communications, including data preprocessing, ML model configuration, and SHAP-based 
explainability. 

3.1 Data Collection and Preprocessing 

To evaluate the proposed approach, we employed a publicly available encrypted traffic dataset 
containing flow-level statistics for network communications. The dataset comprises both 
benign and malicious traffic, including various attack types such as DDoS, scanning, and data 
exfiltration. Each flow entry includes features like packet count, byte count, average packet 
length, inter-arrival times, flow duration, and flow directionality. Importantly, no payload 
content was used, making the setup compatible with encrypted environments [1], [3]. 

Preprocessing involved several key steps: 

• Missing value handling: Rows with missing values were discarded or imputed using 
median values depending on feature type. 

• Feature selection: Redundant and constant features were removed. Recursive feature 
elimination and domain knowledge were used to retain features relevant to traffic 
behaviour. 

• Normalization: Features were scaled using Min-Max normalization to constrain values 
between 0 and 1, improving model convergence and comparability across dimensions. 

• Label encoding: Class labels (normal or anomaly) were transformed into binary 
numerical values for compatibility with ML algorithms. 

3.2 Machine Learning Models 

This study employed three machine learning models: XGBoost, Random Forest, and Isolation 
Forest. These models were selected for their robustness, ability to handle high-dimensional 
tabular data, and proven effectiveness in anomaly detection tasks [4], [6], [10]. 

• XGBoost (Extreme Gradient Boosting) is a regularized, gradient-boosted decision 
tree model known for high accuracy and scalability. It incrementally builds trees that 
correct errors from previous iterations, making it well-suited for capturing subtle 
deviations in network traffic [4]. It also includes regularization via L1 (Lasso) and L2 
(Ridge) penalties, which helps prevent overfitting and enhances interpretability [12]. It 
builds predictive models by combining the predictions of multiple weaker models, 
typically decision trees. 
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Figure 1: XGBoost, Source: [12] 

Figure 1 illustrates that the algorithm sequentially builds decision trees to correct the 
errors made by the previous trees. It minimizes a specific loss function, typically mean 
squared error for regression problems or cross-entropy for classification problems, by 
optimizing the model's predictions. It incorporates regularization techniques to control 
model complexity and prevent overfitting. It offers two types of regularization: L1 
(Lasso) and L2 (Ridge) regularization. These regularization terms penalize complex 
models, encouraging them to be simpler and more interpretable [12]. 

• Random Forest consists of multiple decision trees trained on bootstrap samples with 
feature randomness, thus reducing variance and overfitting. It is highly interpretable 
and efficient for classification tasks in structured data [3], [5].  

Decision trees are helpful in distinguishing between different forms of traffic, including 
benign and malicious traffic in the context of network traffic classification. Its ability 
to handle both categorical and continuous features makes it best suited for modelling 
complex decision boundaries in data and thus serves well in identifying the patterns 
behind network traffic flows [17, 18]. 
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Figure 2: Random Forest, Source: [13] 

As the figure 2 illustrates, multiple Decision Trees are created from the training data. 
Each tree is trained on a random subset of the data (with replacement) and a random 
subset of features. This process is known as bagging or bootstrap aggregating. Each 
Decision Tree learns to make predictions independently. When presented with a new, 
unseen instance, each Decision Tree makes a prediction. The final prediction is made 
by combining the predictions of all the Decision Trees [13]. 

• Gradient Boosting builds an ensemble of weak learners in a sequential manner by 
minimizing a specified loss function. Unlike Random Forest, it focuses on correcting 
mistakes made by the prior learners, which enhances precision on difficult samples [6]. 

 

• Isolation Forest works by randomly selecting features and splitting them along random 
values until individual data points are isolated. This "isolating" process is responsible 
for creating partitions or "trees" that aim to separate anomalies from normal 
observations. Anomalies are more likely to be isolated with fewer splits, making path 
length a reliable indicator of anomalous behaviour [14]. 
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Figure 1: Isola=on Forest, Source: [14] 

The image illustrates that the algorithm starts with randomly selecting a feature from the 
dataset. Then, a random value within the range of that feature's values is selected as the splitting 
threshold. This partitions the data into two parts: one where data points have values less than 
or equal to the threshold, and another where data points have values greater than the 
threshold. This is repeated recursively until all data points are isolated into individual partitions 
or until a predefined maximum depth is reached. The algorithm constructs a specified number 
of isolation trees independently. Each tree partitions the data randomly, resulting in different 
isolation paths for each data point across the trees. Anomalies are identified by evaluating the 
isolation paths across all trees. Data points that have shorter isolation paths across multiple 
trees are considered anomalies because they require fewer partitions to isolate [14]. 

All models were trained on preprocessed flow-level data with binary labels (anomalous or 
benign). Cross-validation and grid search-based hyperparameter tuning were employed to 
optimize performance and reduce variance. 

3.3 Explainability Using SHAP 

To enhance model interpretability, SHapley Additive exPlanations (SHAP) was applied to 
trained models. SHAP is a game-theoretic approach that assigns each feature an importance 
value for a particular prediction, based on its contribution relative to other features [5], [8]. The 
SHAP values were computed for each prediction to understand which features influenced the 
model’s decision the most. This allows cybersecurity analysts to identify consistent patterns, 
such as unusually short flow durations or large packet sizes, that correlate with anomalies in 
encrypted traffic. For example, in our experiments, features like average packet size, inbound-
outbound packet ratio, and flow inter-arrival time emerged as key indicators, supported by 
SHAP’s feature attribution plots [6].  This interpretability layer enables actionable insights for 
regulatory compliance by offering transparent justifications. 
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Figure 2 : SHAP, Source: [15] 

 

Workflow Algorithm for Flow-Based XAI Anomaly Detection 

The following flowchart in figure 5 summarizes the entire workflow of the anomaly detection 
using individual ML models followed by explainability using SHAP: 

 

 

Figure 5: Workflow of the project XAI Anomaly Detection 

Following is the algorithmic representation of the workflow: 

Algorithm Interpretable_Anomaly_Detection_With_SHAP 

Input: Encrypted traffic datasets D = {CIC-Darknet, USTC-TFC, CIC-IDS} 

Load encrypted traffic 
dataset

[CIC-Darknet2020, 
USTC-TFC2016, 

CSE-CIC-IDS2018]

Preprocess data
(Handle missing values,

Normalize features,
Select relevant 

features,
Encode labels)

Train ML models 
(XGBoost, Random 

Forest, Isolation 
Forest)

Predict 
anomalies on 

test data

Apply SHAP to 
interpret each 

model's 
predictions 
separately

Visualize and 
analyze SHAP 
explanations

Identify influential 
features for 

detected anomalies

Output results and 
interpretability 

figures



11 
 

Output: SHAP-based interpretations and ranked influential features 

1. Preprocess_Data(D): 

   a. Remove missing values from D 

   b. Encode categorical variables (if any) 

   c. Normalize feature values if required by models 

   Return: Preprocessed dataset D_preprocessed 

2. Train_Models(D_preprocessed): 

   a. Split D_preprocessed into training set and test set 

   b. Train model_XGB ← XGBoost(Train_Set) 

   c. Train model_RF ← RandomForest(Train_Set) 

   d. Train model_ISO ← IsolationForest(Train_Set) 

   Return: {model_XGB, model_RF, model_ISO}, Test_Set 

3. Classify_And_Evaluate(models, Test_Set): 

   For each model in models: 

       Predict Y_pred ← model.predict(Test_Set.features) 

       Compare Y_pred with Test_Set.labels 

       Compute metrics: Accuracy, Precision, Recall, F1-score 

       Store predictions and evaluation results 

   Return: {Y_preds}, {metrics_per_model} 

4. Compute_SHAP_Values(models, Test_Set): 

   For each model in models: 

       explainer ← SHAP_Explainer(model) 

       shap_values ← explainer.shap_values(Test_Set.features) 

       Store shap_values 

   Return: shap_XGB, shap_RF, shap_ISO 
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5. Visualize_And_Analyze(shap_XGB, shap_RF, shap_ISO): 

   a. Generate SHAP summary plots (bar, beeswarm) 

   b. Generate force plots and dependence plots 

   c. Analyze feature contributions for individual predictions 

6. Identify_Influential_Features(shap_values): 

   For each model: 

       Compute average |SHAP value| per feature 

       Rank features by importance 

   Return: ranked_features_per_model 

7. Output: 

   Display classification performance metrics 

   Present SHAP visual explanations and feature rankings 

4.  Experimental Setup and Results 

4.1 Experimental Environment 

In this study, we utilized three comprehensive and publicly available datasets to simulate real-
world encrypted traffic scenarios: CIC-Darknet2020, USTC-TFC2016, and CSE-CIC-
IDS2018.CIC-Darknet2020 has Tor-based encrypted traffic with diverse attacks like botnets 
and port scans. USTC-TFC2016 includes TLS-encrypted flows from malware and legitimate 
applications, enabling analysis of statistical patterns. CSE-CIC-IDS2018 provides a vast set of 
encrypted attack scenarios in a realistic enterprise setting, with rich flow features and accurate 
labelling. These datasets include both benign and malicious traffic, encapsulating encrypted 
flow-based features essential for anomaly detection. 

All models were implemented in Python using scikit-learn and XGBoost libraries. The 
experiments were conducted on a computing system with an Intel Core i5-12700H processor, 
32 GB RAM, and an NVIDIA RTX 3060 GPU. For model evaluation, with train-test split as 
80:20, we used 10-fold cross-validation and standardized the feature values using z-score 
normalization. 

To assess the performance of the anomaly detection models, we employed standard 
classification metrics including Accuracy, Precision, Recall, and F1-score. 

4.2 Model Performance 
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To evaluate the performance of our classification methods, we have utilized four commonly 
used metrics: precision or positive predictive value, recall or sensitivity, accuracy, and F1-
score. Precision measures the ratio of correctly identified positive instances (true positives) to 
the total instances classified as positive, both correctly and incorrectly. Recall calculates the 
proportion of actual positive instances that are correctly identified by the model. Accuracy is 
the ratio of correctly classified out of total instances. F1-score is the harmonic mean of 
precision and recall. Mathematically they are:  

 

where TP: True Positive, FP: False Positive, FN: False Negative and TN: True Negative. 

The two machine learning models primarily XGBoost, Random Forest were evaluated. Below 
is the summary of the results: 

 

Table 2: Performance measures of ML models 

Model Accuracy Precision Recall F1-Score 

XGBoost 99.94% 90.9% 88.2% 93.0% 

Random Forest 97.92% 92.8% 88.3% 89.5% 

 

XGBoost outperformed the other two models in all performance metrics, showcasing its 
superior capability in handling high-dimensional data and complex relationships within 
encrypted network traffic. 

4.3 SHAP-Based Interpretability 
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Figure 6: SHAP Summary 1 

To enhance model transparency, SHAP (SHapley Additive exPlanations) was applied to 
interpret predictions of the individual models, namely XGBoost and Random Forest. This 
ensures that each model's decision-making process is understood independently. The SHAP 
summary plot (Figure 6) shows the average contribution of each feature across different traffic 
classes. 

Notable findings include: 

• Total Fwd Packet, Destination Port, and min_seg_size_forward are the top contributing 
features, significantly influencing classification decisions. 

• SHAP values effectively reveal how individual features impact class-specific outputs, 
aiding in understanding model behaviour for anomaly classification. 

• Flow-based features like Flow Duration, Flow IAT Min/Mean/Max, and Packet rates 
(Fwd/Bwd) have moderate influence but still contribute to model predictions. 

• Multi-class insights provided by SHAP help distinguish which features are most 
relevant to which types of anomalous activities (e.g., DDoS, infiltration, brute-force 
attacks). 
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Figure 7: SHAP Summary Plot 2 

Figure 7 is derived from the Random Forest model, signifies that features like Feature 61, 64, 
7, and 74 have the most spread in SHAP values, indicating they contribute most to the model's 
decision-making. All SHAP values are negative, which implies that the features shown mostly 
decrease the model’s prediction output—suggesting anomaly suppression or model 
conservatism in certain predictions. The high-value (red) dots mostly lie toward the right within 
the negative range, implying that high values of these features are less anomalous (they 
decrease the anomaly score less), whereas low values (blue) significantly reduce the model 
output further flagging a higher anomaly likelihood. Applying SHAP separately to each model 
allows us to compare how different learning algorithms perceive feature importance in 
encrypted traffic contexts. 

Such insights make it easier for us to validate and trust the model’s decisions, a critical aspect 
in high-stakes environments like network security. 

4.4 Case Study 

Some examples of detected anomalies and SHAP-based explanations include: 

Example 1: Botnet Detection(XGBoost): A sample flow classified as botnet traffic was found 
to have high SHAP values for Init_Win_bytes_forward and Total Fwd Packets, highlighting 
unusual session initialization patterns — a strong indicator of botnet behaviour. 

Example 2: DDoS Attack Detection(Random Forest): An anomaly detected as a DDoS attack 
showed significant SHAP contributions from Flow IAT Min and Packet/s rates, consistent with 
the high-volume low-interval nature of denial-of-service traffic. 

Example 3: Data Exfiltration(Isolation Forest): For a class associated with data exfiltration, 
SHAP indicated that Destination Port and Init_Win_bytes_backward were key differentiators. 
This provided insight into the choice of non-standard ports and reverse traffic patterns typically 
used in covert data transfers. These case studies demonstrate the strength of SHAP in offering 
instance-level explanations, enabling better insights into encrypted traffic anomalies. 
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The experimental results from individual ML models—XGBoost, Random Forest, and 
Isolation Forest—demonstrate that high anomaly detection performance can be achieved 
without decrypting the traffic payload, purely through flow-based features. Among the three, 
XGBoost consistently outperformed others in accuracy and F1-score, benefiting from its ability 
to model complex feature interactions. However, Random Forest offered greater 
interpretability due to its more transparent structure. 

The incorporation of SHAP (SHapley Additive exPlanations) values allowed a deep dive into 
model decision-making processes. Rather than applying SHAP to a combined ensemble, it was 
used independently on each model to obtain accurate feature-level insights. For example, as 
seen in Figure 6(XGBoost) and Figure 7(Random Forest), features such as Total Fwd Packets, 
Destination Port, and Init_Win_bytes_forward had the most significant impact on model 
predictions across multiple attack classes. This per-model SHAP application provides a 
comparative interpretability layer across different algorithms. This transparency is invaluable 
in cybersecurity applications where model outputs must be explainable to analysts and system 
administrators. 

The trade-off between model complexity and interpretability is evident. While complex models 
like XGBoost offer higher predictive performance, they are inherently less interpretable than 
simpler models. SHAP application on each model bridges this gap by providing consistent and 
locally accurate explanations, enabling trust and accountability in AI-driven network defence 
systems. 

Despite these benefits, there are limitations. SHAP computations, particularly on tree models 
applied separately over large datasets, can be computationally expensive, which might limit 
real-time deployment. Additionally, some traffic behaviours may still remain ambiguous under 
SHAP analysis due to feature similarity between benign and sophisticated obfuscated attacks. 

5.  Conclusion and Future Work 

This work successfully demonstrated the integration of Explainable AI (XAI) with individual 
ML based anomaly detection models to identify encrypted network threats using datasets such 
as CIC-Darknet2020, USTC-TFC2016, and CSE-CIC-IDS2018. The XGBoost and Random 
Forest, when individually interpreted using SHAP values, revealed key traffic features 
influencing detection outcomes without relying on payload decryption. 

Key contributions include: 

• Validation of effective anomaly detection in encrypted environments using statistical 
flow-based features. 

• Enhancement of model interpretability via per-model SHAP analysis, offering 
actionable insights to network security teams. 
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Future work can expand in several directions. First, implementing real-time SHAP-based 
explanations through optimized computation or approximations could enable live traffic 
monitoring. Second, integration with existing Intrusion Detection Systems (IDS) would help 
transition the framework from experimental to operational. Lastly, exploring deep learning 
models like LSTM or Transformers with built-in XAI methods could further improve both 
detection and explanation in complex traffic patterns.  Overall, the proposed methodology lays 
a foundation for explainable, reliable, and efficient encrypted traffic anomaly detection in 
modern cybersecurity infrastructure. 
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